ON THE TRIVIAL LOCUS OF \mathbb{Q}_{ℓ} -LOCAL SYSTEMS

ANNA CADORET AND AKIO TAMAGAWA

ABSTRACT. Let k be a number field, let X be a smooth, geometrically connected variety over k and let \mathcal{V}_{ℓ} be a \mathbb{Q}_{ℓ} -local system on X. The unramified Fontaine-Mazur conjecture predicts that the property of being finite is "rigid" in the sense that the following should be equivalent: (i) \mathcal{V}_{ℓ} is finite; (ii) for every $x \in |X|$, $x^*\mathcal{V}_{\ell}$ is finite; (iii) there exists $x \in |X|$ such that $x^*\mathcal{V}_{\ell}$ is finite. We prove these equivalences unconditionally when \mathcal{V}_{ℓ} is pure and part of a \mathbb{Q} -compatible family. When X is a curve, we also prove these equivalences with condition (iii) replaced by a weaker condition, and under the assumptions that ℓ is large enough compared with the rank of \mathcal{V}_{ℓ} and \mathcal{V}_{ℓ} is Hodge-Tate at at least one finite place of k above ℓ . The proofs use variational p-adic Hodge theory, and, for the second result, a pointwise criterion for \mathcal{V}_{ℓ} to extend over \mathcal{X} , and the companion correspondances both of Abe and L. Lafforgue.

2020 Mathematics Subject Classification. Primary: 14F20, 14F30; Secondary: 11R37, 11R45.

Notation / conventions.

For an algebraic group G, let $G^{\circ} \subset G$ denote the neutral component of G and, for a closed subgroup $H \subset G$, let $Z_G(H) \subset N_G(H) \subset G$ denote the centralizer and normalizer of H in G respectively; set $Z(G) := Z_G(G)$ for the center of G. For a profinite group Π and a topological field G, let $\operatorname{Rep}_Q(\Pi)$ denote the category of continuous, finite-dimensional G-representations of G.

For a scheme S, write |S| for the set of closed points of S.

For an affine scheme $S = \operatorname{spec}(A)$, we often abbreviate $\pi_1(A) := \pi_1(\operatorname{spec}(A))$ for the étale fundamental group of $\operatorname{spec}(A)$ (and omit fiber functors).

A variety over a field k is a scheme separated and of finite type over k. If S is an integral scheme with generic point η and X is a smooth, geometrically connected variety over $k := k(\eta)$, one says that X admits a **smooth model over** S if it fits into a Cartesian diagram

$$\begin{array}{ccc} X & \longrightarrow \operatorname{spec}(k) \\ \downarrow & & \downarrow \eta \\ \chi & \longrightarrow S, \end{array}$$

with \mathcal{X} integral and $\mathcal{X} \to S$ surjective, smooth, separated and of finite type, and one says that X admits a smooth model with relative normal crossing compactification (a smooth NCC model for short) over S if it admits a smooth model $\mathcal{X} \to S$ over S which fits into a diagram

with $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}}$ an open immersion, \mathcal{X}^{cpt} integral, $\mathcal{X}^{\text{cpt}} \to S$ smooth, proper, and $\mathcal{X}^{\text{cpt}} \setminus \mathcal{X} \to S$ a relative normal crossing divisor.

1. Introduction

Let k be a field and let X be a smooth, geometrically connected variety over k with generic point η .

1.1. Trivial locus and main conjecture. Let ℓ be a prime and \mathcal{V}_{ℓ} be a \mathbb{Q}_{ℓ} -local system on X. For every $x \in X$ and geometric point \overline{x} over x, set $V_{\ell} := \mathcal{V}_{\ell,\overline{x}}$ and let $\overline{G}_{\ell}, G_{\ell,x} \subset G_{\ell} \subset \operatorname{GL}_{V_{\ell}}$ denote the Zariski closures of the images $\overline{\Pi}_{\ell}$, $\Pi_{\ell,x}$ and Π_{ℓ} of the étale fundamental groups $\pi_1(X_{\overline{k}}, \overline{x})$, $\pi_1(x, \overline{x})$ and $\pi_1(X, \overline{x})$ acting on

 V_{ℓ} respectively (so that $\Pi_{\ell,\eta} = \Pi_{\ell}$, $G_{\ell,\eta} = G_{\ell}$). Define the **degeneracy locus** or **Tate locus** (restricted to closed points) of V_{ℓ} as

$$|X|_{\mathcal{V}_\ell} := \{x \in |X| \ | \ G_{\ell,x}^\circ \subsetneq G_\ell^\circ\}.$$

Informally, $|X|_{\mathcal{V}_{\ell}}$ is the set of all $x \in |X|$ where $x^*\mathcal{V}_{\ell}$ degenerates. Under mild assumptions on $\overline{\Pi}_{\ell}$, one expects that $X(k) \cap |X|_{\mathcal{V}_{\ell}}$ is not Zariski-dense in X - see [C23]. In this note, we focus on the most degenerate strata of $|X|_{\mathcal{V}_{\ell}}$, namely the **trivial locus**

$$|X|_{\mathcal{V}_{\ell}}^{\text{triv}} := \{ x \in |X| \mid G_{\ell,x}^{\circ} = 1 \}$$

and the closely related unipotent locus

$$|X|_{\mathcal{V}_{\ell}}^{\text{uni}} := \{ x \in |X| \mid G_{\ell,x}^{\circ} \text{ is unipotent} \},$$

and centralizing locus

$$|X|_{\mathcal{V}_{\ell}}^{\text{cent}} := \{ x \in |X| \mid G_{\ell,x}^{\circ} \subset Z_{G_{\ell}}(\overline{G}_{\ell}^{\circ}) \}.$$

Tautologically $|X|_{\mathcal{V}_{\ell}}^{\text{triv}} \subset |X|_{\mathcal{V}_{\ell}}^{\text{uni}}$ and if $x^*\mathcal{V}_{\ell}$ is semisimple for every $x \in |X|$, then $|X|_{\mathcal{V}_{\ell}}^{\text{triv}} = |X|_{\mathcal{V}_{\ell}}^{\text{uni}}$. The following is deeper.

Proposition 1. Assume k is a number field. Then,

- (1) one has $|X|_{\mathcal{V}_{\ell}}^{\text{triv}} \neq \emptyset \Rightarrow |X|_{\mathcal{V}_{\ell}}^{\text{triv}} = |X|_{\mathcal{V}_{\ell}}^{\text{uni}}$;
- (2) in general, one always has

$$|X|_{\mathcal{V}_{\ell}}^{\mathrm{triv}} \subset |X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} \subset |X|_{\mathcal{V}_{\ell}}^{\mathrm{cent}}.$$

Proposition 1 (1) is actually a special case of a more general result - see Corollary 23. The proof of Proposition 1 uses global class field theory and (variational) p-adic Hodge theory, in particular the theorem of Sen and a construction of Beilinson-Petrov. Its proof is carried out in Subsection 5.2.2.2.

The following conjecture predicts that the trivial, unipotent and centralizing loci should all be empty unless $\mathcal{V}_{\ell}|_{X_{\bar{k}}}$ is finite.

Conjecture A. Assume k is a number field. For a \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on X, the following implications hold.

$$\begin{array}{llll} \text{(T)} & \text{(i)'} \ \overline{G}_{\ell}^{\circ} = 1; & \text{(U)} & \text{(i)'} \ \overline{G}_{\ell}^{\circ} = 1 & \text{(C)} & \text{(i)'} \ \overline{G}_{\ell}^{\circ} = 1; \\ & \Leftarrow \text{(i)} \ G_{\ell}^{\circ} = 1; & \Leftrightarrow \text{(i)} \ G_{\ell}^{\circ} \text{ is unipotent}; & \Leftrightarrow \text{(i)} \ \overline{G}_{\ell}^{\circ} \subset Z(G_{\ell}^{\circ}); \\ & \Leftrightarrow \text{(ii)} \ |X|_{\mathcal{V}_{\ell}}^{\text{triv}} = |X|; & \Leftrightarrow \text{(ii)} \ |X|_{\mathcal{V}_{\ell}}^{\text{uni}} = |X|; & \Leftrightarrow \text{(ii)} \ |X|_{\mathcal{V}_{\ell}}^{\text{cent}} = |X|; \\ & \Leftrightarrow \text{(iii)} \ |X|_{\mathcal{V}_{\ell}}^{\text{cent}} \neq \emptyset. & \Leftrightarrow \text{(iii)} \ |X|_{\mathcal{V}_{\ell}}^{\text{cent}} \neq \emptyset. \end{array}$$

In (T), (U), the implications (i) \Rightarrow (ii) \Rightarrow (iii), in (T) the implication (i) \Rightarrow (i)' and, in (C), the implications (i) \Leftarrow (ii) \Rightarrow (iii) are tautological. In (C), the implication (i) \Rightarrow (ii) follows from the fact G_{ℓ}° is generated by $\overline{G}_{\ell}^{\circ}$, $G_{\ell,x}^{\circ}$. The implications (ii) \Rightarrow (i) follow from Hilbert's irreducibility theorem.

Fact 2. (Hilbert's irreducibility - [Ser89, §9.6, 10.6, Thm.]) Let k be a number field and let X be a smooth, geometrically connected variety over k. For every \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on X there exists infinitely many $x \in |X|$ such that $\Pi_{\ell,x} = \Pi_{\ell}$ - hence such that $G_{\ell,x} = G_{\ell}$.

In Subsection 5.2.2, we will attach (see Construction 24) to every \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on X and $x \in |X|$ an auxilliary \mathbb{Q}_{ℓ} -local system $A_x(\mathcal{V}_{\ell})$ with the property that for every $x \in |X|$, $x \in |X|_{\mathcal{V}_{\ell}}^{\text{cent}}$ if and only if $x \in |X|_{A_x(\mathcal{V}_{\ell})}^{\text{triv}}$ and that $\overline{G}_{\ell}^{\circ} = 1$ for $A_x(\mathcal{V}_{\ell})$ if and only if $\overline{G}_{\ell}^{\circ} = 1$ for \mathcal{V}_{ℓ} .

In (U), (C) the implication (i) \Rightarrow (i)' follows from geometric class field theory [KL81, Thm. 1]. In (U), this is immediate by reducing to the case where $G_{\ell}^{\circ} \simeq \mathbb{G}_{a,\mathbb{Q}_{\ell}}$. In (C), after possibly replacing S by a connected étale cover, one may assume \overline{G}_{ℓ} , G_{ℓ} are both connected and then, observe that under assumption (i), for every $x \in |X|$, the \mathbb{Q}_{ℓ} -local system $A_x(\mathcal{V}_{\ell})$ is abelian.

To summarize, one has:

$$(iii) \overset{??}{\underbrace{\hspace{1cm}}} (ii) \Longleftrightarrow (i) \overset{(i)'}{\underbrace{\hspace{1cm}}} (i)'$$

From Proposition 1 (2), one also has

$$[(iii) \Rightarrow (i) \text{ in } (C)] \Longrightarrow [(iii) \Rightarrow (i) \text{ in } (U)] \Longrightarrow [(iii) \Rightarrow (i) \text{ in } (T)]$$

And, using the auxilliary \mathbb{Q}_{ℓ} -local systems $A_x(\mathcal{V}_{\ell}), x \in |X|$,

$$[(\mathrm{iii}) \Rightarrow (\mathrm{i}) \text{ in (T) for } A_x(\mathcal{V}_\ell) \text{ and some } x \in |X|_{\mathcal{V}_\ell}^\mathrm{cent}] \Longrightarrow [(\mathrm{iii}) \Rightarrow (\mathrm{i}) \text{ in (C) for } \mathcal{V}_\ell]$$

Remark 3. The formulation of Conjecture A may seem cumbersome. However, we adopt this formulation to stress several kind of rigidity phenomena: implications (iii) \Rightarrow (ii) can be thought of as a spreading out property and implication (ii) \Rightarrow (i) as a (pointwise) local to global, or globalization property. These rigidity phenomena will occur - and be a main tool - throughout the paper, where we tried and keep a consistent numbering (i) (global), (ii) (pointwise), (iii) (at one point) for the statements; a statement (x)' will usually indicate a variant or weakening of the corresponding statement (x).

- 1.1.1. Reformulation of Conjecture A (T).
- (1) An equivalent formulation of Conjecture A (T) in terms of the degeneracy locus $|X|_{\mathcal{V}_{\ell}}$ is the following see Lemma 21. Assume k is a number field and Conjecture A (T) holds (for every \mathbb{Q}_{ℓ} -local system on X). Then, for every \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on X the following holds. For every $x \in |X|$, $G_{\ell,x}^{\circ}$ normally generates G_{ℓ}° . Equivalently,

$$|X|_{\mathcal{V}_{\ell}} = \{x \in |X| \mid G_{\ell,x}^{\circ} \subsetneq Nor_{G_{\ell}^{\circ}}(G_{\ell,x}^{\circ})\}.$$

(2) As a compact ℓ -adic Lie group is a closed subgroup of $GL_m(\mathbb{Z}_{\ell})$ for some integer $m \geq 0$ [L88, Prop. 4], one has the following diophantine reformulation of Conjecture A (T): Assume k is a number field and let

$$\cdots \to X_{n+1} \to X_n \to \cdots \to X_1 \to X_0 = X$$

be a projective system of finite étale covers with $X_n \to X$ Galois of group Π_n , $n \ge 0$. Assume $\Pi := \lim \Pi_n$ is a ℓ -adic Lie group of dimension > 0 for some prime ℓ . Then,

$$\lim X_n(k) = \emptyset.$$

- 1.1.2. Relation to classical conjectures.
- (1) Assume $k = \mathbb{C}$ and let \mathcal{V} be a polarizable \mathbb{Z} -variation of pure Hodge structures on the complexanalytification X^{an} of X. One can define similarly the degeneracy locus or Hodge locus $|X|_{\mathcal{V}}$, the trivial locus $|X|_{\mathrm{triv}}^{\mathrm{triv}}$ and the centralizing locus $|X|_{\mathcal{V}}^{\mathrm{cent}}$ of \mathcal{V} using the Mumford-Tate group G_x of $x^*\mathcal{V}$, and the generic Mumford-Tate group G of \mathcal{V} in place of the ℓ -adic algebraic monodromy groups $G_{\ell,x}$, G_{ℓ} . In that setting, the statements corresponding to Conjecture A (T) and Conjecture A (C) easily follow e.g. from the constancy of Hodge numbers and the fact that the neutral component \overline{G}° of the Zariski-closure \overline{G} of the image of $\pi_1(X^{\mathrm{an}})$ acting on \mathcal{V}_x is contained in G [A92, Thm. 1]. In particular, for \mathbb{Q}_{ℓ} -local systems arising from motives, Conjecture A (T) and Conjecture A (C) should follow from classical motivic realization conjectures (Hodge [Ho52], Tate [T94]; see also [DLLZ23, Conj. 1.4]).
- (2) In whole generality, Conjecture A follows from the unramified Fontaine-Mazur conjecture see Corollary 28 (1).

Conjecture B. (Unramified Fontaine-Mazur [FoM95, Conj. 5.1a]) Let k be a number field. Let p be a prime and let $U \subset \operatorname{spec}(\mathcal{O}_k)$ be an open subset containing all finite places of k above p. Then every \mathbb{Q}_p -local system on U is finite.

1.2. Results.

1.2.1. \mathbb{Q} -compatible families. Assume k is a number field with ring of integers \mathcal{O}_k . For every finite place v of k with residue characteristic $p:=p_v$, let k_v denote the completion of k at v and $\mathcal{O}_v \to \kappa_v$ its ring of integers and residue field respectively; let also $\mathbb{Q}_p \subset k_{v,0} \subset k_v$ denote the maximal unramified extension of \mathbb{Q}_p contained in k_v , $m_v := [k_{v,0} : \mathbb{Q}_p]$ its degree and $\sigma: k_{v,0} \tilde{\to} k_{v,0}$ its Frobenius.

For a variety X over k, a closed point $x \in |X|$ with residue field k(x) and a finite place v of $\mathcal{O}_{k(x)}$, write

$$x_v : \operatorname{spec}(k(x)_v) \to \operatorname{spec}(k(x)) \xrightarrow{x} X$$

 $^{^{1}}$ Recall that these are connected and reductive.

²If $|X^{\rm an}|_{\mathcal{V}}^{\rm triv} \neq \emptyset$, the only non-zero Hodge number is $h^{0,0}$; equivalently, $G_x = 1$, $x \in X^{\rm an}$ - hence G = 1.

for the resulting $k(x)_v$ -point.

- 1.2.1.1. For a \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on $x = X = \operatorname{spec}(k)$, let $U_{\mathcal{V}_{\ell}} \subset |\operatorname{spec}(\mathcal{O}_k)|$ be the set of all finite places v of k such that, writing $p := p_v$ for the residue characteristic of v, the following holds:
 - If $\ell \neq p$, $x_v^* \mathcal{V}_\ell$ is unramified *viz* extends to a \mathbb{Q}_ℓ -local system over spec(\mathcal{O}_v);
 - If $\ell = p$, $x_v^* \mathcal{V}_p$ is crystalline.

For $v \in U_{\mathcal{V}_{\ell}}$ and $\ell \neq p$, let $\chi_{x_v,\mathcal{V}_{\ell}} \in \mathbb{Q}_{\ell}[T]$ denote the characteristic polynomial of the geometric Frobenius

$$\varphi_{x_v,\ell}: \mathcal{V}_{\ell,\bar{x}} \to \mathcal{V}_{\ell,\bar{x}}$$

and for $\ell=p,$ let $\chi_{x_v,\mathcal{V}_p}\in k_{v,0}[T]$ denote the characteristic polynomial of the linearized crystalline Frobenius³

$$\varphi_{x_v, \text{cris}}: D_{\text{cris}}(x_v^* \mathcal{V}_p) \to D_{\text{cris}}(x_v^* \mathcal{V}_p).$$

See Subsection 3.1 for a very brief review of basic definitions from p-adic Hodge theory, in particular the one of Fontaine's Riemann-Hilbert functor $D_{\text{cris}} : \text{Rep}_{\mathbb{Q}_p}(\pi_1(k_v)) \to M_{k_v,0}^{\varphi}$.

One says that \mathcal{V}_{ℓ} is **almost everywhere unramified** (**AEU** for short) if $U_{\mathcal{V}_{\ell}} \subset |\operatorname{spec}(\mathcal{O}_k)|$ is a non-empty open subset and that it is \mathbb{Q} -rational (resp. and **pure of weight** $w \in \mathbb{R}$) if there exists a non-empty open subset $U'_{\mathcal{V}_{\ell}} \subset U_{\mathcal{V}_{\ell}}$ such that for every $v \in |U'_{\mathcal{V}_{\ell}}|$ the polynomial $\chi_{x_v} := \chi_{x_v, \mathcal{V}_{\ell}}$ is in $\mathbb{Q}[T]$ (resp. and χ_{x_v} is pure of weight w, that is for every root α of χ_{x_v} and infinite place $\mathbb{Q}(\alpha) \stackrel{\infty}{\hookrightarrow} \mathbb{C}$, $|\alpha|_{\infty} = |\kappa_v|^{\frac{w}{2}}$).

Let $\underline{\mathcal{V}} := (\mathcal{V}_{\ell})_{\ell}$ be a family of \mathbb{Q}_{ℓ} -local systems on $x = X = \operatorname{spec}(k)$ (indexed by the set $|\operatorname{spec}(\mathbb{Z})|$ of all rational primes). Write

$$U_{\underline{\mathcal{V}}} := \bigcap_{\ell} U_{\mathcal{V}_{\ell}} \subset |\operatorname{spec}(\mathcal{O}_k)|.$$

One says that $\underline{\mathcal{V}}$ is \mathbb{Q} -compatible (resp. and pure of weight $w \in \mathbb{R}$) if $U_{\underline{\mathcal{V}}} \subset |\operatorname{spec}(\mathcal{O}_k)|$ is a non-empty open subset and there exists a non-empty open subset $U'_{\underline{\mathcal{V}}} \subset U_{\underline{\mathcal{V}}}$ such that for every $v \in U'_{\underline{\mathcal{V}}}$ the polynomial $\chi_{x_v} := \chi_{x_v, \mathcal{V}_\ell}$ is in $\mathbb{Q}[T]$ (resp., pure of weight $w \in \mathbb{R}$,) and independent of the prime ℓ .

Let X be a variety over k. One says that a family of \mathbb{Q}_{ℓ} -local systems $\underline{\mathcal{V}} := (\mathcal{V}_{\ell})_{\ell}$ on X is \mathbb{Q} -compatible (resp. and pure of weight $w \in \mathbb{R}$) if $x^*\underline{\mathcal{V}}$ is, $x \in |X|$. The purity assumption ensures that \overline{G}_{ℓ} is semisimple [D80, Thm. (1.3.8), (1.11), Cor. (3.4.12)].

Classical examples of \mathbb{Q} -compatible families $\underline{\mathcal{V}}$ of \mathbb{Q}_{ℓ} -local systems on X are those with $\mathcal{V}_{\ell} = R^i f_* \mathbb{Q}_{\ell}(j)$ for $f: Y \to X$ a smooth proper morphism and $i \geq 0$, j integers; these are pure of weight w = i - 2j [D80], [KM74].

1.2.1.2. Our first result is that Conjecture A (T) and Conjecture A (U) hold when \mathcal{V}_{ℓ} is part of a \mathbb{Q} -compatible family of pure \mathbb{Q}_{ℓ} -local systems on X.

Theorem 4. Let $\underline{\mathcal{V}}$ be a \mathbb{Q} -compatible family of pure \mathbb{Q}_{ℓ} -local systems on X. Then,

- $(1)\ |X|^{\mathrm{uni}}_{\underline{\mathcal{V}}}:=|X|^{\mathrm{uni}}_{\mathcal{V}_\ell}\ \ \text{is independent of the prime}\ \ell\ \ \text{and}\ |X|^{\mathrm{uni}}_{\underline{\mathcal{V}}}=|X|^{\mathrm{triv}}_{\mathcal{V}_\ell}\ \ \text{for}\ \ell\gg 0;$
- (2) Furthermore, if $|X|_{\underline{\mathcal{V}}}^{\mathrm{uni}} \neq \emptyset$ then the weight w = 0 and G_{ℓ}° is unipotent (hence $\overline{G}_{\ell}^{\circ} = 1$) for every prime ℓ and $G_{\ell}^{\circ} = 1$ for $\ell \gg 0$.

In general, Theorem 4 does not imply Conjecture A (C) for \mathcal{V}_{ℓ} part of a \mathbb{Q} -compatible family of pure \mathbb{Q}_{ℓ} -local systems on X unless one could prove e.g. that, for every $x \in |X|$, the family of \mathbb{Q}_{ℓ} -local system $A_x(\underline{\mathcal{V}}) := (A_x(\mathcal{V}_{\ell}))_{\ell}$ introduced in Subsection 5.2.2 is also \mathbb{Q} -compatible. However, Theorem 4 does imply Conjecture A (C) in the following easy albeit important cases ("large geometric monodromy").

Corollary 5. Let $\underline{\mathcal{V}}$ be a \mathbb{Q} -compatible family of pure \mathbb{Q}_{ℓ} -local systems on X. Assume one of the following conditions hold:

- (1) $\overline{G}_{\ell}^{\circ}$ is a Levi subgroup of G_{ℓ}° ;
- (2) $\overline{G}_{\ell}^{\circ}$ and the homotheties torus $\mathbb{G}_m(V_{\ell}) \simeq \mathbb{G}_{m,\mathbb{Q}_{\ell}} \subset \mathrm{GL}(V_{\ell})$ generate a Levi subgroup of G_{ℓ}° .

 $[\]overline{}^{3}\text{More precisely, if } \phi_{x_{v},\text{cris}}:D_{\text{cris}}(x_{v}^{*}\mathcal{V}_{p}) \rightarrow D_{\text{cris}}(x_{v}^{*}\mathcal{V}_{p}) \text{ denotes the } (\sigma\text{-semilinear}) \text{ crystalline Frobenius then } \varphi_{x_{v},\text{cris}}:=\phi_{x_{v},\text{cris}}^{m_{v}}.$

Then, for every prime ℓ , Conjecture A (C) holds for \mathcal{V}_{ℓ} , namely $|X|_{\mathcal{V}_{\ell}}^{\mathrm{cent}} = \emptyset$ unless $\overline{G}_{\ell}^{\circ} = 1$ and $|X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} = \emptyset$ unless G_{ℓ}° is unipotent.

Proof. As $\overline{G}_{\ell}^{\circ}$ is semisimple, the assumptions and conclusions of Conjecture A (C) remain unchanged if one replaces \mathcal{V}_{ℓ} by its semisimplification so that, without loss of generality one may assume that \mathcal{V}_{ℓ} is semisimple, $\ell \in |\operatorname{spec}(\mathbb{Z})|$. In that case, Condition (1) becomes simply $\overline{G}_{\ell}^{\circ} = G_{\ell}^{\circ}$ and Condition (2) that $\overline{G}_{\ell}^{\circ}$ and $\mathbb{G}_{m}(V_{\ell})$ generate G_{ℓ}° . By construction the family of \mathbb{Q}_{ℓ} -local systems $\mathcal{E}_{\ell} := \mathcal{V}_{\ell} \otimes \mathcal{V}_{\ell}^{\vee}$, $\ell \in |\operatorname{spec}(\mathbb{Z})|$ is pointwise \mathbb{Q} -compatible and pure of weight 0. Fix a prime $\ell \in |\operatorname{spec}(\mathbb{Z})|$ and let $x \in |X|_{\mathcal{V}_{\ell}}^{\operatorname{cent}}$. As $\overline{G}_{\ell}^{\circ}$ is semisimple, the assumptions impose that $G_{\ell,x}^{\circ} \subset \mathbb{G}_{m}(V_{\ell})$ hence $x \in |X|_{\mathcal{E}_{\ell}}^{\operatorname{triv}}$ and, by Theorem 4, $\overline{G}_{\ell}^{\operatorname{ad}} \circ = 1$ hence $\overline{G}_{\ell}^{\circ} = 1$ since $\overline{G}_{\ell}^{\circ}$ is semisimple.

1.2.1.3. Say that $\chi \in \overline{\mathbb{Q}}[T]$ is generalized cyclotomic if all its roots are roots of unity. Theorem 4 (2) easily reduces to proving that the characteristic polynomials of Frobenii χ_{x_v} introduced in Subsection 1.2.1.1 are generalized cyclotomic. Writing $p := p_v$ for the residue characteristic of v, to prove that χ_{x_v} is generalized cyclotomic, it is enough to prove that

i)
$$w = 0$$
; ii) $\chi_{x_v} \in \mathbb{Q}[T]$; iii) $\chi_{x_v} \in \mathbb{Z}_{\ell}[T]$, $\ell \neq p$; iv) $\chi_{x_v} \in \mathbb{Z}_p[T]$.

The purity assumption plus the fact that $|X|_{\underline{\mathcal{V}}}^{\mathrm{uni}} \neq \emptyset$ ensure i), the \mathbb{Q} -compatibility ensures ii), iii). The proof of iv) relies on a deeper result of variational p-adic Hodge theory (due to Liu-Zhu, Petrov, Shimizu - see Fact 10) ensuring that being potentially unramified is a ("one point to pointwise" - see Remark 3) "rigid" property in the sense that if $x_0^* \mathcal{V}_p$ is potentially unramified for one $x_0 \in |X_{k_v}|$ then $x^* \mathcal{V}_p$ is potentially unramified for every $x \in |X_{k_v}|$. Actually, the proof of iv) is purely local and works for an arbitrary \mathbb{Q}_p -local system. The details of the proof of Theorem 4 are carried out in Subsection 5.2.2 and Subsection 5.3.

- 1.2.2. Subquotients of motivic \mathbb{Q}_{ℓ} -local systems. Let k be a number field. The variational Fontaine-Mazur conjecture of Liu-Zhu [LiZ17, Conj. p.2] predicts that every \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on X with $|X|_{\mathcal{V}_{\ell}}^{\text{triv}} \neq \emptyset$ appears as a subquotient of $\mathcal{F}_{\ell} := R^{2i} f_* \mathbb{Q}_{\ell}(i)$ for some integer $i \geq 0$ and $f: Y \to X$ a smooth proper morphism, after possibly replacing X by a non-empty open subscheme. So the next case to investigate is the one of arbitrary subquotients \mathcal{V}_{ℓ} of such a \mathcal{F}_{ℓ} . As $\underline{\mathcal{F}} := (\mathcal{F}_{\ell})_{\ell}$ is a \mathbb{Q} -compatible family of pure \mathbb{Q}_{ℓ} -local systems of weight 0 on X, i) and iii) automatically hold for such a \mathcal{V}_{ℓ} . As already mentioned, iv) also holds. The main issue to extend the proof of Theorem 4 to \mathcal{V}_{ℓ} is that ii) does not hold in general for arbitrary subquotients of \mathcal{F}_{ℓ} .
- 1.2.2.1. So, to treat more general \mathbb{Q}_{ℓ} -local systems, one has to adjust the strategy of the proof of Theorem 4. The idea is to exploit further the fact that, given a finite place $v|\ell$ of k, as soon as $|X|_{\mathcal{V}_{\ell}}^{\text{triv}} \neq \emptyset$ (or as soon as $\mathcal{V}_{\ell}|_{X_{k_v}}$ is Hodge-Tate and $|X|_{\mathcal{V}_{\ell}}^{\text{uni}} \neq \emptyset$), for every $x \in |X_{k_v}|$, $x^*\mathcal{V}_{\ell}$ is potentially unramified. More precisely, assume X_{k_v} admits a smooth model $\mathcal{X}_{\mathcal{O}_v}$ over spec(\mathcal{O}_v), the technical core of our second main result is (a variant of see Corollary 14) the following basic pointwise criterion (Theorem 12) for $\mathcal{V}_{\ell}|_{X_{k_v}}$ to extends to $\mathcal{X}_{\mathcal{O}_v}$: assume that $x^*\mathcal{V}_{\ell}$ is unramified for every x in the image of the map

$$\mathcal{X}_{\mathcal{O}_v}(\overline{\mathcal{O}}_v) \to |X_{k_v}|$$

then \mathcal{V}_{ℓ} extends to a \mathbb{Q}_{ℓ} -local system $\widetilde{\mathcal{V}}_{\ell}$ on $\mathcal{X}_{\mathcal{O}_{v}}$. This result provides a key step for a general strategy aiming at proving Conjecture A in that it enables to consider the restriction $\widetilde{\mathcal{V}}_{\ell}|_{\mathcal{X}_{v}}$ of $\widetilde{\mathcal{V}}_{\ell}$ to the special fiber \mathcal{X}_{v} of $\mathcal{X}_{\mathcal{O}_{v}}$, where one can reformulate the initial problem in terms of overconvergent F-isocrystals and try and exploit the companion correspondences of both Abe [A18] and L. Lafforgue [L02].

1.2.2.2. A first application of this strategy is the following. Let k be a number field. Assume X admits a smooth NCC model $\mathcal{X} \hookrightarrow \mathcal{X}^{\mathrm{cpt}} \to U$ over a non-empty open subscheme $U \subset \mathrm{spec}(\mathcal{O}_k)$. For a prime ℓ in the image of $|U| \to |\mathrm{spec}(\mathbb{Z})|$ and a finite place v in U above ℓ , let

$$sp_v: |\mathcal{X}^{\text{cpt}}| \to |\mathcal{X}^{\text{cpt}}_v|$$

denote the specialization map. Let $f: Y \to X$ be a smooth proper morphism and, for some integer $i \geq 0$ and every prime ℓ , set $\mathcal{F}_{\ell} := R^{2i} f_* \mathbb{Q}_{\ell}(i)$.

Theorem 6. Assume X is a curve. For every prime ℓ in the image of $|U| \to |\operatorname{spec}(\mathbb{Z})|$, $\ell \gg 0$ and for every finite place v in U above ℓ , there exists a 0-dimensional Zariski-closed subset $\mathcal{Z}_v \subset \mathcal{X}_v^{\operatorname{cpt}}$ such that for every subquotient \mathcal{V}_ℓ of \mathcal{F}_ℓ one has

(i)
$$G_{\ell}^{\circ}$$
 is unipotent;
 \Leftrightarrow (ii) $|X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} = |X|$;
 \Leftrightarrow (iii) $|X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} \not\subset \cap_{v \in U_{\ell}} sp_v^{-1}(|\mathcal{Z}_v|)$.

In other words, Conjecture A (U) (hence Conjecture A (T)) holds with condition (iii) weakened to condition (iii)'.

Remark 7.

- (1) As by assumption \mathcal{V}_{ℓ} is pointwise Hodge-Tate, one actually has $|X|_{\mathcal{V}_{\ell}}^{\text{triv}} = |X|_{\mathcal{V}_{\ell}}^{\text{uni}}$ see Proposition 20.
- (2) Up to shrinking U, one may also assume $f: Y \to X$ admits a smooth proper model $f: \mathcal{Y} \to \mathcal{X}$ over U. Then, for $\ell \gg 0$ and for every finite place v in U above ℓ , the Zariski-closed subset $\mathcal{Z}_v \subset \mathcal{X}_v^{\text{cpt}}$ appearing in the statement of Theorem 6 can be chosen explicitly, namely $\mathcal{X}_v \setminus \mathcal{Z}_v$ is the largest open subset over which the convervent F-isocrystal $R^{2i}f_{\text{cris}*}\mathcal{O}_{\mathcal{Y}_v|\mathcal{X}_v}$ admits a slope filtration (equivalently, has constant Newton polygon). In particular, when $\mathcal{X} = \mathcal{X}^{\text{cpt}}$ and $R^{2i}f_{\text{cris}*}\mathcal{O}_{\mathcal{Y}_v|\mathcal{X}_v}$ has constant Newton polygon at least for one place v above ℓ , then (iii)' reads $|X|_{\mathcal{V}_\ell}^{\text{uni}} \neq \emptyset$; in other words, under these assumptions, Conjecture A (U) (hence Conjecture A (T)) holds.
- (3) Actually, Theorem 6 is a special case of a more general, and purely local, statement See Theorem 29. In particular, the condition that \mathcal{V}_{ℓ} be a subquotient of a motivic \mathbb{Q}_{ℓ} -local system can be relaxed to get, e.g. the following variant:

Theorem 8. Assume X is a curve. Let ℓ be a prime in the image of $|U| \to |\operatorname{spec}(\mathbb{Z})|$. Then for every \mathbb{Q}_{ℓ} -local system \mathcal{V}_{ℓ} on X with $\ell > \operatorname{rank}_{\mathbb{Q}_{\ell}}(\mathcal{V}_{\ell}) + 1$ and finite place v in U above ℓ , such that $\mathcal{V}_{\ell}|_{X_{k_v}}$ is Hodge-Tate, there exists a 0-dimensional Zariski-closed subset $\mathcal{Z}_v \subset \mathcal{X}_v^{\operatorname{cpt}}$ such that one has

(i)
$$G_{\ell}^{\circ}$$
 is unipotent;
 \Leftrightarrow (ii) $|X|_{\mathcal{V}_{\ell}}^{\text{uni}} = |X|$;
 \Leftrightarrow (iii) $|X|_{\mathcal{V}_{\ell}}^{\text{uni}} \not\subset sp_v^{-1}(|\mathcal{Z}_v|)$.

1.3. **Outline.** After introducing technical level assumptions in Section 2 and reviewing in Section 3 the results from (variational) *p*-adic Hodge theory used in our proofs, we devote Section 4 to the proof of Theorem 12 or rather the key propositions - Proposition 16 and Proposition 18 - underlying it. The final Section 5 is devoted to the proofs of the global statements - Proposition 1, Theorem 4, Theorem 6 *etc*.

Acknowledgments The authors thank Benjamin Schraen for explaining the proof of Lemma 9, and François Charles, Emmanuel Reinecke, Koji Shimizu for constructive discussions. This work was mostly carried out during visits of the first author to RIMS; she thanks RIMS for its support and providing wonderful research conditions.

2. Level

Some of the proofs and statements involve level assumptions that we list here for the convenience of the reader.

Let S be a connected scheme. Fix a prime ℓ and let \mathcal{V}_{ℓ} be a \mathbb{Q}_{ℓ} -local system on S. Fix a geometric point \bar{s} on S and set $V_{\ell} := \mathcal{V}_{\ell,\bar{s}}$; let $\Pi_{\ell} \subset \mathrm{GL}(V_{\ell})$ denote the image of $\pi_1(S,\bar{s})$ acting on V_{ℓ} . Consider the following "level conditions" on \mathcal{V}_{ℓ} :

Lev₁(\mathcal{V}_{ℓ}) There exists a Π_{ℓ} -stable \mathbb{Z}_{ℓ} -lattice $V_{\ell}^{\circ} \subset V_{\ell}$ such that $\Pi_{\ell} \subset Id + \tilde{\ell} \operatorname{End}_{\mathbb{Z}_{\ell}}(V_{\ell}^{\circ})$, where $\tilde{\ell} = 4$ if $\ell = 2$ and $\tilde{\ell} = \ell$ otherwise.

 $Lev_2(\mathcal{V}_{\ell})$ Π_{ℓ} is torsion free.

 $Lev_3(\mathcal{V}_{\ell})$ Π_{ℓ} is pro- ℓ .

 $\text{Lev}_4(\mathcal{V}_\ell)$ The torsion elements in Π_ℓ are of prime-to- ℓ order.

One easily checks the following implications.

$$\operatorname{Lev}_1(\mathcal{V}_\ell) \Longrightarrow \operatorname{Lev}_2(\mathcal{V}_\ell) \Longleftrightarrow (\operatorname{Lev}_3(\mathcal{V}_\ell) + \operatorname{Lev}_4(\mathcal{V}_\ell)) \Longrightarrow \operatorname{Lev}_4(\mathcal{V}_\ell) \Longleftrightarrow \ell > \dim(V_\ell) + 1.$$

In practice, Lev₁(\mathcal{V}_{ℓ}) can always be achieved after replacing S by a connected étale cover.

3. Pointwise versus global properties of \mathbb{Q}_p -local systems

Let k be a p-adic field with ring of integers and residue field $k \supset \mathcal{O}_k \twoheadrightarrow \kappa$; let v denote the closed point of spec (\mathcal{O}_k) . Let $\mathbb{Q}_p \subset k_0 \subset k$ be the maximal unramified extension of \mathbb{Q}_p contained in k and $\sigma: k_0 \tilde{\to} k_0$ its arithmetic Frobenius.

3.1. Brief recollection of classical p-adic Hodge theory.

3.1.1. Let $B_{\text{cris}} \subset B_{\text{dR}} =: B_{\text{dR}}(k) = B_{\text{dR}}(\overline{k})$ and $B_{\text{HT}} = Gr(B_{\text{dR}})$ denote Fontaine's period rings and the associated "Riemann-Hilbert" \otimes -functors

$$D_{\operatorname{cris}} : \operatorname{Rep}_{\mathbb{Q}_p}(\pi_1(k)) \to \operatorname{M}_{k_0}^{\varphi}, \ V \mapsto (B_{\operatorname{cris}} \otimes_{\mathbb{Q}_p} V)^{\pi_1(k)}$$

$$D_{\operatorname{dR}} : \operatorname{Rep}_{\mathbb{Q}_p}(\pi_1(k)) \to F \operatorname{-M}_k, \ V \mapsto (B_{\operatorname{dR}} \otimes_{\mathbb{Q}_p} V)^{\pi_1(k)},$$

$$D_{\operatorname{HT}} : \operatorname{Rep}_{\mathbb{Q}_p}(\pi_1(k)) \to \operatorname{Gr}_k, \ V \mapsto (B_{\operatorname{HT}} \otimes_{\mathbb{Q}_p} V)^{\pi_1(k)},$$

Here $\mathcal{M}_{k_0}^{\varphi}$ (resp. $F\text{-}\mathcal{M}_k$, resp. Gr_k) denote the category of k_0 -modules of finite rank D equipped with a σ -semilinear endormorphism $\phi:D\to D$ (resp. of k-modules of finite rank D equipped with a descending separated exhaustive filtration F^{\bullet} by k-submodules, resp. of k-modules of finite rank D equipped with a direct sum decomposition D^{\bullet} by k-submodules). Let

$$\operatorname{Rep}^{\operatorname{cris}}_{\mathbb{Q}_p}(\pi_1(k)) \subset \operatorname{Rep}^{\operatorname{dR}}_{\mathbb{Q}_p}(\pi_1(k)) \subset \operatorname{Rep}^{\operatorname{HT}}_{\mathbb{Q}_p}(\pi_1(k)) \subset \operatorname{Rep}_{\mathbb{Q}_p}(\pi_1(k))$$

denote the full subcategories of crystalline (viz such that $\operatorname{rank}_{\mathbb{Q}_p}(V) = \operatorname{rank}_{k_0}(D_{\operatorname{cris}}(V))$), de Rham (viz such that $\operatorname{rank}_{\mathbb{Q}_p}(V) = \operatorname{rank}_k(D_{\operatorname{dR}}(V))$) and Hodge-Tate (viz such that $\operatorname{rank}_{\mathbb{Q}_p}(V) = \operatorname{rank}_k(D_{\operatorname{HT}}(V))$) representations. The functors $D_{\operatorname{dR}} : \operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{dR}}(\pi_1(k)) \to F\operatorname{-M}_k$ and $D_{\operatorname{HT}} : \operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{HT}}(\pi_1(k)) \to \operatorname{Gr}_k$ are faithful exact \otimes -functors

3.1.2. The following implications are classical. Note that being Hodge-Tate with single Hodge-Tate weight 0 is the same thing as being \mathbb{C}_p -admissible. In particular, being Hodge-Tate and unipotent - hence a successive extension of the trivial representation \mathbb{Q}_p , implies being \mathbb{C}_p -admissible.

The implication $\stackrel{(1)}{\Rightarrow}$ is a theorem of Sen [Se80, Cor. to Thm. 11]. For the fact that (2) is "Cartesian", namely that

(2) crystalline + potentially unramified \Rightarrow unramified,

see e.g. [Ca19, Prop. 4.3.2]. Let us also make the following observation, the proof of which was explained to us by Benjamin Schraen.

Lemma 9. Let $V_p \in \text{Rep}_{\mathbb{Q}_p}(\pi_1(\mathcal{O}_k))$. Then the elementary divisors of

- the image $\varphi_p: V_p \to V_p$ of the geometric Frobenius $\varphi \in \pi_1(\kappa) \simeq \pi_1(\mathcal{O}_k)$;
- the linearized crystalline Frobenius $\varphi: D_{\mathrm{cris}}(V_p) \tilde{\to} D_{\mathrm{cris}}(V_p)$,

coincide. In particular, the characteristic polynomial of $\varphi: D_{\mathrm{cris}}(V_p) \tilde{\to} D_{\mathrm{cris}}(V_p)$ is in $\mathbb{Z}_p[T]$ and its roots are v-adic units.

Proof. Let $I_k := \ker(\pi_1(k) \to \pi_1(\mathcal{O}_k))$ denote the inertia group. Let also $k_0 \subset k_0^{\mathrm{ur}} \subset \overline{k}$ denote the maximal unramified extension of k_0 and $\widehat{k}_0^{\mathrm{ur}}$ its completion. Recall that by definition $\varphi = \phi^m : D_{\mathrm{cris}}(V_p) \to D_{\mathrm{cris}}(V_p)$, where $m := [k_0 : \mathbb{Q}_p]$ and $\phi : D_{\mathrm{cris}}(V_p) \to D_{\mathrm{cris}}(V_p)$ is the crystalline Frobenius. As V_p is crystalline, and using that $(B_{\mathrm{cris}})^{I_k} = \widehat{k}_0^{\mathrm{ur}}$ (e.g. [Fo94, Prop. 5.1.2]),

$$D_{\mathrm{cris}}(V_p) = (V_p \otimes_{\mathbb{Q}_p} B_{\mathrm{cris}})^{\pi_1(k)} = (V_p \otimes_{\mathbb{Q}_p} (B_{\mathrm{cris}})^{I_k})^{\pi_1(\kappa)} = (V_p \otimes_{\mathbb{Q}_p} \widehat{k}_0^{\mathrm{ur}})^{\pi_1(\kappa)} =: D_{\widehat{k}}^{\mathrm{ur}}(V_p)$$

has k_0 -dimension $\dim_{\mathbb{Q}_p}(V_p)$. In other words, V_p is $\widehat{k}_0^{\text{ur}}$ -admissible, hence the canonical $\widehat{k}_0^{\text{ur}}$ -linear injective morphism

$$\alpha: D_{\widehat{k}^{\mathrm{ur}}}(V_p) \otimes_{k_0} \widehat{k}_0^{\mathrm{ur}} \to V_p \otimes_{\mathbb{Q}_p} \widehat{k}_0^{\mathrm{ur}}$$

is an isomorphism, which is equivariant with the following structures:

- The $\pi_1(k)$ -action (with $D_{\widehat{k}_{\alpha}^{\mathrm{ur}}}(V_p)$ viewed as a trivial $\pi_1(k)$ -representation);

- The crystalline Frobenii (with the crystalline Frobenius on V_p being the identity and the one on \hat{k}_0^{ur} the lift $\sigma: \hat{k}_0^{\text{ur}} \tilde{\to} \hat{k}_0^{\text{ur}}$ of the arithmetic Frobenius on the residue field).

In particular, $\alpha: D_{\widehat{k}_0^{\mathrm{ur}}}(V_p) \otimes_{k_0} \widehat{k}_0^{\mathrm{ur}} \tilde{\to} V_p \otimes_{\mathbb{Q}_p} \widehat{k}_0^{\mathrm{ur}}$ exchanges

$$Id \otimes_{k_0} \sigma^m \longleftrightarrow \varphi_p^{-1} \otimes_{\mathbb{Q}_p} \sigma^m, \ \phi \otimes_{k_0} \sigma \longleftrightarrow Id \otimes_{\mathbb{Q}_p} \sigma.$$

As a result,

$$\alpha \circ (\phi^m \otimes_{k_0} Id) \circ \alpha^{-1} = \alpha \circ (\phi \otimes_{k_0} \sigma)^m (Id \otimes_{k_0} \sigma^m)^{-1} \circ \alpha^{-1} = (Id \otimes_{\mathbb{Q}_p} \sigma)^m (\varphi_p^{-1} \otimes_{\mathbb{Q}_p} \sigma^m)^{-1} = \varphi_p \otimes_{\mathbb{Q}_p} Id.$$

This shows the two k_0 -linear morphisms $\varphi_p \otimes_{\mathbb{Q}_p} Id_{k_0} : V_p \otimes_{\mathbb{Q}_p} k_0 \tilde{\to} V_p \otimes_{\mathbb{Q}_p} k_0$ and $\phi^m : D_{\widehat{k}_0^{ur}}(V_p) \tilde{\to} D_{\widehat{k}_0^{ur}}(V_p)$ have the same invariant factors hence, in particular, the same characteristic polynomial.

3.2. Pointwise versus global properties. Let X be a smooth variety over k. Let \mathcal{V}_p be a \mathbb{Q}_p -local system on X, write

$$|X|_{\mathcal{V}_p}^{\mathrm{ur}} \subset |X|_{\mathcal{V}_p}^{\mathrm{cris}} \subset |X|_{\mathcal{V}_p}^{\mathrm{dR}} \subset |X|_{\mathcal{V}_p}^{\mathrm{HT}} \subset |X|$$

for the subsets of all $x \in |X|$ such that $x^*\mathcal{V}_p$ is unramified, crystalline, de Rham and Hodge-Tate respectively. Say that \mathcal{V}_p is **pointwise unramified** if $|X|^{\mathrm{ur}} = |X|$; define similarly the notion of being **pointwise crystalline**, **pointwise de Rham** and **pointwise Hodge-Tate**.

3.2.1. Hodge-Tate, de Rham and crystalline local systems. There are also global notions of crystalline, de Rham and Hodge-Tate \mathbb{Q}_p -local systems on X defined using geometric versions of Fontaine's Riemann-Hilbert functors. More precisely, let $X^{\mathrm{an}} \to X$ denote the rigid-analytification of X. The natural morphism of sites $X_{\mathrm{et}}^{\mathrm{an}} \to X_{\mathrm{et}}$ induces a faithful exact \otimes -functor

$$(-)^{\mathrm{an}}: \mathrm{Loc}_{\mathbb{Z}_p}(X_{\mathrm{et}}) \to \mathrm{Loc}_{\mathbb{Z}_p}(X_{\mathrm{et}}^{\mathrm{an}})$$

from the category $\operatorname{Loc}_{\mathbb{Z}_p}(X_{\operatorname{et}})$ of \mathbb{Z}_p -local systems on X_{et} to the category $\operatorname{Loc}_{\mathbb{Z}_p}(X_{\operatorname{et}}^{\operatorname{an}})$ of \mathbb{Z}_p -local systems on $X_{\operatorname{et}}^{\operatorname{an}}$ hence, passing to the isogeny category, a faithful exact \otimes -functor

$$(-)^{\mathrm{an}}: \mathrm{Loc}_{\mathbb{Q}_n}(X_{\mathrm{et}}) \to \mathrm{Loc}_{\mathbb{Q}_n}(X_{\mathrm{et}}^{\mathrm{an}}).$$

- Let $Higgs(X^{an})$ denote the category of vector bundles with a nilpotent Higgs field on X^{an} . If

$$D_{\mathrm{HT}}: \mathrm{Loc}_{\mathbb{O}_n}(X_{\mathrm{et}}^{\mathrm{an}}) \to \mathrm{Higgs}(X^{\mathrm{an}})$$

denotes the natural Hodge-Tate Riemann-Hilbert functor constructed in [LiZ17, §2.1], one says that a \mathbb{Q}_p -local system \mathcal{V}_p on $X_{\mathrm{et}}^{\mathrm{an}}$ is **Hodge-Tate** if

$$\operatorname{rank}_{\mathbb{O}_p}(\mathcal{V}_p) = \operatorname{rank}(D_{\mathrm{HT}}(\mathcal{V}_p)),$$

and that a \mathbb{Q}_p -local system \mathcal{V}_p on X_{et} is Hodge-Tate if $\mathcal{V}_p^{\mathrm{an}}$ is.

- Let F-Vect $^{\nabla}(X^{\mathrm{an}})$ denote the category of filtered vector bundles on X^{an} with a flat connection satisfying Griffith's transversality. If

$$D_{\mathrm{dR}} : \mathrm{Loc}_{\mathbb{Q}_p}(X_{\mathrm{et}}^{\mathrm{an}}) \to F\text{-Vect}^{\nabla}(X^{\mathrm{an}})$$

denotes the natural de Rham Riemann-Hilbert functor constructed in [LiZ17, §3.2], one says that a \mathbb{Q}_p -local system \mathcal{V}_p on $X_{\text{et}}^{\text{an}}$ is **de Rham** if

$$\operatorname{rank}_{\mathbb{Q}_p}(\mathcal{V}_p) = \operatorname{rank}(D_{\mathrm{dR}}(\mathcal{V}_p)),$$

and that a \mathbb{Q}_p -local system \mathcal{V}_p on X_{et} is de Rham if $\mathcal{V}_p^{\text{an}}$ is.

Assume furthermore $X \to \operatorname{spec}(k)$ admits a model $\mathcal{X} \to \operatorname{spec}(\mathcal{O}_k)$, smooth, separated and of finite type. Write $\widehat{\mathcal{X}}$ for the formal completion of \mathcal{X} along the closed fiber \mathcal{X}_v . Let $\widehat{\mathcal{X}}_\eta$ denote the rigid-analytic fiber of $\widehat{\mathcal{X}}$ so that one gets an open immersion $\widehat{\mathcal{X}}_\eta \hookrightarrow X^{\operatorname{an}}$ of rigid analytic spaces.

- Let F-wIsoc $(\mathcal{X}_v/\mathcal{O}_{k_0})$ denote the category of weak F-isocrystals on $\mathcal{X}_v/\mathcal{O}_{k_0}$ [GY24, Def. 5.10]. If

$$D_{\mathrm{cris}}^{\mathrm{an}}: \mathrm{Loc}_{\mathbb{Q}_p}(\widehat{\mathcal{X}}_{\eta,\mathrm{et}}) \to F\text{-wIsoc}(\mathcal{X}_v/\mathcal{O}_{k_0})$$

denotes the natural crystalline Riemann-Hilbert functor constructed in [GY24, Thm. 1.10] and one defines

$$D_{\mathrm{cris}}: \mathrm{Loc}_{\mathbb{Z}_p}(X_{\mathrm{et}}^{\mathrm{an}}) \overset{|_{\widehat{\mathcal{X}}_{\eta}}}{\to} \mathrm{Loc}_{\mathbb{Q}_p}(\widehat{\mathcal{X}}_{\eta,\mathrm{et}}) \overset{D_{\mathrm{cris}}^{\mathrm{an}}}{\to} F\text{-wIsoc}(\mathcal{X}_v/\mathcal{O}_{k_0}),$$

one says that a \mathbb{Q}_p -local system \mathcal{V}_p on $X_{\text{et}}^{\text{an}}$ is crystalline if $D_{\text{cris}}(\mathcal{V}_p)$ has constant rank $\text{rank}(D_{\text{cris}}(\mathcal{V}_p))$ and

$$\operatorname{rank}_{\mathbb{Q}_p}(\mathcal{V}_p) = \operatorname{rank}(D_{\operatorname{cris}}(\mathcal{V}_p)).$$

One says that a \mathbb{Q}_p -local system \mathcal{V}_p on X_{et} is **crystalline** (with respect to $\widehat{\mathcal{X}}_\eta$) if $\mathcal{V}_p^{\text{an}}$ is.

The following summarizes the relation between the pointwise and global Hodge-Tate, de Rham and crystalline properties.

Fact 10. Let X be a smooth, geometrically connected variety over k. Let \mathcal{V}_p be a \mathbb{Q}_p -local system on X. Then,

(1) ([P23, §7]; see also [Shim18]) One has

(i)
$$\mathcal{V}_p$$
 is Hodge-Tate \Leftrightarrow (ii) $|X|_{\mathcal{V}_p}^{\mathrm{HT}} = |X| \Leftrightarrow$ (iii) $|X|_{\mathcal{V}_p}^{\mathrm{HT}} \neq \emptyset$;

Furthermore, if \mathcal{V}_p is Hodge-Tate, the multiset $HT(\mathcal{V}_p) := HT(x^*\mathcal{V}_p)$ of Hodge-Tate weights of $x^*\mathcal{V}_p$ is independent of $x \in |X|$.

(2) ([LiZ17, Thm. 1.1, Thm. 1.3]) One has

(i)
$$\mathcal{V}_p$$
 is de Rham \Leftrightarrow (ii) $|X|_{\mathcal{V}_p}^{\mathrm{dR}} = |X| \Leftrightarrow$ (iii) $|X|_{\mathcal{V}_p}^{\mathrm{dR}} \neq \emptyset$.

(3) ([GY24, Thm. 7.2]) Assume furthermore X admits a smooth model $\mathcal{X} \to \operatorname{spec}(\mathcal{O}_k)$. One has

(i)
$$\mathcal{V}_p$$
 is crystalline (with respect to $\widehat{\mathcal{X}}_{\eta}$) \Leftrightarrow (ii) $|X|_{\mathcal{V}_n}^{\mathrm{cris}} \supset \mathrm{im}(\mathcal{X}(\overline{\mathcal{O}}_k) \to |X|)$.

Note that, in particular, the property of being a Hodge-Tate, de Rham or crystalline \mathbb{Q}_p -local system is preserved by passing to subquotients.

Corollary 11. Let X be a smooth, geometrically connected variety over k and let \mathcal{V}_p a \mathbb{Q}_p -local system on X. The following properties are equivalent (ii) for every $x \in |X|$, $x^*\mathcal{V}_p$ is potentially unramified;

(iii) there exists $x \in |X|$ such that $x^*\mathcal{V}_p$ is potentially unramified.

If these hold, then $|X|_{\mathcal{V}_p}^{\mathrm{ur}} = |X|_{\mathcal{V}_p}^{\mathrm{cris}}$ and for every $x \in |X|_{\mathcal{V}_p}^{\mathrm{cris}}$ the characteristic polynomials of

- the geometric Frobenius $\varphi_{x,p}: \mathcal{V}_{p,\bar{x}} \tilde{\to} \mathcal{V}_{p,\bar{x}};$
- the linearized crystalline Frobenius $\varphi_{x,\text{cris}}: D_{\text{cris}}(x^*\mathcal{V}_p) \tilde{\to} D_{\text{cris}}(x^*\mathcal{V}_p)$,

coincide. In particular, the characteristic polynomial of $\varphi_{x,\text{cris}}: D_{\text{cris}}(x^*\mathcal{V}_p) \tilde{\to} D_{\text{cris}}(x^*\mathcal{V}_p)$ is in $\mathbb{Z}_p[T]$ and its roots are v-adic units.

Proof. According to the equivalence (1) of Subsection 3.1.2, the equivalence (ii) \Leftrightarrow (iii) is a special case of Fact 10 (1). The equality $|X|_{\mathcal{V}_n}^{\text{ur}} = |X|_{\mathcal{V}_n}^{\text{cris}}$ follows from the implication (2) in Subsection 3.1.2. The last part of the assertion then follows from Lemma 9.

- 3.2.2. Unramified and tamely ramified local systems. Assume X admits a smooth model $\mathcal{X} \to \operatorname{spec}(\mathcal{O}_k)$.
- 3.2.2.1. One says that a \mathbb{Q}_p -local system \mathcal{V}_p on X is unramified with respect to \mathcal{X} if the corresponding representation of $\pi_1(X)$ on $V_p := \mathcal{V}_{p,\bar{x}}$ factors through $\pi_1(X) \twoheadrightarrow \pi_1(\mathcal{X})$ (viz \mathcal{V}_p extends to a \mathbb{Q}_p -local system on \mathcal{X}) and that \mathcal{V}_p is tamely ramified with respect to \mathcal{X} if the corresponding representation factors through the tame étale fundamental group $\pi_1(X) \twoheadrightarrow \pi_1^t(\mathcal{X}; \mathcal{X}_v)$ (viz \mathcal{V}_p is tamely ramified along \mathcal{X}_v). Let

$$|X|_{\mathcal{V}_n}^{\mathrm{tr}} \subset |X|$$

denote the subset of all $x \in |X|$ such that $x^*\mathcal{V}_p$ is tamely ramified.

Theorem 12. Let V_p be a \mathbb{Q}_p -local system on X. One has

- (1) (i) V_p is unramified with respect to \mathcal{X} \Leftrightarrow (ii) $|X|_{\mathcal{V}_p}^{\mathrm{ur}} \supset \mathrm{im}(\mathcal{X}(\overline{\mathcal{O}}_k) \to |X|)$. (2) (i) V_p is tamely ramified with respect to \mathcal{X} \Leftrightarrow (ii) $|X|_{\mathcal{V}_p}^{\mathrm{tr}} \supset \mathrm{im}(\mathcal{X}(\overline{\mathcal{O}}_k) \to |X|)$.

Remark 13.

- (1) Guo-Yang proved Theorem 12 (1) in the setting of smooth p-adic formal schemes over \mathcal{O}_k see [GY24, Thm. 6.31].
- (2) Properties (i), (ii) really depend on the smooth model $\mathcal{X} \to \operatorname{spec}(\mathcal{O}_k)$ of $X \to \operatorname{spec}(k)$. However, if $X \to \operatorname{spec}(k)$ is proper, then Properties (i), (ii)' for a given smooth proper model $\mathcal{X} \to \operatorname{spec}(\mathcal{O}_k)$ are also equivalent to the property

(ii)
$$|X|_{\mathcal{V}_p}^{\mathrm{ur}} = |X|$$
,

which is independent of the smooth proper model $\mathcal{X} \to \operatorname{spec}(\mathcal{O}_k)$.

We postpone the proof of Theorem 12 to Section 4.

3.2.2.2. Assume X admits a smooth NCC model $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}} \to \text{spec}(\mathcal{O}_k)$; write $\mathcal{D} := \mathcal{X}^{\text{cpt}} \setminus \mathcal{X}$. Then, by Abhyankar's lemma

$$\pi_1^{\mathrm{t}}(\mathcal{X}; \mathcal{X}_v) \simeq \pi_1^{\mathrm{t}}(\mathcal{X}^{\mathrm{cpt}}; \mathcal{D}) \times_{\pi_1(v)} \pi_1^{\mathrm{t}}(\mathcal{O}_k; v) \simeq \pi_1^{\mathrm{t}}(\mathcal{X}_v^{\mathrm{cpt}}; \mathcal{D}_v) \times_{\pi_1(v)} \pi_1^{\mathrm{t}}(\mathcal{O}_k; v)$$

while

$$\pi_1(\mathcal{X}) \simeq \pi_1^{\mathrm{t}}(\mathcal{X}^{\mathrm{cpt}}; \mathcal{D}) \simeq \pi_1^{\mathrm{t}}(\mathcal{X}_v^{\mathrm{cpt}}; \mathcal{D}_v).$$

- (1) If Lev₃(\mathcal{V}_p) holds and $|X|_{\mathcal{V}_p}^{\mathrm{tr}} \supset \mathrm{im}(\mathcal{X}(\overline{\mathcal{O}}_k) \to |X|)$, then the action of $\pi_1(X)$ on $\mathcal{V}_{p,\bar{x}}$ factors through $\pi_1(X) \twoheadrightarrow \pi_1(\mathcal{X}^{\mathrm{cpt}})$.
- (2) Say that a connected étale cover $X' \to X$ is **good with respect to** $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}} \to \text{spec}(\mathcal{O}_k)$ if the following holds. Let k' be the algebraic closure of k in the function field of X' and $\mathcal{X}' \to \mathcal{X}$, $\mathcal{X}'^{\text{cpt}} \to \mathcal{X}^{\text{cpt}}$ the normalization of \mathcal{X} , \mathcal{X}^{cpt} in $X' \to X \to \mathcal{X}$, $X' \to X \to \mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}}$ respectively. Then the resulting canonical sequence of morphisms $\mathcal{X}' \to \mathcal{X}'^{\text{cpt}} \to \text{spec}(\mathcal{O}_{k'})$ is again a smooth NCC over $\text{spec}(\mathcal{O}_{k'})$. Say that an open subgroup $U \subset \pi_1(X)$ is good with respect to $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}} \to \text{spec}(\mathcal{O}_k)$ if the corresponding connected étale cover $X_U \to X$ is. The open subgroups

$$U_1 \times_{\pi_1(v)} U_2 \subset \pi_1^{\mathrm{t}}(\mathcal{X}^{\mathrm{cpt}}; \mathcal{D}) \times_{\pi_1(v)} \pi_1^{\mathrm{t}}(\mathcal{O}_k; v)$$

with $U_1 \subset \pi_1^t(\mathcal{X}^{\text{cpt}}; \mathcal{D}), U_2 \subset \pi_1^t(\mathcal{O}_k; v)$ open subgroups form a cofinal family of open subgroups of

$$\pi_1^{\mathrm{t}}(\mathcal{X}; \mathcal{X}_v) \simeq \pi_1^{\mathrm{t}}(\mathcal{X}^{\mathrm{cpt}}; \mathcal{D}) \times_{\pi_1(v)} \pi_1^{\mathrm{t}}(\mathcal{O}_k; v)$$

and, if X is a curve, the inverse images of these groups in $\pi_1(X)$ are good with respect to $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}} \to \text{spec}(\mathcal{O}_k)$.

These observations combined with Corollary 11 and Theorem 12 yields the following variant / strengthening of Theorem 12 (1) in the case X is a curve.

Corollary 14. Let X be a curve. Assume X admits a smooth NCC model $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}} \to \operatorname{spec}(\mathcal{O}_k)$. Let \mathcal{V}_p be a \mathbb{Q}_p -local system on X such that $\operatorname{Lev}_4(\mathcal{V}_p)$ holds. Assume there exists $x \in |X|$ such that $x^*\mathcal{V}_p$ is potentially unramified. Then there exists a connected étale cover $X' \to X$, which is good with respect to $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}} \to \operatorname{spec}(\mathcal{O}_k)$ and such that $\operatorname{Lev}_3(\mathcal{V}_p|_{X'})$ holds. In particular, the following properties are equivalent

- (i) the action of $\pi_1(X')$ on $\mathcal{V}_{p,\bar{x}}$ factors through $\pi_1(X') \twoheadrightarrow \pi_1(\mathcal{X}'^{\text{cpt}})$ (viz $\mathcal{V}_p|_{X'}$ extends to a \mathbb{Q}_p -local system on $\mathcal{X}'^{\text{cpt}}$);
- (ii) for every $x' \in |X'|$, $x'^*\mathcal{V}_p$ is unramified,

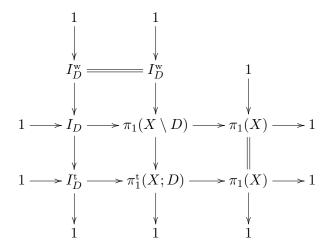
where $\mathcal{X}'^{\text{cpt}} \to \mathcal{X}^{\text{cpt}}$ denotes the normalization of \mathcal{X}^{cpt} in $X' \to X \to \mathcal{X} \to \mathcal{X}^{\text{cpt}}$.

Proof. Assume there exists $x \in |X|$ such that $x^*\mathcal{V}_p$ is potentially unramified. Then, from Corollary 11, for every $x \in |X|$, $x^*\mathcal{V}_p$ is potentially unramified hence, as $\text{Lev}_4(\mathcal{V}_p)$ holds, tamely ramified. From Theorem 12 (2) (ii)' \Rightarrow (i), \mathcal{V}_p is tamely ramified with respect to \mathcal{X} and, from the observation in (2) above, there exists a connected étale cover $X' \to X$ which is good with respect to $\mathcal{X} \hookrightarrow \mathcal{X}^{\text{cpt}} \to \text{spec}(\mathcal{O}_k)$ and such that $\text{Lev}_1(\mathcal{V}_p|_{X'})$ - hence $\text{Lev}_3(\mathcal{V}_p|_{X'})$ hold. The implication (ii)' \Rightarrow (i) then follows from the observation (1) above (the implication (i) \Rightarrow (ii)' is straightforward).

4. Pointwise versus global ramification properties

As the results of this section might be of independent interest, we work in a slightly more general setting than the one of p-adic fields.

For a normal scheme X and a normal crossing divisor $D \hookrightarrow X$, let $\pi_1^t(X; D)$ denote the fundamental group classifying finite connected covers $Y \to X$, which are étale over $X \setminus D$ and tamely ramified along D, namely such that for every generic point $\xi \in D$, the corresponding valuation ring $\mathcal{O}_{X,\xi}$ is tamely ramified in the extension of function fields $k(X) \hookrightarrow k(Y)$. This gives rise to an exact diagram of profinite groups:



4.1. Notation and definitions.

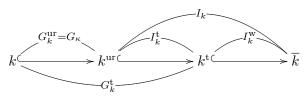
4.1.1. Let \mathcal{O} be a complete discrete valuation ring with maximal ideal \mathfrak{m} , fraction field k, of characteristic 0 and perfect residue field κ , of characteristic p > 0. Set $S := \operatorname{spec}(\mathcal{O}) = \{\eta, s\}$, where η is the generic point and s the closed point of S. Fix a separable(= algebraic) closure $k \hookrightarrow \overline{k}$. Considering the normal crossing divisor $s \hookrightarrow S$, we use the more classical notation:

$$I_k := I_s, \ I_k^{\mathrm{w}} := I_s^{\mathrm{w}}, \ I_k^{\mathrm{t}} := I_s^{\mathrm{t}}$$

and

$$G_k := \pi_1(\eta) = \pi_1(S \setminus s), \ G_k^{\text{ur}} := \pi_1(S) \tilde{\leftarrow} \pi_1(s) =: G_k, \ G_k^{\text{t}} := \pi_1^{\text{t}}(S; s)$$

Correspondingly, one has the diagram of field extensions



For $\# := \overline{}$, t, ur, etc. let $\mathcal{O}^{\#}$ denote the valuation ring of $k^{\#}$, $\mathfrak{m}^{\#}$ its maximal ideal and $\kappa^{\#}$ its residue field; set $S^{\#} := \operatorname{spec}(\mathcal{O}^{\#}) = \{\eta^{\#}, s^{\#}\}$, where $\eta^{\#}$ is the generic point and $s^{\#}$ the closed point of $S^{\#}$.

4.1.2. Let $\mathcal{X} \to S$ be a morphism, smooth, separated and of finite type. Set $X := \mathcal{X}_{\eta}$; up to replacing S by its normalization in $\mathcal{X} \to S$, we may and will assume that X is geometrically connected over k. Let $\mathcal{X}_s = \mathcal{X}_{s,1} \sqcup \cdots \sqcup \mathcal{X}_{s,m}$ denote the decomposition of \mathcal{X}_s into irreducible (viz connected) components.

4.1.3. Let $\mathcal{X} \to \text{be a morphism}$, smooth, separated and of finite type, let $\psi : Y \to X$ be a Galois (in particular finite, étale and connected) cover and let $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ denote the normalization of \mathcal{X} in $Y \overset{\psi}{\to} X \hookrightarrow \mathcal{X}$. The morphism $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is finite but not smooth in general.

Assume Y is geometrically integral over k. Let $k \hookrightarrow k'$ be a finite field extension and let $S' := \operatorname{spec}(\mathcal{O}') \to S$ denote the normalization of S in $\operatorname{spec}(k') \to \operatorname{spec}(k) \to S$. Let $\mathcal{Y}'_1 \to \mathcal{X}$ denote the normalization of $\mathcal{X} \times_S S'$ in $Y \times_k k' \to X \times_k k' \hookrightarrow \mathcal{X} \times_S S'$ and let $\mathcal{Y}'_2 \to \mathcal{X} \times_S S'$ denote the normalization of $\mathcal{X} \times_S S'$ in $\mathcal{Y} \times_S S' \to \mathcal{X} \times_S S'$. Note that, by the universal property of normalization the morphism $\mathcal{Y}'_i \to \mathcal{X} \times_S S' \to \mathcal{X}$ factors canonically as $\mathcal{Y}'_i \to \mathcal{Y} \to \mathcal{X}$, i = 1, 2. Furthermore the canonical morphism $\mathcal{Y}'_1 \to \mathcal{Y}'_2$ is an isomorphism and if $S' \to S$ is étale, $\mathcal{Y} \times_S S' \to \mathcal{Y}'_2$ is an isomorphism [Stacks, Tag 03GV].

For a closed point $x \in |X|$ with residue field k(x), write \mathcal{O}_x for the valuation ring of k(x), $S_x := \operatorname{spec}(\mathcal{O}_x) = \{x, s_x\}$, with (x the generic point and) s_x the closed point of S_x . For a subset $\Sigma \subset |X|$, say that $\psi : Y \to X$ is Σ -pointwise unramified (resp. tame) if for every $x \in \Sigma$ and $y \in Y_x$ the resulting cover $S_y \to S_x$ is étale (resp. tamely ramified along s_x). We will apply this terminology to the following subsets:

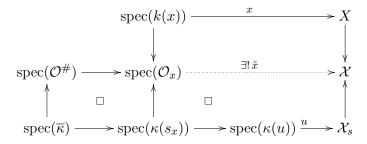
- $\Sigma = |X|^{\text{int}} := \text{im}(\mathcal{X}(\overline{\mathcal{O}}) \hookrightarrow X(\overline{k}) \to X)$; one can easily check that $|X|^{\text{int}}$ is also the subset of all $x \in |X|$ such that

$$\operatorname{spec}(k(x)) \xrightarrow{x} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{spec}(\mathcal{O}_x) \xrightarrow{\exists ! \, \tilde{x}} \times \mathcal{X}$$

- For # = ur, t, $\Sigma =]u[\#$ for some $u \in |\mathcal{X}_s|$, where $]u[\# := \text{im}(\mathcal{X}(\mathcal{O}^\#)_u \hookrightarrow X(k^\#) \to X)(\subset |X|^{\text{int}})$ and $\mathcal{X}(\mathcal{O}^\#)_u$ denotes the fiber of $\mathcal{X}(\mathcal{O}^\#) \to \mathcal{X}(\overline{\kappa}) \to |\mathcal{X}_s|$ over u; one can easily check that]u[# is also the subset of all $x \in |X|$ such that



Let $k \hookrightarrow k'$ be a finite field extension with ring of integer \mathcal{O}' and residue field κ' . Write $S' := \operatorname{spec}(\mathcal{O}') \to S$ for the corresponding connected cover, $s' \in S'$ for the closed point of S' and let $\mathcal{X}_{s,i} \times_{\kappa} \kappa' = \sqcup_{1 \leq j \leq m_i} \mathcal{X}_{s',i,j}$ be the decomposition into irreducible (viz connected) components of $\mathcal{X}_{s,i} \times_{\kappa} \kappa'$, $i = 1, \ldots, m$. For every non-empty open subset $\mathcal{X}_{s',i,j}^{\circ} \subset \mathcal{X}_{s',i,j}$, the image $\mathcal{X}_{s,i}^{\circ} \subset \mathcal{X}_{s}$ of $\sqcup_{1 \leq j \leq m_i} \mathcal{X}_{s',i,j}^{\circ}$ $via \ \mathcal{X}_{s'} \to \mathcal{X}_{s}$ is again a non-empty open subset of $\mathcal{X}_{s,i}$. Further,

Lemma 15. Assume $k \subset k^{\mathrm{ur}}$ (resp. $k \subset k^{\mathrm{t}}$). Then for every $u \in \mathcal{X}_s$, the square

is (well-defined and) Cartesian.

Proof. Let $x \in |X|$ and $x' \in (X \times_k k')_x$. We are to prove that $x \in]u[^{\mathrm{ur}}$ if and only if $x' \in \bigcup_{u' \in (\mathcal{X}_{s'})_u}]u'[^{\mathrm{ur}}$ (resp. $x \in]u[^{\mathrm{t}}$ if and only if $x' \in \bigcup_{u' \in (\mathcal{X}_{s'})_u}]u'[^{\mathrm{t}}$). The if part of the assertion, which ensures that the upper horizontal arrow is well defined, follows from the definition of $]-[^{\mathrm{ur}}$ (resp. $]-[^{\mathrm{t}}$). Let us prove the only if part. Assume $x \in]u[^{\mathrm{ur}}$ (resp. $x \in]u[^{\mathrm{t}}$). The fact that $x' : \mathrm{spec}(k(x')) \to X \times_k k'$ extends (uniquely) to $\tilde{x}' : S_{x'} \to \mathcal{X} \times_S S'$ follows from the fact that $x : \mathrm{spec}(k(x)) \to X$ extends to $\tilde{x} : S_x \to \mathcal{X}$ and the properness of $\mathcal{X} \times_S S' \to \mathcal{X}$ and the fact that $\mathcal{O}_{x'} \subset \mathcal{O}^{\mathrm{ur}}$ (resp. $\mathcal{O}_{x'} \subset \mathcal{O}^{\mathrm{t}}$) from the fact that $\mathcal{X} \times_S S' \to S$ is étale (resp. at most tamely ramified along \mathcal{X}_s).

4.2. A pointwise criterion for $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ to be étale.

Proposition 16. Let $\psi: Y \to X$ be a Galois cover. There exists a non-empty open subset $\mathcal{X}_{s,i}^o \subset \mathcal{X}_{s,i}$, $i = 1, \ldots, m$ (depending on $Y \xrightarrow{\psi} X \to \mathcal{X}$) such that, for every $u_i \in \mathcal{X}_{s,i}^o$, $i = 1, \ldots, m$, the following conditions are equivalent.

(U-1)
$$\ker(\pi_1(X) \to \pi_1(X)) \subset \pi_1(Y);$$

(U-2) $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ is (finite) étale;
(U-3) $\psi: Y \to X$ is $|X|^{\text{int}}$ -pointwise unramified;
(U-4) $\psi: Y \to X$ is $\bigcup_{1 \le i \le m} |u_i|^{\text{ur}}$ -pointwise unramified.

Proof. The implications (U-1) \Rightarrow (U-2) \Rightarrow (U-3) \Rightarrow (U-4) and (U-2) \Rightarrow (U-1) are (almost) tautological so we are left to prove (U-4) \Rightarrow (U-2). If $\mathcal{X}_s = \emptyset$, there is nothing to prove, so we may and will assume that $\mathcal{X}_s \neq \emptyset$.

Let us first observe that it is enough to prove $(U-4) \Rightarrow (U-2)$ after:

- Replacing k by the algebraic closure k_Y of k in the function field of Y. Let $S_Y \to S$ denote the normalization of S in spec $(k_Y) \to \operatorname{spec}(k) \to S$. As $\mathcal{X}_s \neq \emptyset$, by condition (U-4) $S_Y \to S$ is dominated by an étale cover of S hence is étale. As $\mathcal{X} \times_S S_Y$ is normal, one has a canonical factorization $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X} \times_S S_Y \to \mathcal{X}$ and $\mathcal{Y} \to \mathcal{X} \times_S S_Y$ is the normalization of Y in $Y \to X \times_k k_Y \to \mathcal{X} \times_S S_Y$. Let $s_Y \in S_Y$ denote the closed point of S_Y and κ_Y its residue field. Let $\mathcal{X}_{s,i} \times_{\kappa} \kappa_Y = \sqcup_{1 \leq j \leq m_i} \mathcal{X}_{s_Y,i,j}$ be the decomposition into irreducible (viz connected) components of $\mathcal{X}_{s,i} \times_{\kappa} \kappa_Y$, $i=1,\ldots,m$. For every non-empty open subset $\mathcal{X}_{s_Y,i,j}^{\circ} \subset \mathcal{X}_{s_Y,i,j}$, the image $\mathcal{X}_{s,i}^{\circ} \subset \mathcal{X}_s$ of $\sqcup_{1 \leq j \leq m_i} \mathcal{X}_{s_Y,i,j}^{\circ}$ via $\mathcal{X}_{s_Y} \to \mathcal{X}_s$ is again a non-empty open subset of $\mathcal{X}_{s,i}$. Now, assume (U-4) \Rightarrow (U-2) holds for $Y \to X \times_k k_Y$ and the open subsets $\mathcal{X}_{s_Y,i,j}^{\circ} \subset \mathcal{X}_{s_Y,i,j}$, $j=1,\ldots,m$, $i=1,\ldots,m$. Then (U-4) \Rightarrow (U-2) holds for $Y \to X$ and the open subsets $\mathcal{X}_{s,i}^{\circ} \subset \mathcal{X}_{s_Y,i,j}$, $i=1,\ldots,m$. Indeed, assume for every $u_i \in \mathcal{X}_{s,i}^{\circ}$, $\psi: Y \to X$ is $u_i[u^{i} = u^{i}]$ pointwise unramified. Let $u_i[u^{i} = u^{i}]$ with image $u_i[u^{i} = u^{i}]$ (Lemma 15) and for every $u_i \in \mathcal{X}_{s,i}^{\circ}$, $u_i \in \mathcal{X}_{s,i}^{\circ}$

So, after possibly replacing k by k_Y , we may and will assume Y is geometrically integral over k.

- Base-change along spec(k') \rightarrow spec(k) for some finite field extension $k \subset k' \subset k^{\text{ur}}$. Let $S' \to S$ denote the normalization of S in spec(k') \rightarrow spec(k) \rightarrow S. By assumption $S' \to S$ is étale hence $\mathcal{Y} \times_S S' \to \mathcal{X} \times_S S'$ is the normalization of $Y \times_k k'$ in $Y \times_k k' \to X \times_k k' \to \mathcal{X} \times_S S'$. Let $s' \in S'$ denote the closed point of S' and κ' its residue field. Let $\mathcal{X}_{s,i} \times_{\kappa} \kappa' = \bigsqcup_{1 \leq j \leq m_i} \mathcal{X}_{s',i,j}$ be the decomposition into irreducible (viz connected) components of $\mathcal{X}_{s',i} \times_{\kappa} \kappa'$, $i = 1, \ldots, m$. For every non-empty open subset $\mathcal{X}_{s',i,j}^{\circ} \subset \mathcal{X}_{s',i,j}$, the image $\mathcal{X}_{s,i}^{o} \subset \mathcal{X}_{s}$ of $\bigsqcup_{1 \leq j \leq m_i} \mathcal{X}_{s',i,j}^{o}$ via $\mathcal{X}_{s'} \to \mathcal{X}_{s}$ is again a non-empty open subset of $\mathcal{X}_{s,i}$. Now, assume (U-4) \Rightarrow (U-2) holds for $Y \times_k k' \to X \times_k k'$ and the open subsets $\mathcal{X}_{s',i,j}^{\circ} \subset \mathcal{X}_{s',i,j}, j = 1, \ldots, m, i$, $i = 1, \ldots, m$. Then (U-4) \Rightarrow (U-2) holds for $Y \to X$ and the open subsets $\mathcal{X}_{s,i}^{\circ} \subset \mathcal{X}_{s,i}, i = 1, \ldots, m$. Indeed, assume for every $u_i \in \mathcal{X}_{s,i}^{\circ}, \psi : Y \to X$ is $]u_i[^{\text{ur}}$ -pointwise unramified. Let $x' \in]u'_{i,j}[^{\text{ur}}$ with image $x \in]u_i[^{\text{ur}}$ (Lemma 15) and for every $y \in Y_{x'}$, consider the factorization $S_y \to S_{x'} \to S_x$. As $\psi : Y \to X$ is $]u_i[^{\text{ur}}$ -pointwise unramified, $S_y \to S_x$ is étale hence $S_y \to S_{x'}$ is étale as well. This shows $Y \times_k k' \to X \times_k k_Y$ is $]u'_{i,j}[^{\text{ur}}$ -pointwise unramified. By (U-4) \Rightarrow (U-2) for $Y \times_k k' \to X \times_k k'$ and the open subsets $\mathcal{X}_{s',i,j}^{\circ} \subset \mathcal{X}_{s',i,j}^{\circ} \subset \mathcal{X}_{s',i,j}^{\circ}$ is étale. As $\mathcal{X} \times_S S' \to \mathcal{X}$ is étale, this implies $\mathcal{Y} \times_S S' \to \mathcal{X}$ is étale hence that $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is étale.

So, after possibly replacing k by a finite $k \subset k' \subset k^{ur}$, we may and will assume $\mathcal{X}_{s,i}$ is geometrically irreducible (viz connected) over κ , $i = 1, \ldots, m$.

Let $\xi_i \in \mathcal{X}_{s,i}$ denote the generic point of $\mathcal{X}_{s,i}$, $i = 1, \dots m$. As \mathcal{X} is regular, it follows from Zariski-Nagata purity theorem that $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ is étale if (and only if) it is étale at ξ_i , $i = 1, \ldots, m$. As \mathcal{Y} is normal, it is regular in codimension 1 hence the non-regular locus $\mathcal{Y}^{\text{n-reg}} \subset \mathcal{Y}$ is a closed subset of codimension ≥ 2 in \mathcal{Y} . As $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ is finite, $\mathcal{Z}:=\psi_{\mathcal{X}}(\mathcal{Y}^{\text{n-reg}}) \subset \mathcal{X}$ is also closed of codimension ≥ 2 in \mathcal{X} . On the other hand, for every i = 1, ..., m, as $\mathcal{X} \to S$ is smooth, $\mathcal{X}_{s,i} \subset \mathcal{X}$ is closed of codimension 1 in \mathcal{X} hence $\mathcal{Z}_{s,i} := \mathcal{Z} \cap \mathcal{X}_{s,i} \subset \mathcal{X}_{s,i}$ is closed of codimension ≥ 1 and $\mathcal{X}_{s,i}^o := \mathcal{X}_{s,i} \setminus \mathcal{Z}_{s,i} \subset \mathcal{X}_{s,i}$ is a non-empty open subscheme; in particular, $\xi_i \in \mathcal{X}_{s,i}^o$. So, setting $\mathcal{X}^o := \mathcal{X} \setminus \mathcal{Z}$, it is enough to prove that $\mathcal{Y} \times_{\mathcal{X}} \mathcal{X}^o \to \mathcal{X}^o$ is étale at ξ_i , i = 1, ..., m. So, up to replacing $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ with $\mathcal{Y} \times_{\mathcal{X}} \mathcal{X}^o \to \mathcal{X}^o$, we may and will assume \mathcal{Y} is also regular. Fix $u_i \in \mathcal{X}_{s,i}$, $i = 1, \dots, m$. Up to replacing further $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ by its base-change along $\operatorname{spec}(\mathcal{O}') \to S$ for some finite $\mathcal{O} \subset \mathcal{O}' \subset \mathcal{O}^{\operatorname{ur}}$ we may and will assume that $\kappa(v) = \kappa$ for every $v \in \mathcal{Y}_{u_i}$ (in particular, $\kappa(u_i) = \kappa$). We argue by contradiction. Assume the subset $\mathcal{Y}^{\text{n-et}} \subset \mathcal{Y}$ of all $y \in \mathcal{Y}$ such that $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ is non-étale at y is non-empty. Then, again by Zariski-Nagata purity theorem, $\mathcal{Y}^{\text{n-et}} \subset \mathcal{Y}$ is closed and pure of codimension 1 in \mathcal{Y} . Fix a generic point $\xi \in \mathcal{Y}^{\text{n-et}}$. As $\psi : Y \to X = \mathcal{X}_{\eta}$ is étale, ξ necessarily lies over one of the ξ_i , $i=1,\ldots,m$ - say ξ_i . But as $\psi_{\mathcal{X}}:\mathcal{Y}\to\mathcal{X}$ is finite, $\psi_{\mathcal{X}}(\mathcal{Y}^{\text{n-et}})\subset\mathcal{X}$ is closed in \mathcal{X} hence contains $\mathcal{X}_{s,i}$. For simplicity, write $u := u_i \in \mathcal{X}_{s,i}$ and fix $v \in (\mathcal{Y}^{\text{n-et}})_u$. By Lemma 17 (v) \Rightarrow (ii) applied to $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$, the canonical morphism $\psi_{\mathcal{X}}^{\#}: \mathfrak{m}_u/\mathfrak{m}_u^2 \otimes_{\kappa(u)} \kappa(v) \to \mathfrak{m}_v/\mathfrak{m}_v^2$ induced by $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ at the level of cotangent spaces is not injective. Recall that, from our preliminary reduction $\kappa = \kappa(u) = \kappa(v)$. Fix $0 \neq a \in \ker(\mathfrak{m}_u/\mathfrak{m}_u^2 \to \mathfrak{m}_v/\mathfrak{m}_v^2)$. The idea is to construct a $\tilde{x} \in \mathcal{X}(\mathcal{O})_u$ such that the resulting morphism of cotangent spaces $\tilde{x}^{\#}: \mathfrak{m}_{u}/\mathfrak{m}_{u}^{2} \to \mathfrak{m}/\mathfrak{m}^{2}$ satisfies $\tilde{x}^{\#}(a) \neq 0$. Assume such a $\tilde{x} \in \mathcal{X}(\mathcal{O})_u$ exists and let $x \in]u[^{\mathrm{ur}}$ denote its image in |X|. By (U-4), the normalization $\tilde{Y}_x \to S$ of S in $Y_x \to \operatorname{spec}(k) \to S$ is étale. Actually, $Y_x = \operatorname{spec}(k_{x,1} \times \cdots \times k_{x,t})$ with $k \hookrightarrow k_{x,j}$ a finite unramified extension,

 $j=1,\ldots,t$ and $\widetilde{Y}_x=\operatorname{spec}(\mathcal{O}_{x,1}\times\cdots\times\mathcal{O}_{x,t})$, where $\mathcal{O}_{x,j}\subset\mathcal{O}^{\operatorname{ur}}$ is the valuation ring of $k_{x,j},\ j=1,\ldots,t$. For $j=1,\ldots,t$, write $\widetilde{Y}_{x,j}:=\operatorname{spec}(\mathcal{O}_{x,j})=\{y_j,v_j\}$, where y_j is the generic point and v_j the closed point of $\widetilde{Y}_{x,j}$. As $\widetilde{Y}_x\to S\stackrel{\tilde{x}}{\to}\mathcal{X}$ also coincides with the normalization of \mathcal{X} in $Y_x\to\operatorname{spec}(k)\to S\stackrel{\tilde{x}}{\to}\mathcal{X}$, by the universal property of $\widetilde{Y}_x\to S\stackrel{\tilde{x}}{\to}\mathcal{X}$, one gets a unique factorization

$$(1) Y_{x} \longrightarrow \widetilde{Y}_{x} \longrightarrow \mathcal{Y}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \psi_{x}$$

$$\operatorname{spec}(k) \longrightarrow S \stackrel{\tilde{x}}{\longrightarrow} \mathcal{X}$$

As $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ is integral, by the Going down theorem [Stacks, Tag 00H8], there exists $y \in \mathcal{Y}$ specializing to v and mapping to x. By construction $y \in Y_x$ hence coincides with the generic point of one of the irreducible components - say $\widetilde{Y}_{x,j}$ - of \widetilde{Y}_x . As $\widetilde{Y}_x \to S$ is finite, v_j maps to v. The commutative square

$$\widetilde{Y}_{x,j} \longrightarrow \mathcal{Y} \\
\downarrow \qquad \qquad \downarrow \psi_{\mathcal{X}} \\
S \xrightarrow{\widetilde{x}_i} \mathcal{X}$$

induces a commutative square at the level of cotangent spaces

$$\mathbf{m}_{v_j}/\mathbf{m}_{v_j}^2 \longleftarrow \mathbf{m}_v/\mathbf{m}_v^2$$

$$\uparrow \qquad \qquad \qquad \downarrow \psi_{\mathcal{X}}^{\#}$$

$$\mathbf{m}/\mathbf{m}^2 \longleftarrow \mathbf{m}_u/\mathbf{m}_u^2$$

But as $\widetilde{Y}_x \to S$ is étale, the morphism $\mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{m}_{v_j}/\mathfrak{m}_{v_j}^2$ is injective (by Lemma 17 (ii) \Rightarrow (v)); this contradicts the fact that $\widetilde{x}^{\#}(a) \neq 0$ while $\psi_{\mathcal{X}}^{\#}(a) = 0$.

It remains to construct $\tilde{x} \in \mathcal{X}(\mathcal{O})_u$ such that the resulting morphism of cotangent spaces $\tilde{x}^{\#} : \mathfrak{m}_u/\mathfrak{m}_u^2 \to \mathfrak{m}/\mathfrak{m}^2$ satisfies $\tilde{x}^{\#}(a) \neq 0$. For this, as \mathcal{X} is smooth at u and the residue field of u is κ , $\mathcal{O}[[T_1, \ldots, T_n]] \tilde{\to} \hat{\mathcal{O}}_u$ and, modulo this isomorphism, $\hat{\mathfrak{m}}_u \subset \hat{\mathcal{O}}_u$ identifies with the ideal $\langle \pi, T_1, \ldots, T_n \rangle$, where $\pi \in \mathfrak{m}$ is a uniformizer, $\mathfrak{m}_u/\mathfrak{m}_u^2 \tilde{\to} \kappa \overline{\pi} \oplus \kappa \overline{T}_1 \oplus \cdots \oplus \kappa \overline{T}_n$ and $\mathfrak{m}/\mathfrak{m}^2 \tilde{\to} \kappa \overline{\pi}$. Fix any κ -linear morphism $\overline{f} : \mathfrak{m}_u/\mathfrak{m}_u^2 \to \mathfrak{m}/\mathfrak{m}^2$ such that $\overline{f}(a) \neq 0$ and $\overline{f}(\overline{\pi}) = \overline{\pi}$ (if $p_i : \mathfrak{m}_u/\mathfrak{m}_u^2 \to \mathfrak{m}/\mathfrak{m}^2$ denotes the projection onto the $\overline{\pi}$ th component for i = 0 and the \overline{T}_i th component for $i = 1, \ldots, n$, and $a = a_0 \overline{\pi} + \sum_{1 \leq i \leq n} a_i \overline{T}_i$ then, one can take $\overline{f} = p_0$ if $a_0 \neq 0$ and $\overline{f} = p_0 + p_i$ for some $1 \leq i \leq n$ such that $a_i \neq 0$ if $a_0 = 0$). Let $f(T_1), \ldots, f(T_n) \in \mathfrak{m}$ lifting $\overline{f}(\overline{T}_1), \ldots, \overline{f}(\overline{T}_n) \in \mathfrak{m}/\mathfrak{m}^2$; these define a unique morphism $f^\# : \mathcal{O}[[T_1, \ldots, T_n]] \to \mathcal{O}$ of \mathcal{O} -algebras, and the resulting \mathcal{O} -point

$$\tilde{x}: \operatorname{spec}(\mathcal{O}) \xrightarrow{f} \mathcal{O}[[T_1, \dots, T_n]] \simeq \mathcal{O}_{\mathcal{X}, u} \to \mathcal{X}$$

has the expected property.

Lemma 17. Let $\pi: V \to U$ be a finite surjective morphism between integral normal noetherian schemes. Let $v \in V$ and set $u := \pi(v)$. Let $\kappa(u) \leftarrow \mathcal{O}_u \supset \mathfrak{m}_u$ (resp. $\kappa(v) \leftarrow \mathcal{O}_v \supset \mathfrak{m}_v$) denote the residue field, local ring and maximal ideal of U at u (resp. of V at v). The following conditions are equivalent

- (i) $\pi: V \to U$ is étale at v;
- (ii) $\pi: V \to U$ is unramified at v;
- (iii) the canonical morphism $\mathfrak{m}_u/\tilde{\mathfrak{m}}_u^2 \otimes_{\kappa(u)} \kappa(v) \to \mathfrak{m}_v/\mathfrak{m}_v^2$ is an epimorphism;

Assume furthermore U is regular at u, then these are also equivalent to:

- (iv) the canonical morphism $\mathfrak{m}_u/\mathfrak{m}_u^2 \otimes_{\kappa(u)} \kappa(v) \to \mathfrak{m}_v/\mathfrak{m}_v^2$ is an isomorphism,
- (and imply V is regular at v). Assume furthermore V is regular at v, then these are also equivalent to:
 - (v) the canonical morphism $\mathfrak{m}_u/\mathfrak{m}_u^2 \otimes_{\kappa(u)} \kappa(v) \to \mathfrak{m}_v/\mathfrak{m}_v^2$ is a monomorphism.

(and imply U is regular at u).

Proof. (i) \Rightarrow (ii) is tautological while (ii) \Rightarrow (i) is [G71, Exp. I, Thm. 9.5 (ii)]. (iii) is equivalent to $\mathfrak{m}_u \mathcal{O}_v + \mathfrak{m}_v^2 = \mathfrak{m}_v$ so (ii) \Rightarrow (iii) is tautological while (iii) \Rightarrow (ii) follows from Nakayama's lemma since \mathfrak{m}_v is a finitely generated \mathcal{O}_v -module [Stacks, Tag 07RC (4)]. (iv) \Rightarrow (iii) and (iv) \Rightarrow (v) are tautological. By Nakayama's lemma and Krull's principal ideal, one always has $\dim_{\kappa(u)} \mathfrak{m}_u/\mathfrak{m}_u^2 \geq \dim \mathcal{O}_u$ with equality if and only if U is regular at ut and similarly for V at v. This shows (iii) \Rightarrow (iv) assuming U is regular at v.

4.3. A pointwise criterion for $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ to be tamely ramified along \mathcal{X}_v .

Proposition 18. Let $\psi: Y \to X$ be a Galois cover. There exists a non-empty open subset $\mathcal{X}_{s,i}^o \subset \mathcal{X}_{s,i}$, $i = 1, \ldots, m$ (depending on $Y \xrightarrow{\psi} X \to \mathcal{X}$) such that, for every $u_i \in \mathcal{X}_{s,i}^o$, $i = 1, \ldots, m$, the following conditions are equivalent.

(T-1)
$$\ker(\pi_1(X) \to \pi_1^t(\mathcal{X}; \mathcal{X}_s)) \subset \pi_1(Y);$$

(T-2) $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is (finite) tamely ramified along \mathcal{X}_s ;

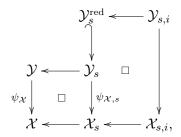
(T-3) $\psi: Y \to X$ is $|X|^{\text{int}}$ -pointwise tame;

(T-4) $\psi: Y \to X$ is $\bigcup_{1 \le i \le m}]u_i[^{\mathsf{t}}\text{-pointwise tame.}]$

Proof. Again, the implications $(T-1) \Rightarrow (T-2) \Rightarrow (T-3) \Rightarrow (T-4)$ and $(T-2) \Rightarrow (T-1)$ are (almost) tautological so we are left to prove $(T-4) \Rightarrow (T-2)$.

Let $\mathcal{X}^o \subset \mathcal{X}$ be an open subscheme such that $\mathcal{X}^o \cap \mathcal{X}_{s,i} \neq \emptyset$, i = 1, ..., m. By definition of tame ramification, $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is tamely ramified along \mathcal{X}_s if (and only) if $\psi_{\mathcal{X}} \times_{\mathcal{X}} \mathcal{X}^o : \mathcal{Y} \times_{\mathcal{X}} \mathcal{X}^o \to \mathcal{X}^o$ is tamely ramified along \mathcal{X}_s^o so that, in proving (T-4) \Rightarrow (T-2), one may freely replace $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ by its base-change along such an open subscheme $\mathcal{X}^o \to \mathcal{X}$.

For i = 1, ..., m, consider the Cartesian diagram



(where $\mathcal{Y}_s^{\text{red}} \hookrightarrow \mathcal{Y}_s$ denotes the reduced closed subscheme) and write

$$\mathcal{Y}_{s,i} = \bigcup_{1 \leq j \leq m_i} \mathcal{Y}_{s,i,j}$$

for the decomposition of $\mathcal{Y}_{s,i}$ into irreducible components. As κ is perfect, the non-regular locus $\mathcal{Y}_{s,i}^{\text{n-reg}} \subsetneq \mathcal{Y}_{s,i}$ is a strict closed subscheme. As $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is finite, $\psi_{\mathcal{X}}(\mathcal{Y}_{s,i}^{\text{n-reg}}) \subsetneq \mathcal{X}_{s,i}$ is again a strict closed subscheme. So that, replacing $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ by its base-change along

$$\mathcal{X}^o := \mathcal{X} \setminus \bigsqcup_{1 \leq i \leq m} \psi_{\mathcal{X}}(\mathcal{Y}_{s,i}^{\operatorname{n-reg}}) \hookrightarrow \mathcal{X},$$

we may and will assume that $\mathcal{Y}_{s,i}$ is regular (viz smooth over κ as κ is perfect), $i=1,\ldots,m$. Actually, later in the argument we will have to ensure this property holds not only for the normalization $\psi_{\mathcal{X}}: \mathcal{Y} \to \mathcal{X}$ of \mathcal{X} in $Y \stackrel{\psi}{\to} X \hookrightarrow \mathcal{X}$ but also for the normalization $\psi_{\mathcal{X}}: \mathcal{Y}' \to \mathcal{X}$ of \mathcal{X} in $Y' \stackrel{\psi'}{\to} X \hookrightarrow \mathcal{X}$ for some intermediate covers $Y \to Y' \stackrel{\psi'}{\to} X$. But as there are only finitely such intermediate covers, we can do so by shrinking \mathcal{X} further (namely removing not only $\bigsqcup_{1 \leq i \leq m} \psi_{\mathcal{X}}(\mathcal{Y}_{s,i}^{\text{n-reg}})$ but the union of all $\bigsqcup_{1 \leq i \leq m'} \psi_{\mathcal{X}}(\mathcal{Y}_{s,i}')$ for $Y \to Y' \stackrel{\psi'}{\to} X$ describing the finitely many intermediate covers of $\psi: Y \to X$).

For a subgroup $H \subset G := \operatorname{Aut}(\psi)$, write $Y_H \to X$ for the corresponding connected étale cover and $\mathcal{Y}_H \to \mathcal{X}$ for the normalization of \mathcal{X} in $Y_H \to X \hookrightarrow \mathcal{X}$. Fix $i = 1, \dots m$, let $\xi := \xi_i \in \mathcal{X}_{s,i}$ denote the generic point of $\mathcal{X}_{s,i}$, $\zeta := \zeta_{i,j} \in \mathcal{Y}_{s,i,j}$ the generic point of $\mathcal{Y}_{s,i,j}$ and write

$$G\supset D:=D_{\zeta/\xi}\supset I:=I_{\zeta/\xi}\supset I^{\mathrm{w}}:=I_{\zeta/\xi}^{\mathrm{w}}\subset 1$$

for the decomposition, inertia and wild inertia groups of ζ/ξ respectively. These yield a commutative diagram

$$Y \longrightarrow Y_{I^{w}} \longrightarrow Y_{I} \longrightarrow Y_{D} \longrightarrow X$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{Y} \longrightarrow \mathcal{Y}_{I^{w}} \longrightarrow \mathcal{Y}_{I} \longrightarrow \mathcal{Y}_{D} \longrightarrow \mathcal{X}.$$

Let $\zeta_{I^{w}}$, ζ_{I} and ζ_{D} denote the image of ζ in $\mathcal{Y}_{I^{w}}$, \mathcal{Y}_{I} and \mathcal{Y}_{D} respectively. By construction, $\operatorname{spec}(\mathcal{O}_{\mathcal{Y}_{D},\zeta_{D}}) \to \operatorname{spec}(\mathcal{O}_{\mathcal{X},\eta})$ and $\operatorname{spec}(\mathcal{O}_{\mathcal{Y}_{I},\zeta_{I}}) \to \operatorname{spec}(\mathcal{O}_{\mathcal{Y}_{D},\zeta_{D}})$ are unramified, $\operatorname{spec}(\mathcal{O}_{\mathcal{Y}_{I^{w}},\zeta_{I^{w}}}) \to \operatorname{spec}(\mathcal{O}_{\mathcal{Y}_{I},\zeta_{I}})$ is tamely ramified and $\operatorname{spec}(\mathcal{O}_{\mathcal{Y},\zeta}) \to \operatorname{spec}(\mathcal{O}_{\mathcal{Y}_{I^{w}},\zeta_{I^{w}}})$ is wildly ramified.

Also, just as in the proof of Proposition 16, it is enough to prove $(T-4) \Rightarrow (T-2)$ after:

- Replacing k by the algebraic closure k_Y of k in the function field of Y. The argument is exactly similar to the one of the proof of Proposition 16, replacing "étale" with "tamely ramified".

In particular, after possibly replacing k by k_Y , we may and will assume Y is geometrically integral over k.

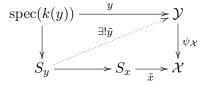
- Base-change along $\operatorname{spec}(k') \to \operatorname{spec}(k)$ for some finite field extension $k \subset k' \subset k^{\operatorname{t}}$. Again, the argument is exactly similar to the one of the proof of Proposition 16, replacing "étale" with "tamely ramified" and $\mathcal{Y} \times_S S'$ with the normalization of $\mathcal{X} \times_S S'$ in $Y \times_k k' \to X \times_k k' \to \mathcal{X} \times_S S'$.

So, after possibly replacing k by a finite $k \subset k' \subset k^{t}$, we may and will assume that $\mathcal{X}_{s,i}$ is geometrically irreducible (viz connected) over κ , $i=1,\ldots,m$ and, by Abhyankar's lemma ([Stacks, Tag 0BRM]), that $\operatorname{spec}(\mathcal{O}_{\mathcal{Y}_{I_{i,j}^{w}},\zeta_{I_{i,j}^{w}}}) \to \operatorname{spec}(\mathcal{O}_{\mathcal{X},\xi_{i}})$ is unramified (in other words, $I_{i,j} = I_{i,j}^{w}$), $j=1,\ldots,m_{i},\ i=1,\ldots,m$.

Recall that we may also assume that $\mathcal{Y}_{s,i}$ is smooth over κ , $i = 1, \ldots, m$.

We now define $\mathcal{X}_{s,i}^{\circ} \subset \mathcal{X}_{s,i}$ as in Proposition 16, $i = 1, \ldots, m$.

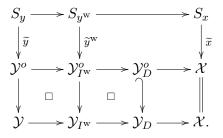
Fix $1 \leq i \leq m$, $u_i \in |\mathcal{X}_{s,i}^{\circ}|$, $x \in]u_i[^t$ and $y \in Y_x$. By definition, $x : \operatorname{spec}(k(x)) \to X$ extends (uniquely as $\mathcal{X} \to S$ is separated) to $\tilde{x} : S_x \to \mathcal{X}$ and, as $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is finite hence proper, $y : \operatorname{spec}(k(y)) \to Y$ extends uniquely as



Then there exists a unique $1 \leq i \leq m$ such that $\tilde{x}_s \in \mathcal{X}_{s,i}$ and a unique (recall that \mathcal{Y}_s is regular) $1 \leq j \leq m_i$ such that $\tilde{y}_s \in \mathcal{Y}_{s,i,j}$. Write $I^{\mathrm{w}} := I^{\mathrm{w}}_{\zeta_{i,j}/\xi_i} (= I_{\zeta_{i,j}/\xi_i})$ and $D := D_{\zeta_{i,j}/\xi_i}$. For H = D, I^{w} and 1, let $\mathcal{Y}^o_{H,s} \subset \mathcal{Y}_{H,s}$ denote the irreducible component of ζ_H and set $\mathcal{Y}^o_H := \mathcal{Y}_H \setminus (\mathcal{Y}_{H,s} \setminus \mathcal{Y}^o_{H,s})$. As $\zeta_{D_{i,j}}$ is inert in $\mathcal{Y}_{I^{\mathrm{w}}_{i,j}} \to \mathcal{Y}_{D_{i,j}}$ and $\zeta_{I^{\mathrm{w}}_{i,j}}$ is totally wildly ramified in $\mathcal{Y} \to \mathcal{Y}_{I^{\mathrm{w}}_{i,j}}$, one actually has a partly Cartesian diagram

$$\begin{array}{cccc}
\mathcal{Y}^o \longrightarrow \mathcal{Y}_{I^{\mathbf{w}}}^o \longrightarrow \mathcal{Y}_D^o \longrightarrow \mathcal{X} \\
\downarrow & \Box & \downarrow & \Box & \parallel \\
\mathcal{Y} \longrightarrow \mathcal{Y}_{I^{\mathbf{w}}} \longrightarrow \mathcal{Y}_D \longrightarrow \mathcal{X}.
\end{array}$$

In particular, $\mathcal{Y}_{I^{\mathrm{w}}}^{o} \to \mathcal{Y}_{D}^{o}$ is an etale cover and $\mathcal{Y}_{D}^{o} \to \mathcal{X}$ is an étale morphism (but *a priori* not finite). Let y^{w} denote the image of y in $Y_{I^{\mathrm{w}}}$ and $\widetilde{y}^{\mathrm{w}}: S_{y^{\mathrm{w}}} = \mathrm{spec}(R_{y^{\mathrm{w}}}) \to \mathcal{Y}_{I^{\mathrm{w}}}^{o}$ the normalization of $\mathcal{Y}_{I^{\mathrm{w}}}^{o}$ in $\mathrm{spec}(k(y^{\mathrm{w}})) \xrightarrow{y^{\mathrm{w}}} Y_{I^{\mathrm{w}}} \to \mathcal{Y}_{I^{\mathrm{w}}}^{o}$ so that one has a commutative diagram



As $\mathcal{Y}_{I^{w}}^{o} \to \mathcal{X}$ is étale, $S_{y^{w}} \to S_{x}$ is unramified while as $Y \to Y_{I^{w}}$ is Galois with group I^{w} of order a power of p, the ramification index of $S_{y} \to S_{y^{w}}$ is a power of p. On the other hand, as $x \in]u_{i}[^{t}$, by (T-4), $S_{y} \to S_{x}$ (hence a fortiori $S_{y} \to S_{y^{w}}$) is at most tamely ramified. This forces $S_{y} \to S_{x}$ to be unramified and proves that $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is $]u_{i}[^{t}$ -pointwise unramified (hence a fortiori $]u_{i}[^{ur}$ -pointwise unramified). By Proposition 16 (U-4) \Rightarrow (U-2), $\psi_{\mathcal{X}} : \mathcal{Y} \to \mathcal{X}$ is an étale cover.

4.4. **Proof of Theorem 12.** The only non-obvious implications are b) \Rightarrow a). Consider Assertion (1). By definition, if b) holds then, for every normal open subgroup $U \subset \Pi_p$ the corresponding Galois cover $X_U \to X$ is $|X|^{\text{int}}$ -pointwise unramified. By Proposition 16 (U-3) \Rightarrow (U-1), the morphism $\pi_1(X,\bar{x}) \to \Pi_p/U$ then factors through $\pi_1(X,\bar{x}) \to \pi_1(X,\bar{x})$. One concludes by passing to the limit on U. This proves (1). The proof of (2) is exactly similar using Proposition 18 (T-3) \Rightarrow (T-1).

5. APPLICATIONS TO CONJECTURE A (T) AND CONJECTURE A (C)

Let k be a number field and let X be a smooth, geometrically connected variety over k.

5.1. **AEU** \mathbb{Q}_p -local systems. Generalizing the definition of an AEU \mathbb{Q}_p -local system on $X = x = \operatorname{spec}(k)$ in Paragraph 1.2.1.1, say that a \mathbb{Q}_ℓ -local \mathcal{V}_ℓ on X is AEU if there exists a smooth model $\mathcal{X} \to U$ of X over a non-empty open subscheme $U \subset \operatorname{spec}(\mathcal{O}_k)$ such that \mathcal{V}_ℓ extends to a \mathbb{Q}_ℓ -local system on \mathcal{X} . Note that, if $\mathcal{X}_i \to U_i$, i = 1, 2 are two smooth models of X then there exists a non-empty open subscheme $U \subset U_1 \cap U_2$ such that $\mathcal{X}_1 \times_{U_1} U \tilde{\to} \mathcal{X}_2 \times_{U_2} U$ as U-schemes. In particular, \mathcal{V}_ℓ is AEU if and only if for every smooth model $\mathcal{X} \to U$ of X over a non-empty open subscheme $U \subset \operatorname{spec}(\mathcal{O}_k)$, there exists a non-empty open subscheme $U' \subset U$ such that \mathcal{V}_ℓ extends to a \mathbb{Q}_ℓ -local system on $\mathcal{X} \times_U U'$.

The property of being pointwise AEU is also rigid.

Fact 19. ([LiZ17, Prop. 4.1], [P23, Prop. 6.1]) Let V_{ℓ} be a \mathbb{Q}_{ℓ} -local system on X. Consider the following properties (i) V_{ℓ} is AEU;

- (ii) for every $x \in |X|$, $x^*\mathcal{V}_{\ell}$ is AEU;
- (iii) there exists $x \in |X|$ such that $x^*\mathcal{V}_{\ell}$ is AEU.

Then $(i) \Rightarrow (ii) \Leftrightarrow (iii)$ and, if \mathcal{V}_{ℓ} is semisimple, then $(iii) \Rightarrow (i)$.

- 5.2. Comparing $|X|_{\mathcal{V}_{\ell}}^{\text{triv}}$, $|X|_{\mathcal{V}_{\ell}}^{\text{uni}}$, $|X|_{\mathcal{V}_{\ell}}^{\text{cent}}$.
- 5.2.1. We begin with the following consequence of local class field theory and Sen's theorem.

Proposition 20. Let k be a number field. Let ℓ be a prime and \mathcal{V}_{ℓ} a \mathbb{Q}_{ℓ} -local system on $x = X = \operatorname{spec}(k)$. Assume $x_v^*\mathcal{V}_{\ell}$ is Hodge-Tate for every finite place v of k above ℓ . Then $(G_{\ell}^{\circ})^{\operatorname{ab}}$ is reductive.

Proof. Fix a geometric point \bar{x} over x. Write $V_\ell := \mathcal{V}_{\ell,\bar{x}}$ and let $\rho_\ell : \pi_1(x) = \pi_1(k) \to G_\ell(\mathbb{Q}_\ell) \subset \operatorname{GL}(V_\ell)$ denote the continuous representation corresponding to \mathcal{V}_ℓ . After possibly replacing k by a finite field extension one may assume $G_\ell = G_\ell^\circ$. Fix a Levi subgroup $L_\ell \subset G_\ell$ and let $N_\ell \subset G_\ell$ denote the smallest normal algebraic subgroup of G_ℓ containing L_ℓ . If $G_\ell^{\operatorname{ab}}$ is not reductive, then $N_\ell \subseteq G_\ell$. By Lemma 21 below, there exists a G_ℓ -subrepresentation $W_\ell \subset T(V_\ell)$ such that $N_\ell = \ker(G_\ell \to \operatorname{GL}_{W_\ell})$. By construction, the non-trivial unipotent group G_ℓ/N_ℓ acts faithfully on W_ℓ . Let \mathcal{W}_ℓ denote the \mathbb{Q}_ℓ -local system on x corresponding to W_ℓ viewed as a $\pi_1(k)$ -representation via $\pi_1(k) \to G_\ell(\mathbb{Q}_\ell) \to (G_\ell/N_\ell)(\mathbb{Q}_\ell)$. Then, as \mathcal{W}_ℓ lies in the Tannakian category generated by \mathcal{V}_ℓ , $x_v^*\mathcal{W}_\ell$ is Hodge-Tate for every finite place $v|\ell$ of k. As a result, it is enough to prove that if G_ℓ is unipotent, then it is trivial. If G_ℓ is unipotent non-trivial then there exists a surjective morphism $p: G_\ell \to \mathbb{G}_{a,\mathbb{Q}_\ell}$ and a factorization

$$\pi_1(x) = \pi_1(k) \xrightarrow{\rho_{\ell}} G_{\ell}(\mathbb{Q}_{\ell}) \xrightarrow{p} \mathbb{G}_{a,\mathbb{Q}_{\ell}}(\mathbb{Q}_{\ell}) \simeq \mathbb{Q}_{\ell}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

such that $\operatorname{im}(\rho_\ell^{\operatorname{ab}}) \simeq \mathbb{Z}_\ell$. As \mathbb{Z}_ℓ is torsion-free and as $\mathcal{O}_v^\times \simeq \mathbb{Z}_p^{\oplus r} \times (\mathcal{O}_v^\times)_{\operatorname{tor}}$ for every prime $p \neq \ell$ and finite place v of k above p, it follows from local class field theory that $\rho_\ell^{\operatorname{ab}} : \pi_1(k)^{\operatorname{ab}} \twoheadrightarrow \mathbb{Z}_\ell$ factors through $\pi_1(\mathcal{O}_k[\frac{1}{\ell}])^{\operatorname{ab}} \twoheadrightarrow \mathbb{Z}_\ell$. On the other hand, for every finite place v of k above ℓ , $x_v^*\mathcal{V}_\ell$ is unipotent, so that it has a single Hodge-Tate weight, which is 0; equivalently (see equivalence (1) in Paragraph 3.1.2), it is potentially unramified. In particular, for every finite place v of k above ℓ , $\rho_\ell^{\operatorname{ab}}|_{\pi_1(k_v)^{\operatorname{ab}}} : \pi_1(k_v)^{\operatorname{ab}} \twoheadrightarrow \mathbb{Z}_\ell$ is potentially

unramified - hence unramified since \mathbb{Z}_{ℓ} is torsion-free This proves that $\rho_{\ell}^{ab}: \pi_1(k)^{ab} \twoheadrightarrow \mathbb{Z}_{\ell}$ actually factors through $\pi_1(\mathcal{O}_k)^{ab} \twoheadrightarrow \mathbb{Z}_{\ell}$, which contradicts the finiteness of $\pi_1(\mathcal{O}_k)^{ab}$.

Lemma 21. Let Q be a field of characteristic 0, V a finite dimensional Q-vector space and $N \subset G \subset \operatorname{GL}_V$ algebraic subgroups with N normal in G. Then there exists a G-subrepresentation

$$W_N \subset T(V) := \bigoplus_{m,n} V^{\otimes m} \otimes V^{\vee \otimes n}$$

such that $N = \ker(G \to \operatorname{GL}_{W_N})$.

Proof. By [D82, Prop. 3.1 (a), (b)], there exists a GL_V -subrepresentation $V_1 \subset T(V)$ such that N is the stabilizer of a line $L_1 \subset V_1$; let $L_1 \subset V_2 \subset V_1$ denote the smallest G-subrepresentation containing L_1 and let $N_2 \subset G_2 \subset GL_{V_2}$ denote the image of N and G acting on V_2 respectively. By construction N_2 is contained in a split torus of GL_{V_2} - hence is reductive. By [D82, Prop. 3.1 (a), (c)], there exists a GL_{V_2} -subrepresentation $V_3 \subset T(V_2)(\subset T(V_1) \subset T(V))$ and a finite subset $A \subset V_3$ such that N_2 is the algebraic subgroup of GL_{V_2} fixing the elements in A. Let $A \subset V_4 \subset V_3$ denote the smallest G_2 -subrepresentation containing A. By construction, $N_2 = \ker(G_2 \to GL_{V_4})$ hence one can take $W_N := V_4$.

Remark 22. Using Lemma 21, one immediately sees that Conjecture A (T) is also equivalent to the characterization of the degeneracy locus of \mathcal{V}_{ℓ} given in Subsection 1.1.1 (1).

Corollary 23. Let k be a number field and X a smooth, geometrically connected variety over k. Let \mathcal{V}_{ℓ} be a \mathbb{Q}_{ℓ} -local system on X such that $x_v^*\mathcal{V}_{\ell}$ is Hodge-Tate for some $x \in |X|$ and every finite place v of k(x) above ℓ . Then $|X|_{\mathcal{V}_{\ell}}^{\text{triv}}| = |X|_{\mathcal{V}_{\ell}}^{\text{uni}}|$.

Proof. From Fact 10 (1), for every $x \in |X|$ and every finite place v of k(x) above ℓ , $x_v^* \mathcal{V}_\ell$ is Hodge-Tate. The assertion thus follows from Proposition 20.

Corollary 23 applies in particular the case if $\mathcal{V}_{\ell,\overline{\mathbb{Q}}_{\ell}}$ is simple [P23, Cor. 5.3] (observing that the condition $|X|_{\mathcal{V}_{\epsilon}}^{\text{triv}} \neq \emptyset$ forces the character χ appearing in [P23, Cor. 5.3] to be finite).

5.2.2. Proof of Proposition 1 and Theorem 4 (1). Let k be a number field and let X be a smooth, geometrically connected variety over k.

5.2.2.1. A construction. We begin by recalling the following construction, which is introduced in the proof of [P23, Thm. 8.1], where it is attributed to Beilinson.

Construction 24. Assume $X(k) \neq \emptyset$ and fix $x \in X(k)$, which we regard as a section of the structural morphism $s_X : X \to \operatorname{spec}(k)$. Let \mathcal{V}_{ℓ} be a \mathbb{Q}_{ℓ} -local system on X and let

$$A_x(\mathcal{V}_\ell) \subset E_x(\mathcal{V}_\ell) := \mathcal{V}_\ell^\vee \otimes s_X^*(x^*\mathcal{V}_\ell)$$

denote the minimal sub-local system $\mathcal{S}_{\ell} \subset E_x(\mathcal{V}_{\ell})$ such that $\mathcal{S}_{\ell,\bar{x}}$ contains $Id_{\mathcal{V}_{\ell,\bar{x}}}$; explicitly, it corresponds to the $\pi_1(X,\bar{x})$ -subrepresentation

$$A_x(\mathcal{V}_\ell)_{\bar{x}} = \mathbb{Q}_\ell[\overline{\Pi}_\ell] \subset E_x(\mathcal{V}_\ell)_{\bar{x}} = \operatorname{End}_{\mathbb{Q}_\ell}(\mathcal{V}_{\ell,\bar{x}}).$$

Note that, by definition, $E_x(\mathcal{V}_\ell)_{\bar{x}}$ is $E_x(\mathcal{V}_\ell)_{\bar{x}} \simeq \operatorname{End}_{\mathbb{Q}_\ell}(\mathcal{V}_{\ell,\bar{x}})$ equipped with the action

$$\pi \cdot f = (xs_X)(\pi) \cdot f \cdot \pi^{-1}, \quad \pi \in \pi_1(X, \bar{x}), \quad f \in E_x(\mathcal{V}_\ell)_{\bar{x}}.$$

In particular, one has

- a canonical quotient morphism $A_x(\mathcal{V}_\ell) \otimes s_X^*(x^*\mathcal{V}_\ell)^{\vee} \twoheadrightarrow \mathcal{V}_\ell^{\vee}$ (sending $g \otimes \phi$ to the linear form $a \mapsto \phi(g(a))$);
- If $\overline{G}_{\ell}^{\circ} = \overline{G}_{\ell}$, then $x \in |X|_{\mathcal{V}_{\ell}}^{\text{cent}}$ if and only if $x \in |X|_{A_{x}(\mathcal{V}_{\ell})}^{\text{triv}}$.

Fact 25. ([P23, Prop. 8.2]) For every finite place v of k above ℓ , the \mathbb{Q}_{ℓ} -local system $A_x(\mathcal{V}_{\ell})|_{X_{k_v}}$ is de Rham.

5.2.2.2. Proof of Proposition 1. Proposition 1 (1) is a special case of Corollary 23 as every $x \in |X|_{\mathcal{V}_{\ell}}^{\text{triv}}$ satisfies the assumption of Corollary 23.

For Proposition 1 (2), if $|X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} = \emptyset$ there is nothing to prove. Otherwise, one may replace k by a finite field extension hence assume $|X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} \cap X(k) \neq \emptyset$ and X by a connected étale cover hence assume $\overline{G}_{\ell}^{\circ} = \overline{G}_{\ell}$. Let $x \in |X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} \cap X(k)$. With the notation of Construction 24, $x \in |X|_{E_{x}(\mathcal{V}_{\ell})}^{\mathrm{uni}} \subset |X|_{A_{x}(\mathcal{V}_{\ell})}^{\mathrm{uni}}$. But then, from Fact 25 and Corollary 23,

$$|X|_{A_x(\mathcal{V}_\ell)}^{\text{triv}} = |X|_{A_x(\mathcal{V}_\ell)}^{\text{uni}},$$

so that the conclusion follows from the fact that $x \in |X|_{\mathcal{V}_{\ell}}^{\text{cent}}$ if and only if $x \in |X|_{A_{x}(\mathcal{V}_{\ell})}^{\text{triv}}$.

5.2.2.3. Proof of Theorem 4 (1). The first part of Theorem 4 (1) follows from the fact that one can also describe $|X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}}$ as

$$|X|^{\mathrm{uni}}_{\mathcal{V}_\ell} := \{x \in |X| \mid \mathrm{rank}(G_{\ell,x}^\circ) = 0\},$$

and that $\operatorname{rank}(G_{\ell,x}^{\circ})$ is independent of $\ell \in |\operatorname{spec}(\mathbb{Z})|$ [Ser81, §3]. For the second part of Theorem 4 (1), by definition of \mathbb{Q} -compatibility, for every $x \in |X|$ there exists a non-empty open subset $U_x \subset |\operatorname{spec}(\mathcal{O}_{k(x)})|$ such that for every prime ℓ and finite place $v \in U_x$ above ℓ , $x_v^* \mathcal{V}_{\ell}$ is crystalline - hence Hodge-Tate. Fix $x_0 \in |X|$; up to replacing k with a finite field extension, one may assume $k(x_0) = k$. For primes $\ell \gg 0$, U_{x_0} contains all the finite places of k above ℓ so that, by assumption, for every finite place v of k above ℓ , $x_{0,v}^* \mathcal{V}_{\ell}$ is Hodge-Tate and the conclusion follows from Corollary 23.

5.2.2.4. Construction 24 can also be used to prove the following.

Corollary 26. Conjecture $A(T) \Rightarrow Conjecture A(C)$.

Proof. Let \mathcal{V}_{ℓ} be a \mathbb{Q}_{ℓ} -local system on X such that $|X|_{\mathcal{V}_{\ell}}^{\operatorname{cent}} \neq \emptyset$. One may replace k by a finite field extension hence assume $|X|_{\mathcal{V}_{\ell}}^{\operatorname{cent}} \cap X(k) \neq \emptyset$ and X by a connected étale cover hence assume $\overline{G}_{\ell}^{\circ} = \overline{G}_{\ell}$. Let $x \in |X|_{\mathcal{V}_{\ell}}^{\operatorname{cent}} \cap X(k)$. Then $x \in |X|_{A_{x}(\mathcal{V}_{\ell})}^{\operatorname{triv}}$. In particular, $|X|_{A_{x}(\mathcal{V}_{\ell})}^{\operatorname{triv}} \neq \emptyset$ so that by Conjecture A (T) for $A_{x}(\mathcal{V}_{\ell})$, the étale fundamental group $\pi_{1}(X)$ - hence a fortiori $\pi_{1}(X_{\overline{k}})$, acts on $A_{x}(\mathcal{V}_{\ell})_{\overline{x}} = \mathbb{Q}_{\ell}[\overline{\Pi}_{\ell}]$ through a finite quotient. But this means in particular that the orbit $\overline{\Pi}_{\ell} \simeq \overline{\Pi}_{\ell} \cdot Id$ is finite.

5.3. **Proof of Theorem 4 (2).** It is enough to prove that $|X|_{\underline{\mathcal{V}}}^{\mathrm{uni}} = |X|$. Indeed, from Theorem 4 (1) this implies $|X|_{\mathcal{V}_{\ell}}^{\mathrm{triv}} = |X|$ for primes $\ell \gg 0$. By Fact 2, the condition $|X|_{\mathcal{V}_{\ell}}^{\mathrm{uni}} (=|X|_{\underline{\mathcal{V}}}^{\mathrm{uni}}) = |X|$ implies G_{ℓ}° is unipotent while the condition $|X|_{\mathcal{V}_{\ell}}^{\mathrm{triv}} = |X|$ implies $G_{\ell}^{\circ} = 1$.

As the assumptions of Theorem 4 and the property $|X|_{\underline{\mathcal{V}}}^{\mathrm{uni}} = |X|$ are invariant under base-change, one may freely replace X by a connected étale cover hence assume that $\mathrm{Lev}_1(\mathcal{V}_{\ell_0})$ holds for at least one prime ℓ_0 , which implies the following. For every $x \in |X|$, and finite place v of $U'_{x^*\underline{\mathcal{V}}}$ above a prime $\ell \neq \ell_0$, the subgroup $\Xi_{xv} \subset \overline{\mathbb{Q}}^{\times}$ generated by the roots of $\chi_{xv} (= \chi_{xv}, \mathcal{V}_{\ell} = \chi_{xv}, \mathcal{V}_{\ell_0})$ is torsion-free.

For every $x \in |X|$, let $(x^*\mathcal{V}_\ell)^{\mathrm{ss}}$ denote the semisimplification of $x^*\mathcal{V}_\ell$. To prove that $x \in |X|_{\underline{\mathcal{V}}}^{\mathrm{uni}}$ it is enough to prove that $(x^*\mathcal{V}_\ell)^{\mathrm{ss}}$ is trivial. By the Cebotarev density theorem, to prove that $(x^*\mathcal{V}_\ell)^{\mathrm{ss}}$ is trivial it is enough to prove that for all $v \in |U'_{x^*\underline{\mathcal{V}}}|$, χ_{x_v} is a power of T-1. From our preliminary reduction, this is equivalent to proving that the roots of χ_{x_v} are all roots of unity, viz that

i)
$$w = 0$$
; ii) $\chi_{x_v} \in \mathbb{Q}[T]$; iii) $\chi_{x_v} \in \mathbb{Z}_{\ell}[T]$, $\ell \neq p$; iv) $\chi_{x_v} \in \mathbb{Z}_p[T]$.

Property i) follows from the assumption that $|X|_{\mathcal{V}}^{\mathrm{uni}} \neq \emptyset$, and Properties ii), iii) from the \mathbb{Q} -compatibility assumption. It remains to prove Property iv). Fix $x_0 \in |X|_{\mathcal{V}_\ell}^{\mathrm{uni}}$ and let $x \in |X|$ arbitrary. Property iv) is equivalent to saying that the roots $\alpha_1, \ldots, \alpha_r$ of χ_{x_v} in $\overline{\mathbb{Q}}$ are integral over \mathbb{Z}_p . As for every integer $n \geq 1$, the ring $\mathbb{Z}_p[\alpha_1, \ldots, \alpha_r]$ is integral over $\mathbb{Z}_p[\alpha_1^n, \ldots, \alpha_r^n]$, one may freely replace k by a finite field extension. In particular, one may assume $k(x) = k = k(x_0)$. For primes $p \gg 0$, $U'_{x_0^*\mathcal{V}}$ and $U'_{x^*\mathcal{V}}$ both contain all finite places of k above p. Fix such a prime p. Up to replacing further X by a connected étale cover one may assume $\text{Lev}_2(\mathcal{V}_p)$ holds. Let v be a finite place of k above p (so that $v \in |U'_{x_0^*\mathcal{V}}| \cap |U'_{x^*\mathcal{V}}|$). By assumption $x_{0,v}^*\mathcal{V}_p$ is both crystalline (hence Hodge-Tate) and unipotent. Thus, from Corollary 11, $x_v^*\mathcal{V}_p$ is unramified and $\chi_{x_v} = \chi_{x_v,x^*\mathcal{V}_p}$ is in $\mathbb{Z}_p[T]$. This concludes the proof of Theorem 4.

5.4. Relation to the unramified Fontaine-Mazur conjecture. Let k be a number field. Assume X admits a smooth model $\mathcal{X} \to U$ over a non-empty open subscheme $U \subset \operatorname{spec}(\mathcal{O}_k)$. The following is a consequence of Theorem 12 (1).

Corollary 27. Let V_p be a \mathbb{Q}_p -local system on $\mathcal{X}[\frac{1}{p}]$. Assume that either $\text{Lev}_2(V_p)$ holds or that, for every finite place v of k above p, one has

$$\operatorname{im}(\mathcal{X}(\overline{\mathcal{O}}_v) \to |X_{k_v}|) \subset |X_{k_v}|_{\mathcal{V}_p}^{\operatorname{cris}}.$$

Then, if $|X|_{\mathcal{V}_p}^{\mathrm{triv}} \neq \emptyset$ the \mathbb{Q}_p -local system \mathcal{V}_p on $\mathcal{X}[\frac{1}{p}]$ extends to a \mathbb{Q}_p -local system on the whole \mathcal{X} .

Let $f: Y \to X$ be a smooth proper morphism. Then for $p \gg 0$ depending only on f, every subquotient \mathcal{V}_p of $R^i f_* \mathbb{Q}_p(j)$ satisfies the condition $\operatorname{im}(\mathcal{X}(\overline{\mathcal{O}}_v) \to |X_{k_v}|) \subset |X_{k_v}|_{\mathcal{V}_p}^{\operatorname{cris}}$ in Corollary 27.

Proof. Let v be a finite place of k above p. If $|X|_{\mathcal{V}_p}^{\mathrm{triv}} \neq \emptyset$, it follows from Corollary 11 that for every $x \in |X_{k_v}|$, $x_v^* \mathcal{V}_p|_{X_{k_v}}$ is potentially unramified; under our assumptions this implies that for every $x \in \mathrm{im}(\mathcal{X}(\overline{\mathcal{O}}_v) \to |X_{k_v}|)$, $x^* \mathcal{V}_p$ is unramified. From theorem 12 (1), the \mathbb{Q}_p -local system $\mathcal{V}_p|_{X_{k_v}}$ extends to a \mathbb{Q}_p -local system on $\mathcal{X}_{\mathcal{O}_v}$, namely the corresponding representation of $\pi_1(X_{k_v})$ on $V_p := \mathcal{V}_{p,\bar{x}}$ factors through $\pi_1(X_{k_v}) \twoheadrightarrow \pi_1(\mathcal{X}_{\mathcal{O}_v})$. In particular, the inertia group of the generic point of each connected component of \mathcal{X}_v acts trivially on V_p . By Zariski-Nagata purity, this implies \mathcal{V}_p extends to a \mathbb{Q}_p -local system on $\mathcal{X} \times_U (U[\frac{1}{p}] \cup \{v\})$.

In particular, for \mathbb{Q}_p -local system as in Corollary 27, Conjecture A (T) should follow from the following higher-dimensional generalization of Conjecture B.

Conjecture B'. (Variational unramified Fontaine-Mazur) Let p be a prime such that 4 U contains all finite places of k above p. Then every \mathbb{Q}_p -local system on \mathcal{X} is finite.

Corollary 28. (1) Conjecture B implies Conjecture A (T).

(2) Let p be a prime such that U contains all finite places of k above p and let \mathcal{V}_p be a \mathbb{Q}_p -local system on \mathcal{X} . Then Conjecture B implies that $|X|_{\mathcal{V}_p}^{\mathrm{triv}} \neq \emptyset$.

In particular, Conjecture B and Conjecture B' are equivalent. But because of its geometric features, one may hope Conjecture B' for X of dimension ≥ 1 to be more tractable.

- Proof. (1) From the discussion following the statement of Conjecture A, it it enough to prove that Conjecture B implies i) \Rightarrow ii) in Conjecture A (T). Up to replacing X by a connected étale cover and k by a finite field extension, one may assume Lev₂(\mathcal{V}_{ℓ}) holds. We retain the notation and assumptions of Conjecture A (T). If $|X|_{\mathcal{V}_{\ell}}^{\text{triv}}| = \emptyset$, there is nothing to prove. Otherwise, from Fact 19 and from Corollary 11, for every $x \in |X|$, $x^*\mathcal{V}_{\ell}$ is AEU and for every place v of k(x) above ℓ , $x_v^*\mathcal{V}_{\ell}$ is potentially unramified hence unramified by Lev₂(\mathcal{V}_{ℓ}). But then, by Conjecture B, $x \in |X|_{\mathcal{V}_{\ell}}^{\text{triv}}$.
- (2) For every finite place v of k above p the subset $\mathcal{X}(\mathcal{O}_v) \subset X(k_v)$ is a non-empty⁴ open subset so that it follows from a classical Corollary of [MB89, Thm. 1.3] see e.g. [Co06, Cor. 1.5], that there exists a finite field extension k'/k, with U_p totally split in k', and $x' \in X(k')$ such that for every finite place v of k above p and finite place v' of k' above v, $x'_{v'} \in \mathcal{X}(\mathcal{O}_v)$. In other words, there exists a non-empty open subscheme $U'_x \subset U' := U \times_{\mathcal{O}_k} \mathcal{O}_{k'}$ containing all the finite places of k' above p such that $x' \in \mathcal{X}(U'_x)$. But then, Conjecture B imposes that $x'^*\mathcal{V}_p$ is finite that it $x' \in |X|_{\mathcal{V}_p}^{\text{triv}}$.
- 5.5. **Proof of Theorem 6.** The implications (i) \Rightarrow (ii) \Rightarrow (iii)' are straightforward. To prove (iii)' \Rightarrow (i), it is enough to prove that (iii)' implies $\mathcal{V}_{\ell}|_{X_{\bar{k}}}$ is finite. By invariance of étale fundamental group under extensions of algebraically closed field in characteristic 0, it is enough to show that for some finite place v of k, (iii)' $\Rightarrow \mathcal{V}_{\ell}|_{X_{\bar{k}_v}}$ is finite. This follows from the purely local Theorem 29 below.

Let k be a p-adic field with ring of integers and residue field $k \supset \mathcal{O}_k \twoheadrightarrow \kappa$; let v denote the closed point of $\operatorname{spec}(\mathcal{O}_k)$. Let $\mathbb{Q}_p \subset k_0 \subset k$ be the maximal unramified extension of \mathbb{Q}_p contained in k and $\sigma: k_0 \widetilde{\to} k_0$ its arithmetic Frobenius. Let X be a smooth, geometrically connected variety over k admitting a smooth NCC model $\mathcal{X} \hookrightarrow \mathcal{X}^{\operatorname{cpt}} \to \operatorname{spec}(\mathcal{O}_k)$ over $\operatorname{spec}(\mathcal{O}_k)$. Let

$$sp_v: |\mathcal{X}^{\text{cpt}}| \to |\mathcal{X}^{\text{cpt}}_v|$$

denote the specialization map.

Theorem 29. Assume X is a curve. Let \mathcal{V}_p be a \mathbb{Q}_p local system on X. Assume one of the following holds:

- a) $\mathcal{X} = \mathcal{X}^{\text{cpt}}$ and \mathcal{V}_p is crystalline;
- b) V_p is Hodge-Tate and $Lev_4(V_p)$ holds (e.g. $p > rank_{\mathbb{Q}_p}(V_p) + 1$).

Then there exists a 0-dimensional Zariski-closed subset $\mathcal{Z}_v \subset \mathcal{X}_v^{\mathrm{cpt}}$ such that

(i)
$$G_p^{\circ}$$
 is unipotent;
 \Leftrightarrow (ii) $|X|_{\mathcal{V}_p}^{\mathrm{uni}} = |X|$;
 \Leftrightarrow (iii)' $|X|_{\mathcal{V}_p}^{\mathrm{uni}} \not\subset sp_v^{-1}(|\mathcal{Z}_v|)$.

⁴Recall that, by definition of a smooth model, $\mathcal{X} \to U$ is surjective.

Before proving Theorem 29, we recall some facts about F-isocrystals. Let $\operatorname{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$, $\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$ denote respectively the categories of convergent and overconvergent F-isocrystals on $\mathcal{X}_v/\mathcal{O}_k$ with scalar extended from k to $\overline{\mathbb{Q}}_p$ [A18, 1.4, 2.14 et seq.]. From [Ke04, Thm. 1.1], there is a fully faithful⁵ exact \otimes -functor

$$\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p) \to \operatorname{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p).$$

Let

$$\operatorname{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)^0 \subset \operatorname{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$$

denote the full subcategory of unit-root (viz isoclinic of slope 0) convergent F-isocrystals on $\mathcal{X}_v/\mathcal{O}_k$ and

$$\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)^0 \subset \operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v//\overline{\mathbb{Q}}_p)$$

the full subcategory of unit-root overconvergent ones viz of those objects in $\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$ whose image in $\operatorname{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$ lies in $\operatorname{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)^0$. From [K73, Prop. 4.1.1], [Cr87, 2.2, Thm.] there is a canonical equivalence of Tannakian categories

$$\operatorname{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)^0 \tilde{\to} \operatorname{Rep}_{\overline{\mathbb{Q}}_p}(\pi_1(\mathcal{X}_v)) := \operatorname{Rep}_{\mathbb{Q}_p}(\pi_1(\mathcal{X}_v)) \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p$$

which restricts to an equivalence of Tannakian categories ([Ts98, Thm. 7.2.3], [Shi11, Prop. 4.2])

$$\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)^0 \tilde{\to} \operatorname{Rep}_{\overline{\mathbb{Q}}_p}^{\dagger}(\pi_1(\mathcal{X}_v))$$

onto the full subcategory $\operatorname{Rep}_{\overline{\mathbb{Q}}_p}^{\dagger}(\pi_1(\mathcal{X}_v)) \subset \operatorname{Rep}_{\overline{\mathbb{Q}}_p}(\pi_1(\mathcal{X}_v))$ of potentially unramified representations. These equivalences preserve characteristic polynomials of Frobenii on both sides.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) are straightforward. We prove the implication (iii) \Rightarrow (i).

- Observe first that one may assume V_p is simple. Indeed, if V_p is arbitrary, consider a Jordan-Holder filtration

$$\mathcal{V}_{p,0} = 0 \subsetneq \mathcal{V}_{p,1} \subsetneq \cdots \subsetneq \mathcal{V}_{p,r-1} \subsetneq \mathcal{V}_{p,r} = \mathcal{V}_p$$

and set $S_{p,i} := V_{p,i-1}/V_{p,i-1}$, i = 1, ..., r for its simple graded pieces. If (iii) holds for each of the $S_{p,i}$, i = 1, ..., r then (iii) also holds for V_p . Hence it is enough to check that if a) (resp. b), resp. (i)') holds for V_p then it holds for each of the $S_{p,i}$, i = 1, ..., r. For (i)', this follows from the tautological inclusions

$$|X|_{\mathcal{V}_n}^{\mathrm{uni}} \subset |X|_{\mathcal{S}_{n,i}}^{\mathrm{uni}}, \quad i = 1, \dots, r.$$

For a) (resp. b)), this follows from the fact that a subquotient of a crystalline (resp. Hodge-Tate, resp. satisfying Lev₄(\mathcal{V}_p)) local system is again crystalline (resp. Hodge-Tate, resp. satisfies Lev₄(\mathcal{V}_p)) (See Fact 10). So, from now on, assume \mathcal{V}_p is simple.

- By assumption, V_p is Hodge-Tate (with constant Hodge-Tate weights) and $|X|_{V_p}^{\text{uni}} \neq \emptyset$, hence, by Fact 10 (1) (i) \Rightarrow (ii), for every $x \in |X|$, x^*V_p is \mathbb{C}_p -admissible viz pointwise potentially unramified.
 - In case a), for every $x \in \mathcal{X}(\overline{\mathcal{O}}_k)$, $x^*\mathcal{V}_p$ is both potentially unramified and crystalline, which implies that it is unramified by implication (2) in 3.1.2. From Theorem 12 (ii)' \Rightarrow (i), \mathcal{V}_p extends to a \mathbb{Q}_p -local system $\widetilde{\mathcal{V}}_p$ on \mathcal{X} .
 - In case b), as Lev₄(\mathcal{V}_p) holds, one can fix a connected étale cover $X' \to X$ as in Corollary 14 so that $\mathcal{V}_p|_{X'}$ extends to a \mathbb{Q}_p -local system $\widetilde{\mathcal{V}}'_p$ on $\mathcal{X}'^{\text{cpt}}$. From the canonical chain of morphisms arising from specialization [G71, X]

(2)
$$\pi_{1}(\mathcal{X}'^{\text{cpt}}) \xrightarrow{\simeq} \pi_{1}(\mathcal{X}'^{\text{cpt}}) \longleftarrow \pi_{1}(X'^{\text{cpt}}) \longleftarrow \pi_{1}(X') \xrightarrow{\text{open}} \pi_{1}(X)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

one gets that

* \mathcal{V}_p is unipotent (viz finite) if and only if $\widetilde{\mathcal{V}}_p'|_{\mathcal{X}_v'^{\mathrm{cpt}}}$ is unipotent (viz finite);

⁵Actually, we will only apply these facts when $\mathcal{X}_v = \mathcal{X}_v^{\text{cpt}}$, in which case $\text{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p) \to \text{Isoc}^{\varphi}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$ is an equivalence. But, to clarify the structure of the proof, we do not make these assumptions here.

* \mathcal{V}_p is semisimple if and only if $\widetilde{\mathcal{V}}'_p|_{\mathcal{X}'_p^{\mathrm{cpt}}}$ is semisimple.

Also, in Theorem 29, one can freely replace \mathcal{Z}_v by a larger 0-dimensional closed subscheme of \mathcal{X}_v . In particular, for every 0-dimensional closed subscheme $\mathcal{Z}'_v \subset \mathcal{X}'^{\text{cpt}}_v$ with image $\mathcal{Z}_v \subset \mathcal{X}^{\text{cpt}}_v$ via $\mathcal{X}'^{\text{cpt}}_v \to \mathcal{X}^{\text{cpt}}_v$, up to replacing $\mathcal{Z}'_v \subset \mathcal{X}'^{\text{cpt}}_v$ with the inverse image $\mathcal{Z}''_v \subset \mathcal{Z}'_v$ of \mathcal{Z}_v in $\mathcal{X}'^{\text{cpt}}_v$, one has:

* $|X|_{\mathcal{V}_p}^{\mathrm{uni}} \not\subset sp_v^{-1}(|\mathcal{Z}_v|)$ if and only if $|X'|_{\mathcal{V}_p}^{\mathrm{uni}} \not\subset sp_v^{-1}(|\mathcal{Z}_v'|)$..

So, without loss of generality, one may assume $\mathcal{X} = \mathcal{X}^{\text{cpt}}$ and \mathcal{V}_p extends to a \mathbb{Q}_p -local system $\widetilde{\mathcal{V}}_p$ on \mathcal{X} whose restriction $\widetilde{\mathcal{V}}_p|_{\mathcal{X}_v}$ is semisimple. Furthermore, one has $|\mathcal{X}_v|_{\widetilde{\mathcal{V}}_p}^{\text{uni}} \neq \emptyset$, which implies that for every simple summand \mathcal{S}_p of the scalar extension $(\widetilde{\mathcal{V}}_p|_{\mathcal{X}_v})_{\overline{\mathbb{Q}}_p}$, one also has $|\mathcal{X}_v|_{\mathcal{S}_p}^{\text{uni}} \neq \emptyset$ hence that $\det(\mathcal{S}_p)$ is finite. We are to show that $\widetilde{\mathcal{V}}_p|_{\mathcal{X}_v}$ is finite.

- Let \mathfrak{V}_p denote the overconvergent F-isocrystal corresponding to $(\widetilde{\mathcal{V}}_p|_{\mathcal{X}_v})_{\overline{\mathbb{Q}}_p}$ via the \otimes -equivalence

$$\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)^0 \tilde{\to} \operatorname{Rep}_{\overline{\mathbb{Q}}_p}^{\dagger}(\pi_1(\mathcal{X}_v)).$$

For every semisimple $\mathfrak{E}_p \in \operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$, prime ℓ (possibly $\ell = p$) and field isomorphism $\tau : \overline{\mathbb{Q}}_p \xrightarrow{\widetilde{\to}} \overline{\mathbb{Q}}_\ell$ let ${}^{\tau}\mathfrak{E}_p$ denote the unique (up to isomorphism) semisimple τ -companion of \mathfrak{E}_p [L02], [A18].

When $\ell=p$, the companion correspondence induces an action with finite orbits of $\operatorname{Aut}(\overline{\mathbb{Q}}_p)$ on the set of isomorphism classes of semisimple objects in $\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)$. Let $\mathfrak{V}_{p,1}:=(\mathfrak{V}_p)_{\overline{\mathbb{Q}}_p},\ldots,\mathfrak{V}_{p,s}$ denote the finitely many (up to isomorphism) semisimple companions of \mathfrak{V}_p . By construction, the overconvergent F-isocrystal

$$\mathfrak{F}_p := \mathfrak{V}_{p,1} \oplus \cdots \oplus \mathfrak{V}_{p,s}$$

is semisimple, Q-rational, each of its simple summand has finite determinant and one has

$$|\mathcal{X}_v|_{\mathfrak{Y}_{p,1}}^{\mathrm{uni}} = \cdots = |\mathcal{X}_v|_{\mathfrak{Y}_{p,s}}^{\mathrm{uni}}$$

In particular, if for every $x \in |X|$, $\chi_x \in \mathbb{Q}[T]$ denotes the characteristic polynomial of Frobenius attached to $x^*\mathfrak{F}_p$, then ii) $\chi_x \in \mathbb{Q}[T]$ and, as every simple summand of \mathfrak{F}_p has finite determinant, i) χ_x is pure of weight 0 [A18].

Let $\mathcal{U}_v \subset \mathcal{X}_v$ denote the largest (non-empty) open subscheme over which \mathfrak{F}_p admits a slope filtration [K79, Thm. 2.3.1, 2.4.2]

$$0 = S_0(\mathfrak{F}_p|_{\mathcal{U}_p}) \subseteq S_1(\mathfrak{F}_p|_{\mathcal{U}_p}) \subseteq \cdots \subseteq S_s(\mathfrak{F}_p|_{\mathcal{U}_p}) = \mathfrak{F}_p|_{\mathcal{U}_p},$$

with

$$Gr_i^S(\mathfrak{F}_p|_{\mathcal{U}_v}) := S_i(\mathfrak{F}_p|_{\mathcal{U}_v})/S_{i-1}(\mathfrak{F}_p|_{\mathcal{U}_v})$$

of slope q_i and $q_1 < \cdots < q_s$. Set $\mathcal{Z}_v := \mathcal{X}_v^{\text{cpt}} \setminus \mathcal{U}_v$. We distinguish two cases:

- At least one of the q_i is $\neq 0$, which forces $|X|_{\mathcal{V}_n}^{\mathrm{uni}} \subset sp_v^{-1}(\mathcal{Z}_v)$;
- $-\mathfrak{F}_p|_{\mathcal{U}_p}$ is unitroot. By semicontinuity of the slope filtration [K79, Thm. 2.3.1], this imposes $\mathcal{Z}_v = \emptyset$ and \mathfrak{F}_p is unit-root. In particular, for every $x \in |X|$, iv) $\chi_x \in \overline{\mathbb{Z}}_p[T]$. Eventually, the fact that every simple summand of \mathfrak{F}_p has finite determinant implies that for every prime ℓ and field isomorphism $\tau : \overline{\mathbb{Q}}_p \tilde{\to} \overline{\mathbb{Q}}_\ell$, the unique semisimple τ -companion ${}^{\tau}\mathfrak{F}_p$ of \mathfrak{F}_p is étale; in particular, for every $x \in |X|$, iii) $\chi_x \in \overline{\mathbb{Z}}_\ell[T]$. Let \mathcal{F}_p denote the potentially unramified $\overline{\mathbb{Q}}_p$ -local system corresponding to \mathfrak{F}_p via

$$\operatorname{Isoc}^{\varphi,\dagger}(\mathcal{X}_v/\overline{\mathbb{Q}}_p)^0 \tilde{\to} \operatorname{Rep}_{\overline{\mathbb{Q}}_p}^{\dagger}(\pi_1(\mathcal{X}_v)).$$

We have just shown that for every $x \in |\mathcal{X}_v|$, the characteristic polynomial χ_x of the Frobenius $\varphi_{x,p}$: $\mathcal{F}_{p,\bar{x}} \tilde{\to} \mathcal{F}_{p,\bar{x}}$ satisfies

i) χ_x is pure of weight w = 0; ii) $\chi_x \in \mathbb{Q}[T]$; iii) $\chi_x \in \overline{\mathbb{Z}}_{\ell}[T]$, $\ell \neq p$; iv) $\chi_x \in \overline{\mathbb{Z}}_{p}[T]$,

hence is a product of cyclotomic polynomials. In particular, for every connected étale cover $\mathcal{X}'_v \to \mathcal{X}_v$ such that $\text{Lev}_1(\mathcal{F}_p|_{\mathcal{X}'_v})$ holds, for every $x' \in |\mathcal{X}'_v|$, $\chi_{x'} = (T-1)^r$. By Cebotarev, this implies \mathcal{F}_p - hence a fortiori $(\widetilde{\mathcal{V}}_p|_{\mathcal{X}_v})_{\overline{\mathbb{Q}}_p}$, is quasi-unipotent - hence finite (since \mathcal{F}_p , $(\widetilde{\mathcal{V}}_p|_{\mathcal{X}_v})_{\overline{\mathbb{Q}}_p}$ are semisimple)⁶.

⁶For this part of the argument, see also [Ko17, Prop. 1.1].

References

- [A92] M. André, Mumford-Tate groups of mixed Hodge-structures and the theorem of the fixed part, Compositio Math. 82, p. 1–24, 1992.
- [A18] T. Abe, Langlands correspondence for isocrystals and the existence of crystalline companions for curves, J. Amer. Math. Soc. 31, p. 921–1057, 2018.
- [C23] A. CADORET, Degeneration of \mathbb{Q}_p -local systems: conjectures, Exp. Math.41, p. 675–708, 2023.
- [Ca19] X. Caruso, An introduction to p-adic period rings, Panoramas et Synthèses 54 SMF, p. 19–92, 2019.
- [Co06] B. Conrad, Overview of Moret-Bailly's theorem on global points, Preprint 2006, available at: http://math.stanford.edu/conrad/vigregroup/vigre05/mb.pdf
- [Cr87] R. Crew, F-isocrystals and p-adic representations, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, A.M.S. (Providence, RI), p. 111–138, 1987.
- [dJO99] J. DE JONG and F. OORT, Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13, p. 209-241, 1999.
- [D80] P. Deligne, La conjecture de Weil: II, Inst. Hautes Etudes Sci. Publ. Math. 52, 1980, p. 137–252.
- [D82] P. Deligne, Hodge cycles on abelian varieties, in Hodge cycles, motives, and Shimura varieties, L.N.M. 900, Springer, p. 9–100, 1982.
- [DLLZ23] H. DIAO, K.-W. LAN and X. Zhu. Logarithmic Riemann-Hilbert correspondences for rigid varieties, J. Amer. Math. Soc. 36, p. 483–562, 2023.
- [Fo94] J.-M. Fontaine, Rerésentations p-adiques semistables, in Périodes p-adiques, Asterisque 223, p. 113-184 Cambridge, MA, p. 41–78, 1994.
- [FoM95] J.-M. Fontaine and B. Mazur, Geometric Galois representations in Elliptic curves, modular forms, and Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, p. 41–78, 1995.
- [G71] A. Grothendieck, Revêtements étales et groupe fondamental S.G.A.1, L.N.M. 224, Springer-Verlag, 1971.
- [GY24] H. Guo and Z. Yang Pointwise criteria of p-adic local systems, Preprint 2024, available at: https://arxiv.org/abs/2409.19742
- [Ho52] W. Hodge, The topological invariants of algebraic varieties, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), 1, p. 182–192, 1952.
- [K73] N. M. KATZ, p-adic properties of modular schemes and modular forms, in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), L.N.M. **350** Springer (Berlin), p. 69–190, 1973.
- [K79] N. M. KATZ, Slope filtrations of F -crystals, in Journées de Géométrie Algébriques (Rennes, 1978), Astérisque 63, p.113–164, 1979.
- [KL81] N. M. KATZ and S. LANG, Finiteness theorems in geometric class field theory, L'Enseignement Mathématique, 27, p. 285–319, 1981.
- [KM74] N. M. Katz and W. Messing, Some consequences of the Riemann Hypothesis for varieties over finite fields, Inventiones Math. 23, p. 73–77, 1974.
- [Ke04] K.S. Kedlaya, Full faithfulness for overconvergent F-isocrystals, in Adolphson et al (eds.), Geometric Aspects of Dwork Theory (Volume II), de Gruyter (Berlin), p. 819–83, 2004.
- [Ko17] T. Koshikawa, Overconvergent unit-root F-isocrystals and isotriviality, Math. Res. Lett. 24, p. 1707–1727, 2017.
- [L02] L. LAFFORGUE, Chroucas de Drinfeld et correspondance de Langlands, Invent. Math. 147, p.1–241, 2002.
- [LiZ17] R. Liu and X. Zhu, Rigidity and a Riemann-Hilbert correspondence for p-adic local systems, Inventiones Math. 207, p. 291–343, 2017.
- [L88] A. Lubotsky, A group theoretic characterization of linear groups, J. Algebra 113, p. 207–214, 1988.
- [MB89] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem II, Ann. Sc. ENS 22, p. 181–194, 1989.
- [P23] A. Petrov, Geometrically irreducible p-adic local systems are de Rham up to a twist, Duke Math. J. 172, p. 963–994,
- [Se80] S. Sen, Continuous cohomology and p-adic Galois representations, Inventiones Math. 62, p. 89–116, 1980.
- [Ser81] J.-P. Serre, Lettres à Ken Ribet du 1/1/1981. In: Œuvres, Volume IV, number 133.
- [Ser89] J.-P. Serre, Lectures on the Mordell-Weil theorem, Aspects of Mathematics E15, Friedr. Vieweg & Sohn, 1989.
- [Stacks] The Stacks project, https://stacks.math.columbia.edu.
- [Shi11] A. Shiho, Purity for overconvergence, Selecta Math. (N.S.) 17, p. 833-854, 2011
- [Shim18] K. Shimizu, Constancy of generalized Hodge-Tate weights of a local system, Compositio Math. 154, p. 2606–2642, 2018.
- [T94] J. TATE, Conjectures on algebraic cycles in ℓ -adic cohomology. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., **55**, Part 1, Amer. Math. Soc., p. 71–83, 1994.
- [Ts98] N. TSUZUKI, Finite local monodromy of overconvergent unit-root F-isocrystals on a curve, Amer. J. Math. 120, p. 1165–1190, 1998.

anna. cadoret@imj-prq. fr

IMJ-PRG, Sorbonne Université,

4, place Jussieu, 75252 PARIS Cedex 05, FRANCE

tamagawa@kurims.kyoto-u.ac.jp

Research Institute for Mathematical Sciences, Kyoto University,

KYOTO 606-8502, JAPAN