
ON THE TRIVIAL LOCUS OF Q`-LOCAL SYSTEMS

ANNA CADORET AND AKIO TAMAGAWA

Abstract. Let k be a number field, let X be a smooth, geometrically connected variety over k and let V` be
a Q`-local system on X. The unramified Fontaine-Mazur conjecture predicts that the property of being finite
is "rigid" in the sense that the following should be equivalent: (i) V` is finite; (ii) for every x ∈ |X|, x∗V` is
finite; (iii) there exists x ∈ |X| such that x∗V` is finite. We prove these equivalences unconditionally when V`
is pure and part of a Q-compatible family. When X is a curve, we also prove these equivalences with condition
(iii) replaced by a weaker condition, and under the assumptions that ` is large enough compared with the
rank of V` and V` is Hodge-Tate at at least one finite place of k above `. The proofs use variational p-adic
Hodge theory, and, for the second result, a pointwise criterion for V` to extend over X , and the companion
correspondances both of Abe and L. Lafforgue.
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Notation / conventions.

For an algebraic group G, let G◦ ⊂ G denote the neutral component of G and, for a closed subgroup H ⊂ G,
let ZG(H) ⊂ NG(H) ⊂ G denote the centralizer and normalizer of H in G respectively; set Z(G) := ZG(G)
for the center of G. For a profinite group Π and a topological field Q, let RepQ(Π) denote the category of
continuous, finite-dimensional Q-representations of Π.

For a scheme S, write |S| for the set of closed points of S.

For an affine scheme S = spec(A), we often abbreviate π1(A) := π1(spec(A)) for the étale fundamental group
of spec(A) (and omit fiber functors).

A variety over a field k is a scheme separated and of finite type over k. If S is an integral scheme with
generic point η and X is a smooth, geometrically connected variety over k := k(η), one says that X admits
a smooth model over S if it fits into a Cartesian diagram

X //

��
�

spec(k)

η

��
X // S,

with X integral and X → S surjective, smooth, separated and of finite type, and one says that X admits a
smooth model with relative normal crossing compactification (a smooth NCC model for short)
over S if it admits a smooth model X → S over S which fits into a diagram

X �
� //

""D
DD

DD
DD

DD
X cpt

��
S

with X ↪→ X cpt an open immersion, X cpt integral, X cpt → S smooth, proper, and X cpt \ X → S a relative
normal crossing divisor.

1. Introduction

Let k be a field and let X be a smooth, geometrically connected variety over k with generic point η.

1.1. Trivial locus and main conjecture. Let ` be a prime and V` be a Q`-local system on X. For every
x ∈ X and geometric point x over x, set V` := V`,x and let G`, G`,x ⊂ G` ⊂ GLV` denote the Zariski closures
of the images Π`, Π`,x and Π` of the étale fundamental groups π1(Xk̄, x̄), π1(x, x̄) and π1(X, x̄) acting on
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V` respectively (so that Π`,η = Π`, G`,η = G`). Define the degeneracy locus or Tate locus (restricted to
closed points) of V` as

|X|V` := {x ∈ |X| | G◦`,x ( G◦`}.
Informally, |X|V` is the set of all x ∈ |X| where x∗V` degenerates. Under mild assumptions on Π`, one
expects that X(k)∩|X|V` is not Zariski-dense in X - see [C23]. In this note, we focus on the most degenerate
strata of |X|V` , namely the trivial locus

|X|trivV` := {x ∈ |X| | G◦`,x = 1}
and the closely related unipotent locus

|X|uni
V` := {x ∈ |X| | G◦`,x is unipotent},

and centralizing locus
|X|cent
V` := {x ∈ |X| | G◦`,x ⊂ ZG`(G

◦
` )}.

Tautologically |X|trivV` ⊂ |X|
uni
V` and if x∗V` is semisimple for every x ∈ |X|, then |X|trivV` = |X|uni

V` . The
following is deeper.

Proposition 1. Assume k is a number field. Then,

(1) one has |X|trivV` 6= ∅ ⇒ |X|
triv
V` = |X|uni

V` ;

(2) in general, one always has
|X|trivV` ⊂ |X|

uni
V` ⊂ |X|

cent
V` .

Proposition 1 (1) is actually a special case of a more general result - see Corollary 23. The proof of Proposi-
tion 1 uses global class field theory and (variational) p-adic Hodge theory, in particular the theorem of Sen
and a construction of Beilinson-Petrov. Its proof is carried out in Subsection 5.2.2.2.

The following conjecture predicts that the trivial, unipotent and centralizing loci should all be empty unless
V`|Xk̄ is finite.

Conjecture A. Assume k is a number field. For a Q`-local system V` on X, the following implications hold.

(T) (i)’ G◦` = 1; (U) (i)’ G◦` = 1 (C) (i)’ G◦` = 1;
⇐ (i) G◦` = 1; ⇐ (i) G◦` is unipotent; ⇔ (i) G◦` ⊂ Z(G◦` );
⇔ (ii) |X|trivV` = |X|; ⇔ (ii) |X|uni

V` = |X|; ⇔ (ii) |X|cent
V` = |X|;

⇔ (iii) |X|trivV` 6= ∅. ⇔ (iii) |X|uni
V` 6= ∅. ⇔ (iii) |X|cent

V` 6= ∅.

In (T), (U), the implications (i) ⇒ (ii) ⇒ (iii), in (T) the implication (i) ⇒ (i)’ and, in (C), the implications
(i) ⇐ (i)’ ⇒ (ii) ⇒ (iii) are tautological. In (C), the implication (i) ⇒ (ii) follows from the fact G◦` is
generated by G◦` , G◦`,x. The implications (ii) ⇒ (i) follow from Hilbert’s irreducibility theorem.

Fact 2. (Hilbert’s irreducibility - [Ser89, §9.6, 10.6, Thm.]) Let k be a number field and let X be a smooth,
geometrically connected variety over k. For every Q`-local system V` on X there exists infinitely many x ∈ |X|
such that Π`,x = Π` - hence such that G`,x = G`.

In Subsection 5.2.2, we will attach (see Construction 24) to every Q`-local system V` on X and x ∈ |X|
an auxilliary Q`-local system Ax(V`) with the property that for every x ∈ |X|, x ∈ |X|cent

V` if and only if
x ∈ |X|trivAx(V`) and that G◦` = 1 for Ax(V`) if and only if G◦` = 1 for V`.

In (U), (C) the implication (i) ⇒ (i)’ follows from geometric class field theory [KL81, Thm. 1]. In (U), this
is immediate by reducing to the case where G◦` ' Ga,Q` . In (C), after possibly replacing S by a connected
étale cover, one may assume G`, G` are both connected and then, observe that under assumption (i), for
every x ∈ |X|, the Q`-local system Ax(V`) is abelian.

To summarize, one has:

(iii)

??
"*
(ii) +3

bj
(i)

"*
ks (i)’

(3)

ai



ON THE TRIVIAL LOCUS OF Q`-LOCAL SYSTEMS 3

From Proposition 1 (2), one also has

[(iii) ⇒ (i) in (C)] =⇒ [(iii) ⇒ (i) in (U)] =⇒ [(iii) ⇒ (i) in (T)]

And, using the auxilliary Q`-local systems Ax(V`), x ∈ |X|,

[(iii) ⇒ (i) in (T) for Ax(V`) and some x ∈ |X|cent
V` ] =⇒ [(iii) ⇒ (i) in (C) for V`]

Remark 3. The formulation of Conjecture A may seem cumbersome. However, we adopt this formulation
to stress several kind of rigidity phenomena: implications (iii) ⇒ (ii) can be thought of as a spreading out
property and implication (ii) ⇒ (i) as a (pointwise) local to global, or globalization property. These rigidity
phenomena will occur - and be a main tool - throughout the paper, where we tried and keep a consistent
numbering (i) (global), (ii) (pointwise), (iii) (at one point) for the statements; a statement (x)’ will usually
indicate a variant or weakening of the corresponding statement (x).

1.1.1. Reformulation of Conjecture A (T).

(1) An equivalent formulation of Conjecture A (T) in terms of the degeneracy locus |X|V` is the following -
see Lemma 21. Assume k is a number field and Conjecture A (T) holds (for every Q`-local system on
X). Then, for every Q`-local system V` on X the following holds. For every x ∈ |X|, G◦`,x normally
generates G◦` . Equivalently,

|X|V` = {x ∈ |X| | G◦`,x ( NorG◦` (G
◦
`,x)}.

(2) As a compact `-adic Lie group is a closed subgroup of GLm(Z`) for some integer m ≥ 0 [L88, Prop. 4],
one has the following diophantine reformulation of Conjecture A (T): Assume k is a number field and let

· · · → Xn+1 → Xn → · · · → X1 → X0 = X

be a projective system of finite étale covers withXn → X Galois of group Πn, n ≥ 0. Assume Π := lim Πn

is a `-adic Lie group of dimension > 0 for some prime `. Then,

limXn(k) = ∅.

1.1.2. Relation to classical conjectures.

(1) Assume k = C and let V be a polarizable Z-variation of pure Hodge structures on the complex-
analytification Xan of X. One can define similarly the degeneracy locus or Hodge locus |X|V , the
trivial locus |X|trivV and the centralizing locus |X|cent

V of V using1 the Mumford-Tate group Gx of x∗V,
and the generic Mumford-Tate group G of V in place of the `-adic algebraic monodromy groups G`,x,
G`. In that setting, the statements corresponding to Conjecture A (T) and Conjecture A (C) easily
follow e.g. from the constancy of Hodge numbers2 and the fact that the neutral component G◦ of the
Zariski-closure G of the image of π1(Xan) acting on Vx is contained in G [A92, Thm. 1]. In particular,
for Q`-local systems arising from motives, Conjecture A (T) and Conjecture A (C) should follow from
classical motivic realization conjectures (Hodge [Ho52], Tate [T94]; see also [DLLZ23, Conj. 1.4]).

(2) In whole generality, Conjecture A follows from the unramified Fontaine-Mazur conjecture - see Corollary
28 (1).

Conjecture B. (Unramified Fontaine-Mazur [FoM95, Conj. 5.1a]) Let k be a number field. Let p be a
prime and let U ⊂ spec(Ok) be an open subset containing all finite places of k above p. Then every
Qp-local system on U is finite.

1.2. Results.

1.2.1. Q-compatible families. Assume k is a number field with ring of integers Ok. For every finite place
v of k with residue characteristic p := pv, let kv denote the completion of k at v and Ov � κv its ring of
integers and residue field respectively; let also Qp ⊂ kv,0 ⊂ kv denote the maximal unramified extension of
Qp contained in kv, mv := [kv,0 : Qp] its degree and σ : kv,0→̃kv,0 its Frobenius.

For a variety X over k, a closed point x ∈ |X| with residue field k(x) and a finite place v of Ok(x), write

xv : spec(k(x)v)→ spec(k(x))
x→ X

1Recall that these are connected and reductive.
2If |Xan|trivV 6= ∅, the only non-zero Hodge number is h0,0; equivalently, Gx = 1, x ∈ Xan - hence G = 1.
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for the resulting k(x)v-point.

1.2.1.1. For a Q`-local system V` on x = X = spec(k), let UV` ⊂ |spec(Ok)| be the set of all finite places v
of k such that, writing p := pv for the residue characteristic of v, the following holds:

- If ` 6= p, x∗vV` is unramified viz extends to a Q`-local system over spec(Ov);
- If ` = p, x∗vVp is crystalline.

For v ∈ UV` and ` 6= p, let χxv ,V` ∈ Q`[T ] denote the characteristic polynomial of the geometric Frobenius

ϕxv ,` : V`,x̄ → V`,x̄
and for ` = p, let χxv ,Vp ∈ kv,0[T ] denote the characteristic polynomial of the linearized crystalline Frobenius3

ϕxv ,cris : Dcris(x
∗
vVp)→ Dcris(x

∗
vVp).

See Subsection 3.1 for a very brief review of basic definitions from p-adic Hodge theory, in particular the one
of Fontaine’s Riemann-Hilbert functor Dcris : RepQp(π1(kv))→ Mϕ

kv,0
.

One says that V` is almost everywhere unramified (AEU for short) if UV` ⊂ |spec(Ok)| is a non-empty
open subset and that it is Q-rational (resp. and pure of weight w ∈ R) if there exists a non-empty open
subset U ′V` ⊂ UV` such that for every v ∈ |U ′V` | the polynomial χxv := χxv ,V` is in Q[T ] (resp. and χxv is
pure of weight w, that is for every root α of χxv and infinite place Q(α)

∞
↪→ C, |α|∞ = |κv|

w
2 ).

Let V := (V`)` be a family of Q`-local systems on x = X = spec(k) (indexed by the set |spec(Z)| of all
rational primes). Write

UV :=
⋂
`

UV` ⊂ |spec(Ok)|.

One says that V is Q-compatible (resp. and pure of weight w ∈ R) if UV ⊂ |spec(Ok)| is a non-empty
open subset and there exists a non-empty open subset U ′V ⊂ UV such that for every v ∈ U ′V the polynomial
χxv := χxv ,V` is in Q[T ] (resp., pure of weight w ∈ R,) and independent of the prime `.

Let X be a variety over k. One says that a family of Q`-local systems V := (V`)` on X is Q-compatible
(resp. and pure of weight w ∈ R) if x∗V is, x ∈ |X|. The purity assumption ensures that G` is semisimple
[D80, Thm. (1.3.8), (1.11), Cor. (3.4.12)].

Classical examples of Q-compatible families V of Q`-local systems on X are those with V` = Rif∗Q`(j) for
f : Y → X a smooth proper morphism and i ≥ 0, j integers; these are pure of weight w = i − 2j [D80],
[KM74].
.
1.2.1.2. Our first result is that Conjecture A (T) and Conjecture A (U) hold when V` is part of a Q-compatible
family of pure Q`-local systems on X.

Theorem 4. Let V be a Q-compatible family of pure Q`-local systems on X. Then,

(1) |X|uni
V := |X|uni

V` is independent of the prime ` and |X|uni
V = |X|trivV` for `� 0;

(2) Furthermore, if |X|uni
V 6= ∅ then the weight w = 0 and G◦` is unipotent (hence G◦` = 1) for every prime `

and G◦` = 1 for `� 0.

In general, Theorem 4 does not imply Conjecture A (C) for V` part of a Q-compatible family of pure Q`-
local systems on X unless one could prove e.g. that, for every x ∈ |X|, the family of Q`-local system
Ax(V) := (Ax(V`))` introduced in Subsection 5.2.2 is also Q-compatible. However, Theorem 4 does imply
Conjecture A (C) in the following easy albeit important cases ("large geometric monodromy").

Corollary 5. Let V be a Q-compatible family of pure Q`-local systems on X. Assume one of the following
conditions hold:

(1) G◦` is a Levi subgroup of G◦` ;

(2) G◦` and the homotheties torus Gm(V`) ' Gm,Q` ⊂ GL(V`) generate a Levi subgroup of G◦` .

3More precisely, if φxv,cris : Dcris(x
∗
vVp) → Dcris(x

∗
vVp) denotes the (σ-semilinear) crystalline Frobenius then ϕxv,cris :=

φmv
xv,cris.
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Then, for every prime `, Conjecture A (C) holds for V`, namely |X|cent
V` = ∅ unless G◦` = 1 and |X|uni

V` = ∅
unless G◦` is unipotent.

Proof. As G◦` is semisimple, the assumptions and conclusions of Conjecture A (C) remain unchanged if one
replaces V` by its semisimplification so that, without loss of generality one may assume that V` is semisimple,
` ∈ |spec(Z)|. In that case, Condition (1) becomes simply G◦` = G◦` and Condition (2) that G◦` and Gm(V`)
generate G◦` . By construction the family of Q`-local systems E` := V` ⊗ V∨` , ` ∈ |spec(Z)| is pointwise
Q-compatible and pure of weight 0. Fix a prime ` ∈ |spec(Z)| and let x ∈ |X|cent

V` . As G◦` is semisimple, the
assumptions impose that G◦`,x ⊂ Gm(V`) hence x ∈ |X|trivE` and, by Theorem 4, Gad ◦

` = 1 hence G◦` = 1 since
G
◦
` is semisimple. �

1.2.1.3. Say that χ ∈ Q[T ] is generalized cyclotomic if all its roots are roots of unity. Theorem 4 (2) easily
reduces to proving that the characteristic polynomials of Frobenii χxv introduced in Subsection 1.2.1.1 are
generalized cyclotomic. Writing p := pv for the residue characteristic of v, to prove that χxv is generalized
cyclotomic, it is enough to prove that

i) w = 0; ii) χxv ∈ Q[T ]; iii) χxv ∈ Z`[T ], ` 6= p; iv) χxv ∈ Zp[T ].

The purity assumption plus the fact that |X|uni
V 6= ∅ ensure i), the Q-compatibility ensures ii), iii). The proof

of iv) relies on a deeper result of variational p-adic Hodge theory (due to Liu-Zhu, Petrov, Shimizu - see Fact
10) ensuring that being potentially unramified is a ("one point to pointwise" - see Remark 3) "rigid" property
in the sense that if x∗0Vp is potentially unramified for one x0 ∈ |Xkv | then x∗Vp is potentially unramified for
every x ∈ |Xkv |. Actually, the proof of iv) is purely local and works for an arbitrary Qp-local system. The
details of the proof of Theorem 4 are carried out in Subsection 5.2.2 and Subsection 5.3.

1.2.2. Subquotients of motivic Q`-local systems. Let k be a number field. The variational Fontaine-
Mazur conjecture of Liu-Zhu [LiZ17, Conj. p.2] predicts that every Q`-local system V` on X with |X|trivV` 6= ∅
appears as a subquotient of F` := R2if∗Q`(i) for some integer i ≥ 0 and f : Y → X a smooth proper mor-
phism, after possibly replacing X by a non-empty open subscheme. So the next case to investigate is the one
of arbitrary subquotients V` of such a F`. As F := (F`)` is a Q-compatible family of pure Q`-local systems of
weight 0 on X, i) and iii) automatically hold for such a V`. As already mentioned, iv) also holds. The main is-
sue to extend the proof of Theorem 4 to V` is that ii) does not hold in general for arbitrary subquotients of F`.

1.2.2.1. So, to treat more general Q`-local systems, one has to adjust the strategy of the proof of Theorem
4. The idea is to exploit further the fact that, given a finite place v|` of k, as soon as |X|trivV` 6= ∅ (or as soon
as V`|Xkv is Hodge-Tate and |X|uni

V` 6= ∅), for every x ∈ |Xkv |, x∗V` is potentially unramified. More precisely,
assume Xkv admits a smooth model XOv over spec(Ov), the technical core of our second main result is (a
variant of - see Corollary 14) the following basic pointwise criterion (Theorem 12) for V`|Xkv to extends to
XOv : assume that x∗V` is unramified for every x in the image of the map

XOv(Ov)→ |Xkv |

then V` extends to a Q`-local system Ṽ` on XOv . This result provides a key step for a general strategy aiming
at proving Conjecture A in that it enables to consider the restriction Ṽ`|Xv of Ṽ` to the special fiber Xv of
XOv , where one can reformulate the initial problem in terms of overconvergent F -isocrystals and try and
exploit the companion correspondances of both Abe [A18] and L. Lafforgue [L02].

1.2.2.2. A first application of this strategy is the following. Let k be a number field. Assume X admits a
smooth NCC model X ↪→ X cpt → U over a non-empty open subscheme U ⊂ spec(Ok). For a prime ` in the
image of |U | → |spec(Z)| and a finite place v in U above `, let

spv : |X cpt| → |X cpt
v |

denote the specialization map. Let f : Y → X be a smooth proper morphism and, for some integer i ≥ 0
and every prime `, set F` := R2if∗Q`(i).

Theorem 6. Assume X is a curve. For every prime ` in the image of |U | → |spec(Z)|, `� 0 and for every
finite place v in U above `, there exists a 0-dimensional Zariski-closed subset Zv ⊂ X cpt

v such that for every
subquotient V` of F` one has

(i) G◦` is unipotent;
⇔ (ii) |X|uni

V` = |X|;
⇔ (iii)’ |X|uni

V` 6⊂ ∩v∈U`sp
−1
v (|Zv|).



6 ANNA CADORET AND AKIO TAMAGAWA

In other words, Conjecture A (U) (hence Conjecture A (T)) holds with condition (iii) weakened to condition
(iii)’.

Remark 7.

(1) As by assumption V` is pointwise Hodge-Tate, one actually has |X|trivV` = |X|uni
V` - see Proposition 20.

(2) Up to shrinking U , one may also assume f : Y → X admits a smooth proper model f : Y → X over U .
Then, for `� 0 and for every finite place v in U above `, the Zariski-closed subset Zv ⊂ X cpt

v appearing
in the statement of Theorem 6 can be chosen explicitly, namely Xv \ Zv is the largest open subset over
which the convervent F-isocrystal R2ifcris∗OYv |Xv admits a slope filtration (equivalently, has constant
Newton polygon). In particular, when X = X cpt and R2ifcris∗OYv |Xv has constant Newton polygon at
least for one place v above `, then (iii)’ reads |X|uni

V` 6= ∅; in other words, under these assumptions,
Conjecture A (U) (hence Conjecture A (T)) holds.

(3) Actually, Theorem 6 is a special case of a more general, and purely local, statement - See Theorem 29.
In particular, the condition that V` be a subquotient of a motivic Q`-local system can be relaxed to get,
e.g. the following variant:

Theorem 8. Assume X is a curve. Let ` be a prime in the image of |U | → |spec(Z)|. Then for every
Q`-local system V` on X with ` > rankQ`(V`) + 1 and finite place v in U above `, such that V`|Xkv is
Hodge-Tate, there exists a 0-dimensional Zariski-closed subset Zv ⊂ X cpt

v such that one has

(i) G◦` is unipotent;
⇔ (ii) |X|uni

V` = |X|;
⇔ (iii)’ |X|uni

V` 6⊂ sp
−1
v (|Zv|).

1.3. Outline. After introducing technical level assumptions in Section 2 and reviewing in Section 3 the re-
sults from (variational) p-adic Hodge theory used in our proofs, we devote Section 4 to the proof of Theorem
12 or rather the key propositions - Proposition 16 and Proposition 18 - underlying it. The final Section 5 is
devoted to the proofs of the global statements - Proposition 1, Theorem 4, Theorem 6 etc.

Acknowledgments The authors thank Benjamin Schraen for explaining the proof of Lemma 9, and François
Charles, Emmanuel Reinecke, Koji Shimizu for constructive discussions. This work was mostly carried out
during visits of the first author to RIMS; she thanks RIMS for its support and providing wonderful research
conditions.

2. Level

Some of the proofs and statements involve level assumptions that we list here for the convenience of the reader.

Let S be a connected scheme. Fix a prime ` and let V` be a Q`-local system on S. Fix a geometric point s̄
on S and set V` := V`,s̄; let Π` ⊂ GL(V`) denote the image of π1(S, s̄) acting on V`. Consider the following
"level conditions" on V`:

Lev1(V`) There exists a Π`-stable Z`-lattice V ◦` ⊂ V` such that Π` ⊂ Id+ ˜̀EndZ`(V
◦
` ), where ˜̀= 4 if ` = 2

and ˜̀= ` otherwise.

Lev2(V`) Π` is torsion free.

Lev3(V`) Π` is pro-`.

Lev4(V`) The torsion elements in Π` are of prime-to-` order.

One easily checks the following implications.

Lev1(V`) +3 Lev2(V`) ks +3 (Lev3(V`) + Lev4(V`)) +3 Lev4(V`) ` > dim(V`) + 1.ks

In practice, Lev1(V`) can always be achieved after replacing S by a connected étale cover.

3. Pointwise versus global properties of Qp-local systems
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Let k be a p-adic field with ring of integers and residue field k ⊃ Ok � κ; let v denote the closed point of
spec(Ok). Let Qp ⊂ k0 ⊂ k be the maximal unramified extension of Qp contained in k and σ : k0→̃k0 its
arithmetic Frobenius.

3.1. Brief recollection of classical p-adic Hodge theory.

3.1.1. Let Bcris ⊂ BdR =: BdR(k) = BdR(k) and BHT = Gr(BdR) denote Fontaine’s period rings and the
associated "Riemann-Hilbert" ⊗-functors

Dcris : RepQp(π1(k))→ Mϕ
k0
, V 7→ (Bcris ⊗Qp V )π1(k)

DdR : RepQp(π1(k))→ F -Mk, V 7→ (BdR ⊗Qp V )π1(k),

DHT : RepQp(π1(k))→ Grk, V 7→ (BHT ⊗Qp V )π1(k),

Here Mϕ
k0

(resp. F -Mk, resp. Grk) denote the category of k0-modules of finite rank D equipped with a
σ-semilinear endormorphism φ : D → D (resp. of k-modules of finite rank D equipped with a descending
separated exhaustive filtration F • by k-submodules, resp. of k-modules of finite rank D equipped with a
direct sum decomposition D• by k-submodules). Let

Repcris
Qp (π1(k)) ⊂ RepdR

Qp(π1(k)) ⊂ RepHT
Qp (π1(k)) ⊂ RepQp(π1(k))

denote the full subcategories of crystalline (viz such that rankQp(V ) = rankk0(Dcris(V ))), de Rham (viz
such that rankQp(V ) = rankk(DdR(V ))) and Hodge-Tate (viz such that rankQp(V ) = rankk(DHT(V )))
representations. The functors DdR : RepdR

Qp(π1(k)) → F -Mk and DHT : RepHT
Qp (π1(k)) → Grk are faithful

exact ⊗-functors

3.1.2. The following implications are classical. Note that being Hodge-Tate with single Hodge-Tate weight 0
is the same thing as being Cp-admissible. In particular, being Hodge-Tate and unipotent - hence a successive
extension of the trivial representation Qp, implies being Cp-admissible.

Cp-admissible
(1)+3 potentially unramifiedks +3 potentially crystalline +3 de Rham +3 Hodge-Tate

unramified +3

KS

� (2)

crystalline

KS

The implication
(1)⇒ is a theorem of Sen [Se80, Cor. to Thm. 11]. For the fact that (2) is "Cartesian", namely

that
(2) crystalline + potentially unramified⇒ unramified,

see e.g. [Ca19, Prop. 4.3.2]. Let us also make the following observation, the proof of which was explained to
us by Benjamin Schraen.

Lemma 9. Let Vp ∈ RepQp(π1(Ok)). Then the elementary divisors of
- the image ϕp : Vp→̃Vp of the geometric Frobenius ϕ ∈ π1(κ) ' π1(Ok);
- the linearized crystalline Frobenius ϕ : Dcris(Vp)→̃Dcris(Vp),

coincide. In particular, the characteristic polynomial of ϕ : Dcris(Vp)→̃Dcris(Vp) is in Zp[T ] and its roots are
v-adic units.

Proof. Let Ik := ker(π1(k) → π1(Ok)) denote the inertia group. Let also k0 ⊂ kur
0 ⊂ k denote the maximal

unramified extension of k0 and k̂ur
0 its completion. Recall that by definition ϕ = φm : Dcris(Vp)→ Dcris(Vp),

where m := [k0 : Qp] and φ : Dcris(Vp) → Dcris(Vp) is the crystalline Frobenius. As Vp is crystalline, and
using that (Bcris)

Ik = k̂ur
0 (e.g. [Fo94, Prop. 5.1.2]),

Dcris(Vp) = (Vp ⊗Qp Bcris)
π1(k) = (Vp ⊗Qp (Bcris)

Ik)π1(κ) = (Vp ⊗Qp k̂
ur
0 )π1(κ) =: D

k̂ur
0

(Vp)

has k0-dimension dimQp(Vp). In other words, Vp is k̂ur
0 -admissible, hence the canonical k̂ur

0 -linear injective
morphism

α : D
k̂ur

0
(Vp)⊗k0 k̂

ur
0 → Vp ⊗Qp k̂

ur
0

is an isomorphism, which is equivariant with the following structures:
- The π1(k)-action (with D

k̂ur
0

(Vp) viewed as a trivial π1(k)-representation);
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- The crystalline Frobenii (with the crystalline Frobenius on Vp being the identity and the one on k̂ur
0

the lift σ : k̂ur
0 →̃k̂ur

0 of the arithmetic Frobenius on the residue field).
In particular, α : D

k̂ur
0

(Vp)⊗k0 k̂
ur
0 →̃Vp ⊗Qp k̂

ur
0 exchanges

Id⊗k0 σ
m ←→ ϕ−1

p ⊗Qp σ
m, φ⊗k0 σ ←→ Id⊗Qp σ.

As a result,

α ◦ (φm ⊗k0 Id) ◦ α−1 = α ◦ (φ⊗k0 σ)m(Id⊗k0 σ
m)−1 ◦ α−1 = (Id⊗Qp σ)m(ϕ−1

p ⊗Qp σ
m)−1 = ϕp ⊗Qp Id.

This shows the two k0-linear morphisms ϕp ⊗Qp Idk0 : Vp ⊗Qp k0→̃Vp ⊗Qp k0 and φm : D
k̂ur

0
(Vp)→̃Dk̂ur

0
(Vp)

have the same invariant factors hence, in particular, the same characteristic polynomial. �

3.2. Pointwise versus global properties. Let X be a smooth variety over k. Let Vp be a Qp-local system
on X, write

|X|ur
Vp ⊂ |X|

cris
Vp ⊂ |X|

dR
Vp ⊂ |X|

HT
Vp ⊂ |X|

for the subsets of all x ∈ |X| such that x∗Vp is unramified, crystalline, de Rham and Hodge-Tate respec-
tively. Say that Vp is pointwise unramified if |X|ur = |X|; define similarly the notion of being pointwise
crystalline, pointwise de Rham and pointwise Hodge-Tate.

3.2.1. Hodge-Tate, de Rham and crystalline local systems. There are also global notions of crystalline, de
Rham and Hodge-Tate Qp-local systems onX defined using geometric versions of Fontaine’s Riemann-Hilbert
functors. More precisely, let Xan → X denote the rigid-analytification of X. The natural morphism of sites
Xan

et → Xet induces a faithful exact ⊗-functor
(−)an : LocZp(Xet)→ LocZp(X

an
et )

from the category LocZp(Xet) of Zp-local systems on Xet to the category LocZp(Xan
et ) of Zp-local systems on

Xan
et hence, passing to the isogeny category, a faithful exact ⊗-functor

(−)an : LocQp(Xet)→ LocQp(X
an
et ).

- Let Higgs(Xan) denote the category of vector bundles with a nilpotent Higgs field on Xan. If

DHT : LocQp(X
an
et )→ Higgs(Xan)

denotes the natural Hodge-Tate Riemann-Hilbert functor constructed in [LiZ17, §2.1], one says that a
Qp-local system Vp on Xan

et is Hodge-Tate if

rankQp(Vp) = rank(DHT(Vp)),
and that a Qp-local system Vp on Xet is Hodge-Tate if Van

p is.

- Let F -Vect∇(Xan) denote the category of filtered vector bundles on Xan with a flat connection satisfying
Griffith’s transversality. If

DdR : LocQp(X
an
et )→ F -Vect∇(Xan)

denotes the natural de Rham Riemann-Hilbert functor constructed in [LiZ17, §3.2], one says that a Qp-local
system Vp on Xan

et is de Rham if

rankQp(Vp) = rank(DdR(Vp)),
and that a Qp-local system Vp on Xet is de Rham if Van

p is.

Assume furthermore X → spec(k) admits a model X → spec(Ok), smooth, separated and of finite type.
Write X̂ for the formal completion of X along the closed fiber Xv. Let X̂η denote the rigid-analytic fiber of
X̂ so that one gets an open immersion X̂η ↪→ Xan of rigid analytic spaces.

- Let F -wIsoc(Xv/Ok0) denote the category of weak F -isocrystals on Xv/Ok0 [GY24, Def. 5.10]. If

Dan
cris : LocQp(X̂η,et)→ F -wIsoc(Xv/Ok0)

denotes the natural crystalline Riemann-Hilbert functor constructed in [GY24, Thm. 1.10] and one defines

Dcris : LocZp(X
an
et )

|X̂η→ LocQp(X̂η,et)
Dan

cris→ F -wIsoc(Xv/Ok0),

one says that a Qp-local system Vp on Xan
et is crystalline if Dcris(Vp) has constant rank rank(Dcris(Vp)) and

rankQp(Vp) = rank(Dcris(Vp)).
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One says that a Qp-local system Vp on Xet is crystalline (with respect to X̂η) if Van
p is.

The following summarizes the relation between the pointwise and global Hodge-Tate, de Rham and crystalline
properties.

Fact 10. Let X be a smooth, geometrically connected variety over k. Let Vp be a Qp-local system on X.
Then,

(1) ([P23, §7]; see also [Shim18]) One has

(i) Vp is Hodge-Tate ⇔ (ii) |X|HT
Vp = |X| ⇔ (iii) |X|HT

Vp 6= ∅;

Furthermore, if Vp is Hodge-Tate, the multiset HT (Vp) := HT (x∗Vp) of Hodge-Tate weights of x∗Vp is
independent of x ∈ |X|.

(2) ([LiZ17, Thm. 1.1, Thm. 1.3]) One has

(i) Vp is de Rham ⇔ (ii) |X|dR
Vp = |X| ⇔ (iii) |X|dR

Vp 6= ∅.

(3) ([GY24, Thm. 7.2]) Assume furthermore X admits a smooth model X → spec(Ok). One has

(i) Vp is crystalline (with respect to X̂η) ⇔ (ii)’ |X|crisVp ⊃ im(X (Ok)→ |X|).
Note that, in particular, the property of being a Hodge-Tate, de Rham or crystalline Qp-local system is
preserved by passing to subquotients.

Corollary 11. Let X be a smooth, geometrically connected variety over k and let Vp a Qp-local system on X.
The following properties are equivalent (ii) for every x ∈ |X|, x∗Vp is potentially unramified;

(iii) there exists x ∈ |X| such that x∗Vp is potentially unramified.
If these hold, then |X|ur

Vp = |X|crisVp and for every x ∈ |X|crisVp the characteristic polynomials of
- the geometric Frobenius ϕx,p : Vp,x̄→̃Vp,x̄;
- the linearized crystalline Frobenius ϕx,cris : Dcris(x

∗Vp)→̃Dcris(x
∗Vp),

coincide. In particular, the characteristic polynomial of ϕx,cris : Dcris(x
∗Vp)→̃Dcris(x

∗Vp) is in Zp[T ] and its
roots are v-adic units.

Proof. According to the equivalence (1) of Subsection 3.1.2, the equivalence (ii) ⇔ (iii) is a special case of
Fact 10 (1). The equality |X|ur

Vp = |X|crisVp follows from the implication (2) in Subsection 3.1.2. The last part
of the assertion then follows from Lemma 9. �

3.2.2. Unramified and tamely ramified local systems. Assume X admits a smooth model X → spec(Ok).

3.2.2.1.One says that a Qp-local system Vp on X is unramified with respect to X if the corresponding
representation of π1(X) on Vp := Vp,x̄ factors through π1(X)� π1(X ) (viz Vp extends to a Qp-local system
on X ) and that Vp is tamely ramified with respect to X if the corresponding representation factors
through the tame étale fundamental group π1(X)� πt1(X ;Xv) (viz Vp is tamely ramified along Xv). Let

|X|trVp ⊂ |X|
denote the subset of all x ∈ |X| such that x∗Vp is tamely ramified.

Theorem 12. Let Vp be a Qp-local system on X. One has

(1) (i) Vp is unramified with respect to X ⇔ (ii)’ |X|ur
Vp ⊃ im(X (Ok)→ |X|).

(2) (i) Vp is tamely ramified with respect to X ⇔ (ii)’ |X|trVp ⊃ im(X (Ok)→ |X|).
Remark 13.

(1) Guo-Yang proved Theorem 12 (1) in the setting of smooth p-adic formal schemes over Ok - see [GY24,
Thm. 6.31].

(2) Properties (i), (ii)’ really depend on the smooth model X → spec(Ok) of X → spec(k). However, if
X → spec(k) is proper, then Properties (i), (ii)’ for a given smooth proper model X → spec(Ok) are also
equivalent to the property

(ii) |X|ur
Vp = |X|,

which is independent of the smooth proper model X → spec(Ok).

We postpone the proof of Theorem 12 to Section 4.
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3.2.2.2. Assume X admits a smooth NCC model X ↪→ X cpt → spec(Ok); write D := X cpt \ X . Then, by
Abhyankar’s lemma

πt
1(X ;Xv) ' πt

1(X cpt;D)×π1(v) π
t
1(Ok; v) ' πt

1(X cpt
v ;Dv)×π1(v) π

t
1(Ok; v)

while

π1(X ) ' πt
1(X cpt;D) ' πt

1(X cpt
v ;Dv).

(1) If Lev3(Vp) holds and |X|trVp ⊃ im(X (Ok) → |X|), then the action of π1(X) on Vp,x̄ factors through
π1(X)� π1(X cpt).

(2) Say that a connected étale cover X ′ → X is good with respect to X ↪→ X cpt → spec(Ok) if the
following holds. Let k′ be the algebraic closure of k in the function field of X ′ and X ′ → X , X ′cpt → X cpt

the normalization of X , X cpt in X ′ → X → X , X ′ → X → X ↪→ X cpt respectively. Then the resulting
canonical sequence of morphisms X ′ → X ′cpt → spec(Ok′) is again a smooth NCC over spec(Ok′). Say
that an open subgroup U ⊂ π1(X) is good with respect to X ↪→ X cpt → spec(Ok) if the corresponding
connected étale cover XU → X is. The open subgroups

U1 ×π1(v) U2 ⊂ πt
1(X cpt;D)×π1(v) π

t
1(Ok; v)

with U1 ⊂ πt
1(X cpt;D), U2 ⊂ πt

1(Ok; v) open subgroups form a cofinal family of open subgroups of

πt
1(X ;Xv) ' πt

1(X cpt;D)×π1(v) π
t
1(Ok; v)

and, if X is a curve, the inverse images of these groups in π1(X) are good with respect to X ↪→ X cpt →
spec(Ok).

These observations combined with Corollary 11 and Theorem 12 yields the following variant / strengthening
of Theorem 12 (1) in the case X is a curve.

Corollary 14. Let X be a curve. Assume X admits a smooth NCC model X ↪→ X cpt → spec(Ok). Let
Vp be a Qp-local system on X such that Lev4(Vp) holds. Assume there exists x ∈ |X| such that x∗Vp
is potentially unramified. Then there exists a connected étale cover X ′ → X, which is good with respect to
X ↪→ X cpt → spec(Ok) and such that Lev3(Vp|X′) holds. In particular, the following properties are equivalent

(i) the action of π1(X ′) on Vp,x̄ factors through π1(X ′)� π1(X ′cpt) (viz Vp|X′ extends to a Qp-local system
on X ′cpt);

(ii) for every x′ ∈ |X ′|, x′∗Vp is unramified,

where X ′cpt → X cpt denotes the normalization of X cpt in X ′ → X → X → X cpt.

Proof. Assume there exists x ∈ |X| such that x∗Vp is potentially unramified. Then, from Corollary 11, for
every x ∈ |X|, x∗Vp is potentially unramified hence, as Lev4(Vp) holds, tamely ramified. From Theorem
12 (2) (ii)’ ⇒ (i), Vp is tamely ramified with respect to X and, from the observation in (2) above, there
exists a connected étale cover X ′ → X which is good with respect to X ↪→ X cpt → spec(Ok) and such that
Lev1(Vp|X′) - hence Lev3(Vp|X′) hold. The implication (ii)’⇒ (i) then follows from the observation (1) above
(the implication (i) ⇒ (ii)’ is straightforward). �

4. Pointwise versus global ramification properties

As the results of this section might be of independent interest, we work in a slightly more general setting
than the one of p-adic fields.

For a normal scheme X and a normal crossing divisor D ↪→ X, let πt
1(X;D) denote the fundamental group

classifying finite connected covers Y → X, which are étale over X \D and tamely ramified along D, namely
such that for every generic point ξ ∈ D, the corresponding valuation ring OX,ξ is tamely ramified in the
extension of function fields k(X) ↪→ k(Y ). This gives rise to an exact diagram of profinite groups:
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1

��

1

��
Iw
D

��

Iw
D

��

1

��
1 // ID //

��

π1(X \D) //

��

π1(X) // 1

1 // It
D

��

// πt
1(X;D) //

��

π1(X) //

��

1

1 1 1

4.1. Notation and definitions.

4.1.1. Let O be a complete discrete valuation ring with maximal ideal m, fraction field k, of characteristic 0
and perfect residue field κ, of characteristic p > 0. Set S := spec(O) = {η, s}, where η is the generic point
and s the closed point of S. Fix a separable(= algebraic) closure k ↪→ k. Considering the normal crossing
divisor s ↪→ S, we use the more classical notation:

Ik := Is, I
w
k := Iw

s , I
t
k := It

s

and
Gk := π1(η) = π1(S \ s), Gur

k := π1(S)←̃π1(s) =: Gk, G
t
k := πt

1(S; s)

Correspondingly, one has the diagram of field extensions

k �
� //

Gur
k =Gκ

Gt
k

kur � � //

Itk

Ik

kt � � //

Iwk

k

For # := −, t, ur, etc. let O# denote the valuation ring of k#, m# its maximal ideal and κ# its residue
field; set S# := spec(O#) = {η#, s#}, where η# is the generic point and s# the closed point of S#.

4.1.2. Let X → S be a morphism, smooth, separated and of finite type. Set X := Xη; up to replacing S
by its normalization in X → S, we may and will assume that X is geometrically connected over k. Let
Xs = Xs,1 t · · · t Xs,m denote the decomposition of Xs into irreducible (viz connected) components.

4.1.3. Let X → be a morphism, smooth, separated and of finite type, let ψ : Y → X be a Galois (in particular
finite, étale and connected) cover and let ψX : Y → X denote the normalization of X in Y ψ→ X ↪→ X . The
morphism ψX : Y → X is finite but not smooth in general.

Assume Y is geometrically integral over k. Let k ↪→ k′ be a finite field extension and let S′ := spec(O′)→ S
denote the normalization of S in spec(k′)→ spec(k)→ S. Let Y ′1 → X denote the normalization of X×SS′ in
Y ×kk′ → X×kk′ ↪→ X×SS′ and let Y ′2 → X×SS′ denote the normalization of X×SS′ in Y×SS′ → X×SS′.
Note that, by the universal property of normalization the morphism Y ′i → X ×S S′ → X factors canonically
as Y ′i → Y → X , i = 1, 2. Furthermore the canonical morphism Y ′1 → Y ′2 is an isomorphism and if S′ → S
is étale, Y ×S S′ → Y ′2 is an isomorphism [Stacks, Tag 03GV].

For a closed point x ∈ |X| with residue field k(x), write Ox for the valuation ring of k(x), Sx := spec(Ox) =
{x, sx}, with (x the generic point and) sx the closed point of Sx. For a subset Σ ⊂ |X|, say that ψ : Y → X
is Σ-pointwise unramified (resp. tame) if for every x ∈ Σ and y ∈ Yx the resulting cover Sy → Sx is étale
(resp. tamely ramified along sx). We will apply this terminology to the following subsets:

https://stacks.math.columbia.edu/tag/03GV
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- Σ = |X|int := im(X (O) ↪→ X(k) → X); one can easily check that |X|int is also the subset of all x ∈ |X|
such that

spec(k(x))
x //

��

X

��
spec(Ox)

∃! x̃ // X

- For # = ur, t, Σ =]u[# for some u ∈ |Xs|, where ]u[#:= im(X (O#)u ↪→ X(k#) → X)(⊂ |X|int) and
X (O#)u denotes the fiber of X (O#) → X (κ) → |Xs| over u; one can easily check that ]u[# is also the
subset of all x ∈ |X| such that

spec(k(x))
x //

��

X

��
spec(O#) // spec(Ox)

∃! x̃ // X

spec(κ) //

OO

�

spec(κ(sx)) //

OO

�

spec(κ(u))
u // Xs

OO

Let k ↪→ k′ be a finite field extension with ring of integer O′ and residue field κ′. Write S′ := spec(O′)→ S
for the corresponding connected cover, s′ ∈ S′ for the closed point of S′ and let Xs,i ×κ κ′ = t1≤j≤miXs′,i,j
be the decomposition into irreducible (viz connected) components of Xs,i×κ κ′, i = 1, . . . ,m. For every non-
empty open subset X ◦s′,i,j ⊂ Xs′,i,j , the image X os,i ⊂ Xs of t1≤j≤miX ◦s′,i,j via Xs′ → Xs is again a non-empty
open subset of Xs,i. Further,

Lemma 15. Assume k ⊂ kur (resp. k ⊂ kt). Then for every u ∈ Xs, the square⋃
u′∈(Xs′ )u

]u′[ur

�

//
_�

��

]u[ur
_�

��
|X ×k k′| // // |X|

(resp. the square
⋃
u′∈(Xs′ )u

]u′[t

�

//
_�

��

]u[t
_�

��
|X ×k k′| // // |X|

)

is (well-defined and) Cartesian.

Proof. Let x ∈ |X| and x′ ∈ (X ×k k′)x. We are to prove that x ∈]u[ur if and only if x′ ∈
⋃
u′∈(Xs′ )u

]u′[ur

(resp. x ∈]u[t if and only if x′ ∈
⋃
u′∈(Xs′ )u

]u′[t). The if part of the assertion, which ensures that the upper
horizontal arrow is well defined, follows from the definition of ] − [ur (resp. ] − [t). Let us prove the only
if part. Assume x ∈]u[ur (resp. x ∈]u[t). The fact that x′ : spec(k(x′)) → X ×k k′ extends (uniquely) to
x̃′ : Sx′ → X ×S S′ follows from the fact that x : spec(k(x))→ X extends to x̃ : Sx → X and the properness
of X ×S S′ → X and the fact that Ox′ ⊂ Our (resp. Ox′ ⊂ Ot) from the fact that X ×S S′ → S is étale (resp.
at most tamely ramified along Xs). �

4.2. A pointwise criterion for ψX : Y → X to be étale.

Proposition 16. Let ψ : Y → X be a Galois cover. There exists a non-empty open subset X os,i ⊂ Xs,i,

i = 1, . . . ,m (depending on Y
ψ→ X → X ) such that, for every ui ∈ X os,i, i = 1, . . . ,m, the following

conditions are equivalent.

(U-1) ker(π1(X)� π1(X )) ⊂ π1(Y );
(U-2) ψX : Y → X is (finite) étale;
(U-3) ψ : Y → X is |X|int-pointwise unramified;
(U-4) ψ : Y → X is ∪1≤i≤m]ui[

ur-pointwise unramified.

Proof. The implications (U-1) ⇒ (U-2) ⇒ (U-3) ⇒ (U-4) and (U-2) ⇒ (U-1) are (almost) tautological so
we are left to prove (U-4) ⇒ (U-2). If Xs = ∅, there is nothing to prove, so we may and will assume that
Xs 6= ∅.

Let us first observe that it is enough to prove (U-4) ⇒ (U-2) after:
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- Replacing k by the algebraic closure kY of k in the function field of Y . Let SY → S denote the normalization
of S in spec(kY ) → spec(k) → S. As Xs 6= ∅, by condition (U-4) SY → S is dominated by an étale cover
of S hence is étale. As X ×S SY is normal, one has a canonical factorization ψX : Y → X ×S SY → X and
Y → X ×S SY is the normalization of Y in Y → X×k kY → X ×S SY . Let sY ∈ SY denote the closed point
of SY and κY its residue field. Let Xs,i ×κ κY = t1≤j≤miXsY ,i,j be the decomposition into irreducible (viz
connected) components of Xs,i×κ κY , i = 1, . . . ,m. For every non-empty open subset X ◦sY ,i,j ⊂ XsY ,i,j , the
image X os,i ⊂ Xs of t1≤j≤miX ◦sY ,i,j via XsY → Xs is again a non-empty open subset of Xs,i. Now, assume
(U-4) ⇒ (U-2) holds for Y → X ×k kY and the open subsets X ◦sY ,i,j ⊂ XsY ,i,j , j = 1, . . . ,mi, i = 1, . . . ,m.
Then (U-4) ⇒ (U-2) holds for Y → X and the open subsets X ◦s,i ⊂ Xs,i, i = 1, . . . ,m. Indeed, assume
for every ui ∈ X ◦s,i, ψ : Y → X is ]ui[

ur-pointwise unramified. Let xY ∈]uY,i,j [
ur with image x ∈]ui[

ur

(Lemma 15) and for every y ∈ YxY , consider the factorization Sy → SxY → Sx. As ψ : Y → X is ]ui[
ur-

pointwise unramified, Sy → Sx is étale hence Sy → SxY is étale as well. This shows ψ : Y → X ×k kY is
]uY,i,j [

ur-pointwise unramified. By (U-4) ⇒ (U-2) for Y → X ×k kY and the open subsets X ◦sY ,i,j ⊂ XsY ,i,j ,
j = 1, . . . ,mi, i = 1, . . . ,m, Y → X ×S SY is étale. As X ×S SY → X is étale, this implies ψX : Y → X is
étale.

So, after possibly replacing k by kY , we may and will assume Y is geometrically integral over k.

- Base-change along spec(k′)→ spec(k) for some finite field extension k ⊂ k′ ⊂ kur. Let S′ → S denote the
normalization of S in spec(k′)→ spec(k)→ S. By assumption S′ → S is étale hence Y ×S S′ → X ×S S′ is
the normalization of Y ×k k′ in Y ×k k′ → X×k k′ → X ×S S′. Let s′ ∈ S′ denote the closed point of S′ and
κ′ its residue field. Let Xs,i ×κ κ′ = t1≤j≤miXs′,i,j be the decomposition into irreducible (viz connected)
components of Xs′,i ×κ κ′, i = 1, . . . ,m. For every non-empty open subset X ◦s′,i,j ⊂ Xs′,i,j , the image
X os,i ⊂ Xs of t1≤j≤miX ◦s′,i,j via Xs′ → Xs is again a non-empty open subset of Xs,i. Now, assume (U-4) ⇒
(U-2) holds for Y ×k k′ → X ×k k′ and the open subsets X ◦s′,i,j ⊂ Xs′,i,j , j = 1, . . . ,mi, i = 1, . . . ,m. Then
(U-4) ⇒ (U-2) holds for Y → X and the open subsets X ◦s,i ⊂ Xs,i, i = 1, . . . ,m. Indeed, assume for every
ui ∈ X ◦s,i, ψ : Y → X is ]ui[

ur-pointwise unramified. Let x′ ∈]u′i,j [
ur with image x ∈]ui[

ur (Lemma 15) and
for every y ∈ Yx′ , consider the factorization Sy → Sx′ → Sx. As ψ : Y → X is ]ui[

ur-pointwise unramified,
Sy → Sx is étale hence Sy → Sx′ is étale as well. This shows Y ×k k′ → X ×k kY is ]u′i,j [

ur-pointwise
unramified. By (U-4) ⇒ (U-2) for Y ×k k′ → X ×k k′ and the open subsets X ◦s′,i,j ⊂ Xs′,i,j , j = 1, . . . ,mi,
i = 1, . . . ,m, Y ×S S′ → X ×S S′ is étale. As X ×S S′ → X is étale, this implies Y ×S S′ → X is étale
hence that ψX : Y → X is étale.

So, after possibly replacing k by a finite k ⊂ k′ ⊂ kur, we may and will assume Xs,i is geometrically
irreducible (viz connected) over κ, i = 1, . . . ,m.

Let ξi ∈ Xs,i denote the generic point of Xs,i, i = 1, . . .m. As X is regular, it follows from Zariski-Nagata
purity theorem that ψX : Y → X is étale if (and only if) it is étale at ξi, i = 1, . . . ,m. As Y is normal,
it is regular in codimension 1 hence the non-regular locus Yn-reg ⊂ Y is a closed subset of codimension ≥ 2
in Y. As ψX : Y → X is finite, Z := ψX (Yn-reg) ⊂ X is also closed of codimension ≥ 2 in X . On the
other hand, for every i = 1, . . . ,m, as X → S is smooth, Xs,i ⊂ X is closed of codimension 1 in X hence
Zs,i := Z ∩ Xs,i ⊂ Xs,i is closed of codimension ≥ 1 and X os,i := Xs,i \ Zs,i ⊂ Xs,i is a non-empty open
subscheme; in particular, ξi ∈ X os,i. So, setting X o := X \ Z, it is enough to prove that Y ×X X o → X o is
étale at ξi, i = 1, . . . ,m. So, up to replacing ψX : Y → X with Y ×X X o → X o, we may and will assume Y
is also regular. Fix ui ∈ Xs,i, i = 1, . . . ,m. Up to replacing further ψX : Y → X by its base-change along
spec(O′) → S for some finite O ⊂ O′ ⊂ Our we may and will assume that κ(v) = κ for every v ∈ Yui (in
particular, κ(ui) = κ). We argue by contradiction. Assume the subset Yn-et ⊂ Y of all y ∈ Y such that
ψX : Y → X is non-étale at y is non-empty. Then, again by Zariski-Nagata purity theorem, Yn-et ⊂ Y is
closed and pure of codimension 1 in Y. Fix a generic point ξ ∈ Yn-et. As ψ : Y → X = Xη is étale, ξ
necessarily lies over one of the ξi, i = 1, . . . ,m - say ξi. But as ψX : Y → X is finite, ψX (Yn-et) ⊂ X is
closed in X hence contains Xs,i. For simplicity, write u := ui ∈ Xs,i and fix v ∈ (Yn-et)u. By Lemma 17
(v) ⇒ (ii) applied to ψX : Y → X , the canonical morphism ψ#

X : mu/m
2
u ⊗κ(u) κ(v) → mv/m

2
v induced by

ψX : Y → X at the level of cotangent spaces is not injective. Recall that, from our preliminary reduction
κ = κ(u) = κ(v). Fix 0 6= a ∈ ker(mu/m

2
u → mv/m

2
v). The idea is to construct a x̃ ∈ X (O)u such that

the resulting morphism of cotangent spaces x̃# : mu/m
2
u → m/m2 satisfies x̃#(a) 6= 0. Assume such a

x̃ ∈ X (O)u exists and let x ∈]u[ur denote its image in |X|. By (U-4), the normalization Ỹx → S of S in
Yx → spec(k)→ S is étale. Actually, Yx = spec(kx,1×· · ·×kx,t) with k ↪→ kx,j a finite unramified extension,
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j = 1, . . . , t and Ỹx = spec(Ox,1×· · ·×Ox,t), where Ox,j ⊂ Our is the valuation ring of kx,j , j = 1, . . . , t. For
j = 1, . . . , t, write Ỹx,j := spec(Ox,j) = {yj , vj}, where yj is the generic point and vj the closed point of Ỹx,j .
As Ỹx → S

x̃→ X also coincides with the normalization of X in Yx → spec(k) → S
x̃→ X , by the universal

property of Ỹx → S
x̃→ X , one gets a unique factorization

(1) Yx //

��
�

Ỹx

��

// Y

ψX
��

spec(k) //

x

66S
x̃ // X

As ψX : Y → X is integral, by the Going down theorem [Stacks, Tag 00H8], there exists y ∈ Y specializing to
v and mapping to x. By construction y ∈ Yx hence coincides with the generic point of one of the irreducible
components - say Ỹx,j - of Ỹx. As Ỹx → S is finite, vj maps to v. The commutative square

Ỹx,j //

��

Y

ψX
��

S
x̃i
// // X

induces a commutative square at the level of cotangent spaces

mvj/m
2
vj mv/m

2
v

oo

m/m2

OO

mu/m
2
u

ψ#
X

OO

x̃#
oo

But as Ỹx → S is étale, the morphism m/m2 → mvj/m
2
vj is injective (by Lemma 17 (ii)⇒ (v)); this contradicts

the fact that x̃#(a) 6= 0 while ψ#
X (a) = 0.

It remains to construct x̃ ∈ X (O)u such that the resulting morphism of cotangent spaces x̃# : mu/m
2
u →

m/m2 satisfies x̃#(a) 6= 0. For this, as X is smooth at u and the residue field of u is κ, O[[T1, . . . , Tn]]→̃Ôu
and, modulo this isomorphism, m̂u ⊂ Ôu identifies with the ideal 〈π, T1, . . . , Tn〉, where π ∈ m is a uniformizer,
mu/m

2
u→̃κπ ⊕ κT 1 ⊕ · · · ⊕ κTn and m/m2→̃κπ. Fix any κ-linear morphism f : mu/m

2
u � m/m2 such that

f(a) 6= 0 and f(π) = π (if pi : mu/m
2
u � m/m2 denotes the projection onto the πth component for i = 0

and the T ith component for i = 1, . . . , n, and a = a0π +
∑

1≤i≤n aiT i then, one can take f = p0 if a0 6= 0

and f = p0 + pi for some 1 ≤ i ≤ n such that ai 6= 0 if a0 = 0). Let f(T1), . . . , f(Tn) ∈ m lifting
f(T 1), . . . , f(Tn) ∈ m/m2; these define a unique morphism f# : O[[T1, . . . , Tn]]→ O of O-algebras, and the
resulting O-point

x̃ : spec(O)
f→ O[[T1, . . . , Tn]] ' OX ,u → X

has the expected property.
�

Lemma 17. Let π : V → U be a finite surjective morphism between integral normal noetherian schemes.
Let v ∈ V and set u := π(v). Let κ(u) � Ou ⊃ mu (resp. κ(v) � Ov ⊃ mv) denote the residue field, local
ring and maximal ideal of U at u (resp. of V at v). The following conditions are equivalent

(i) π : V → U is étale at v;
(ii) π : V → U is unramified at v;
(iii) the canonical morphism mu/m

2
u ⊗κ(u) κ(v)→ mv/m

2
v is an epimorphism;

Assume furthermore U is regular at u, then these are also equivalent to:

(iv) the canonical morphism mu/m
2
u ⊗κ(u) κ(v)→ mv/m

2
v is an isomorphism,

(and imply V is regular at v). Assume furthermore V is regular at v, then these are also equivalent to:

(v) the canonical morphism mu/m
2
u ⊗κ(u) κ(v)→ mv/m

2
v is a monomorphism.

https://stacks.math.columbia.edu/tag/00H8
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(and imply U is regular at u).

Proof. (i) ⇒ (ii) is tautological while (ii) ⇒ (i) is [G71, Exp. I, Thm. 9.5 (ii)]. (iii) is equivalent to
muOv + m2

v = mv so (ii) ⇒ (iii) is tautological while (iii) ⇒ (ii) follows from Nakayama’s lemma since mv

is a finitely generated Ov-module [Stacks, Tag 07RC (4)]. (iv) ⇒ (iii) and (iv) ⇒ (v) are tautological. By
Nakayama’s lemma and Krull’s principal ideal, one always has dimκ(u)mu/m

2
u ≥ dimOu with equality if and

only if U is regular at ut and similarly for V at v. This shows (iii) ⇒ (iv) assuming U is regular at u and
(v) ⇒ (iv) assuming V is regular at v. �

4.3. A pointwise criterion for ψX : Y → X to be tamely ramified along Xv.

Proposition 18. Let ψ : Y → X be a Galois cover. There exists a non-empty open subset X os,i ⊂ Xs,i,

i = 1, . . . ,m (depending on Y
ψ→ X → X ) such that, for every ui ∈ X os,i, i = 1, . . . ,m, the following

conditions are equivalent.

(T-1) ker(π1(X)� πt
1(X ;Xs)) ⊂ π1(Y );

(T-2) ψX : Y → X is (finite) tamely ramified along Xs;
(T-3) ψ : Y → X is |X|int-pointwise tame;
(T-4) ψ : Y → X is ∪1≤i≤m]ui[

t-pointwise tame.

Proof. Again, the implications (T-1)⇒ (T-2)⇒ (T-3)⇒ (T-4) and (T-2)⇒ (T-1) are (almost) tautological
so we are left to prove (T-4) ⇒ (T-2).

Let X o ⊂ X be an open subscheme such that X o∩Xs,i 6= ∅, i = 1, . . . ,m. By definition of tame ramification,
ψX : Y → X is tamely ramified along Xs if (and only) if ψX ×X X o : Y ×X X o → X o is tamely ramified along
X os so that, in proving (T-4) ⇒ (T-2), one may freely replace ψX : Y → X by its base-change along such an
open subscheme X o ↪→ X .

For i = 1, . . . ,m, consider the Cartesian diagram

Yred
s_�

��

Ys,ioo

��

�Y

ψX
��

�

Ys
ψX ,s
��

oo

X Xsoo Xs,i,oo

(where Yred
s ↪→ Ys denotes the reduced closed subscheme) and write

Ys,i =
⋃

1≤j≤mi

Ys,i,j

for the decomposition of Ys,i into irreducible components. As κ is perfect, the non-regular locus Yn-reg
s,i ( Ys,i

is a strict closed subscheme. As ψX : Y → X is finite, ψX (Yn-reg
s,i ) ( Xs,i is again a strict closed subscheme.

So that, replacing ψX : Y → X by its base-change along

X o := X \
⊔

1≤i≤m
ψX (Yn-reg

s,i ) ↪→ X ,

we may and will assume that Ys,i is regular (viz smooth over κ as κ is perfect), i = 1, . . . ,m. Actually, later
in the argument we will have to ensure this property holds not only for the normalization ψX : Y → X of X in
Y

ψ→ X ↪→ X but also for the normalization ψ′X : Y ′ → X of X in Y ′ ψ
′
→ X ↪→ X for some intermediate covers

Y → Y ′
ψ′→ X. But as there are only finitely such intermediate covers, we can do so by shrinking X further

(namely removing not only
⊔

1≤i≤m ψX (Yn-reg
s,i ) but the union of all

⊔
1≤i≤m′ ψX (Y ′s,i n-reg) for Y → Y ′

ψ′→ X

describing the finitely many intermediate covers of ψ : Y → X).

For a subgroup H ⊂ G := Aut(ψ), write YH → X for the corresponding connected étale cover and YH → X
for the normalization of X in YH → X ↪→ X . Fix i = 1, . . .m, let ξ := ξi ∈ Xs,i denote the generic point of
Xs,i, ζ := ζi,j ∈ Ys,i,j the generic point of Ys,i,j and write

G ⊃ D := Dζ/ξ ⊃ I := Iζ/ξ ⊃ Iw := Iw
ζ/ξ ⊂ 1

https://stacks.math.columbia.edu/tag/07RC
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for the decomposition, inertia and wild inertia groups of ζ/ξ respectively. These yield a commutative diagram

Y // YIw // YI // YD // X

Y //

OO

YIw //

OO

YI //

OO

YD //

OO

X .

OO

Let ζIw , ζI and ζD denote the image of ζ in YIw , YI and YD respectively. By construction, spec(OYD,ζD)→
spec(OX ,η) and spec(OYI ,ζI )→ spec(OYD,ζD) are unramified, spec(OYIw ,ζIw )→ spec(OYI ,ζI ) is tamely ram-
ified and spec(OY,ζ)→ spec(OYIw ,ζIw ) is wildly ramified.

Also, just as in the proof of Proposition 16, it is enough to prove (T-4) ⇒ (T-2) after:

- Replacing k by the algebraic closure kY of k in the function field of Y . The argument is exactly similar to
the one of the proof of Proposition 16, replacing "étale" with "tamely ramified".

In particular, after possibly replacing k by kY , we may and will assume Y is geometrically integral over k.

- Base-change along spec(k′) → spec(k) for some finite field extension k ⊂ k′ ⊂ kt. Again, the argument
is exactly similar to the one of the proof of Proposition 16, replacing "étale" with "tamely ramified" and
Y ×S S′ with the normalization of X ×S S′ in Y ×k k′ → X ×k k′ → X ×S S′.
So, after possibly replacing k by a finite k ⊂ k′ ⊂ kt, we may and will assume that Xs,i is geometrically
irreducible (viz connected) over κ, i = 1, . . . ,m and, by Abhyankar’s lemma ([Stacks, Tag 0BRM]), that
spec(OYIw

i,j
,ζIw
i,j

)→ spec(OX ,ξi) is unramified (in other words, Ii,j = Iw
i,j), j = 1, . . . ,mi, i = 1, . . . ,m.

Recall that we may also assume that Ys,i is smooth over κ, i = 1, . . . ,m.

We now define X ◦s,i ⊂ Xs,i as in Proposition 16, i = 1, . . . ,m.

Fix 1 ≤ i ≤ m, ui ∈ |X ◦s,i|, x ∈]ui[
t and y ∈ Yx. By definition, x : spec(k(x)) → X extends (uniquely as

X → S is separated) to x̃ : Sx → X and, as ψX : Y → X is finite hence proper, y : spec(k(y))→ Y extends
uniquely as

spec(k(y))
y //

��

Y

ψX
��

Sy //

∃!ỹ
55

Sx
x̃
// X

Then there exists a unique 1 ≤ i ≤ m such that x̃s ∈ Xs,i and a unique (recall that Ys is regular) 1 ≤ j ≤ mi

such that ỹs ∈ Ys,i,j . Write Iw := Iw
ζi,j/ξi

(= Iζi,j/ξi) and D := Dζi,j/ξi . For H = D, Iw and 1, let YoH,s ⊂ YH,s
denote the irreducible component of ζH and set YoH := YH \ (YH,s \ YoH,s). As ζDi,j is inert in YIwi,j → YDi,j
and ζIwi,j is totally wildly ramified in Y → YIwi,j , one actually has a partly Cartesian diagram

Yo //

��
�

YoIw //

�
��

YoD //
_�

��

X

Y // YIw // YD // X .

In particular, YoIw → YoD is an etale cover and YoD → X is an étale morphism (but a priori not finite).
Let yw denote the image of y in YIw and ỹw : Syw = spec(Ryw) → YoIw the normalization of YoIw in

spec(k(yw))
yw→ YIw → YoIw so that one has a commutative diagram

Sy

ỹ

��

// Syw

ỹw

��

// Sx

x̃
��

Yo //

��
�

YoIw //

�
��

YoD //
_�

��

X

Y // YIw // YD // X .

https://stacks.math.columbia.edu/tag/0BRM
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As YoIw → X is étale, Syw → Sx is unramified while as Y → YIw is Galois with group Iw of order a power of
p, the ramification index of Sy → Syw is a power of p. On the other hand, as x ∈]ui[

t, by (T-4), Sy → Sx
(hence a fortiori Sy → Syw) is at most tamely ramified. This forces Sy → Sx to be unramified and proves
that ψX : Y → X is ]ui[

t-pointwise unramified (hence a fortiori ]ui[
ur-pointwise unramified).By Proposition

16 (U-4) ⇒ (U-2), ψX : Y → X is an étale cover. �

4.4. Proof of Theorem 12. The only non-obvious implications are b) ⇒ a). Consider Assertion (1). By
definition, if b) holds then, for every normal open subgroup U ⊂ Πp the corresponding Galois cover XU → X
is |X|int-pointwise unramified. By Proposition 16 (U-3) ⇒ (U-1), the morphism π1(X, x̄) � Πp/U then
factors through π1(X, x̄) � π1(X , x̄). One concludes by passing to the limit on U . This proves (1). The
proof of (2) is exactly similar using Proposition 18 (T-3) ⇒ (T-1).

5. Applications to Conjecture A (T) and Conjecture A (C)

Let k be a number field and let X be a smooth, geometrically connected variety over k.

5.1. AEU Qp-local systems. Generalizing the definition of an AEU Qp-local system on X = x = spec(k)
in Paragraph 1.2.1.1, say that a Q`-local V` on X is AEU if there exists a smooth model X → U of X over
a non-empty open subscheme U ⊂ spec(Ok) such that V` extends to a Q`-local system on X . Note that, if
Xi → Ui, i = 1, 2 are two smooth models of X then there exists a non-empty open subscheme U ⊂ U1 ∩ U2

such that X1×U1 U→̃X2×U2 U as U -schemes. In particular, V` is AEU if and only if for every smooth model
X → U of X over a non-empty open subscheme U ⊂ spec(Ok), there exists a non-empty open subscheme
U ′ ⊂ U such that V` extends to a Q`-local system on X ×U U ′.

The property of being pointwise AEU is also rigid.

Fact 19. ([LiZ17, Prop. 4.1], [P23, Prop. 6.1]) Let V` be a Q`-local system on X. Consider the following
properties (i) V` is AEU;

(ii) for every x ∈ |X|, x∗V` is AEU;
(iii) there exists x ∈ |X| such that x∗V` is AEU.

Then (i) ⇒ (ii) ⇔ (iii) and, if V` is semisimple, then (iii) ⇒ (i).

5.2. Comparing |X|trivV` , |X|
uni
V` , |X|

cent
V` .

5.2.1. We begin with the following consequence of local class field theory and Sen’s theorem.

Proposition 20. Let k be a number field. Let ` be a prime and V` a Q`-local system on x = X = spec(k).
Assume x∗vV` is Hodge-Tate for every finite place v of k above `. Then (G◦` )

ab is reductive.

Proof. Fix a geometric point x̄ over x. Write V` := V`,x̄ and let ρ` : π1(x) = π1(k)→ G`(Q`) ⊂ GL(V`) denote
the continuous representation corresponding to V`. After possibly replacing k by a finite field extension one
may assume G` = G◦` . Fix a Levi subgroup L` ⊂ G` and let N` ⊂ G` denote the smallest normal algebraic
subgroup of G` containing L`. If Gab

` is not reductive, then N` ( G`. By Lemma 21 below, there exists
a G`-subrepresentation W` ⊂ T (V`) such that N` = ker(G` → GLW`

). By construction, the non-trivial
unipotent group G`/N` acts faithfully on W`. Let W` denote the Q`-local system on x corresponding to W`

viewed as a π1(k)-representation via π1(k) → G`(Q`) → (G`/N`)(Q`). Then, as W` lies in the Tannakian
category generated by V`, x∗vW` is Hodge-Tate for every finite place v|` of k. As a result, it is enough to
prove that if G` is unipotent, then it is trivial. If G` is unipotent non-trivial then there exists a surjective
morphism p : G` � Ga,Q` and a factorization

π1(x) = π1(k)
ρ` //

����

G`(Q`)
p// Ga,Q`(Q`) ' Q`

π1(k)ab
ρab`

33ggggggggggggggggggggggg

such that im(ρab
` ) ' Z`. As Z` is torsion-free and as O×v ' Z⊕rp × (O×v )tor for every prime p 6= ` and

finite place v of k above p, it follows from local class field theory that ρab
` : π1(k)ab � Z` factors through

π1(Ok[1
` ])

ab � Z`. On the other hand, for every finite place v of k above `, x∗vV` is unipotent, so that it has
a single Hodge-Tate weight, which is 0; equivalently (see equivalence (1) in Paragraph 3.1.2), it is potentially
unramified. In particular, for every finite place v of k above `, ρab

` |π1(kv)ab : π1(kv)
ab � Z` is potentially
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unramified - hence unramified since Z` is torsion-free This proves that ρab
` : π1(k)ab � Z` actually factors

through π1(Ok)ab � Z`, which contradicts the finiteness of π1(Ok)ab.
�

Lemma 21. Let Q be a field of characteristic 0, V a finite dimensional Q-vector space and N ⊂ G ⊂ GLV
algebraic subgroups with N normal in G. Then there exists a G-subrepresentation

WN ⊂ T (V ) := ⊕m,nV ⊗m ⊗ V ∨⊗n

such that N = ker(G→ GLWN
).

Proof. By [D82, Prop. 3.1 (a), (b)], there exists a GLV -subrepresentation V1 ⊂ T (V ) such that N is the
stabilizer of a line L1 ⊂ V1; let L1 ⊂ V2 ⊂ V1 denote the smallest G-subrepresentation containing L1 and let
N2 ⊂ G2 ⊂ GLV2 denote the image of N and G acting on V2 respectively. By construction N2 is contained in
a split torus of GLV2 - hence is reductive. By [D82, Prop. 3.1 (a), (c)], there exists a GLV2-subrepresentation
V3 ⊂ T (V2)(⊂ T (V1) ⊂ T (V )) and a finite subset A ⊂ V3 such that N2 is the algebraic subgroup of GLV2

fixing the elements in A. Let A ⊂ V4 ⊂ V3 denote the smallest G2-subrepresentation containing A. By
construction, N2 = ker(G2 → GLV4) hence one can take WN := V4. �

Remark 22. Using Lemma 21, one immediately sees that Conjecture A (T) is also equivalent to the char-
acterization of the degeneracy locus of V` given in Subsection 1.1.1 (1).

Corollary 23. Let k be a number field and X a smooth, geometrically connected variety over k. Let V` be a
Q`-local system on X such that x∗vV` is Hodge-Tate for some x ∈ |X| and every finite place v of k(x) above
`. Then |X|trivV` = |X|uni

V` .

Proof. From Fact 10 (1), for every x ∈ |X| and every finite place v of k(x) above `, x∗vV` is Hodge-Tate. The
assertion thus follows from Proposition 20. �

Corollary 23 applies in particular the case if V`,Q` is simple [P23, Cor. 5.3] (observing that the condition
|X|trivV` 6= ∅ forces the character χ appearing in [P23, Cor. 5.3] to be finite).

5.2.2. Proof of Proposition 1 and Theorem 4 (1). Let k be a number field and let X be a smooth, geometri-
cally connected variety over k.

5.2.2.1. A construction. We begin by recalling the following construction, which is introduced in the proof
of [P23, Thm. 8.1], where it is attributed to Beilinson.

Construction 24. Assume X(k) 6= ∅ and fix x ∈ X(k), which we regard as a section of the structural
morphism sX : X → spec(k). Let V` be a Q`-local system on X and let

Ax(V`) ⊂ Ex(V`) := V∨` ⊗ s∗X(x∗V`)
denote the minimal sub-local system S` ⊂ Ex(V`) such that S`,x̄ contains IdV`,x̄ ; explicitly, it corresponds to
the π1(X, x̄)-subrepresentation

Ax(V`)x̄ = Q`[Π`] ⊂ Ex(V`)x̄ = EndQ`(V`,x̄).

Note that, by definition, Ex(V`)x̄ is Ex(V`)x̄ ' EndQ`(V`,x̄) equipped with the action

π · f = (xsX)(π) · f · π−1, π ∈ π1(X, x̄), f ∈ Ex(V`)x̄.
In particular, one has

- a canonical quotient morphism Ax(V`)⊗ s∗X(x∗V`)∨ � V∨` (sending g⊗ φ to the linear form a 7→ φ(g(a)));

- If G◦` = G`, then x ∈ |X|cent
V` if and only if x ∈ |X|trivAx(V`).

Fact 25. ([P23, Prop. 8.2]) For every finite place v of k above `, the Q`-local system Ax(V`)|Xkv is de Rham.

5.2.2.2. Proof of Proposition 1. Proposition 1 (1) is a special case of Corollary 23 as every x ∈ |X|trivV` satisfies
the assumption of Corollary 23.

For Proposition 1 (2), if |X|uni
V` = ∅ there is nothing to prove. Otherwise, one may replace k by a finite field

extension hence assume |X|uni
V` ∩ X(k) 6= ∅ and X by a connected étale cover hence assume G◦` = G`. Let

x ∈ |X|uni
V` ∩X(k). With the notation of Construction 24, x ∈ |X|uni

Ex(V`) ⊂ |X|
uni
Ax(V`). But then, from Fact 25

and Corollary 23,
|X|trivAx(V`) = |X|uni

Ax(V`),
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so that the conclusion follows from the fact that x ∈ |X|cent
V` if and only if x ∈ |X|trivAx(V`).

5.2.2.3. Proof of Theorem 4 (1). The first part of Theorem 4 (1) follows from the fact that one can also
describe |X|uni

V` as
|X|uni
V` := {x ∈ |X| | rank(G◦`,x) = 0},

and that rank(G◦`,x) is independent of ` ∈ |spec(Z)| [Ser81, §3]. For the second part of Theorem 4 (1), by
definition of Q-compatibility, for every x ∈ |X| there exists a non-empty open subset Ux ⊂ |spec(Ok(x))|
such that for every prime ` and finite place v ∈ Ux above `, x∗vV` is crystalline - hence Hodge-Tate. Fix
x0 ∈ |X|; up to replacing k with a finite field extension, one may assume k(x0) = k. For primes `� 0, Ux0

contains all the finite places of k above ` so that, by assumption, for every finite place v of k above `, x∗0,vV`
is Hodge-Tate and the conclusion follows from Corollary 23.

5.2.2.4. Construction 24 can also be used to prove the following.

Corollary 26. Conjecture A (T) ⇒ Conjecture A (C).

Proof. Let V` be a Q`-local system on X such that |X|cent
V` 6= ∅. One may replace k by a finite field

extension hence assume |X|cent
V` ∩X(k) 6= ∅ and X by a connected étale cover hence assume G◦` = G`. Let

x ∈ |X|cent
V` ∩X(k). Then x ∈ |X|trivAx(V`). In particular, |X|trivAx(V`) 6= ∅ so that by Conjecture A (T) for Ax(V`),

the étale fundamental group π1(X) - hence a fortiori π1(Xk̄), acts on Ax(V`)x̄ = Q`[Π`] through a finite
quotient. But this means in particular that the orbit Π` ' Π` · Id is finite. �

5.3. Proof of Theorem 4 (2). It is enough to prove that |X|uni
V = |X|. Indeed, from Theorem 4 (1) this

implies |X|trivV` = |X| for primes ` � 0. By Fact 2, the condition |X|uni
V` (= |X|uni

V ) = |X| implies G◦` is
unipotent while the condition |X|trivV` = |X| implies G◦` = 1.

As the assumptions of Theorem 4 and the property |X|uni
V = |X| are invariant under base-change, one may

freely replace X by a connected étale cover hence assume that Lev1(V`0) holds for at least one prime `0,
which implies the following. For every x ∈ |X|, and finite place v of U ′x∗V above a prime ` 6= `0, the subgroup

Ξxv ⊂ Q× generated by the roots of χxv(= χxv ,V` = χxv ,V`0 ) is torsion-free.

For every x ∈ |X|, let (x∗V`)ss denote the semisimplification of x∗V`. To prove that x ∈ |X|uni
V it is enough to

prove that (x∗V`)ss is trivial. By the Cebotarev density theorem, to prove that (x∗V`)ss is trivial it is enough
to prove that for all v ∈ |U ′x∗V |, χxv is a power of T − 1. From our preliminary reduction, this is equivalent
to proving that the roots of χxv are all roots of unity, viz that

i) w = 0; ii) χxv ∈ Q[T ]; iii) χxv ∈ Z`[T ], ` 6= p; iv) χxv ∈ Zp[T ].

Property i) follows from the assumption that |X|uni
V 6= ∅, and Properties ii), iii) from the Q-compatibility

assumption. It remains to prove Property iv). Fix x0 ∈ |X|uni
V` and let x ∈ |X| arbitrary. Property iv) is

equivalent to saying that the roots α1, . . . , αr of χxv in Q are integral over Zp. As for every integer n ≥ 1,
the ring Zp[α1, . . . , αr] is integral over Zp[αn1 , . . . , αnr ], one may freely replace k by a finite field extension.
In particular, one may assume k(x) = k = k(x0). For primes p � 0, U ′x∗0V and U ′x∗V both contain all finite
places of k above p. Fix such a prime p. Up to replacing further X by a connected étale cover one may
assume Lev2(Vp) holds. Let v be a finite place of k above p (so that v ∈ |U ′x∗0V | ∩ |U

′
x∗V |). By assumption

x∗0,vVp is both crystalline (hence Hodge-Tate) and unipotent. Thus, from Corollary 11, x∗vVp is unramified
and χxv = χxv ,x∗Vp is in Zp[T ]. This concludes the proof of Theorem 4.

5.4. Relation to the unramified Fontaine-Mazur conjecture. Let k be a number field. Assume X
admits a smooth model X → U over a non-empty open subscheme U ⊂ spec(Ok). The following is a
consequence of Theorem 12 (1).

Corollary 27. Let Vp be a Qp-local system on X [1
p ]. Assume that either Lev2(Vp) holds or that, for every

finite place v of k above p, one has

im(X (Ov)→ |Xkv |) ⊂ |Xkv |crisVp .

Then , if |X|trivVp 6= ∅ the Qp-local system Vp on X [1
p ] extends to a Qp-local system on the whole X .
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Let f : Y → X be a smooth proper morphism. Then for p � 0 depending only on f , every subquotient Vp
of Rif∗Qp(j) satisfies the condition im(X (Ov)→ |Xkv |) ⊂ |Xkv |crisVp in Corollary 27.

Proof. Let v be a finite place of k above p. If |X|trivVp 6= ∅, it follows from Corollary 11 that for every x ∈ |Xkv |,
x∗vVp|Xkv is potentially unramified; under our assumptions this implies that for every x ∈ im(X (Ov)→ |Xkv |),
x∗Vp is unramified. From theorem 12 (1), the Qp-local system Vp|Xkv extends to a Qp-local system on XOv ,
namely the corresponding representation of π1(Xkv) on Vp := Vp,x̄ factors through π1(Xkv) � π1(XOv). In
particular, the inertia group of the generic point of each connected component of Xv acts trivially on Vp. By
Zariski-Nagata purity, this implies Vp extends to a Qp-local system on X ×U (U [1

p ] ∪ {v}). �

In particular, for Qp-local system as in Corollary 27, Conjecture A (T) should follow from the following
higher-dimensional generalization of Conjecture B.

Conjecture B’. (Variational unramified Fontaine-Mazur) Let p be a prime such that4 U contains all finite
places of k above p. Then every Qp-local system on X is finite.

Corollary 28. (1) Conjecture B implies Conjecture A (T).

(2) Let p be a prime such that4 U contains all finite places of k above p and let Vp be a Qp-local system on
X . Then Conjecture B implies that |X|trivVp 6= ∅.

In particular, Conjecture B and Conjecture B’ are equivalent. But because of its geometric features, one
may hope Conjecture B’ for X of dimension ≥ 1 to be more tractable.

Proof. (1) From the discussion following the statement of Conjecture A, it it enough to prove that Conjecture
B implies i) ⇒ ii) in Conjecture A (T). Up to replacing X by a connected étale cover and k by a finite
field extension, one may assume Lev2(V`) holds. We retain the notation and assumptions of Conjecture
A (T). If |X|trivV` = ∅, there is nothing to prove. Otherwise, from Fact 19 and from Corollary 11, for
every x ∈ |X|, x∗V` is AEU and for every place v of k(x) above `, x∗vV` is potentially unramified - hence
unramified by Lev2(V`). But then, by Conjecture B, x ∈ |X|trivV` .

(2) For every finite place v of k above p the subset X (Ov) ⊂ X(kv) is a non-empty4 open subset so that it
follows from a classical Corollary of [MB89, Thm. 1.3] - see e.g. [Co06, Cor. 1.5], that there exists a
finite field extension k′/k, with Up totally split in k′, and x′ ∈ X(k′) such that for every finite place v of
k above p and finite place v′ of k′ above v, x′v′ ∈ X (Ov). In other words, there exists a non-empty open
subscheme U ′x ⊂ U ′ := U ×Ok Ok′ containing all the finite places of k′ above p such that x′ ∈ X (U ′x).
But then, Conjecture B imposes that x′∗Vp is finite that it x′ ∈ |X|trivVp .

�

5.5. Proof of Theorem 6. The implications (i) ⇒ (ii) ⇒ (iii)’ are straightforward. To prove (iii)’ ⇒ (i),
it is enough to prove that (iii)’ implies V`|Xk̄ is finite. By invariance of étale fundamental group under
extensions of algebraically closed field in characteristic 0, it is enough to show that for some finite place v of
k, (iii)’ ⇒ V`|Xk̄v is finite. This follows from the purely local Theorem 29 below.

Let k be a p-adic field with ring of integers and residue field k ⊃ Ok � κ; let v denote the closed point of
spec(Ok). Let Qp ⊂ k0 ⊂ k be the maximal unramified extension of Qp contained in k and σ : k0→̃k0 its
arithmetic Frobenius. Let X be a smooth, geometrically connected variety over k admitting a smooth NCC
model X ↪→ X cpt → spec(Ok) over spec(Ok). Let

spv : |X cpt| → |X cpt
v |

denote the specialization map.

Theorem 29. Assume X is a curve. Let Vp be a Qp local system on X. Assume one of the following holds:
a) X = X cpt and Vp is crystalline;
b) Vp is Hodge-Tate and Lev4(Vp) holds (e.g. p >rankQp(Vp) + 1).

Then there exists a 0-dimensional Zariski-closed subset Zv ⊂ X cpt
v such that

(i) G◦p is unipotent;
⇔ (ii) |X|uni

Vp = |X|;
⇔ (iii)’ |X|uni

Vp 6⊂ sp
−1
v (|Zv|).

4Recall that, by definition of a smooth model, X → U is surjective.
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Before proving Theorem 29, we recall some facts about F -isocrystals. Let Isocϕ(Xv/Qp), Isocϕ,†(Xv/Qp)
denote respectively the categories of convergent and overconvergent F -isocrystals on Xv/Ok with scalar
extended from k to Qp [A18, 1.4, 2.14 et seq.]. From [Ke04, Thm. 1.1], there is a fully faithful5 exact
⊗-functor

Isocϕ,†(Xv/Qp)→ Isocϕ(Xv/Qp).

Let
Isocϕ(Xv/Qp)

0 ⊂ Isocϕ(Xv/Qp)

denote the full subcategory of unit-root (viz isoclinic of slope 0) convergent F -isocrystals on Xv/Ok and

Isocϕ,†(Xv/Qp)
0 ⊂ Isocϕ,†(Xv//Qp)

the full subcategory of unit-root overconvergent ones viz of those objects in Isocϕ,†(Xv/Qp) whose image
in Isocϕ(Xv/Qp) lies in Isocϕ(Xv/Qp)

0. From [K73, Prop. 4.1.1], [Cr87, 2.2, Thm.] there is a canonical
equivalence of Tannakian categories

Isocϕ(Xv/Qp)
0→̃RepQp(π1(Xv)) := RepQp(π1(Xv))⊗Qp Qp

which restricts to an equivalence of Tannakian categories ([Ts98, Thm. 7.2.3], [Shi11, Prop. 4.2])

Isocϕ,†(Xv/Qp)
0→̃Rep†Qp

(π1(Xv))

onto the full subcategory Rep†Qp
(π1(Xv)) ⊂ RepQp(π1(Xv)) of potentially unramified representations. These

equivalences preserve characteristic polynomials of Frobenii on both sides.

Proof. The implications (i) ⇒ (ii) ⇒ (iii)’ are straightforward. We prove the implication (iii)’ ⇒ (i).

- Observe first that one may assume Vp is simple. Indeed, if Vp is arbitrary, consider a Jordan-Holder
filtration

Vp,0 = 0 ( Vp,1 ( · · · ( Vp,r−1 ( Vp,r = Vp
and set Sp,i := Vp,i−1/Vp,i−1, i = 1, . . . , r for its simple graded pieces. If (iii) holds for each of the Sp,i,
i = 1, . . . , r then (iii) also holds for Vp. Hence it is enough to check that if a) (resp. b), resp. (i)’) holds
for Vp then it holds for each of the Sp,i, i = 1, . . . , r. For (i)’, this follows from the tautological inclusions

|X|uni
Vp ⊂ |X|

uni
Sp,i , i = 1, . . . , r.

For a) (resp. b)), this follows from the fact that a subquotient of a crystalline (resp. Hodge-Tate, resp.
satisfying Lev4(Vp)) local system is again crystalline (resp. Hodge-Tate, resp. satisfies Lev4(Vp)) (See Fact
10). So, from now on, assume Vp is simple.

- By assumption, Vp is Hodge-Tate (with constant Hodge-Tate weights) and |X|uni
Vp 6= ∅, hence, by Fact 10

(1) (i) ⇒ (ii), for every x ∈ |X|, x∗Vp is Cp-admissible viz pointwise potentially unramified.

– In case a), for every x ∈ X (Ok), x∗Vp is both potentially unramified and crystalline, which implies that
it is unramified by implication (2) in 3.1.2. From Theorem 12 (ii)’⇒ (i), Vp extends to a Qp-local system
Ṽp on X .

– In case b), as Lev4(Vp) holds, one can fix a connected étale cover X ′ → X as in Corollary 14 so that
Vp|X′ extends to a Qp-local system Ṽ ′p on X ′cpt. From the canonical chain of morphisms arising from
specialization [G71, X]

(2) π1(X ′vcpt)
' // π1(X ′cpt) π1(X ′cpt)oooo π1(X ′)oooo � �

C

open // π1(X)

π1(X ′v̄cpt)
� ?

OO

π1(X ′
k̄
cpt)oooo
� ?

OO

π1(X ′
k̄
)oooo

� ?

OO

� �

C

open // π1(Xk̄)
� ?

OO

one gets that

∗ Vp is unipotent (viz finite) if and only if Ṽ ′p|X ′vcpt is unipotent (viz finite);

5Actually, we will only apply these facts when Xv = X cpt
v , in which case Isocϕ,†(Xv/Qp) → Isocϕ(Xv/Qp) is an equivalence.

But, to clarify the structure of the proof, we do not make these assumptions here.
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∗ Vp is semisimple if and only if Ṽ ′p|X ′vcpt is semisimple.

Also, in Theorem 29, one can freely replace Zv by a larger 0-dimensional closed subscheme of Xv. In
particular, for every 0-dimensional closed subscheme Z ′v ⊂ X ′vcpt with image Zv ⊂ X cpt

v via X ′vcpt → X cpt
v ,

up to replacing Z ′v ⊂ X ′vcpt with the inverse image Z ′′v (⊃ Z ′v) of Zv in X ′vcpt, one has:

∗ |X|uni
Vp 6⊂ sp

−1
v (|Zv|) if and only if |X ′|uni

Vp 6⊂ sp
−1
v (|Z ′v|)..

So, without loss of generality, one may assume X = X cpt and Vp extends to a Qp-local system Ṽp on X
whose restriction Ṽp|Xv is semisimple. Furthermore, one has |Xv|uni

Ṽp
6= ∅, which implies that for every simple

summand Sp of the scalar extension (Ṽp|Xv)Qp , one also has |Xv|uni
Sp 6= ∅ hence that det(Sp) is finite. We

are to show that Ṽp|Xv is finite.

- Let Vp denote the overconvergent F-isocrystal corresponding to (Ṽp|Xv)Qp via the ⊗-equivalence

Isocϕ,†(Xv/Qp)
0→̃Rep†Qp

(π1(Xv)).

For every semisimple Ep ∈ Isocϕ,†(Xv/Qp), prime ` (possibly ` = p) and field isomorphism τ : Qp→̃Q` let
τEp denote the unique (up to isomorphism) semisimple τ -companion of Ep [L02], [A18].

When ` = p, the companion correspondance induces an action with finite orbits of Aut(Qp) on the set
of isomorphism classes of semisimple objects in Isocϕ,†(Xv/Qp). Let Vp,1 := (Vp)Qp , . . . ,Vp,s denote the
finitely many (up to isomorphism) semisimple companions of Vp. By construction, the overconvergent
F -isocrystal

Fp := Vp,1 ⊕ · · · ⊕Vp,s

is semisimple, Q-rational, each of its simple summand has finite determinant and one has

|Xv|uni
Vp,1 = · · · = |Xv|uni

Vp,s .

In particular, if for every x ∈ |X|, χx ∈ Q[T ] denotes the characteristic polynomial of Frobenius attached
to x∗Fp, then ii) χx ∈ Q[T ] and, as every simple summand of Fp has finite determinant, i) χx is pure of
weight 0 [A18].

Let Uv ⊂ Xv denote the largest (non-empty) open subscheme over which Fp admits a slope filtration [K79,
Thm. 2.3.1, 2.4.2]

0 = S0(Fp|Uv) ( S1(Fp|Uv) ( · · · ( Ss(Fp|Uv) = Fp|Uv ,
with

GrSi (Fp|Uv) := Si(Fp|Uv)/Si−1(Fp|Uv)
of slope qi and q1 < · · · < qs. Set Zv := X cpt

v \ Uv. We distinguish two cases:

– At least one of the qi is 6= 0, which forces |X|uni
Vp ⊂ sp

−1
v (Zv);

– Fp|Up is unitroot. By semicontinuity of the slope filtration [K79, Thm. 2.3.1], this imposes Zv = ∅ and
Fp is unit-root. In particular, for every x ∈ |X|, iv) χx ∈ Zp[T ]. Eventually, the fact that every simple
summand of Fp has finite determinant implies that for every prime ` and field isomorphism τ : Qp→̃Q`,
the unique semisimple τ -companion τFp of Fp is étale; in particular, for every x ∈ |X|, iii) χx ∈ Z`[T ].
Let Fp denote the potentially unramified Qp-local system corresponding to Fp via

Isocϕ,†(Xv/Qp)
0→̃Rep†Qp

(π1(Xv)).

We have just shown that for every x ∈ |Xv|, the characteristic polynomial χx of the Frobenius ϕx,p :
Fp,x̄→̃Fp,x̄ satisfies

i) χx is pure of weight w = 0; ii) χx ∈ Q[T ]; iii) χx ∈ Z`[T ], ` 6= p; iv) χx ∈ Zp[T ],

hence is a product of cyclotomic polynomials. In particular, for every connected étale cover X ′v → Xv
such that Lev1(Fp|X ′v) holds, for every x′ ∈ |X ′v|, χx′ = (T − 1)r. By Cebotarev, this implies Fp - hence
a fortiori (Ṽp|Xv)Qp , is quasi-unipotent - hence finite (since Fp, (Ṽp|Xv)Qp are semisimple)6.

6For this part of the argument, see also [Ko17, Prop. 1.1].
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