ON THE TRIVIAL LOCUS OF Q,LOCAL SYSTEMS

ANNA CADORET AND AKIO TAMAGAWA

ABSTRACT. Let k be a number field, let X be a smooth, geometrically connected variety over k and let V, be
a Q¢-local system on X. The unramified Fontaine-Mazur conjecture predicts that the property of being finite
is "rigid" in the sense that the following should be equivalent: (i) V; is finite; (ii) for every x € | X|, ™V, is
finite; (iii) there exists = € | X| such that "V is finite. We prove these equivalences unconditionally when V,
is pure and part of a Q-compatible family. When X is a curve, we also prove these equivalences with condition
(iii) replaced by a weaker condition, and under the assumptions that ¢ is large enough compared with the
rank of V, and V, is Hodge-Tate at at least one finite place of k above . The proofs use variational p-adic
Hodge theory, and, for the second result, a pointwise criterion for V,; to extend over X', and the companion
correspondances both of Abe and L. Lafforgue.
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Notation / conventions.

For an algebraic group G, let G° C G denote the neutral component of GG and, for a closed subgroup H C G,
let Zq(H) C Ng(H) C G denote the centralizer and normalizer of H in G respectively; set Z(G) := Zg(G)
for the center of G. For a profinite group Il and a topological field @Q, let RepQ(H) denote the category of
continuous, finite-dimensional @Q-representations of II.

For a scheme S, write |S| for the set of closed points of S.

For an affine scheme S = spec(A), we often abbreviate 71 (A) := 71 (spec(A)) for the étale fundamental group
of spec(A) (and omit fiber functors).

A variety over a field k is a scheme separated and of finite type over k. If S is an integral scheme with
generic point 7 and X is a smooth, geometrically connected variety over k := k(n), one says that X admits
a smooth model over S if it fits into a Cartesian diagram

X —— spec(k)
0 in
S,

with X integral and X' — S surjective, smooth, separated and of finite type, and one says that X admits a
smooth model with relative normal crossing compactification (a smooth NCC model for short)
over S if it admits a smooth model X — S over S which fits into a diagram

‘/’)C'(H cht
S

with X < X°P* an open immersion, X°P" integral, X°** — S smooth, proper, and X**\ X — S a relative
normal crossing divisor.

X

1. INTRODUCTION

Let k be a field and let X be a smooth, geometrically connected variety over k with generic point 7.

1.1. Trivial locus and main conjecture. Let ¢ be a prime and Vy be a Qy-local system on X. For every

x € X and geometric point T over z, set V; := V7 and let Gy, Gy, C Gy C GLy, denote the Zariski closures

of the images II;, IIy, and II; of the étale fundamental groups (X3, z), mi(x,Z) and 71 (X, Z) acting on
1
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Vi respectively (so that I, , = Iy, Gy, = Gg). Define the degeneracy locus or Tate locus (restricted to
closed points) of Vy as
Xy, :=={z € |X]| | G, S Gp}.

Informally, |X|y, is the set of all z € |X| where 2*V, degenerates. Under mild assumptions on Iy, one
expects that X (k)N |X|y, is not Zariski-dense in X - see [C23]. In this note, we focus on the most degenerate
strata of | X|y,, namely the trivial locus

X[y ={ze|X] | G, =1}
and the closely related unipotent locus
| X3 = {z € |X]| | G7, is unipotent},
and centralizing locus B
(XI5 =A{z € |X] | G, C Zc,(Gy)}-
Tautologically [X|j¥ C [X[{3" and if 2*Vy is semisimple for every = € |X|, then [X|}3V = [X[}". The
following is deeper.

Proposition 1. Assume k is a number field. Then,
(1) one has ‘X‘trlv 7& @ = ’X’trlv _ ’X’um

(2) in general, one always has
‘X|tr1v C ‘X|un1 C ‘X‘cent'

Proposition 1 (1) is actually a special case of a more general result - see Corollary 23. The proof of Proposi-
tion 1 uses global class field theory and (variational) p-adic Hodge theory, in particular the theorem of Sen
and a construction of Beilinson-Petrov. Its proof is carried out in Subsection 5.2.2.2.

The following conjecture predicts that the trivial, unipotent and centralizing loci should all be empty unless
Vil x; is finite.

Conjecture A. Assume k is a number field. For a Qg-local system V;y on X, the following implications hold.

(T) (i) G/ =1; (U) (i) G =1 (©) (i) G =1
< (i) Gy =1, < (i) G} is unipotent; & (i) G, € Z(GY);
& (i) [X]pY = |X]; & (1) Xy = \X\ & (i) [ X5 = X
< (iil) [X|5Y # 0. < (iii) |X]unl & (i) [ X5 # 0.

In (T), (U), the implications (i) = (ii) = (iii), in (T) the implication (i) = (i)’ and, in (C), the implications
(i) « (i)’ = (ii) = (ili) are tautological. In (C), the implication (i) = (ii) follows from the fact Gy is
generated by @;, Gy .- The implications (ii) = (i) follow from Hilbert’s irreducibility theorem.

Fact 2. (Hilbert’s irreducibility - [Ser89, §9.6, 10.6, Thm.]) Let k be a number field and let X be a smooth,
geometrically connected variety over k. For every Qg-local system Vy on X there exists infinitely many x € | X|
such that I, , = IIy - hence such that Gy, = Gy.

In Subsection 5.2.2, we will attach (see Construction 24) to every Qy-local system V; on X and z € |X]|
an auxilliary Qg-local system A (V) with the property that for every € |X|, x € |X|[§5™ if and only if

x € |X|Z“’(V and that G, = 1 for A, (V) if and only if G, = 1 for V,.

In (U), (C) the implication (i) = (i)’ follows from geometric class field theory [KL81, Thm. 1]|. In (U), this
is immediate by reducing to the case where G} ~ G, g,. In (C), after possibly replacing S by a connected
étale cover, one may assume Gy, Gy are both connected and then, observe that under assumption (i), for
every x € | X]|, the Qg-local system A, (V) is abelian.

To summarize, one has:
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From Proposition 1 (2), one also has
[(iii) = (i) in (C)] = [(iil) = (i) in (U)] = [(iii)) = (i) in (T)]
And, using the auxilliary Qg-local systems A, (Vy), = € | X]|,

[(ii)) = (i) in (T) for Az(Vy) and some z € |X[§5*] = [(iii) = (i) in (C) for V|

Remark 3. The formulation of Conjecture A may seem cumbersome. However, we adopt this formulation
to stress several kind of rigidity phenomena: implications (iii) = (ii) can be thought of as a spreading out
property and implication (ii) = (i) as a (pointwise) local to global, or globalization property. These rigidity
phenomena will occur - and be a main tool - throughout the paper, where we tried and keep a consistent
numbering (i) (global), (ii) (pointwise), (iii) (at one point) for the statements; a statement (x)’ will usually
indicate a variant or weakening of the corresponding statement (x).

1.1.1. Reformulation of Conjecture A (T).

(1) An equivalent formulation of Conjecture A (T) in terms of the degeneracy locus | X]|y, is the following -
see Lemma 21. Assume k is a number field and Conjecture A (T) holds (for every Qg-local system on
X). Then, for every Qg-local system Vy on X the following holds. For every x € |X|, GZI normally
generates Gj. Equivalently,

[ Xy, = {z € [X|| G7, & Norgs (Gi,)}-

=

(2) As a compact f-adic Lie group is a closed subgroup of GL,,(Zy) for some integer m > 0 [L.88, Prop. 4],
one has the following diophantine reformulation of Conjecture A (T): Assume k is a number field and let

= X=X = =2 X1 =2 X=X

be a projective system of finite étale covers with X,, — X Galois of group II,,, n > 0. Assume II := limIL,
is a f-adic Lie group of dimension > 0 for some prime ¢. Then,

lim X, (k) = 0.
1.1.2. Relation to classical conjectures.

(1) Assume &k = C and let V be a polarizable Z-variation of pure Hodge structures on the complex-
analytification X®* of X. One can define similarly the degeneracy locus or Hodge locus |X|y, the
trivial locus |X | and the centralizing locus |X |5 of V using® the Mumford-Tate group G, of z*V,
and the generic Mumford-Tate group G' of V in place of the f-adic algebraic monodromy groups Gy s,
Gy. In that setting, the statements corresponding to Conjecture A (T) and Conjecture A (C) easily
follow e.g. from the constancy of Hodge numbers? and the fact that the neutral component G- of the
Zariski-closure G of the image of 71(X®") acting on V, is contained in G' [A92, Thm. 1]. In particular,
for Qg-local systems arising from motives, Conjecture A (T) and Conjecture A (C) should follow from
classical motivic realization conjectures (Hodge [Ho52|, Tate [T94]; see also [DLLZ23, Conj. 1.4]).

(2) In whole generality, Conjecture A follows from the unramified Fontaine-Mazur conjecture - see Corollary

28 (1).

Conjecture B. (Unramified Fontaine-Mazur [FoM95, Conj. 5.1a]) Let k be a number field. Let p be a
prime and let U C spec(Of) be an open subset containing all finite places of k above p. Then every
Qp-local system on U is finite.

1.2. Results.

1.2.1. Q-compatible families. Assume k is a number field with ring of integers Oj. For every finite place
v of k with residue characteristic p := p,, let k, denote the completion of k at v and O, — K, its ring of
integers and residue field respectively; let also Q, C k0 C k, denote the maximal unramified extension of
Q) contained in ky,, m, = [ky o : Qp] its degree and o : k, 9>k, its Frobenius.

For a variety X over k, a closed point = € |X| with residue field k(x) and a finite place v of Oy(,), write
., : spec(k(z),) — spec(k(z)) > X

1Recall that these are connected and reductive.
21f | X285V £ (), the only non-zero Hodge number is h®°; equivalently, G, = 1, z € X*" - hence G = 1.
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for the resulting k(x),-point.

1.2.1.1. For a Q-local system Vy on x = X = spec(k), let Uy, C |spec(Oy)| be the set of all finite places v
of k such that, writing p := p, for the residue characteristic of v, the following holds:

- If £ # p, 23V is unramified viz extends to a Qg-local system over spec(O,);
- If £ = p, x3V, is crystalline.
For v € Uy, and £ # p, let x4, v, € Q¢[T] denote the characteristic polynomial of the geometric Frobenius

Orpt Vg — Viz

and for £ = p, let x4,v, € ky,0[T] denote the characteristic polynomial of the linearized crystalline Frobenius®

Soxv,cris : Dcris(xivp) — Dcris(l‘;Vp)'

See Subsection 3.1 for a very brief review of basic definitions from p-adic Hodge theory, in particular the one
of Fontaine’s Riemann-Hilbert functor Deys : Repg, (11 (ky)) — M .

One says that Vy is almost everywhere unramified (AEU for short) if Uy, C |spec(Oy)| is a non-empty
open subset and that it is Q-rational (resp. and pure of weight w € R) if there exists a non-empty open
subset Uy, C Uy, such that for every v € |UY, | the polynomial xz, := Xu,v, is in Q[T (resp. and xg, is

pure of weight w, that is for every root o of x,, and infinite place Q(a) = C, |afos = || 7).

Let ¥V := (V)¢ be a family of Qg-local systems on x = X = spec(k) (indexed by the set |spec(Z)| of all
rational primes). Write

Uy = ﬂUw C |spec(Og).
¢

One says that V is Q-compatible (resp. and pure of weight w € R) if Uy C [spec(Oy)| is a non-empty
open subset and there exists a non-empty open subset UIE C Uy such that for every v € UIE the polynomial
Xay i= Xau,V, 18 in Q[T (resp., pure of weight w € R,) and independent of the prime /.

Let X be a variety over k. One says that a family of Qg-local systems V := (Vy), on X is Q-compatible
(resp. and pure of weight w € R) if z*V is, x € |X|. The purity assumption ensures that Gy is semisimple
[DS0, Thm. (1.3.8), (1.11), Cor. (3.4.12)].

Classical examples of Q-compatible families V of Q-local systems on X are those with V, = R f.Q(5) for
f Y — X a smooth proper morphism and ¢ > 0, j integers; these are pure of weight w = i — 25 [D80],
[KM74].

1.2.1.2. Our first result is that Conjecture A (T) and Conjecture A (U) hold when V, is part of a Q-compatible
family of pure Qy-local systems on X.

Theorem 4. Let V be a Q-compatible family of pure Qg-local systems on X. Then,

(1) | Xy = | X3 is independent of the prime £ and | X[ = [ X[ for £> 0;

(2) Furthermore, if \X\ﬁ‘i # 0 then the weight w = 0 and G} is unipotent (hence @Z = 1) for every prime £
and G =1 for £ > 0.

In general, Theorem 4 does not imply Conjecture A (C) for V; part of a Q-compatible family of pure Q-
local systems on X unless one could prove e.g. that, for every x € |X]|, the family of Qg-local system
Az (V) = (A (Ve))¢ introduced in Subsection 5.2.2 is also Q-compatible. However, Theorem 4 does imply
Conjecture A (C) in the following easy albeit important cases ("large geometric monodromy").

Corollary 5. Let ¥V be a Q-compatible family of pure Qg-local systems on X. Assume one of the following
conditions hold:

(1) é; is a Levi subgroup of GY;
(2) G, and the homotheties torus G, (Vy) ~ G0, C GL(V;) generate a Levi subgroup of GS.

3More precisely, if ¢, cris © Deris(€yVp) — Deris(23,Vp) denotes the (o-semilinear) crystalline Frobenius then ¢, cris =
¢:chris'



ON THE TRIVIAL LOCUS OF Q,-LOCAL SYSTEMS 5

Then, for every prime {, Conjecture A (C) holds for Vo, namely | X |55 = 0 unless G, =1 and Xt =0
unless G is unipotent.

Proof. As G, is semisimple, the assumptions and conclusions of Conjecture A (C) remain unchanged if one
replaces V;, by its semisimplification so that, without loss of “generality one may assume that 1 is semisimple,
¢ € |spec(Z)|. In that case, Condition (1) becomes simply G, = G} and Condition (2) that G, and G,,(V)
generate Gy. By construction the family of Q-local systems & = V, @ V), £ € |spec(Z)]| is pointwise
Q-compatible and pure of weight 0. Fix a prime £ € [spec(Z)| and let = € | X[, As G, is semisimple, the
assumptions impose that G7 . C G (V) hence = € | X|¢1 and, by Theorem 4, @Zd ° =1 hence G, = 1 since
G, is semisimple. g

1.2.1.3. Say that y € Q[T is generalized cyclotomic if all its roots are roots of unity. Theorem 4 (2) easily
reduces to proving that the characteristic polynomials of Frobenii x,, introduced in Subsection 1.2.1.1 are
generalized cyclotomic. Writing p := p, for the residue characteristic of v, to prove that x, is generalized
cyclotomic, it is enough to prove that

)w=0; i) Xz, € Q[T}; iil) Xo, € Ze[T], £ # 5 V) Xa, € Zp[T].
The purity assumption plus the fact that | X |u£’“i # () ensure i), the Q-compatibility ensures ii), iii). The proof
of iv) relies on a deeper result of variational p-adic Hodge theory (due to Liu-Zhu, Petrov, Shimizu - see Fact
10) ensuring that being potentially unramified is a ("one point to pointwise" - see Remark 3) "rigid" property
in the sense that if 2V, is potentially unramified for one z¢ € | X}, | then 2*V), is potentially unramified for

every x € | Xy, |. Actually, the proof of iv) is purely local and works for an arbitrary Qp-local system. The
details of the proof of Theorem 4 are carried out in Subsection 5.2.2 and Subsection 5.3.

1.2.2. Subquotients of motivic Qy-local systems. Let k be a number field. The variational Fontaine-
Mazur conjecture of Liu-Zhu [LiZ17, Conj. p.2| predicts that every Q-local system Vy on X with | X H};" # 0
appears as a subquotient of 7, := R? f,Qy(i) for some integer i > 0 and f : Y — X a smooth proper mor-
phism, after possibly replacing X by a non-empty open subscheme. So the next case to investigate is the one
of arbitrary subquotients Vy of such a Fy. As F := (Fy)¢ is a Q-compatible family of pure Qy-local systems of
weight 0 on X, i) and iii) automatically hold for such a ;. As already mentioned, iv) also holds. The main is-
sue to extend the proof of Theorem 4 to V is that ii) does not hold in general for arbitrary subquotients of F.

1.2.2.1. So, to treat more general Qy-local systems, one has to adjust the strategy of the proof of Theorem
4. The idea is to exploit further the fact that, given a finite place v|¢ of k, as soon as [ X[}V # ( (or as soon

as Vy|x,, is Hodge-Tate and | X[}
assume Xj, admits a smooth model Xp, over spec(O,), the technical core of our second main result is (a
variant of - see Corollary 14) the following basic pointwise criterion (Theorem 12) for Vy|x, = to extends to

Xo,: assume that £*V, is unramified for every z in the image of the map

Xo,(0y) = [Xp, |

# (), for every = € | Xy, |, *Vy is potentially unramified. More precisely,

then Vy extends to a Qg-local system V, on Xo,. This result provides a key step for a general strategy aiming
at proving Conjecture A in that it enables to consider the restriction %[ x, of 174 to the special fiber X, of
Xo,, where one can reformulate the initial problem in terms of overconvergent F-isocrystals and try and
exploit the companion correspondances of both Abe [A18] and L. Lafforgue [L02].

1.2.2.2. A first application of this strategy is the following. Let k be a number field. Assume X admits a
smooth NCC model X < X°P* — U over a non-empty open subscheme U C spec(QOy). For a prime £ in the
image of |U| — [spec(Z)| and a finite place v in U above ¢, let

spy ¢ | XPH — | AP

denote the specialization map. Let f:Y — X be a smooth proper morphism and, for some integer ¢ > 0
and every prime £, set Fy := R* f,Qy(3).

Theorem 6. Assume X is a curve. For every prime ¢ in the image of |U| — |spec(Z)|, £ > 0 and for every
finite place v in U above ¢, there exists a 0-dimensional Zariski-closed subset Z, C X' such that for every
subquotient Vy of Fy one has

(i) G is unipotent;

& (i) X[ = [x];

And (iii}’ ’X’W Z ﬁveUZSp;1(|ZU|).
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In other words, Conjecture A (U) (hence Conjecture A (T)) holds with condition (iii) weakened to condition
(iif) .

Remark 7.

(1) As by assumption Vy is pointwise Hodge-Tate, one actually has | X |}V = | X[}2" - see Proposition 20.

(2) Up to shrinking U, one may also assume f :Y — X admits a smooth proper model f:) — X over U.
Then, for £ > 0 and for every finite place v in U above ¢, the Zariski-closed subset Z, C XS** appearing
in the statement of Theorem 6 can be chosen explicitly, namely X, \ Z, is the largest open subset over
which the convervent F-isocrystal R% ferisx Oy, |x, admits a slope filtration (equivalently, has constant
Newton polygon). In particular, when X = X®* and R* JerisxOy, |x, has constant Newton polygon at
least for one place v above ¢, then (iii)’ reads |X ]]“}t}‘ # (); in other words, under these assumptions,
Conjecture A (U) (hence Conjecture A (T)) holds.

(3) Actually, Theorem 6 is a special case of a more general, and purely local, statement - See Theorem 29.
In particular, the condition that V; be a subquotient of a motivic Qy-local system can be relaxed to get,
e.g. the following variant:

Theorem 8. Assume X is a curve. Let £ be a prime in the image of |U| — |spec(Z)|. Then for every
Qq-local system Vp on X with ¢ > rankg,(V¢) + 1 and finite place v in U above ¢, such that VAX,% 18
Hodge-Tate, there exists a 0-dimensional Zariski-closed subset Z, C X" such that one has

(i) Gy is unipotent;

& (i) | X1 = |X];

& (i) |XgE & sp, (120,
1.3. Outline. After introducing technical level assumptions in Section 2 and reviewing in Section 3 the re-
sults from (variational) p-adic Hodge theory used in our proofs, we devote Section 4 to the proof of Theorem
12 or rather the key propositions - Proposition 16 and Proposition 18 - underlying it. The final Section 5 is
devoted to the proofs of the global statements - Proposition 1, Theorem 4, Theorem 6 etc.

Acknowledgments The authors thank Benjamin Schraen for explaining the proof of Lemma 9, and Francois
Charles, Emmanuel Reinecke, Koji Shimizu for constructive discussions. This work was mostly carried out
during visits of the first author to RIMS; she thanks RIMS for its support and providing wonderful research
conditions.

2. LEVEL

Some of the proofs and statements involve level assumptions that we list here for the convenience of the reader.

Let S be a connected scheme. Fix a prime ¢ and let V, be a Qp-local system on S. Fix a geometric point §
on S and set Vp := V;5; let I, € GL(V;) denote the image of (5, 5) acting on V,. Consider the following
"level conditions" on V:

Levi(Vy) There exists a II,-stable Z-lattice V> C V; such that II, C Id + ZZEndZL,(V;), where £ = 4 if £ = 2
and ¢ = ¢ otherwise.

Leva(Vy) Iy is torsion free.
Levs(Vy) Ty is pro-£.
Levs(Ve) The torsion elements in II; are of prime-to-¢ order.
One easily checks the following implications.
Levi (V) == Leva(Vy) <= (Levs(Vy) + Leva(Vy)) == Lev4 (V) <= ¢ > dim(V}) + 1.

In practice, Levy (V) can always be achieved after replacing S by a connected étale cover.

3. POINTWISE VERSUS GLOBAL PROPERTIES OF Qp—LOCAL SYSTEMS
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Let k£ be a p-adic field with ring of integers and residue field k¥ D O — k; let v denote the closed point of
spec(Og). Let Q, C ko C k be the maximal unramified extension of Q, contained in k and o : kog—=ko its
arithmetic Frobenius.

3.1. Brief recollection of classical p-adic Hodge theory.

3.1.1. Let Buis C Bqr =: Bar(k) = Bgr(k) and Byt = Gr(Bgr) denote Fontaine’s period rings and the
associated "Riemann-Hilbert" ®-functors

Deris : Repg, (m1(k)) — M}fo, V = (Bais ®q, V)Trl(k)
Dyr : Repg, (m1(k)) = F-My, V — (Bar ®g, V)™®,
Dur : Repg, (m1(k)) = Grg, V > (Bar @, V)™,

Here Mfo (resp. F-My, resp. Grg) denote the category of kg-modules of finite rank D equipped with a
o-semilinear endormorphism ¢ : D — D (resp. of k-modules of finite rank D equipped with a descending
separated exhaustive filtration F'® by k-submodules, resp. of k-modules of finite rank D equipped with a
direct sum decomposition D*® by k-submodules). Let

Rep@i:(m(k)) C Rep&i(m(k)) C Rep&j(m(k)) C Repg, (m1(k))
denote the full subcategories of crystalline (viz such that rankg,(V) = rankg,(Deais(V))), de Rham (viz
such that rankg,(V) = ranki(Daqr(V))) and Hodge-Tate (viz such that rankg,(V) = ranky(Dur(V)))

representations. The functors Dgg : Rep&(m(k)) — F-M;, and Dy : Rep&?(m(k)) — Gry, are faithful
exact ®-functors

3.1.2. The following implications are classical. Note that being Hodge-Tate with single Hodge-Tate weight 0
is the same thing as being Cp-admissible. In particular, being Hodge-Tate and unipotent - hence a successive
extension of the trivial representation Q,, implies being C,-admissible.

1
Cp-admissible a(=()s)potentially unramified == potentially crystalline == de Rham == Hodge-Tate

L

unramified crystalline

The implication W is a theorem of Sen [Se80, Cor. to Thm. 11]. For the fact that (2) is "Cartesian", namely
that
(2) crystalline + potentially unramified = unramified,

see e.g. [Cal9, Prop. 4.3.2]. Let us also make the following observation, the proof of which was explained to
us by Benjamin Schraen.

Lemma 9. Let V, € Repg, (m1(Oy)). Then the elementary divisors of

- the image @, : V=V, of the geometric Frobenius ¢ € m (k) ~ m1(Ok);

- the linearized crystalline Frobenius ¢ : Deyis(Vp) = Deris(Vp),
coincide. In particular, the characteristic polynomial of ¢ @ Deyis(Vy) = Deyis(Vp) is in Zy[T| and its roots are
v-adic units.

Proof. Let I, := ker(mi (k) — m1(Oy)) denote the inertia group. Let also kg C k§* C k denote the maximal

~

unramified extension of kg and kj" its completion. Recall that by definition ¢ = ¢ : Deyis(V}) = Deris(Vp),
where m = [k : Qp] and ¢ : Deyis(V) = Deris(V)) is the crystalline Frobenius. As V, is crystalline, and
using that (Beis)™® = k§* (e.g. [Fo94, Prop. 5.1.2]),

Dcris(‘/;)) = (Vp ®q, Bcris)m(k) — (Vp ®qQ, (Bcris)lk)m(n) — (Vp ®q, kblr)m(n) =: D']lef(v;?)

ur

has ko-dimension dimg,(V}). In other words, V,, is 7{:\0 -admissible, hence the canonical Eblr—linear injective
morphism

-~

a: D’lggr (V}D) Qo ko™ — Vp ®Q, ko'
is an isomorphism, which is equivariant with the following structures:
- The 71 (k)-action (with Dz

kgr(V},) viewed as a trivial 7 (k)-representation);
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- The crystalline Frobenii (with the crystalline Frobenius on V}, being the identity and the one on Egr
the lift o : kzgr kur of the arithmetic Frobenius on the residue field).

In particular, « : Dkur(Vp) ®ko kb“—)‘/p ®qQ, ko exchanges

Id ®p, 0™ «— cp;;l ®q, 0", ¢ R, 0+ Id®q, 0
As a result,

o0 (ngm ®k0 Id) o ail = o0 ((ZS ®k0 o')m(fd ®k0 Um)il o Ozfl = (Id ®Qp U)m((p;1 ®Qp O'm)fl = vy ®Qp Id.
This shows the two ko-linear morphisms ¢, ®q, Idk, : V}; ®q, ko—V) ®q, ko and ¢ : DE;J‘r(V )—>Dkur(V)
have the same invariant factors hence, in particular, the same characteristic polynomial. O
3.2. Pointwise versus global properties. Let X be a smooth variety over k. Let V,, be a Q,-local system
on X, write

X[y, € IXI3,° C IXIy, € IX], C[X]
for the subsets of all # € |X| such that z*V), is unramified, crystalline, de Rham and Hodge-Tate respec-

tively. Say that V), is pointwise unramified if | X |"" = | X|; define similarly the notion of being pointwise
crystalline, pointwise de Rham and pointwise Hodge-Tate.

3.2.1. Hodge-Tate, de Rham and crystalline local systems. There are also global notions of crystalline, de
Rham and Hodge-Tate Q,-local systems on X defined using geometric versions of Fontaine’s Riemann-Hilbert
functors. More precisely, let X** — X denote the rigid-analytification of X. The natural morphism of sites
X2 — X induces a faithful exact ®@-functor

(_)an . LOCZp (Xet) — LOCZP (thn)

from the category Locz,(Xe;) of Zy-local systems on X to the category Locz, (X&) of Zy-local systems on
X2 hence, passing to the isogeny category, a faithful exact ®-functor

(=)™ Loch(Xet) — LOCQP(X;”).
- Let Higgs(X®") denote the category of vector bundles with a nilpotent Higgs field on X*. If
Duyry : Locg, (X&) — Higgs(X™)
denotes the natural Hodge-Tate Riemann-Hilbert functor constructed in [LiZ17, §2.1], one says that a
Qp-local system V), on X" is Hodge-Tate if
rankg, (V) = rank(Dyur(Vp)),
and that a Qp-local system V,, on X is Hodge-Tate if V;“ is
- Let F-VectY (X®) denote the category of filtered vector bundles on X" with a flat connection satisfying

Griffith’s transversality. If
Dyr : Locg, (X2") — F-VectY (X™)

denotes the natural de Rham Riemann-Hilbert functor constructed in [LiZ17, §3.2]|, one says that a Q,-local
system V, on X7 is de Rham if

rankg, (V,) = rank(Dar (Vy)),
and that a Qp-local system V, on X is de Rham if V;” is
Assume furthermore X — spec(k) admits a model X — spec(Oy), smooth, separated and of finite type.

Write X for the formal completion of X along the closed fiber X,. Let X denote the rigid-analytic fiber of
X so that one gets an open immersion Xn — X?®" of rigid analytic spaces.

- Let F-wlsoc(X,/Oy,) denote the category of weak F-isocrystals on X, /O, [GY24, Def. 5.10]. If
D7, : Locg, (i’\n,et) — F-wlsoc(X,/Of,)

denotes the natural crystalline Riemann-Hilbert functor constructed in [GY24, Thm. 1.10] and one defines

D..is : Locg, (X;t“) Loch( net) 4“ F-wlsoc(X,/Ok,),
one says that a Qp-local system V,, on X2" is crystalline if D.,;5(V,) has constant rank rank(Deis(Vp)) and
rankq, (Vp) = rank(Deis(Vp))-
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One says that a Qp-local system V, on X is crystalline (with respect to /?n) if V! is.

The following summarizes the relation between the pointwise and global Hodge-Tate, de Rham and crystalline
properties.

Fact 10. Let X be a smooth, geometrically connected variety over k. Let V, be a Qp-local system on X.
Then,

(1) ([P23, §7]; see also [Shim18]) One has
(1) Vp is Hodge-Tate <« (i) |X[};7 = |X| & (i) [X])} # 0;

Furthermore, if V), is Hodge-Tate, the multiset HT'(V,) := HT (2*V),) of Hodge-Tate weights of *V), is

independent of x € | X]|.
(2) (|[LiZ17, Thm. 1.1, Thm. 1.3]) One has

(i) Vp is de Rham < (i) | X[ = |X] < (i) | X557 # 0.
(3) (|GY24, Thm. 7.2]) Assume furthermore X admits a smooth model X — spec(Oy). One has
(i) Vp is crystalline (with respect to /'?n) & (i)’ \Xﬁ}: D im(X(0) — |X]).

Note that, in particular, the property of being a Hodge-Tate, de Rham or crystalline @Q,-local system is
preserved by passing to subquotients.

Corollary 11. Let X be a smooth, geometrically connected variety over k and let V), a Qp-local system on X.
The following properties are equivalent (i)  for every x € | X|, ¥V, is potentially unramified;
(111) there exists x € | X| such that z*V), is potentially unramified.

If these hold, then |X|y; = |X]§};S and for every x € \X|§j;s the characteristic polynomials of

- the geometric Frobenius @z p: Vpz—+Vpz;

- the linearized crystalline Frobenius ¢y cris @ Deris (¥ Vp) = Deris(2%V)p),
coincide. In particular, the characteristic polynomial of @z cris * Deris(2*Vp) = Deris(x*Vy) is in Zp[T] and its
roots are v-adic units.
Proof. According to the equivalence (1) of Subsection 3.1.2, the equivalence (ii) < (iii) is a special case of
Fact 10 (1). The equality |[X[}; = |X ]‘{};S follows from the implication (2) in Subsection 3.1.2. The last part
of the assertion then follows from Lemma 9. O

3.2.2. Unramified and tamely ramified local systems. Assume X admits a smooth model X — spec(Oy).

3.2.2.1.0ne says that a Qp-local system V, on X is unramified with respect to X if the corresponding
representation of m1(X) on V, := V, 7 factors through 71 (X) — 7 (X) (viz V, extends to a Qp-local system
on X) and that V, is tamely ramified with respect to X if the corresponding representation factors
through the tame étale fundamental group m1(X) — 7 (X; X,) (viz V, is tamely ramified along X,). Let

X1y, C X
denote the subset of all z € |X| such that 2*V, is tamely ramified.
Theorem 12. Let V), be a Qp-local system on X. One has

(1) (i) V,p is unramified with respect to X & (i) [ X[y D im(X(?k) — | X)).
(2) (i) Vyp is tamely ramified with respect to X < (i) | X[} D im(X(Ok) — |X]).
Remark 13.

(1) Guo-Yang proved Theorem 12 (1) in the setting of smooth p-adic formal schemes over Oy, - see [GY24,
Thm. 6.31].

(2) Properties (i), (ii)’ really depend on the smooth model X — spec(Oy) of X — spec(k). However, if
X — spec(k) is proper, then Properties (i), (i)’ for a given smooth proper model X — spec(Oy) are also
equivalent to the property

(i) X1 = X,
which is independent of the smooth proper model X — spec(Oy).

We postpone the proof of Theorem 12 to Section 4.
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3.2.2.2. Assume X admits a smooth NCC model X' < XP* — spec(Oy); write D := X°*\ X. Then, by
Abhyankar’s lemma

WR(X; Xv) = Wi(xcpt; D) ><7r1(v) ’/Ti(ok; ’l)) = ﬂ—i(‘)(;pt;pv) ><7r1(v) ﬂ—i(ok; ?})

while
71 (X) = 7j (XPY D) ~ 7} (X' D,).

(1) If Levs(Vp) holds and [X]}; O im(X(Ok) — |X|), then the action of 71(X) on V,z factors through
7T1(X) - Wl(XCpt).

(2) Say that a connected étale cover X’ — X is good with respect to X — X" — spec(Oy) if the
following holds. Let &k’ be the algebraic closure of k in the function field of X’ and X/ — X, X/°Pt — xcpt
the normalization of X', X*' in X’ - X — X, X' - X — X < X°P* respectively. Then the resulting
canonical sequence of morphisms X’ — X'P* — spec(Oy/) is again a smooth NCC over spec(Oy/). Say
that an open subgroup U C m1(X) is good with respect to X < XP* — spec(Oy) if the corresponding
connected étale cover Xy — X is. The open subgroups

Uq X1 (v) Us C ﬂ'i(XCpt;D) X1 (v) w{((’)k;v)
with Uy C 7§ (XP%; D), Us C 7§ (Op;v) open subgroups form a cofinal family of open subgroups of
Wi(.)(; Xv) = W;(cht; D) X1 (v) F;(Ok; U)

and, if X is a curve, the inverse images of these groups in 71 (X) are good with respect to X < Xt —
spec(O).

These observations combined with Corollary 11 and Theorem 12 yields the following variant / strengthening
of Theorem 12 (1) in the case X is a curve.

Corollary 14. Let X be a curve. Assume X admits a smooth NCC model X — X" — spec(Oy). Let
Vp be a Qp-local system on X such that Levya(Vy) holds. Assume there exists x € |X| such that x*V),
is potentially unramified. Then there exists a connected étale cover X' — X, which is good with respect to
X — X" — spec(Oy) and such that Levs(Vy|x+) holds. In particular, the following properties are equivalent

(i)  the action of m(X') on Vpz factors through mi(X') — mi(X'PY) (viz Vp|x: extends to a Qp-local system
on X/cpt)}.
(ii) for every ' € |X'|, 2'*V), is unramified,

where X'°PY — XP' denotes the normalization of X°P* in X' — X — X — X°P.

Proof. Assume there exists « € |X| such that 2*V, is potentially unramified. Then, from Corollary 11, for
every x € |X|, 2*V), is potentially unramified hence, as Lev4()),) holds, tamely ramified. From Theorem
12 (2) (ii)” = (i), V, is tamely ramified with respect to X and, from the observation in (2) above, there
exists a connected étale cover X’ — X which is good with respect to X < X®* — spec(Oy) and such that
Levi(Vp|x) - hence Levs(V,|x+) hold. The implication (i)’ = (i) then follows from the observation (1) above
(the implication (i) = (ii)’ is straightforward). O

4. POINTWISE VERSUS GLOBAL RAMIFICATION PROPERTIES

As the results of this section might be of independent interest, we work in a slightly more general setting
than the one of p-adic fields.

For a normal scheme X and a normal crossing divisor D < X, let 7} (X; D) denote the fundamental group
classifying finite connected covers Y — X, which are étale over X \ D and tamely ramified along D, namely
such that for every generic point £ € D, the corresponding valuation ring Ox ¢ is tamely ramified in the
extension of function fields k(X) < k(Y"). This gives rise to an exact diagram of profinite groups:
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|
l—sIp——m(X\D)——m(X) —

l1— I}, ——7j(X;D) ——m

(X)) ——
1
4.1. Notation and definitions.

4.1.1. Let O be a complete discrete valuation ring with maximal ideal m, fraction field k, of characteristic 0
and perfect residue field k, of characteristic p > 0. Set S := spec(O) = {n, s}, where 7 is the generic point
and s the closed point of S. Fix a separable(= algebraic) closure k < k. Considering the normal crossing
divisor s < S, we use the more classical notation:

Ly=1I, IV = 1I% It = It
and
Gy = 71-1(7]) = 71'1(5\8), Gzr = 71’1(S)<;71’1(8) =: Gk, 2 = WE(S; S)

Correspondingly, one has the diagram of field extensions

kc\k‘”( k
GE
For # := —, t, ur, etc. let O% denote the valuation ring of k%, m# its maximal ideal and x# its residue

field; set S# := spec(O%) = {n*, s}, where " is the generic point and s# the closed point of S#.

4.1.2.Let X — S be a morphism, smooth, separated and of finite type. Set X := X; up to replacing S
by its normalization in X — S, we may and will assume that X is geometrically connected over k. Let
Xy = X1 U--- U Xy, denote the decomposition of X into irreducible (viz connected) components.

4.1.3. Let X — be a morphism, smooth, separated and of finite type, let ¢ : ¥ — X be a Galois (in particular

finite, étale and connected) cover and let ¥y : Y — X denote the normalization of X in Y % X <3 X. The
morphism ¥y : Y — X is finite but not smooth in general.

Assume Y is geometrically integral over k. Let k < k' be a finite field extension and let S’ := spec(Q’) — S
denote the normalization of S in spec(k’) — spec(k) — S. Let Y] — X denote the normalization of X x ¢S in
Y xpk! = X xpk' — X xgS" and let }), — X xS’ denote the normalization of X x gS" in Y xgS" — X xgS".
Note that, by the universal property of normalization the morphism ) — X xg 5" — X factors canonically
as Y/ — )Y — X, i = 1,2. Furthermore the canonical morphism Y] — ) is an isomorphism and if S — S
is étale, Y xg S — V4 is an isomorphism [Stacks, Tag 03GV].

For a closed point x € | X| with residue field k(x), write O, for the valuation ring of k(x), S, := spec(O,) =
{z, s, }, with (x the generic point and) s, the closed point of S,. For a subset ¥ C | X]|, say that ) : ¥ — X
is ¥-pointwise unramified (resp. tame) if for every € ¥ and y € Y, the resulting cover S, — S, is étale
(resp. tamely ramified along s,). We will apply this terminology to the following subsets:


https://stacks.math.columbia.edu/tag/03GV
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- Y = | X" = im(X(O) — X (k) — X); one can easily check that |X|"* is also the subset of all x € |X]|

such that
X
X

- For # = ur, t, ¥ =Ju[” for some u € |Xs|, where Ju[#:= im(X(O%), — X (k%) — X)(C |X|™) and
X (O%), denotes the fiber of X(O%) — X(R) — |Xs| over u; one can easily check that |u[ is also the
subset of all x € | X| such that

spec(k(z)) T—s

)H'xr .

spec(Oy

spec(k(x)) = 1(

spec(O#) ——spec(Og) -~ A =X
| T : |
spec(k) — spec(k — spec(k(u)) L— X,

Let k < k' be a finite field extension with ring of integer O’ and residue field x’. Write S’ := spec(Q’) — S
for the corresponding connected cover, s’ € S’ for the closed point of §" and let X;; X, &' = Ui<j<m, Xy i j
be the decomposition into irreducible (viz connected) components of Xy ; X, &/, ¢ = 1,..., m. For every non-
empty open subset A ij C Xy i j, the image X7, C X of Ui<j<m, Xy ; . via Xy — X Is again a non-empty

open subset of X ;. Further,

72‘7-]'
Lemma 15. Assume k C k"™ (resp. k C k). Then for every u € Xy, the square

Uwe ) Ju [ —u["™ (resp. the square Uy, v/ —]ul")

a | o]

RY | X xp K| —— | X

|X Xk ]6/‘
is (well-defined and) Cartesian.

Proof. Let x € |X| and 2’ € (X X k')z. We are to prove that z €Ju[" if and only if 2" € U, ¢(a,), )0/ ["
(resp. x €]u[* if and only if 2/ € |, (X )u Ju'[*). The if part of the assertion, which ensures that the upper
horizontal arrow is well defined, follows from the definition of | — [** (resp. ] — [*). Let us prove the only
if part. Assume z €Ju[™ (resp. x €|u["). The fact that 2’ : spec(k(z’)) = X X k' extends (uniquely) to
'Sy — X xg S follows from the fact that x : spec(k(z)) — X extends to Z : S, — X and the properness
of X xg8" — X and the fact that O,y C O™ (resp. Op C O') from the fact that X xgS" — S is étale (resp.

at most tamely ramified along Xj). O

4.2. A pointwise criterion for ¢y : Y — X to be étale.

Proposition 16. Let ¢ : Y — X be a Galois cover. There exists a non-empty open subset X7, C Xy,

i = 1,....,m (depending on Y L g X ) such that, for every u; € X¢;,
conditions are equivalent.

(U-1) ker(m(X) — m (X)) C m(Y);

(U-2) Yy : Y — X is (finite) étale;

(U-3) ¥ :Y — X is | X|™-pointwise unramified;

(U-4) ¥ Y — X is Ur<i<m|wi["-pointwise unramified.

1 = 1,...,m, the following

Proof. The implications (U-1) = (U-2) = (U-3) = (U-4) and (U-2) = (U-1) are (almost) tautological so
we are left to prove (U-4) = (U-2). If X5 = 0, there is nothing to prove, so we may and will assume that
X # 0.

Let us first observe that it is enough to prove (U-4) = (U-2) after:
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- Replacing k by the algebraic closure ky of k in the function field of Y. Let Sy — .S denote the normalization
of S in spec(ky) — spec(k) — S. As X, # (), by condition (U-4) Sy — S is dominated by an étale cover
of S hence is étale. As X xg Sy is normal, one has a canonical factorization ¥y : Y — X xg Sy — X and
Y — X xg Sy is the normalization of Y in Y — X xpky — X xXgSy. Let sy € Sy denote the closed point
of Sy and ry its residue field. Let X;; X, Ky = Ui<j<m,; Xsy 4,j be the decomposition into irreducible (viz
connected) components of Xs; X, Ky, i = 1,...,m. For every non-empty open subset Xg, i C Xsy iy, the
image X7; C X of Ui<jam, Xy, ;5 via Xy — X is again a non-empty open subset of XS - Now, assume
(U4) = (U 2) holds for Y — X xy ky and the open subsets X i CXyyijod=1,....omy,i=1,...,m.
Then (U-4) = (U-2) holds for Y — X and the open subsets X7, C X,;, i = 1,...,m. Indeed, assume
for every u; € X, ¢ 1Y — X is Ju["-pointwise unramified. Let Ty €Juy; J[“r with image = €]u;[™
(Lemma 15) and for every y € Y, , consider the factorization S, — Sz, — Sz. As ¢ : Y — X is Ju,["'-
pointwise unramified, S, — S; is étale hence Sy — S;, is étale as well. This shows ¢ : Y — X xy, ky is
]uYM[ ‘-pointwise unramified. By (U-4) = (U-2) for Y — X xj ky and the open subsets X7 ;. C X5y i j,

ji=1,....my,i=1,...,m, Y — X xXg Sy is étale. As X xg Sy — X is étale, this implies w;g Y= Xis

étale.

So, after possibly replacing k by ky, we may and will assume Y is geometrically integral over k.

- Base-change along spec(k’) — spec(k) for some finite field extension k& C k' C k". Let S’ — S denote the
normalization of S in spec(k’) — spec(k) — S. By assumption S’ — S is étale hence Y xgS" — X xg 5" is
the normalization of Y x &' in Y x k' — X x1. k' — X xg5’. Let s’ € S’ denote the closed point of S’ and
k' its residue field. Let X;; x, k' = Lh<j<m;Xs ,j be the decomposition into irreducible (viz connected)
components of Xy ; X, &', i = 1,...,m. For every non-empty open subset X;,m C Xy ;j, the image
Xy, C X of Ui<jcm, Xy ,; ; via Xy — X; is again a non-empty open subset of X;. Now, assume (U4) =

s",1

(U 2) holds for Y x;, &’ —>JX X, k' and the open subsets Xs i CXsig,g=1,...,my, i=1,....,m. Then
(U 4) = (U-2) holds for Y — X and the open subsets X2, C Xs;, i = 1,...,m. Indeed, assume for every

i € Xy, ¢ Y — X is Ju;["-pointwise unramified. Let o’ E] u; ;[* with image = €]u;["" (Lemma 15) and
for every y € Yy, consider the factorization Sy — Sy — Sp. As )Y — X is Ju;[""-pointwise unramified,
Sy — Sy is étale hence S, — S,/ is étale as well. This shows Y x; k' — X x, ky is ]u;J[ -pointwise
unramiﬁed. By (U-4) = (U 2) for Y xy k' — X X, k" and the open subsets X7, - C Xy 5, j = 1,...,my,
1=1,....,m, Y xg S — X xg 8" is étale. As X xgS" — X is étale, this implies Y xg 5" — X is etale

hence that ¥y : Y — X is étale.

So, after possibly replacing k by a finite & C k' C k", we may and will assume X;; is geometrically
irreducible (viz connected) over k, i = 1,...,m.

Let & € X, ; denote the generic point of X;, i = 1,...m. As X is regular, it follows from Zariski-Nagata
purity theorem that ¢y : Y — X is étale if (and only if) it is étale at &, ¢ = 1,...,m. As )Y is normal,
it is regular in codimension 1 hence the non-regular locus Y™ C ) is a closed subset of codimension > 2
in Y. As ¢y : Y — X is finite, Z = ¢x(Y""8) C X is also closed of codimension > 2 in X'. On the
other hand, for every « = 1,...,m, as X — S is smooth, X;; C X is closed of codimension 1 in X hence
Zsi = ZNXs; C X, is closed of codimension > 1 and Xs‘ii = X, \ Zsi C X, is a non-empty open
subscheme; in particular, § € X7;. So, setting X° := X \ Z, it is enough to prove that J xy X° — X° is
étale at &, i =1,...,m. So, up to replacing ¢y : Y — X with J xy X° — X°, we may and will assume Y
is also regular. Fix u; € X,;, 7 = 1,...,m. Up to replacing further ¢ : Y — X by its base-change along
spec(Q') — S for some finite O C O C O™ we may and will assume that k(v) = k for every v € ), (in
particular, k(u;) = k). We argue by contradiction. Assume the subset Y™ C ) of all y € ) such that
Yy 1 Y — X is non-étale at y is non-empty. Then, again by Zariski-Nagata purity theorem, Y™ C Y is
closed and pure of codimension 1 in Y. Fix a generic point £ € Y™*'. As 1 : Y — X = X, is étale,
necessarily lies over one of the &, i = 1,...,m - say &. But as ¢y : Y — X is finite, Y (Y™°") C X is
closed in X hence contains X, ;. For simplicity, write u := u; € Xs; and fix v € (Y**),. By Lemma 17
(v) = (ii) applied to ¥x : Y — X, the canonical morphism zpﬁ :m, /m2 Qo) K(V) — m,/m2 induced by
Yy Y — X at the level of cotangent spaces is not injective. Recall that, from our preliminary reduction
k = k(u) = k(v). Fix 0 # a € ker(m,/m2 — m,/m2). The idea is to construct a & € X(0O), such that
the resulting morphism of cotangent spaces Z# : m,/m? — m/m? satisfies 7 (a) # 0. Assume such a
i€ X(0), exists and let = €]u[" denote its image in |X|. By (U-4), the normalization Y, — S of S in
Y, — spec(k) — S is étale. Actually, Y, = spec(ky 1 X -+ X kz4) with & < k, ; a finite unramified extension,
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j=1,...,tand EN/mN: spec(Og,1 X -+ x Oy ), where O, ; C O™ is the valuation ring of k5, j =1,. .. ,t.NFor
jg=1,...,t, write Y, j := spec(O, ;) = {y;,v;}, where y; is the generic point and v; the closed point of Y ;.
AsY, —» S % X also coincides with the normalization of X in Y, — spec(k) — S 5 x, by the universal
property of ?x S5 , one gets a unique factorization

(1) Y, Yo =Y
1
spec(k)HSﬂX

Asy 1 Y — X is integral, by the Going down theorem [Stacks, Tag 00H8|, there exists y € ) specializing to
v and mapping to x. By construction y € Y, hence coincides with the generic point of one of the irreducible
components - say Y ; - of Y. As Y, — S is finite, v; maps to v. The commutative square

\L lwx
S ——

induces a commutative square at the level of cotangent spaces

m,; /my <——m, /m;

N

m/m? ?mu/mi

But as Y, — S is étale, the morphism m/m2 — m,; /mgj is injective (by Lemma 17 (ii) = (v)); this contradicts
the fact that &7 (a) # 0 while wﬁ(a) =0.

It remains to construct & € X(O),, such that the resulting morphism of cotangent spaces 7 : m,/m2 —
m/m? satisfies ##(a) # 0. For this, as X is smooth at u and the residue field of u is x, O[[T1, ..., T,]] >0,
and, modulo this isomorphism, m,, C @u identifies with the ideal (w, T}, ..., T,), where 7 € m is a uniformizer,
my/m2 k7 O KT @ - ® KT, and m/m? k7. Fix any s-linear morphism f : m,/m2 — m/m? such that
f(a) # 0 and f(7) =7 (if p; : mu/mi — m/m? denotes the projection onto the 7th component for i = 0
and the T;th component for i = 1,...,n, and a = aoT + ZKK” a;T; then, one can take f = pg if ag # 0
and f = po + p; for some 1 < i < n such that a; # 0 if ap = 0). Let f(T1),...,f(T,) € m lifting

f(T),..., f(T,) € m/m?; these define a unique morphism f# : O[[T},...,T,]] — O of O-algebras, and the
resultlng (’) point

z :spec(O) L O[Ty, ... Th]] = Oxy — X

has the expected property.
O

Lemma 17. Let 7 : V. — U be a finite surjective morphism between integral normal noetherian schemes.
Let v € V and set u := w(v). Let k(u) «— Oy D my, (resp. k(v) « O, D m,) denote the residue field, local
ring and mazimal ideal of U at u (resp. of V atv). The following conditions are equivalent

(i) m:V = U is étale at v;
(1)) m:V — U is unramified at v;
(iii) the canonical morphism Wy, /M2 @y, K£(v) = My /m2 is an epimorphism;

Assume furthermore U is regular at u, then these are also equivalent to:
(iv) the canonical morphism my/my @,y k(v) = my,/m2 is an isomorphism,
(and imply V' is reqular at v). Assume furthermore V is reqular at v, then these are also equivalent to:

(v) the canonical morphism w, /m? @) £(v) = my/m? is a monomorphism.
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(and imply U is reqular at u).

Proof. (i) = (ii) is tautological while (ii) = (i) is [G71, Exp. I, Thm. 9.5 (ii)]. (iii) is equivalent to
m, O, + m2 = m, so (ii) = (iii) is tautological while (iii) = (ii) follows from Nakayama’s lemma since m,
is a finitely generated O,-module [Stacks, Tag 07RC (4)]. (iv) = (iii) and (iv) = (v) are tautological. By
Nakayama’s lemma and Krull’s principal ideal, one always has dimy,)m, /m2 > dimO,, with equality if and
only if U is regular at ut and similarly for V' at v. This shows (iii) = (iv) assuming U is regular at u and
(v) = (iv) assuming V is regular at v. O

4.3. A pointwise criterion for ¥y : Y — X to be tamely ramified along X,,.
Proposition 18. Let ¢ : Y — X be a Galois cover. There exists a non-empty open subset X7, C Xy,

i = 1,...,m (depending on Y %X o X ) such that, for every u; € Xgi i = 1,...,m, the following
conditions are equivalent.

(T-1) ker(m(X) — 74 (X; X)) € m(Y);

(T-2) Yy : Y — X is (finite) tamely ramified along Xs;
(T-3) Y — X is | X|™-pointwise tame;

(T-4) ¥ :Y — X is Ui<i<m]ui[*-pointwise tame.

Proof. Again, the implications (T-1) = (T-2) = (T-3) = (T-4) and (T-2) = (T-1) are (almost) tautological
so we are left to prove (T-4) = (T-2).

Let X° C X be an open subscheme such that X°NX;; # 0, i = 1,..., m. By definition of tame ramification,
Yy Y — X is tamely ramified along X if (and only) if thy x » X°: Y Xy X° — X is tamely ramified along
X? so that, in proving (T-4) = (T-2), one may freely replace ¥y : Y — X by its base-change along such an
open subscheme X% — X.

For ¢ =1,...,m, consider the Cartesian diagram

Veed <——— Vs

1

Y<~—-Y O

%Dxl O llﬂx,s

X Xs Xs,i:
(where Y < Y denotes the reduced closed subscheme) and write
Vsi = U Vs.ij
1<j<m;

for the decomposition of ) ; into irreducible components. As « is perfect, the non-regular locus y;;eg C Vs
is a strict closed subscheme. As ¥y : Y — X is finite, ¥y (y;‘jeg) C X, is again a strict closed subscheme.
So that, replacing ¥x : Y — X by its base-change along

X=X\ || a5 = X,
1<i<m

we may and will assume that s ; is regular (viz smooth over x as k is perfect), i = 1,...,m. Actually, later
in the argument we will have to ensure this property holds not only for the normalization ¢y : Y — X of X in

Y % X < X but also for the normalization P Y - Xof XinY’ ¥y X < X for some intermediate covers
Y - Y'Y X. But as there are only finitely such intermediate covers, we can do so by shrinking X further

(namely removing not only | |, ;,,, Y2 (V5 ) but the union of all | |, ;. ¢x (V") for Y — Y’ e
describing the finitely many intermediate covers of ¢ : Y — X).

For a subgroup H C G := Aut(v), write Yz — X for the corresponding connected étale cover and Yy — X
for the normalization of X in Yy — X — X. Fixi =1,...m, let £ := & € X;; denote the generic point of
Xsi, € = G j € Vs,,j the generic point of Vg ; ; and write

GDD:Dc/ngzfc/gDIW: ZV/£C1
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for the decomposition, inertia and wild inertia groups of (/¢ respectively. These yield a commutative diagram

Y Yiw Y; Yp X

1

Y—Vw Vr Yp X.

Let (rw, ¢; and (p denote the image of ¢ in Ypw, Yr and Yp respectively. By construction, spec(Oy,, ¢,) —
spec(Ox ) and spec(Oy;, ¢;) — spec(Oy,, ¢,,) are unramified, spec(Oy,y ¢,;w) — spec(Oy;, ;) is tamely ram-
ified and spec(Oy ¢) — spec(Oy,y ¢,w) is wildly ramified.

Also, just as in the proof of Proposition 16, it is enough to prove (T-4) = (T-2) after:

- Replacing k by the algebraic closure ky of k in the function field of Y. The argument is exactly similar to
the one of the proof of Proposition 16, replacing "étale" with "tamely ramified".

In particular, after possibly replacing k£ by ky, we may and will assume Y is geometrically integral over k.

- Base-change along spec(k’) — spec(k) for some finite field extension k C k' C k'. Again, the argument
is exactly similar to the one of the proof of Proposition 16, replacing "étale" with "tamely ramified" and
Y xS’ with the normalization of X xg 8" in Y x, k' — X x, k' — X xg 5.

So, after possibly replacing k by a finite & C k¥’ C k', we may and will assume that X;; is geometrically
irreducible (viz connected) over k, ¢ = 1,...,m and, by Abhyankar’s lemma ([Stacks, Tag 0BRM]), that

spec(Oy,w ¢;w ) = spec(Oxg;) is unramified (in other words, I; j = Iiwj), j=1,....m;,i=1,...,m.
ig i ’
Recall that we may also assume that ) ; is smooth over k,7=1,...,m.
We now define X7; C X;; as in Proposition 16, i =1,...,m.

Fix 1 <i <m, u; € |X,], * €u[" and y € Y. By definition, = : spec(k(z)) — X extends (uniquely as
X — S is separated) to Z : S, — X and, as ¥y : Y — X is finite hence proper, y : spec(k(y)) — Y extends
uniquely as

spec(k(y)) ————= ¥
J{ 2 ld}x
S, g ——x

T

Then there exists a unique 1 <14 < m such that Z, € X;; and a unique (recall that Y, is regular) 1 < j < my
such that g5 € Vs j. Write IV := IZ;]_/&_(: Icm,/&) and D := Dy, j¢;. For H =D, IV and 1, let YV . C Vi s
denote the irreducible component of (g and set V§; := Vi \ (Va.s \yg, s)- As (p, ; is inert in y,ivvj — Vb,
and ¢ [ is totally wildly ramified in ) — yfiwj, one actually has a partly Cartesian diagram

e Viw Vb

X
| o | o]
y Yrw Yp X.

In particular, V7w — Y3 is an etale cover and Y¢, — X is an étale morphism (but a priori not finite).
Let y¥ denote the image of y in Yyw and y™ : Syw = spec(R,w) — Yfw the normalization of Y7y in

spec(k(y™)) & Yrw — Y% so that one has a commutative diagram

S, Syw S,

P X

e Viw Vb X

o]

Yy Vrw Yb X.
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As Vv — X is étale, Syw — S is unramified while as Y — Yjw is Galois with group IV of order a power of
p, the ramification index of S, — S,w is a power of p. On the other hand, as x €|w;[*, by (T-4), S, = S,
(hence a fortiori S, — Syw) is at most tamely ramified. This forces S, — S, to be unramified and proves
that ¥x : Y — X is |u;[*-pointwise unramified (hence a fortiori Ju;[*-pointwise unramified).By Proposition
16 (U-4) = (U-2), ¥x : Y — X is an étale cover. O

4.4. Proof of Theorem 12. The only non-obvious implications are b) = a). Consider Assertion (1). By
definition, if b) holds then, for every normal open subgroup U C II, the corresponding Galois cover Xy — X
is | X|™-pointwise unramified. By Proposition 16 (U-3) = (U-1), the morphism m(X,Z) — II,/U then
factors through 71(X,z) — m(X,Z). One concludes by passing to the limit on U. This proves (1). The
proof of (2) is exactly similar using Proposition 18 (T-3) = (T-1).

5. APPLICATIONS TO CONJECTURE A (T) AND CONJECTURE A (C)

Let k£ be a number field and let X be a smooth, geometrically connected variety over k.

5.1. AEU Q,-local systems. Generalizing the definition of an AEU Q)-local system on X = = = spec(k)
in Paragraph 1.2.1.1, say that a Qs-local V, on X is AEU if there exists a smooth model X — U of X over
a non-empty open subscheme U C spec(Oy) such that 1, extends to a Q-local system on X'. Note that, if
X; — U;, 1 = 1,2 are two smooth models of X then there exists a non-empty open subscheme U C U; N Uy
such that X; xy, U=Xs xy, U as U-schemes. In particular, Vy is AEU if and only if for every smooth model
X — U of X over a non-empty open subscheme U C spec(Qy), there exists a non-empty open subscheme
U’ C U such that Vy extends to a Qy-local system on X xy U’.

The property of being pointwise AEU is also rigid.

Fact 19. (|LiZ17, Prop. 4.1|, [P23, Prop. 6.1]) Let V; be a Qg-local system on X. Consider the following
properties (i) Vg is AEU;

(ii)  for every x € |X|, x*Vy is AEU;

(i1i) there exists x € | X| such that x*Vy is AEU.
Then (1) = (ii) < (i) and, if Vy is semisimple, then (iii) = (i).

5.2. Comparing |X 33", [X[, [ X550
5.2.1. We begin with the following consequence of local class field theory and Sen’s theorem.

Proposition 20. Let k be a number field. Let ¢ be a prime and V; a Qg-local system on x = X = spec(k).
Assume z3Vy is Hodge-Tate for every finite place v of k above £. Then (G9)™ is reductive.

Proof. Fix a geometric point Z over . Write V; := Vy z and let py : 71 (x) = 71 (k) = G¢(Q¢) C GL(V;) denote
the continuous representation corresponding to V,. After possibly replacing k by a finite field extension one
may assume Gy = Gj. Fix a Levi subgroup Ly C Gy and let N, C G denote the smallest normal algebraic
subgroup of Gy containing L,. If G;b is not reductive, then Ny C Gy. By Lemma 21 below, there exists
a Gy-subrepresentation W, C T'(V;) such that N, = ker(G; — GLyw,). By construction, the non-trivial
unipotent group Gy/Ny acts faithfully on Wy. Let W, denote the Qy-local system on z corresponding to W,
viewed as a 7 (k)-representation via m (k) — G¢(Qp) — (G¢/N¢)(Qr). Then, as Wy lies in the Tannakian
category generated by Vy, Wy is Hodge-Tate for every finite place v|[¢ of k. As a result, it is enough to
prove that if Gy is unipotent, then it is trivial. If Gy is unipotent non-trivial then there exists a surjective

morphism p : Gy — G, g, and a factorization

m(z) = m(k) > Go(Qr) —£ G g, (Qe) ~ Q

N

1 (kﬁ)ab

such that im(p}®) ~ Z;. As Zy is torsion-free and as OF ~ Zg" X (O ) for every prime p # £ and
finite place v of k above p, it follows from local class field theory that p3® : m(k)*> — Z, factors through
Wl(Ok[%])“b — Zy. On the other hand, for every finite place v of k above ¢, z}) is unipotent, so that it has
a single Hodge-Tate weight, which is 0; equivalently (see equivalence (1) in Paragraph 3.1.2), it is potentially
unramified. In particular, for every finite place v of k above ¢, p"| (k)b 71 (ky)®® — Z, is potentially
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unramified - hence unramified since Zy is torsion-free This proves that p?b : m(k)*> — Z, actually factors
through 1 (Ok)*® — Zy, which contradicts the finiteness of w1 (Of)*"
O

Lemma 21. Let Q be a field of characteristic 0, V a finite dimensional Q-vector space and N C G C GLy
algebraic subgroups with N normal in G. Then there exists a G-subrepresentation
Wn CT(V) =@, VI @ VVen

such that N = ker(G — GLyw, ).

Proof. By D82, Prop. 3.1 (a), (b)], there exists a GLy-subrepresentation V3 C T(V) such that N is the
stabilizer of a line Ly C Vi; let Ly C Vo C Vi denote the smallest G-subrepresentation containing L, and let
Ny C Ga C GLy, denote the image of N and G acting on V5 respectively. By construction N is contained in
a split torus of GLy, - hence is reductive. By [D82, Prop. 3.1 (a), (c)], there exists a GLy,-subrepresentation
Vs C T(Va)(C T(Vi) € T(V)) and a finite subset A C V3 such that Na is the algebraic subgroup of GLy,

fixing the elements in A. Let A C Vy C V3 denote the smallest Go-subrepresentation containing A. By
construction, Ny = ker(G2 — GLy;,) hence one can take Wy := Vj. O

Remark 22. Using Lemma 21, one immediately sees that Conjecture A (T) is also equivalent to the char-
acterization of the degeneracy locus of V; given in Subsection 1.1.1 (1).

Corollary 23. Let k be a number field and X a smooth, geometrically connected variety over k. Let Vy be a
Qe¢-local system on X such that x3Vy is Hodge-Tate for some x € |X| and every finite place v of k(x) above
g The,n ’X‘trlv _ ‘X|um

Proof. From Fact 10 (1), for every x € | X| and every finite place v of k(x) above ¢, z}Vy is Hodge-Tate. The
assertion thus follows from Proposition 20. O

Corollary 23 applies in particular the case if Vg, is simple [P23, Cor. 5.3| (observing that the condition
| X5 # 0 forces the character x appearing in [P23, Cor. 5.3] to be finite).

5.2.2. Proof of Proposition 1 and Theorem 4 (1). Let k be a number field and let X be a smooth, geometri-
cally connected variety over k.

5.2.2.1. A construction. We begin by recalling the following construction, which is introduced in the proof
of [P23, Thm. 8.1], where it is attributed to Beilinson.

Construction 24. Assume X (k) # () and fix z € X (k), which we regard as a section of the structural
morphism sx : X — spec(k). Let Vy be a Qg-local system on X and let

Az (Vo) C E;(Vy) :== V) @ sk (V)

denote the minimal sub-local system Sy C E,(V;) such that Sy z contains I dy, ,; explicitly, it corresponds to
the 71 (X, Z)-subrepresentation

A (Ve)z = Qe[IL] C Ex(Ve)z = Endg, (Vea)-
Note that, by definition, E, (Vg) is Ex(V¢)z ~ Endg,(Vez) equipped with the action

= (zsx)(m) - f-n !, mem(X,7), f € E(Vi)s
In particular, one has
- a canonical quotient morphism A, (V) ® s% (z*Vy)Y — V) (sending g ® ¢ to the linear form a — ¢(g(a)));
- If G, = Gy, then = € | X557 if and only if z € | X|%5Y,, .
Fact 25. ([P23, Prop. 8.2|) For every finite place v of k above ¢, the Qq-local system A, (Vy)|x,, is de Rham.

5.2.2.2. Proof of Proposition 1. Proposition 1 (1) is a special case of Corollary 23 as every x € |X|§§;V satisfies
the assumption of Corollary 23. '

For Proposition 1 (2), if | X |unl () there is nothing to prove. Otherwise, one may replace k by a finite field
extension hence assume |X|}7' N X (k) # 0 and X by a connected étale cover hence assume G, = Gy. Let
r € | X[ N X (k). With the notation of Construction 24, x € |X]unl ) C \X\“‘“ . But then, from Fact 25

and Corollary 23,
|X|tr1v ‘X‘um
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so that the conclusion follows from the fact that x € |X[{5™ if and only if z € [ X |EL§;V(W).

5.2.2.3. Proof of Theorem 4 (1). The first part of Theorem 4 (1) follows from the fact that one can also
describe | X[} as
X[ = (o € X] | rank(G},) = 0},

and that rank(G7 ) is independent of £ € [spec(Z)| [Ser81, §3|. For the second part of Theorem 4 (1), by
definition of Q-compatibility, for every = € |X| there exists a non-empty open subset U, C |spec(Oj(y))|
such that for every prime ¢ and finite place v € U, above ¢, x})V, is crystalline - hence Hodge-Tate. Fix
xo € | X|; up to replacing k with a finite field extension, one may assume k(xo) = k. For primes £ > 0, Uy,
contains all the finite places of k above £ so that, by assumption, for every finite place v of k above ¢, zj , Ve
is Hodge-Tate and the conclusion follows from Corollary 23.

5.2.2.4. Construction 24 can also be used to prove the following.
Corollary 26. Conjecture A (T) = Conjecture A (C).

Proof. Let Vy be a Q-local system on X such that |X[{5" # (). One may replace k by a finite field
extension hence assume | X5 N X (k) # () and X by a connected étale cover hence assume G, = Gy. Let
r € [ X5 N X (k). Then x € |X]'Z:’(W). In particular, \X|f4fizv(w) # () so that by Conjecture A (T) for Az(Vy),
the étale fundamental group m1(X) - hence a fortiori m (Xj), acts on A;(Vy)z = Q[II;] through a finite
quotient. But this means in particular that the orbit 1I, ~ I, - Id is finite. (I

5.3. Proof of Theorem 4 (2). It is enough to prove that | X[} = |X|. Indeed, from Theorem 4 (1) this
implies |X[{;Y = |X] for primes ¢ > 0. By Fact 2, the condition |X[}¥'(= |X|}") = |X| implies G7 is
unipotent while the condition |X |}V = |X| implies G} = 1.

As the assumptions of Theorem 4 and the property |X |}y = |X| are invariant under base-change, one may
freely replace X by a connected étale cover hence assume that Lev;(),,) holds for at least one prime /o,
which implies the following. For every = € | X|, and finite place v of U.,, above a prime ¢ # £, the subgroup

Z., C Q" generated by the roots of ., (= XauVe = Xa,,Vy,) 1S torsion-free.

For every = € |X|, let (2*V;)* denote the semisimplification of 2*V,. To prove that x € | X[} it is enough to
prove that (z*V,)™ is trivial. By the Cebotarev density theorem, to prove that (z*Vy)® is trivial it is enough
to prove that for all v € |U..,|, X«, is a power of T — 1. From our preliminary reduction, this is equivalent
to proving that the roots of y,, are all roots of unity, viz that

)w=0; i) Xz, € QT}; iil) Xo, € Ze[T], £ #p; V) Xa, € Zp[T].
Property i) follows from the assumption that | X[} # 0, and Properties ii), iii) from the Q-compatibility
assumption. It remains to prove Property iv). Fix 29 € | X Hl};l and let x € |X| arbitrary. Property iv) is
equivalent to saying that the roots aq,...,a;, of x,, in Q are integral over Z,. As for every integer n > 1,
the ring Z,[ov, ..., a,| is integral over Zylaf,...,a;], one may freely replace k by a finite field extension.
In particular, one may assume k(x) = k = k(zp). For primes p > 0, U, a/fék and U;*Z both contain all finite

places of k above p. Fix such a prime p. Up to replacing further X by a connected étale cover one may
assume Levy(V,) holds. Let v be a finite place of k above p (so that v € |U;36V| N |U,-pl). By assumption

x5, Vp is both crystalline (hence Hodge-Tate) and unipotent. Thus, from Corollary 11, 3, is unramified
and Xz, = Xz,,z*V, 18 in Z,[T]. This concludes the proof of Theorem 4.

5.4. Relation to the unramified Fontaine-Mazur conjecture. Let k be a number field. Assume X
admits a smooth model X — U over a non-empty open subscheme U C spec(Oy). The following is a
consequence of Theorem 12 (1).

Corollary 27. Let V, be a Qp-local system on X[%}. Assume that either Leva(V,) holds or that, for every
finite place v of k above p, one has

im(X(Ov) = | X, |) C [ Xk, |3,
Then , if ]XH,Y;" # 0 the Qp-local system V, on X[%] extends to a Qp-local system on the whole X.
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Let f:Y — X be a smooth proper morphism. Then for p > 0 depending only on f, every subquotient V),
of R f.Q,(j) satisfies the condition im(X(0,) — | X, |) C | Xk, f}: in Corollary 27.

Proof. Let v be a finite place of k above p. If | X \'{,r;" # (), it follows from Corollary 11 that for every z € | Xy, |,

7y Vp|x,, is potentially unramified; under our assumptions this implies that for every x € im(X(O,) — [ Xy, |),
x*V, is unramified. From theorem 12 (1), the Q-local system V,|x, = extends to a Qp-local system on Xo,,

namely the corresponding representation of m1(Xy,) on V,, := V, z factors through m (X,) - m1(Xo,). In
particular, the inertia group of the generic point of each connected component of X, acts trivially on V,,. By
Zariski-Nagata purity, this implies V), extends to a Q,-local system on X x (U[%] U {v}). O

In particular, for Qp-local system as in Corollary 27, Conjecture A (T) should follow from the following
higher-dimensional generalization of Conjecture B.

Conjecture B’. (Variational unramified Fontaine-Mazur) Let p be a prime such that* U contains all finite
places of k above p. Then every Qp-local system on X is finite.

Corollary 28. (1) Conjecture B implies Congecture A (T).

2) Let p be a prime such that* U contains all finite places of k above p and let V, be a Q,-local system on
P P
X. Then Conjecture B implies that \X\tvr;V # 0.

In particular, Conjecture B and Conjecture B’ are equivalent. But because of its geometric features, one
may hope Conjecture B’ for X of dimension > 1 to be more tractable.

Proof. (1) From the discussion following the statement of Conjecture A, it it enough to prove that Conjecture
B implies i) = ii) in Conjecture A (T). Up to replacing X by a connected étale cover and k by a finite
field extension, one may assume Leva();) holds. We retain the notation and assumptions of Conjecture
A (T). If \XH}Z" = (), there is nothing to prove. Otherwise, from Fact 19 and from Corollary 11, for
every z € | X|, z*V, is AEU and for every place v of k(x) above ¢, x}Vy is potentially unramified - hence
unramified by Leva(Vy). But then, by Conjecture B, z € |X|}}}".

(2) For every finite place v of k above p the subset X (0,) C X (k,) is a non-empty* open subset so that it
follows from a classical Corollary of [MB89, Thm. 1.3] - see e.g. [Co06, Cor. 1.5], that there exists a
finite field extension k'/k, with U, totally split in &', and 2’ € X (k") such that for every finite place v of
k above p and finite place v of k" above v, z!, € X(O,). In other words, there exists a non-empty open
subscheme U}, C U’ := U X, Oy containing all the finite places of k' above p such that 2’ € X(U).
But then, Conjecture B imposes that 2'*V), is finite that it 2’ € [ X[{}".

U

5.5. Proof of Theorem 6. The implications (i) = (ii) = (iii)’ are straightforward. To prove (iii)’ = (i),
it is enough to prove that (iii)’ implies V|x, is finite. By invariance of étale fundamental group under
extensions of algebraically closed field in characteristic 0, it is enough to show that for some finite place v of
k, (iil)” = Vi|x, is finite. This follows from the purely local Theorem 29 below.

Let k be a p-adic field with ring of integers and residue field k O O — k; let v denote the closed point of
spec(Oy). Let Q, C ko C k be the maximal unramified extension of Q, contained in k and o : kog=ko its
arithmetic Frobenius. Let X be a smooth, geometrically connected variety over k admitting a smooth NCC
model X < XP* — spec(Oy,) over spec(O). Let

spy ¢ [XPH| = |
denote the specialization map.

Theorem 29. Assume X is a curve. Let V), be a Q, local system on X. Assume one of the following holds:
a) X = XP* and V), is crystalline;
b) V, is Hodge-Tate and Levy(Vy) holds (e.g. p >rankg,(Vp) +1).
Then there exists a 0-dimensional Zariski-closed subset Z,, C X" such that
(i) G, is unipotent;
& (i) [ X = [X]:
& (iil)” [ X[ & spy (120]):

4Recall that, by definition of a smooth model, X — U is surjective.
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Before proving Theorem 29, we recall some facts about F-isocrystals. Let Isoc?(X,/Q,), Isoc?'(X,/Q,)
denote respectively the categories of convergent and overconvergent F-isocrystals on X,/Oj with scalar
extended from k to @p [A18, 1.4, 2.14 et seq.]. From [Ke04, Thm. 1.1], there is a fully faithful® exact
®-functor

Isoc‘/”T(é’C’v/@p) — Isoc?(X,/Q,).
Let

ISOC‘P(Xv/@p)O C Isoc?(X,/Q,)

denote the full subcategory of unit-root (wviz isoclinic of slope 0) convergent F-isocrystals on X, /Oy and
Isoc?”T(&,/Q,)° C Isoc?T(X,//Q,)

the full subcategory of unit-root overconvergent ones viz of those objects in Isoc‘f”T(Xv /@p) whose image
in Isoc?(X,/Q,) lies in Isoc?(X,/Q,)°. From [K73, Prop. 4.1.1], [Cr87, 2.2, Thm.| there is a canonical
equivalence of Tannakian categories

IsocW(Xy/@p)OgRep@p (m1(Ay)) == Repr (m1(Xy)) ®q, @p
which restricts to an equivalence of Tannakian categories ([Ts98, Thm. 7.2.3|, [Shill, Prop. 4.2|)
Isoc?! (X, /Q,)"+Repl; (m(%y))
P

onto the full subcategory RepT@ (m1(Xy)) C Repg (m1(Xy)) of potentially unramified representations. These
b P

equivalences preserve characteristic polynomials of Frobenii on both sides.

Proof. The implications (i) = (ii) = (iii)’ are straightforward. We prove the implication (iii)’ = (i).

- Observe first that one may assume V), is simple. Indeed, if V), is arbitrary, consider a Jordan-Holder
filtration
Vp,Ozogvp,l g gvp,r—l gv,r:Vp
and set Sp; = Vpi—1/Vpi-1, @ = 1,...,r for its simple graded pieces. If (iii) holds for each of the S, ;;,
i =1,...,r then (iii) also holds for V,. Hence it is enough to check that if a) (resp. b), resp. (i)’) holds

for V, then it holds for each of the Sp;, i =1,...,r. For (i)’, this follows from the tautological inclusions
|X|{‘};‘ - |X|§‘;Z, i=1,...,7

For a) (resp. b)), this follows from the fact that a subquotient of a crystalline (resp. Hodge-Tate, resp.
satisfying Levy(V),)) local system is again crystalline (resp. Hodge-Tate, resp. satisfies Lev4(V,)) (See Fact
10). So, from now on, assume V, is simple.

- By assumption, V, is Hodge-Tate (with constant Hodge-Tate weights) and | X ]‘{j;‘ # (), hence, by Fact 10
(1) (i) = (ii), for every z € |X|, 2*V, is Cp-admissible viz pointwise potentially unramified.

— In case a), for every z € X(Ok), *V), is both potentially unramified and crystalline, which implies that
it is unramified by implication (2) in 3.1.2. From Theorem 12 (ii)’ = (i), V), extends to a Q,-local system

Vp on X.

— In case b), as Lev4(V),) holds, one can fix a connected étale cover X’ — X as in Corollary 14 so that

Vp|x+ extends to a Qp-local system ]NJI’) on X’°’*. From the canonical chain of morphisms arising from
specialization [G71, X]

(2) (X)o7 (X1P) <y (XPY) < 7y (X)) my (X)
my(Xlert) T (XGPY) <— m(X}) <o w1 (XG)

one gets that

* V), is unipotent (wviz finite) if and only if )71’9] xyept is unipotent (viz finite);

5Actually, we will only apply these facts when X, = AP in which case Isoc*"’T(Xv/@p) — Isoc? (X, /@p) is an equivalence.
But, to clarify the structure of the proof, we do not make these assumptions here.
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* V) is semisimple if and only if VZ';\ xyopt 18 semisimple.

Also, in Theorem 29, one can freely replace Z, by a larger 0-dimensional closed subscheme of X,. In
particular, for every 0-dimensional closed subscheme Z] C X" with image Z,, C XP* via X" — XPt,
up to replacing Z/ C X" with the inverse image Z!/(D Z!) of Z, in X" one has:

« | X[ spy 1 (| Zy]) if and only if | X’ A spy L1 Z0)).

So, without loss of generality, one may assume X = X®* and V, extends to a Q,-local system )719 on X
whose restriction Vp|x, is semisimple. Furthermore, one has \é‘c‘v|‘§“i # (), which implies that for every simple
p

summand S, of the scalar extension (9p| X,)g . one also has |Xv|gzi # 0 hence that det(S,) is finite. We
P

are to show that )7p\;gv is finite.

Let 0, denote the overconvergent F-isocrystal corresponding to (17p| Xv)@p via the ®-equivalence
ISOC%T(X@/@ZD)O%RGPT@ (m1(Xy)).
P

For every semisimple €, € Isoc? T (A, /@p), prime ¢ (possibly ¢ = p) and field isomorphism 7 : @p%@g let
7€, denote the unique (up to isomorphism) semisimple 7-companion of &, [L02|, [A18].

When ¢ = p, the companion correspondance induces an action with finite orbits of Aut(@p) on the set
of isomorphism classes of semisimple objects in ISOCW’T(XU/@Z,). Let 0,1 = (‘Hp)@p, ..., s denote the
finitely many (up to isomorphism) semisimple companions of U,. By construction, the overconvergent
F-isocrystal

S'p = ,1@"‘@%2775
is semisimple, Q-rational, each of its simple summand has finite determinant and one has

|Xv|umr;i71 == ’Xv%:;s-

In particular, if for every = € |X|, x, € Q[T] denotes the characteristic polynomial of Frobenius attached
to *Fp, then ii) x, € Q[T] and, as every simple summand of §, has finite determinant, i) x, is pure of
weight 0 [A18].

Let U, C X, denote the largest (non-empty) open subscheme over which §, admits a slope filtration [K79,
Thm. 2.3.1, 2.4.2]

0= S0(Splet,) & S1(Bplea) E -+ & Ss(Bplea,) = Spleas
with
Gr{ (Splua,) = Si(plea,)/ Si-1(Fplua,)
of slope ¢; and ¢1 < -+ < gs. Set Z, := X"\ U,. We distinguish two cases:

— At least one of the g; is # 0, which forces ]X]]“};‘ C spy(2y);

— Splu, is unitroot. By semicontinuity of the slope filtration [K79, Thm. 2.3.1], this imposes Z, = () and
Fp is unit-root. In particular, for every = € |X|, iv) X, € Z,[T]. Eventually, the fact that every simple
summand of §, has finite determinant implies that for every prime ¢ and field isomorphism 7 : @p%@g,
the unique semisimple T-companion "), of §, is étale; in particular, for every x € |X|, iii) x, € Z/[T).
Let F, denote the potentially unramified @p—local system corresponding to §, via

Isoc? (X, /Q,)"Repls (m(X.)).
P
We have just shown that for every z € |&,|, the characteristic polynomial x, of the Frobenius ¢, :
Fpz—rFp,z satisfies
i) xz is pure of weight w = 0; ii) x, € Q[T]; iii) xz € Ze[T], £ # p; iv) Xz € Zp[T),

hence is a product of cyclotomic polynomials. In particular, for every connected étale cover X! — X,
such that Levy(Fp|xz) holds, for every z' € ||, xor = (T’ — 1)". By Cebotarev, this implies 7, - hence

a fortiori (ﬁp] x,)g, » I8 quasi-unipotent - hence finite (since F, (]N/p] x,)g, are semisimple)®.
p P

6For this part of the argument, see also [Kol7, Prop. 1.1].
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