On the toric locus of ℓ -adic local systems arising from geometry

ANNA CADORET (joint work with Jakob Stix)

For an algebraic group G, let G° denote its neutral component. Let k be a number field. Let X be a smooth, separated, geometrically connected variety over k and let |X| denote the set of closed points of X. For an infinite $\infty : k \hookrightarrow \mathbb{C}$ (resp. finite $v : k \hookrightarrow k_v$) places, let $X \rightsquigarrow X_{\infty} \rightsquigarrow X_{\infty}^{\mathrm{an}}$ (resp. $X \rightsquigarrow X_v \rightsquigarrow X_v^{\mathrm{an}}$) denote the base-change and analytification functors. Fix a prime ℓ and a \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on X viz a continuous representation of the étale fundamental group $\pi_1(X, \bar{x})$ on $V_{\ell} := \mathcal{V}_{\ell, \bar{x}}$. Write $\overline{G}_{\ell}, G_{\ell} \subset \mathrm{GL}_{V_{\ell}}$ for the Zariski-closure of the images of $\pi_1(X_{\bar{k}})$ and $\pi_1(X)$ acting on V_{ℓ} and, for $x \in X$, write $G_{\ell,x} \subset \mathrm{GL}_{V_{\ell}}$ for "the"¹ Zariskiclosure of the image of $\pi_1(x)$ acting on V_{ℓ} via $\pi_1(x) \to \pi_1(X)$. The degeneracy locus of \mathcal{V}_{ℓ} is the set

$$|X|_{\mathcal{V}_{\ell}} := \{ x \in |X| \mid G_{\ell,x}^{\circ} \subsetneq G_{\ell}^{\circ} \}$$

For a smooth projective morphism $f: Y \to X$, the \mathbb{Q}_{ℓ} -local systems of the form $\mathcal{V}_{\ell} = R^i f_* \mathbb{Q}_{\ell}(j)$ control certain arithmetico-geometric invariants of the $Y_x, x \in |X|$ (e.g. ℓ -primary torsion of the Picard variety or of the Brauer group, rank of the Néron-Severi group, of motivated cycles, rank of the the Picard variety *etc.*) and understanding $|X|_{\mathcal{V}_{\ell}}$ amounts to understanding how those invariants degenerate in the family $Y_x, x \in |X|$ - see [C23, §3] for details.

The leading conjecture about $|X|_{\mathcal{V}_{\ell}}$ is the following. For every integer $d \geq 1$ let $|X|^{\leq d}$ denote the set of all $x \in |X|$ such that $[k(x) : k] \leq d$. Then

Conj. 1 Assume \overline{G}_{ℓ} has finite abelianization. Then $|X|_{\mathcal{V}_{\ell}} \cap |X|^{\leq d}$ is not Zariskidense in X.

For X a curve, Conj. 1 is proved in [CT13]. In contrast, if X has dimension ≥ 2 , it is widely open. Actually, the strategy of [CT13] provides a heuristic for Conj. 1 when d = 1 - see [C23, §4]; this heuristic relies on the diophantine Lang conjecture (that on a number field k the set of k-rational point of a variety of general type is not Zariski-dense), which seems currently out of reach, even for surfaces.

Assume $\mathcal{V}_{\ell} = R^i f_* \mathbb{Q}_{\ell}(j)$ for some smooth projective morphism $f: Y \to X$. In this case \overline{G}_{ℓ} is known to be semisimple - hence, in particular, to have finite abelianization; assume furthermore it is not finite. In this work, we investigate a weaker form of Conj. 1, replacing $|X|_{\mathcal{V}_{\ell}}$ by the toric locus $|X|_{\mathcal{V}_{\ell}}^{\text{tor}} := \{x \in |X| \mid G_{\ell,x}^{\circ} \text{ is a torus}\}$, which, informally, corresponds to the most degenerate members of the family of motivated motive $\mathfrak{h}^i(Y_x)(j)$.

Conj. 2 With the above assumptions, $|X|_{\mathcal{V}_{\ell}}^{\mathrm{tor}} \cap |X|^{\leq d}$ is not Zariski-dense in X.

¹Actually only well defined up to conjugacy.

Conj. 2 follows from Conj. 1 but it is also a consequence of the Mumford-Tate conjecture and the generalized André-Oort conjecture (an unlikely intersection type conjecture); this implication is deep as it involves the average Colmez conjecture. Actually, the Mumford-Tate conjecture predicts that the points $x \in X_{\infty}(\mathbb{C})$ lifting those of $|X|_{\mathcal{V}_{\ell}}^{\text{tor}}$ are exactly the CM points of the polarizable Q-VHS $\mathcal{V}_{\infty} := R^i f_{\infty}^{\text{an}} \mathbb{Q}(j)$ and that $|X|_{\mathcal{V}_{\ell}}^{\text{tor}}$ should play a similar part in controlling the geometry of the exceptional locus $|X|_{\mathcal{V}_{\ell}}$ as the CM points do in controlling the geometry of the Hodge locus. Unfortunately, in general, we do not know how $|X|_{\mathcal{V}_{\ell}}^{\text{tor}}$ compares with the CM locus; actually, we do not even know if $|X|_{\mathcal{V}_{\ell}}^{\text{tor}}$ is independent of ℓ . The only things which are known are that

- (1) the solvable locus $|X|_{\mathcal{V}_{\ell}}^{\text{solv}} := \{x \in |X| \mid G_{\ell,x}^{\circ} \text{ is solvable}\} \subset |X|_{\mathcal{V}_{\ell}}$, is independent of ℓ ; this follows from class field theory [Se68] (and is true more generally for any \mathbb{Q}_{ℓ} -local system which is almost pointwise geometric in the sense of Fontaine-Mazur).
- (2) For every prime ℓ , $|X|_{\mathcal{V}_{\ell}}^{\text{tor}}$ contains the set $|X|_{\mathcal{V}_{\text{mot}}}^{\text{tor}}$ of all $x \in |X|$ such that the connected component of the motivated Galois group (in the sense of André) of the motivated motive $\mathfrak{h}^{i}(Y_{x})(j)$ is a torus.

Our main result is the following. We keep the assumptions in Conj. 2. Consider the level condition: (Lev_{ℓ}) The image of $\pi_1(X_{\bar{k}})$ acting on V_{ℓ} is a pro- ℓ group.

Thm. Assume (Lev_{ℓ}) holds for at least two primes $\ell_1 \neq \ell_2$. Then there exists a set \mathcal{L} of primes of positive Dirichlet density such that for every $\ell \in \mathcal{L}$ the set $|X|_{\mathcal{V}_{\ell}}^{\text{tor-}} \cap X(k)$ is not Zariski-dense in X. Furthermore, if the complex period map describing \mathcal{V}_{∞} is finite-to-one, then $|X|_{\mathcal{V}_{\ell}}^{\text{tor-}} \cap X(k)$ is finite.

Here, $|X|_{\mathcal{V}_{\ell}}^{\text{tor}-}$ denotes the subset of all $x \in |X|_{\mathcal{V}_{\ell}}^{\text{tor}}$ such that $x \in |X|_{\mathcal{V}_{\ell_x}}^{\text{tor}}$ for another $\ell_x \neq \ell$. In particular, $|X|_{\mathcal{V}_{\text{mot}}}^{\text{tor}} \cap X(k)$ is not Zariski-dense in X.

Remark. We hope our strategy to prove Thm. can be extended to prove Conj. 2 in general (namely for arbitrary $d \ge 1$ and without level conditions) but still with the restriction that ℓ belongs to a subset \mathcal{L} of primes of positive Dirichlet density. For the time being, treating all primes ℓ seems to require a truly new idea.

Brief sketch of proof.

Step 1: "toric points are integral". Fix a non-empty open subscheme $U \subset$ spec(\mathcal{O}_k) and $\mathcal{Y} \xrightarrow{f} \mathcal{X} \hookrightarrow \mathcal{X}^{cpt} \to U$ with $\mathcal{X}^{cpt} \to U$ smooth, projective, $\mathcal{X} \hookrightarrow \mathcal{X}^{cpt}$ an open immersion such that $\mathcal{Z} := \mathcal{X}^{cpt} \setminus \mathcal{X} \to U$ is a relative normal crossing divisor and $f : \mathcal{Y} \to \mathcal{X}$ a smooth projective morphism with generic fiber $f : Y \to \mathcal{X}$. Let $\mathcal{Z}^+ \subset \mathcal{Z}$ denote the union of those irreducible components around which the monodromy of \mathcal{V}_{∞} is trivial and set $\mathcal{X}^+ := \mathcal{X} \cup \mathcal{Z}^+$. It is not difficult to check that \mathcal{V}_{ℓ} extends to a \mathbb{Q}_{ℓ} -local system on the generic fiber \mathcal{X}^+ of \mathcal{X}^+ . By the nilpotent orbit theorem, \mathcal{V}_{∞} also extends to a polarizable \mathbb{Z} -VHS on $\mathcal{X}^{+an}_{\infty}$. The key lemma **Lem.** (Good reduction criterion) Let $\ell \neq p$ be a prime such that the image of $\pi_1(X_{k_v})$ acting on V_ℓ is of prime-to-p order. Then for every $x \in X^+(k_v)$, $x \in \mathcal{X}^+(\mathcal{O}_v)$ iff $x^* \mathcal{V}_\ell$ is unramified at v.

The proof of Lem. is similar to [PST21, §4]; it relies on the interpretation of Kummer theory in terms of intersection data and the nilpotent orbit theorem. That Lem. applies to toric points follows from the theory of complex multiplication [Se68], Serre-Tate criterion [SeT68], and the level assumption in Thm. It is to apply Lem. that we have to replace $|X|_{\mathcal{V}_{\ell}}^{\text{tor}}$ with $|X|_{\mathcal{V}_{\ell}}^{\text{tor}-}$.

Step 2: "Integral toric points are not Zariski-dense". This step follows the strategy of [LawV20] using the enhanced version of the local v-adic period map constructed in [BS22] (building on recent development in variational p-adic Hodge theory - [LiZ17], [Shi20], [DLanLiZ23]). Write $\mathcal{V}_{dR} := \mathbb{R}^i f_* \Omega_{Y|X}$ for the relative de Rham cohomology; this is a filtered vector bundle with flat connexion. The strategy of [LawV20] relies on the motivic properties of the collection \mathcal{V}_p , \mathcal{V}_{dR} , \mathcal{V}_{∞} - in particular that \mathcal{V}_p be pointwise pure with characteristic polynomial of Frobenius in $\mathbb{Q}[T]$ and with bounded denominators, that $(\mathcal{V}_{\infty}, \mathcal{V}_{dR,\infty}^{an})$ is a polarizable \mathbb{Z} -VHS on X_{∞}^{an} , that $(\mathcal{V}_p, \mathcal{V}_{\mathrm{dR}, v}^{\mathrm{an}})$ is a de Rham pair on X_v^{an} etc. In step 1, we have extended \mathcal{V}_p from X to X^+ but there is no reason why $f: Y \to X$ should extend to a smooth projective morphism over X^+ (and it does not in general) so, to run the [LawV20] strategy, we have to check that \mathcal{V}_p , \mathcal{V}_{dR} , \mathcal{V}_{∞} extend from X to X⁺ with all the expected properties; this involves the nilpotent orbit theorem (as already mentioned in step 1), the companion conjecture [L02, Thm. VII.6] and the rigidity of the de Rham property [LiZ17, Thm. 3.9 (iv)]. Once this is done, fix $v \in U_p$. Let <u>r</u> be the type of the filtration on \mathcal{V}_{dR} and let $\check{\mathbf{D}}(\underline{r})$ denote the Grassmaniann over k classifying filtration of type \underline{r} on $\mathcal{V}_{\mathrm{dR},x} \simeq k^{\oplus r}$. The crux of the argument is that for every $x_0 \in \Sigma := |X^+|_{\mathcal{V}_p}^{\text{tor}} \cap X(k)$ there exists an admissible open neighbourhood U_v of x_0 in X_v^{+an} and a v-adic analytic period map $\Phi_v : U_v \to \check{\mathbf{D}}(\underline{r})_v^{an}$ such that the fibers of $\Phi_v : U_v \to \check{\mathbf{D}}(\underline{r})_v^{an}$ above points in $\Phi_v(X(k) \cap U_v)$ are not-Zariski dense in X (see [LawV20, §9.2]), and which, for every $x \in U_v$, fits into a commutative diagram:

where $\Phi_{\text{et}}: U_v \to \operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{cris}}(\pi_1(k_v))$ is the map that sends $x \in U_v$ to $x^* \mathcal{V}_v$, which is automatically crystalline - [Shi20], D_{cris} : $\operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{cris}}(\pi_1(k_v)) \to \operatorname{FM}_{k_v}(\phi)$ is Fontaine's crystalline period functor $V_p \to (V_p \otimes_{\mathbb{Q}_p} B_{\operatorname{cris}})^{\pi_1(k_v)}$ (with value in the category $\operatorname{FM}_{k_v}(\phi)$ of filtered ϕ -modules); $\operatorname{FM}_{k_v}(M_{\operatorname{cris},x},\underline{r})$ denotes the set of filtered ϕ modules with fixed underlying ϕ -module $(M_{0,x}, \phi_x)$ and filtration of fixed type <u>r</u> and $\pi_0(-)$ denotes the set of isomorphism classes (of p-adic $\pi_1(k_v)$ -representations and filtered ϕ -modules respectively). From step 1, $\Sigma \subset \mathcal{X}^+(\mathcal{O}_v)$ hence, as $\mathcal{X}^+(\mathcal{O}_v)$ is compact, one can cover Σ by finitely many U_v as above. This reduces the proof of Thm. to showing that (1) $\pi_0 \circ \Phi_{\text{et}}(\Sigma \cap U_v)$ is finite and (2) for every $x \in \Sigma \cap U_v$, the set $\alpha_x^{-1}(\alpha_x \circ \Phi_v(x))$ is finite². Assertion (1) follows from a classical lemma of Faltings [FW84, V.5]. The proof of Assertion (2) is more demanding; the rough idea is as follows. Let $G_{\text{cris},v}$ denote the Galois group of $\Phi_{pH}(x) = (M_{0,x}, \phi_x, F_x^{\bullet})$ in $\mathrm{FM}_{k_n}(\phi)$ extended from \mathbb{Q}_p to k_v so that, tautologically its centralizer $Z(G_{\mathrm{cris},v})$ stabilizes F_x^{\bullet} and is contained in the centralizer $Z(\varphi_x)$ of the linearized crystalline Frobenius φ_x . Assertion (2) amounts to showing that $Z(\varphi_x)$ stabilizes F_x^{\bullet} so that to conclude, it is enough to show $Z(\varphi_x) = Z(G_{\text{cris},v})$. By the fully faithfullness of $D_{\text{cris}} : \operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{cris}}(\pi_1(k_v)) \to \operatorname{FM}_{k_v}(\phi)$, and the fact that $x \in |X|_{\mathcal{V}_p}^{\operatorname{tor}}$, we already know that $G_{\text{cris},v}$ is a torus so that it is actually enough to show that φ_x has maximal rank in $G_{cris,v}$. This is to ensure the later hold for every (a priori infinitely many!) $x \in \Sigma$ that we have to restrict to a subset \mathcal{L} of primes of positive Dirichlet density. On top of several ingredients already mentioned, the proof uses Frobenius tori, [KM74] and, as one can guess, the Cebotarev density theorem.

References

[BS22] A. BETTS and J. STIX Galois sections and p-adic period mappings, Preprint 2022.

- [C23] A. CADORET, Degeneration locus of \mathbb{Q}_p local systems: conjectures, Expositiones Math. -Special issue in the memory of Bas Edixhoven, to appear.
- [CT13] A. CADORET and A. TAMAGAWA, A uniform open image theorem for l-adic representations II Duke Math. Journal 162, p. 2301–2344, 2013.
- [DLanLiZ23] H. DIAO, K.W. LAN, R. LIU and X. ZH, Logarithmic Riemann-Hilbert correspondences for rigid varieties, Journal of the American Math. Soc. 36, p. 483–562, 2023.
- [FW84] G. FALTINGS, G. WÜSTHOLZ (eds.), Rational Points, Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, 1984.
- [KM74] N. M. KATZ and W. MESSING, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23, p. 73–77, 1974.
- [L02] L. LAFFORGUE, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147, p.1–241, 2002.
- [LawV20] B. LAWRENCE and A. VENKATESH, Diophantine problems and p-adic period mappings, Invent. Math. 221, p. 893–999, 2020.
- [LiZ17] R. LIU and X. ZHU, Rigidity and a Riemann-Hilbert correspondence for p-adic local systems, Invent. Math. 207, p. 291–343, 2017.
- [PST21] J. PILA, A. SHANKAR and J. TSIMERMAN, Canonical heights on Shimura varieties and the André-Oort conjectures, Preprint 2021. (https://arxiv.org/abs/2109.08788)

²By construction, the fibers of $\alpha_x : \check{\mathbf{D}}(\underline{r})_v^{\mathrm{an}} \to \pi_0(\mathrm{FM}_{k_v}(\phi))$ are homogeneous spaces under the centralizer $Z(\phi_x)$ of the crystalline Frobenius so, another way to phrase (2) is to say that points in $\alpha_x \circ \phi_v(\Sigma \cap U_v)$ have finite $Z(\phi_x)$ -orbits.

[Se68] J.-P. SERRE, Abelian l-adic representations and Elliptic curves, W.A. Benjamin, 1968.

- [SeT68] J.-P. SERRE and J. TATE, Good reduction of abelian varieties, Annals of Math. 88, p. 492-517, 1968.
- [Shi20] K. SHIMIZU, A p-adic monodromy theorem for de Rham local systems, Compositio Math. 158, p. 2157–2205, 2022.