
VARIATION OF TANNAKA GROUPS OF PERVERSE
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Abstract. Let k be a field of characteristic 0, let S be a smooth,
geometrically connected variety over k, with generic point η, and f :
X → S a morphism separated and of finite type. Fix a prime ℓ. Let
P be an f -universally locally acyclic relative perverse Qℓ-sheaf on X /S.
We prove that if for some (equivalently, every) geometric point η̄ over η

the restriction P|Xη̄ is simple as a perverse Qℓ-sheaf on Xη̄, then there
is a non-empty open subscheme U ⊂ S such that, for every geometric
point s̄ on U , the restriction P|Xs̄ is simple as a perverse Qℓ-sheaf on
Xs̄. When f : X → S is an abelian scheme, we give applications of this
result to the variation with s ∈ S of the Tannaka group of P|Xs̄ .
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1. Introduction

Let k be a field of characteristic 0, let S be a smooth, geometrically con-
nected variety over k, with generic point η, and let g : Y → S be a smooth
projective S-scheme of relative dimension d. A general and central ques-
tion in algebraic geometry is to understand how the fibers Ys vary with
s ∈ S. For instance, one may ask when some power Yns̄ of Ys̄ carries excep-
tional algebraic cycles. If k ⊂ C, the Hodge conjecture predicts that this
is the same as asking when the Mumford Tate group G(V)s of the polariz-
able Q-Hodge structure H•(Yan

s ,Q) ≃ s∗R•gan
∗ Q becomes smaller than the

generic Mumford-Tate group G(V) of the polarizable Q-variation of Hodge
structures V := R•gan

∗ Q on the analytification San of S ×k C. Here "be-
comes smaller" makes sense because the Tannaka categories of polarizable
Q-variations of Hodge structures are functorial with respect to pullbacks
along morphism of complex analytic spaces S′ → S so that one can view
naturally G(V)s as a subgroup of G(V). This leads to introduce and study
the Hodge locus

SV := {s ∈ S | G(V)s ⊊ G(V)}

of a polarizable Q-variation of Hodge structures V on San. If k is finitely
generated over Q, similar considerations apply with ℓ-adic étale local systems
on S yielding the introduction of the Tate locus SVℓ

⊂ S of such a Qℓ-local
system Vℓ. Under mild assumptions, general heuristics predict that these
exceptional loci SV , SVℓ

are sparse in some precise sense - e.g. that the
atypical part of the Hodge locus SV is not Zariski-dense in S [Kl23] or
that the set of k-rational points in the Tate locus SVℓ

is not Zariski-dense
in S [C23]. Proving such sparsity results is notoriously challenging as it
requires constructing bridges between the Zariski topology of S and the
analytic natures of the coefficients V, Vℓ. The results of this article are also
partly motivated by the problem of understanding how the fibers Ys vary
with s ∈ S and inspired by the above Tannaka approaches, but in a more
restricted setting and with a rather different category of coefficients, which
makes the sparsity of the exceptional loci more accessible. Namely, if one
assumes g : Y → S factors as

g : Y ι
↪→ X f→ S

with ι : Y ↪→ X a closed immersion and f : X → S an abelian scheme,
one can consider the f -universally locally acyclic (f -ULA or simply ULA
for short) relative perverse sheaf P := ι∗Qℓ[d] on f : X → S. As the quo-
tient of the category of f -ULA relative perverse sheaves by negligible ones is
Tannaka and functorial with respect to pullback along morphism of schemes
S′ → S, one can attach to each s ∈ S a Tannaka group G(P)s which detects
some of the symmetric features of Ys regarded as a closed subvariety of Xs
and ask for the structure of the corresponding degeneracy locus SP ⊂ S.



VARIATION OF TANNAKA GROUPS OF PERVERSE SHEAVES IN FAMILY 3

More formally, let f : X → S be an abelian scheme. Fix a prime ℓ. Let
Db
c(X ) denote the triangulated category of étale Qℓ-sheaves with bounded

constructible cohomology on X and let DULA(X/S) ⊂ Db
c(X ) denote the full

subcategory1 of those complexes which are f -universally locally acyclic; this
is a triangulated subcategory. The convolution product built out from the
multiplication on X endows DULA(X/S) with a structure of Qℓ-linear rigid
symmetric monoidal category. This monoidal structure, in turn, induces
a structure of Qℓ-Tannakian category on the quotient PervULA(X/S) ↠
PULA(X/S) of the full subcategory PervULA(X/S) ⊂ DULA(X/S) of f -ULA
relative perverse Qℓ-sheaf by the Serre subcategory of negligible objects.
When S is a point, one recovers the usual construction Perv(X) ↠ P (X)
of the Qℓ-Tannakian category of perverse sheaves on an abelian variety X.
Further, in the relative setting, for every s ∈ S and geometric point s over
s, the canonical restriction functors

PervULA(X/S) |Xs→ Perv(Xs)
|Xs̄→ Perv(Xs̄)

induce exact tensor functors

PULA(X/S) |Xs→ P (Xs)
|Xs̄→ P (Xs̄).

In particular, fixing a fiber functor ωs̄ : P (Xs̄) → VectQℓ
, one may ask, for

P ∈ PervULA(X/S), how the corresponding Tannaka groups
G(P|Xs̄ , ωs̄) ⊂ G(P|Xs , ωs̄) ⊂ G(P, ωs̄)

vary2 with s ∈ S. Further, as S is smooth over k, the canonical functor
−|Xη : ⟨P⟩ → ⟨P|Xη⟩

is an equivalence of categories and, for every s ∈ S one gets a natural (up
to inner automorphisms) cospecialization diagram (see Section 3):

(1) 1 // G(P|Xs̄ , ωs̄) //
_�

��

G(P|Xs , ωs̄) //
_�

��

G(⟨P|Xs⟩0, ωs̄) //

��

1

1 // G(P|Xη̄ , ωη̄) // G(P|Xη , ωη̄) // G(⟨P|Xη⟩0, ωη̄) // 1,

where, for t ∈ S, the category ⟨P|Xt⟩0 ⊂ ⟨P|Xt⟩ denotes the full subcat-
egory whose objects are of the form 0t∗L for L ∈ Perv(spec(k(t))) and
0t : spec(k(t)) → Xt the zero-section. As the existence of this cospecializa-
tion diagram does not depend on the choice of the fiber functors, we omit

1The assumption f -ULA is not very restrictive as, for every K ∈ Db
c(X ) there exists a

non-empty open subscheme U ⊂ S such that K|X ×SU ∈ DULA(X ×S U/U); see [SGA4 1/2,
Thm. 2.13, p. 242] and [B24, Lemma 3.10].

2Recall that if k is algebraically closed and K/k is an extension of algebraically closed
fields then the canonical restriction functor P (X) → P (XK), is a fully faithful tensor
functor with image stable under subquotients, so that the category ⟨Xs̄⟩ and the group
G(P|Xs̄ ) do not depend on the choice of the geometric point s̄ over s ∈ S but only on s
itself.
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them from the notation from now on. In other words, one would like to
understand the arithmetico-geometric structure of the following degeneracy
loci:

S?
P := {s ∈ S | G(P|Xs)? ⊊ G(P|Xη )?}

Sgeo,?
P := {s ∈ S | G(P|Xs̄)? ⊊ G(P|Xη̄ )?},

where e.g.
?= no decoration G ;

◦ G◦ := neutral component of G;
der Gder := derived subgroup of G;
◦, der G◦,der.

For Sgeo
P , this question has been tackled in Krämer’s dissertation thesis

[Kr13, 3.7]; in particular Krämer observes that one cannot expect, in gen-
eral, that Sgeo

P be a strict, Zariski-closed subset of S unless the determinant
det(P|Xs̄) of P|Xs̄ is torsion and uniformly bounded with s [Kr13, Ex. 3.17
a)]. In the converse direction, Krämer proves the following.
Fact 1.1. ([Kr13, Prop. 3.20)], [KW15, Prop. 7.4]) Let P ∈ PervULA(X/S).
Assume that for every geometric point s̄ over s ∈ S, the restriction P|Xs̄ is
simple in Perv(Xs̄) with torsion determinant3 and that the order of det(P|Xs̄)
is uniformly bounded with s ∈ S. Then Sgeo

P is not Zariski-dense in S.
Our main result is about the simplicity assumption.

Theorem 1.2. Let f : X → S be a morphism, separated and of finite type.
For every P ∈ PervULA(X/S), after possibly replacing S by a non-empty
open subscheme (depending on P) the following holds. For every s ∈ S,

lengthPerv(Xη̄)(P|Xη̄ ) = lengthPerv(Xs̄)(P|Xs̄).

In particular, if P|Xη̄ is simple (resp. semisimple) in Perv(Xη̄) then P|Xs̄ is
simple (resp. semisimple) in Perv(Xs̄).
Corollary 1.3. Assume furthermore f : X → S is an abelian scheme. Then
for every P ∈ PervULA(X/S), after possibly replacing S by a non-empty open
subscheme (depending on P) the following holds. For every s ∈ S,

lengthP (Xη̄)(P|Xη̄ ) = lengthP (Xs̄)(P|Xs̄).
In particular, if P|Xη̄ is simple (resp. semisimple) in P (Xη̄) then P|Xs̄ is
simple (resp. semisimple) in P (Xs̄).
Theorem 1.2 yields the following generalization of Fact 1.1 to arbitrary
semisimple perverse sheaves.

3As a connected reductive group G over an algebraically closed field Q of characteristic
0 admits an irreducible faithful representation if and only if its center is Gm,Q or finite
cyclic, the condition that P|Xs̄ is simple with torsion determinant imposes that G(P|Xs̄ )◦

is semisimple with finite cyclic center.
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Corollary 1.4. Let f : X → S be an abelian scheme and let P ∈ PervULA(X/S).
(1) Assume P|Xs̄ is semisimple in Perv(Xs̄) for every s ∈ S. Then Sgeo

P is
a countable union of strict, Zariski-closed subvarieties of S.

(2) Assume P|Xη̄ is semisimple in P (Xη̄). Then Sgeo
P is contained in a count-

able union of strict, Zariski-closed subvarieties of S.

If k is countable, we do not know if Sgeo
P ⊊ S in general though we sus-

pect it is true. Still, combined with Fact 1.1 and some tannakian formalism
Theorem 1.2 yields the following. For an algebraic group G over a field
Q, let R(G) ⊂ G denote its solvable radical (viz its largest connected nor-
mal solvable subgroup) and G ↠ Gss := G/R(G) its maximal semisimple
quotient.

Corollary 1.5. Let f : X → S be an abelian scheme and let P ∈ PervULA(X/S).
(1) Assume P|Xη̄ is simple in P (Xη̄) with torsion determinant. Then Sgeo

P
is not Zariski-dense in S.

(2) Up to replacing S by a non-empty open subscheme, one may assume
that for all s ∈ S the canonical morphism induced by cospecialization

G(P|Xs̄)◦ ↪→ G(P|Xη̄ )◦ ↠ G(P|Xη̄ )◦,ss

factors through an isogeny

G(P|Xs̄)◦ � � //

����

G(P|Xη̄ )◦

����
G(P|Xs̄)◦,ss // G(P|Xη̄ )◦,ss.

In particular,
(a) if G(P|Xη̄ ) is semisimple (e.g. P|Xη̄ is simple with torsion deter-

minant in P (Xη̄)) then Sgeo,◦
P is not Zariski-dense in S.

(b) if G(P|Xη̄ ) is reductive (viz P|Xη̄ is semisimple in P (Xη̄)) then
Sgeo,◦,der

P is not Zariski-dense in S.

Here is a sample of geometric application of Corollary 1.5 (see also Remark
5.3).

Corollary 1.6. (Corollary 5.2) Let X → S be an abelian scheme of relative
dimension g ≥ 3 and Y ↪→ X a closed subscheme, smooth and geometrically
connected over S. Assume Yη̄ ↪→ Xη̄ has ample normal bundle and trivial
stabilizer. Then the set of all s ∈ S such that Ys̄ is a product is Zariski-dense
in S (if and) only if Yη̄ is itself a product.

We refer to Section 5 for more details.
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As for SP , at least if k is arithmetically rich enough, the non-Zariski density
of Sgeo

P in S automatically implies that SP is sparse in the following sense.
For an integer d ≥ 1, write

|S|≤d := {s ∈ |S| | [k(s) : k] ≤ d}.

Proposition 1.7. Let f : X → S be an abelian scheme and let P ∈
PervULA(X/S). Assume Sgeo

P is not Zariski-dense in S. Assume furthermore
that S has dimension > 0 and that k is Hilbertian (e.g. finitely generated
over Q). Then there exists an integer d ≥ 1 such that |S|≤d \ (SP ∩ |S|≤d)
is infinite.

When S is a curve, k is a number field and G(P|Xk̄
) is semisimple, the con-

clusion of Proposition 1.7 can be strengthened to: for every integer d ≥ 1
the set SP ∩ |S|≤d is finite. This applies, for instance, to the intersection
complex ι∗Qℓ[d] for ι : Y ↪→ X a closed immersion such that Y → S is
smooth, geometrically connected of relative dimension d and symmetric in
the sense that [−1]∗Y = Y.

Organization of the paper. In Section 2, we briefly review the Tannakian
formalism of perverse sheaves on abelian schemes, both in the absolute and
relative setting. In Section 3, we elucidate the existence of the specializa-
tion diagram (1), giving two constructions. The proofs of Theorem 1.2, its
corollaries and Proposition 1.7 are performed in Section 4. The final Section
5 is devoted to a sample of geometric applications of Corollary 1.5.

Acknowledgements. We thank Emiliano Ambrosi for suggesting the geo-
metric applications analyzed in Section 5, François Charles for pointing out
the example in Remark 5.3, and Lie Fu for asking about an analogue of the
Cattani-Deligne-Kaplan theorem, which led to the statement of Corollary
1.4 (1). We are also grateful to Luc Illusie and Peter Scholze for their an-
swers to our questions about nearby cycles and Theorem 1.2 respectively.
We express sincere gratitude to Beat Zurbuchen, for Remark 4.4 and for
pointing out a gap in an earlier version of our proof of Theorem 4.1; the
constructive discussions with him helped repair this gap.

Notation and conventions

For an additive functor F : A1 → A2 between abelian categories, we write
F : A1

≈→ A2 if it is fully faithful with image stable under subquotients and
F : A1

≃→ A2 if it is an equivalence.

For a rigid symmetric monoidal category (T ,⊗) with unit I and an ob-
ject X in T , let X∨ denote its dual and, for every integers m,n ≥ 0, set
Tm,n(X) := X⊗m ⊗ X∨⊗n; write T (X) := ⊕m,n≥0T

m,n(X). If (T ,⊗) is
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Tannakian, for every integers m,n ≥ 0, let also Im,n(X) ⊂ Tm,n(X) denote
the sum of all subobjects of Tm,n(X) which are isomorphic to I in T (so
that HomT (I, Im,n(X))→̃HomT (I, Tm,n(X))). If T is Tannakian with fiber
functor ω : T → VectQ, let G(T , ω) denote its Tannaka group; recall that
G(T , ω) may depend on ω but that if Q is algebraically closed then G(T , ω)
is uniquely determined up to non-canonical isomorphism. For an object X
in T let ⟨X⟩ ⊂ T denote the smallest Tannakian category containing X and,
given a fiber functor ω : ⟨X⟩ → VectQ set G(X,ω) := G(⟨X⟩, ω).

In the whole paper, we fix a prime ℓ. For a scheme S, let Loc(S) denote the
category of étale Qℓ-local systems on S and Db

c(S) the triangulated category
of étale Qℓ-sheaves with bounded constructible cohomology on S.

A variety over a field K is a scheme separated and of finite type over K.

When S is a variety, let Perv(S) ⊂ Db
c(S) denote the full subcategory of

perverse sheave and, for a morphism f : X → S of varieties, write

DX/S(−) := RHom(−, Rf !Qℓ) : Db
c(X)op → Db

c(X)

for the relative Verdier duality functor. When S is a point, we simply set
DX(−) := DX/S(−).

For morphisms of varieties S1 → S ← S2, one writes

⊠LS : Db
c(S1)×Db

c(S2)→ Db
c(S1 ×S S2), (K1,K2) 7→ p∗

1K1 ⊗L p∗
2K2,

for the outer tensor product, where pi : S1 ×S S2 → Si denotes the ith
projection, i = 1, 2. When S = spec(k), one simply writes ⊠L := ⊠LS .

2. Tannakian category of relative perverse sheaves

2.1. Absolute setting. Let K be a field of characteristic 0 and let X be
an abelian variety over K with group law m : X ×K X → X.

2.1.1. Construction. See [Kr13], [KrW15] for details, and [JKrLM25, §3.1]
for a shorter overview. The convolution product

∗ : Db
c(X)×Db

c(X)→ Db
c(X), (K1,K2) 7→ K1 ∗ K2 := Rm∗(K1 ⊠

L K2)

endows Db
c(X) with the structure of a Qℓ-linear rigid symmetric monoidal

category with duality functor

(−)∨ : Db
c(X)→ Db

c(X), K 7→ K∨ := [−1]∗DX(K)

and unit the rank one skyscraper sheaf δ0 := ι0∗Qℓ ∈ Db
c(X) supported on 0.

The full subcategory Perv(X) ⊂ Db
c(X) is abelian and stable under Verdier

duality, but not under convolution. To remedy this, one can mod out by
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negligible objects. Recall that every P ∈ Perv(X) has non negative Euler-
Poincaré characteristic:

χ(X,P) :=
∑
i∈Z

(−1)idimQℓ
(Hi(XK̄ ,P)) ≥ 0

Let pHn(−) : Db
c(X) → Perv(X), n ∈ Z denote the perverse cohomology

functors and let N(X) ⊂ Db
c(X) denote the full subcategory of all K ∈

Db
c(X) such that χ(X, pHn(K)) = 0 for all n ∈ Z; this is a null system

such that the convolution bifunctor ∗ : Db
c(X) × Db

c(X) → Db
c(X), the

dualization functor (−)∨ : Db
c(X)op → Db

c(X) and the perverse cohomology
pH0(−) : Db

c(X)→ Perv(X) restrict to
∗ : N(X)×Db

c(X)→ N(X), ∗ : Db
c(X)×N(X)→ N(X)

(−)∨ : N(X)op → N(X)
and

pH0(−) : N(X)→ N(X) ∩ Perv(X).
Consider the quotient functor

Perv(X)→ P (X) := Perv(X)/(N(X) ∩ Perv(X))
so that one gets

Perv(X)× Perv(X) ∗ //

��

Db
c(X)

pH0(−)// Perv(X)

��
P (X)× P (X) ∗

// P (X)

The abelian category P (X) endowed with
∗ : P (X)× P (X)→ P (X)

is Tannakian with duality functor induced by

Perv(X)op (−)∨
//

��

Perv(X)

��
P (X)op

(−)∨
// P (X)

and unit the image of δ0 in P (X).

2.1.2. Extension of the base field. See [JKrLM25, Sec. 4] for details. Let
L/K be a field extension and let KL ⊂ L denote the algebraic closure of K in
L; assume KL/K is Galois. Let T ⊂ P (X) be a full abelian ⊗-subcategory
and let TL ⊂ P (XL) denote the full abelian ⊗-subcategory generated by

the essential image of T ↪→ P (X)
−|XL→ P (XL), namely the full subcategory

of all Q ∈ P (XL) such that there exists P ∈ T with Q a subquotient of
P|XL

. For instance, for every P ∈ P (X), ⟨P⟩L = ⟨P|XL
⟩. The structure of

T is closely related to the structure of TL and the structure of the category
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RepQℓ
(Gal(KL/K)) of finite dimensional continuous Qℓ-representations of

the Galois group Gal(KL/K) of KL/K. More precisely,
- The canonical functor

−|XL
: Perv(X)

|XL→ Perv(XL)→ P (XL)
is an exact functor of Qℓ-linear categories which induces a faithful functor
of Tannakian categories

Perv(X)
|XL //

��

Perv(XL)

��
P (X)

|XL // P (XL)

.

- For simplicity, write Perv(K) := Perv(spec(K)). The canonical functor

0∗ : Perv(K) 0∗→ Perv(X)→ P (X)
is an exact fully faithful functor of Tannakian categories with essential
image P0(X) ⊂ P (X) stable under subquotients. Precomposing 0∗ :
Perv(K)→ P0(X) ↪→ P (X) with the fully faithful exact ⊗-tensor functor
RepQℓ

(Gal(KL/K)) ↪→ Perv(K), one gets an exact fully faithful functor
of Tannakian categories

0L∗ : RepQℓ
(Gal(KL/K))→ P (X);

let PL0 (X) ⊂ P0(X) denote its essential image.

Consider the full Tannakian subcategory T L0 := T ∩ PL0 (X) ⊂ T . Then, for
every fiber functor ω : TL → VectQℓ

, the sequence of Tannakian categories

T L0 → T
|XL→ TL

induces a short exact sequence of proalgebraic groups

1 // G(TL, ω) // G(T , ω) // G(T L0 , ω) // 1,

from which one immediately deduces that
- (2.1.2-1) For every P ∈ P (X), the sequence of Tannakian categories

⟨P⟩L0 → ⟨P⟩
|XL→ ⟨P|XL

⟩
induces a short exact sequence of algebraic groups

1 // G(P|XL
, ω) // G(P, ω) // G(⟨P⟩L0 , ω) // 1.

- (2.1.2-2) If K is algebraically closed, the restriction functor −|L : T ≃→ TL
is an equivalence of Tannakian categories. In particular, for every P ∈
P (X), G(P|XL

, ω)→̃G(P, ω).

We drop the superscript (−)L when L = K.
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2.2. Relative setting. Let k be a field of characteristic 0, S a smooth,
geometrically connected variety over k with generic point η. Let f : X → S
be an abelian scheme.

2.2.1. Construction. See [HS23] for details. Let DULA(X/S) ⊂ Db
c(X ) de-

note the full subcategory of f -universally locally acyclic (f -ULA or just ULA
for short) complexes on X/S; this is a triangulated subcategory. As in the
absolute setting, the convolution product
∗ : DULA(X/S)×DULA(X/S)→ DULA(X/S), (K1,K2) 7→ K1∗K2 := Rm∗(K1⊠

L
SK2)

endowsDULA(X/S) with the structure of a Qℓ-linear rigid symmetric monoidal
category with duality functor

(−)∨ : DULA(X/S)→ DULA(X/S), K 7→ K∨ := [−1]∗DX/S(K)

and unit δS,0 := 0∗Qℓ ∈ Db
c(X ), where 0 : S ↪→ X is the 0-section. By

construction and proper base change, for every s ∈ S, the pull-back functor
−|Xs : DULA(X/S)→ Db

c(Xs) is a tensor functor.

Let PervULA(X/S) ⊂ DULA(X/S) denote the full subcategory of ULA rela-
tive perverse sheaves on X . This is an abelian category, stable by relative
Verdier duality DX/S(−) : Db

c(X )op → Db
c(X ) and such that for every s ∈ S,

the pull-back functor −|Xs : Db
c(X ) → Db

c(Xs) restricts to an exact functor
−|Xs : PervULA(X/S) → Perv(Xs) which, when s = η, is fully faithful
with essential image stable under subquotients. Actually, PervULA(X/S) ⊂
DULA(X/S) is the heart of a t-structure DULA,≤0(X/S), DULA,≥0(X/S) ⊂
DULA(X/S) - the relative perverse t-structure with associated truncation
functors p/Sτ≤0 : DULA(X/S) → DULA,≤0(X/S), p/Sτ≥0 : DULA(X/S) →
DULA,≥0(X/S) and perverse cohomology functors

p/SHn : DULA(X/S)→ PervULA(X/S), n ∈ Z.
As f : X → S is proper, Rf∗ : DULA(X/S) → Db

c(S) factors as Rf∗ :
DULA(X/S)→ DULA(S/S) = Db

liss(S) [B24, Lem. (ii), p.20, Lem. (i), p.21].
Combined with the fact that, for every t ∈ S, the following diagrams

DULA(X/S)
−|Xt̄ //

p/SHn(−)
��

Db
c(Xt̄)

pHn(−)
��

PervULA(X/S)
−|Xt̄

// Perv(Xt̄)

, n ∈ Z

commute, one gets that, for K ∈ DULA(X/S), the following properties are
equivalent:

(i) K|Xη ∈ N(Xη);
(ii) For every s ∈ S, K|Xs ∈ N(Xs);
(iii) There exists s ∈ S such that K|Xs ∈ N(Xs).
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In other words, for every s ∈ S, the following null systems of DULA(X/S)

(2) NULA(X/S) := ker(DULA(X/S)
−|Xη→ Db

c(Xη)→ Db
c(Xη)/N(Xη))

= ker(DULA(X/S) −|Xs→ Db
c(Xs)→ Db

c(Xs)/N(Xs)).
coincide.

By construction the functors ∗ : DULA(X/S)×DULA(X/S)→ DULA(X/S),
(−)∨ : DULA(X/S)op → DULA(X/S), p/SH0(−) : DULA(X/S)→ PervULA(X/S)
and −|Xs : DULA(X/S)→ Db

c(Xs), s ∈ S restrict to
∗ : NULA(X/S)×DULA(X/S)→ NULA(X/S), ∗ : DULA(X/S)×NULA(X/S)→ NULA(X/S)

(−)∨ : NULA(X/S)op → NULA(X/S)
p/SH0(−) : NULA(X/S)→ NULA(X/S) ∩ PervULA(X/S)

and
−|Xs : NULA(X/S)→ N(Xs), s ∈ S.

Consider the quotient functor
PervULA(X/S)→ PULA(X/S) := PervULA(X/S)/(PervULA(X/S)∩NULA(X/S))
so that one gets

PervULA(X/S)× PervULA(X/S) ∗ //

��

DULA(X/S)
p/SH0(−)//// PervULA(X/S)

��
PULA(X/S)× PULA(X/S) ∗

// PULA(X/S)

The abelian category PULA(X/S) endowed with
∗ : PULA(X/S)× PULA(X/S)→ PULA(X/S)

is a Qℓ-linear rigid symmetric monoidal category with duality functor in-
duced by

PervULA(X/S)op (−)∨
//

��

PervULA(X/S)

��
PULA(X/S)op

(−)∨
// PULA(X/S)

and unit the image of δS,0 in PULA(X/S). For every s ∈ S, the exact pull-
back functor −|Xs : PervULA(X/S) → Perv(Xs) induces an exact faithful
functor of Qℓ-linear rigid symmetric monoidal categories

(3) PervULA(X/S)
−|Xs //

��

Perv(Xs)

��
PULA(X/S)

−|Xs

// P (Xs),
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which, when s = η, is fully faithful with essential image stable under sub-
quotients. In particular, −|Xη : PULA(X/S)→ P (Xη) identifies PULA(X/S)
with a full Tannakian subcategory of P (Xη) and for every P ∈ PULA(X/S),
induces an equivalence of Tannakian categories

−|Xη : ⟨P⟩ ≃→ ⟨P|Xη⟩.

3. Specialization

In the following, to simplify notation, given an exact tensor functor of Tan-
nakian categories F : T ′ → T and a fiber functor ω on T , we will again write
ω := ω ◦ F for the resulting fiber functor on T ′; as the functor F : T ′ → T
should always be clear from the context, this should not give rise to confu-
sion.

Let k be a field of characteristic 0, let S a smooth, geometrically connected
variety over k with generic point η. Let f : X → S be an abelian scheme.
From (2), the canonical diagram of Qℓ-linear abelian categories (4-1) induces
the canonical diagram of Tannakian categories (4-2)

(4)
(4-1) Perv(Xs)0 // Perv(Xs)

|Xs̄ // Perv(Xs̄)

PervULA(X/S)

|Xs

OO

|Xη ≈
��

Perv(Xη)0 // Perv(Xη)
|Xη̄ // Perv(Xη̄)

(4-2) P (Xs)0 // P (Xs)
|Xs̄ // P (Xs̄)

PULA(X/S)

|Xs

OO

|Xη ≈
��

P (Xη)0 // P (Xη)
|Xη̄ // P (Xη̄)

and for every P ∈ PULA(X/S),

(5) ⟨P|Xs⟩0 // ⟨P|Xs⟩
|Xs̄ // ⟨P|Xs̄⟩

⟨P⟩

|Xs

OO

|Xη ≃
��

⟨P|Xη⟩0 // ⟨P|Xη⟩
|Xη̄ // ⟨P|Xη̄⟩.

For every t ∈ S, fix a fiber functor ωt̄ : ⟨P|Xt̄
⟩ → VectQℓ

. We claim that for
every s ∈ S and choice of an isomorphism of fiber functors

ωs̄ ◦ −|Xs̄→̃ωη̄ ◦ −|Xη̄ : PULA(X/S)→ VectQℓ
,
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the diagram (5) induces a diagram of algebraic groups with exact lines,
which can be completed as indicated by the dotted arrows

(6) 1 // G(P|Xs̄ , ωs̄) //
_�

cspη̄,s̄

��

G(P|Xs , ωs̄) //
_�

��

G(⟨P|Xs⟩0, ωs̄) //

(cspη̄,s̄)0

��

1

G(P, ωs̄)

≃
��

G(P, ωη̄)

1 // G(P|Xη̄ , ωη̄) // G(P|Xη , ωη̄) //

≃

OO

G(⟨P|Xη⟩0, ωη̄) // 1

The exactness of the lines is (2.1.2-1). The fact that G(P|Xs , ωs̄) ↪→ G(P, ωs̄)
is a closed immersion is formal4.

Note that the existence of the dotted arrows is independent of the choice
of the isomorphism ωs̄ ◦ −|Xs̄→̃ωη̄ ◦ −|Xη̄ hence of the fiber functors ωη̄, ωs̄.
So we will be free to choose ωη̄, ωs̄. Note also that the existence of the
arrow cspη̄,s̄ is equivalent to the one of the arrow (cspη̄,s̄)0. We provide
two constructions of (6), one via a construction of cspη̄,s̄ and one via a
construction of (cspη̄,s̄)0. In both cases, we actually complete (4-1), (4-2)
(5) by introducing some intermediate categories (to be defined) - (∗)η̄,s̄ to
construct cspη̄,s̄ and ((∗)η̄,s̄)0 to construct (cspη̄,s̄)0 as indicated in (7-1),
(7-2) and (8) below.

(7)
(7-1) Perv(Xs)0 // Perv(Xs)

|Xs̄ // Perv(Xs̄)

((∗)η̄,s̄)0

OO

≃
��

// PervULA(X/S)

|Xs

OO

|Xη ≈
��

// (∗)η̄,s̄

OO

≃
��

Perv(Xη)0 // Perv(Xη)
|Xη̄ // Perv(Xη̄)

(7-2) P (Xs)0 // P (Xs)
|Xs̄ // P (Xs̄)

((∗)η̄,s̄)0

OO

≃
��

// PULA(X/S)

|Xs

OO

|Xη ≈
��

// (∗)η̄,s̄

OO

≃
��

P (Xη)0 // P (Xη)
|Xη̄ // P (Xη̄)

4Indeed, by definition of ⟨P|Xs ⟩, every object in ⟨P|Xs ⟩ is a subquotient of some
T m,n(P|Xs ) ≃ T m,n(P)|Xs for some integers m, n ≥ 0.
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(8) ⟨P|Xs⟩0 // ⟨P|Xs⟩
|Xs̄ // ⟨P|Xs̄⟩

((∗)η̄,s̄)0

OO

≃
��

// ⟨P⟩

|Xs

OO

|Xη ≃
��

// (∗)η̄,s̄

OO

≃
��

⟨P|Xη⟩0 // ⟨P|Xη⟩
|Xη̄ // ⟨P|Xη̄⟩

Remark 3.1. Actually, the constructions of (7-1) do not use that f : X → S
is an abelian scheme; they only require that f : X → S be separated and of
finite type (with a section).

3.1. A construction of (cspη̄,s̄)0. We begin with the following observation.

Lemma 3.2. Let f : X → S be a separated morphism of finite type with a
section ι : S → X . The following commutative diagram

Loc(S) = PervULA(S/S) ι∗ //

η∗

��

PervULA(X/S)

|Xη

��
Perv(η)

ιη∗ // Perv(Xη)

is cartesian. Namely for every L[η] ∈ Perv(η), if there exists P ∈ PervULA(X/S)
such that ιη∗L[η] ≃ P|Xη then there exists L ∈ Loc(S) such that η∗L ≃ L[η]
and ι∗L ≃ P.

Proof. As f : X → S is separated, ι : S ↪→ X is a closed immersion;
let j : U := X \ ι(S) ↪→ X denote the complementary open immersion.
Then (j∗P)|Uη ≃ j∗

η(P|Xη ) ≃ j∗
ηιη∗L[η] ≃ 0. As j∗P ∈ PervULA(U/S) and

−|Uη : PervULA(U/S)→ Perv(Uη) is fully faithful, this forces j∗P = 0. From
the distinguished triangle

j!j
∗P → P → ι∗ι

∗P +1→

in Db
c(X ), P→̃ι∗ι∗P hence, by [B24, Lem. 3.6 (iv)], ι∗P ∈ DULA(S/S). From

[B24, Lem. 3.7 (ii)], ι∗P ∈ Db
liss(S). But η∗ι∗P ≃ ι∗η(P|Xη ) ≃ ι∗ηιη∗L[η] ≃

L[η], so that L := ι∗P lies in Loc(S) and has the requested property. □
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We return to the case where f : X → S is an abelian scheme and P ∈
PervULA(X/S). From Lemma 3.2, one can complete (5) as

(9) ⟨P|Xs⟩0 // ⟨P|Xs⟩
|Xs̄ // ⟨P|Xs̄⟩

⟨P⟩0 //

|Xη ≃
��

|Xs

OO

⟨P⟩

|Xs

OO

|Xη ≃
��

⟨P|Xη⟩0 // ⟨P|Xη⟩
|Xη̄ // ⟨P|Xη̄⟩,

which, as claimed, formally yields a commutative diagram of algebraic groups:

(10) 1 // G(P|Xs̄ , ωs̄) //
_�

cspη̄,s̄

��

G(P|Xs , ωs̄) //
_�

��

G(⟨P|Xs⟩0, ωs̄) //

��

(cspη̄,s̄)0

��

1

G(P, ωs̄)

≃
��

// G(⟨P⟩0, ωs̄) //

≃
��

1

G(P, ωη̄) // G(⟨P⟩0, ωη̄) // 1

1 // G(P|Xη̄ , ωη̄) // G(P|Xη , ωη̄) //

≃

OO

G(⟨P|Xη⟩0, ωη̄) //

≃

OO

1.

3.2. A construction of cspη̄,s̄.

3.2.1. Absolutely integrally closed valuation rings and nearby cycles. Recall
that a valuation ring V is said to be absolutely integrally closed (AIC for
short) if it satisfies the following equivalent conditions

(AIC-1) The fraction field of V is algebraically closed;
(AIC-2) Every monic polynomial of degree ≥ 1 in V [T ] has a root

in V .
In particular, such a valuation ring V is strictly henselian.

Fact 3.3. ([HS23, Thm. 1.7, Thm. 6.1 (ii), Cor. 4.2]) Let S = spec(V )
be the spectrum of an AIC valuation ring with generic point η and closed
point s. Let f : X → S be a morphism, separated and of finite presentation
and write Xη

β
↪→ X α←↩ Xs for the inclusions of the generic and closed fibers

respectively. Then,
(1) The functor β∗ : DULA(X/S) → Db

c(Xη) is an equivalence of cate-
gories with quasi-inverse Rβ∗ : Db

c(Xη) → DULA(X/S). In particular,
β∗ : DULA(X/S) → Db

c(Xη) restricts to an equivalence of categories
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β∗ : PervULA(X/S) → Perv(Xη) with quasi-inverse Rβ∗ : Perv(Xη) →
PervULA(X/S).

(2) The nearby cycle functor Rψf = α∗Rβ∗ : D(Xη) → D(Xs) restricts to
a functor Rψf : Db

c(Xη) → Db
c(Xs) which is t-exact with respect to the

perverse t-structures hence induces an exact functor Rψf : Perv(Xη)→
Perv(Xs).

(3) Assume furthermore that f : X → S is an abelian scheme. Then Rψf :
Db
c(Xη) → Db

c(Xs) is a tensor functor and N(Xη) = ker(Db
c(Xη)

Rψf→
Db
c(Xs) → Db

c(Xs)/N(Xs); in particular, Rψf : Perv(Xη) → Perv(Xs)
induces a faithful exact tensor functor Rψf : P (Xη)→ P (Xs).

From [BhM21, Lem. 3.28], for a quasi-compact, quasi-separated scheme T ,
a specialization t1 ⇝ t of points on T , one can always find a morphism
S → T with source the spectrum S = Spec(V ) of an AIC valuation ring
V , mapping the generic point η (resp. the closed point s) of S to t1 (resp.
t). We will call such a morphism - usually written as (S, η, s) → (T, t1, t),
a witness for t1 ⇝ t in T . The proof of [BhM21, Lem. 3.28] shows that, if
furthermore one fixes a geometric point t1 over t1, one can choose S in such
a way that η → t1 factors as η → t1 → t1; if we want to specify a geometric
point over which η → t1 factors, we will rather write (S, η, s)→ (T, t1, t).

3.2.2. We return to the case where S is a smooth, geometrically connected
variety over k and f : X → S is an abelian scheme. For every specialization
η ⇝ s of points on S, fix a witness (S′, η′, s′) → (S, η, s) and geometric
points η′ → η̄ → η, s′ → s̄ → s. Set f ′ : X ′ := X ×S S′ → S′. From Fact
3.3, one gets a canonical diagram of Qℓ-linear abelian categories

Perv(Xs)
|Xs̄ // Perv(Xs̄)

|X ′
s′ // Perv(X ′

s′)

PervULA(X/S)
|X ′ //

|Xs

66

|Xη

≈

((

PervULA(X ′/S′)

|X ′
s′

88

|X ′
η′

≃

&&
Perv(Xη) |Xη̄

// Perv(Xη̄) |X ′
η′

// Perv(X ′
η′)

Rψf ′

]]
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which induces, for every P ∈ PervULA(X/S), a canonical diagram of Tan-
nakian categories

(11) ⟨P|Xs⟩
|Xs̄ // ⟨P|Xs̄⟩

|X ′
s′

≃
// ⟨P|X ′

s′
⟩

⟨P⟩
|X ′ //

|Xs

<<

|Xη

≃

""

⟨P|X ′⟩

|X ′
s′

;;

≃
|X ′

η′

""
⟨P|Xη⟩ |Xη̄

// ⟨P|Xη̄⟩
≃

|X ′
η′

// ⟨P|X ′
η′
⟩

Rψf ′

\\
,

which in turn, as claimed, formally yields a commutative diagram of alge-
braic groups

(12)
1 // G(P|Xs̄ , ωs′) //

cspη̄,s̄

$$

G(P|Xs , ωs′) //
_�

��

G(⟨P|Xs⟩0, ωs′) //

��
(cspη̄,s̄)0

xx

1

G(P|X ′
s′
, ωs̄)

��

≃

OO

Rψf ′

##

G(P|X ′ , ωs′) �
� // G(P, ωs′) // G(⟨P⟩0, ωs′) // 1

G(P|X ′
η′
, ωs′)

≃
��

≃

OO

1 // G(P|Xη̄ , ωs′) // G(P|Xη , ωs′) //

≃

OO

G(⟨P|Xη⟩0, ωs′) //

≃

OO

1

For simplicity, we now omit fiber functors from the notation.

4. Proofs

Unless otherwise stated, in this Section k denotes a field of characteristic 0,
S a smooth geometrically connected variety over k with generic point η and
f : X → S a morphism, separated and of finite type.

4.1. Proof of Theorem 1.2 and Corollary 1.3.

4.1.1. Recollection on artinian and noetherian abelian categories.
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4.1.1.1. Let A be a an artinian and noetherian abelian category. Then,
(1) For every A ∈ A and ϕ ∈ EndA(A), one has a ϕ-stable direct sum decom-

position (Fitting lemma): A ≃ Aϕ,0 ⊕Aϕ,∞, with the property that the
induced morphism ϕ : Aϕ,0 → Aϕ,0 is nilpotent and ϕ : Aϕ,∞ → Aϕ,∞ is
an automorphism; explicitly Aϕ,0 = ker(ϕn), for n≫ 0, Aϕ,∞ = im(ϕn),
for n ≫ 0. In particular, for every A ∈ A, A is indecomposable in A if
and only if EndA(A) is a local ring and every A ∈ A admits a Krull-
Schmidt decomposition: A decomposes into a direct sum A = ⊕1≤i≤rAi
with A1, . . . , Ar ∈ A indecomposable and the indecomposable objects
A1, . . . , Ar (counted with multiplicity) are unique up to isomorphism
and called the Krull-Schmidt or indecomposable factors of A. In par-
ticular, A is semisimple if and only if its indecomposable factors are
simple.

(2) Every A ∈ A admits a composition series that is a filtration

0 = Ar+1 ⊊ Ar ⊊ · · · ⊊ A2 ⊊ A1 := A

in A with Si := Ai/Ai+1 a simple object in A, i = 1, . . . , r. Furthermore,
the simple objects S1, . . . , Sr (counted with multiplicity) are unique up
to isomorphism and called the Jordan-Hölder or simple factors of A. In
particular the length lengthA(A) := r of A is a well-defined integer.

(3) Let N ⊂ A be a Serre subcategory and let p : A → A := A/N denote
the resulting quotient functor, which is exact and essentially surjective.
Then, for every simple object S in A not lying in N , p(S) is again a
simple object in A. This follows from the definition of morphisms in A.
Indeed, consider a diagram

X
f→ Y

s←↩ S

in A with N := coker(s) ∈ N such that the resulting morphism

p(X) p(f)→ p(Y )
p(s)−1

≃→ p(S)

is injective. In particular, the morphism p(S)
p(s)
≃→ p(Y ) → p(Y/X) is

surjective. So either p(Y/X) = 0 and p(X) p(f)→ p(Y ) is an isomorphism
in A or the morphism S

s→ Y → Y/X is non-zero hence injective. But

then the morphism p(S)
p(s)
≃→ p(Y ) → p(Y/X) is an isomorphism in A

hence so is p(Y ) → p(Y/X), which imposes p(X) = 0. In particular,
for every A ∈ A, if one defines lengthA,N (A) ≤ lengthA(A) to be the
number of Jordan-Hölder factors of A which lies in N , one has

lengthA(p(A)) + lengthA,N (A) = lengthA(A).
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4.1.1.2. Let now A1, A2 be artinian and noetherian abelian categories and
let F : A1 → A2 be an additive functor.
(1) Assume F : A1 → A2 is fully faithful. Then for every A1 ∈ A1, A1 is

indecomposable in A1 if and only if F (A1) is indecomposable in A2.
(2) Consider the following conditions
(SF,[??]) For every A1 ∈ A1, A1 is simple in A1 [??] F (A1) is simple in A2;
(SSF,[??]) For every A1 ∈ A1, A1 is semisimple in A1 [??] F (A1) is semisimple in A2.

with [??] one of ⇐, ⇒, ⇔.
(a) Then (SF,⇒) always implies (SSF,⇒) and, if furthermore F : A1 →
A2 is exact, then for every A1 ∈ A1,

lengthA1(A1) = lengthA2(F (A1)).
(b) If F : A1 → A2 is fully faithful then (SF,⇐) implies (SSF,⇐). Indeed,

let A1 ∈ A1 and consider the Krull-Schmidt decomposition A1 =
⊕1≤i≤rA1,i of A1 in A1. Then F (A1) = ⊕1≤i≤rF (A1,i) is the Krull-
Schmidt decomposition of F (A1) in A2. So, one has

F (A1) is semisimple in A2 ⇐⇒ F (A1,i) is simple in A2, i = 1, . . . r
(SF,⇐)=⇒ A1,i is simple in A1, i = 1, . . . r
⇐⇒ A1 is semisimple in A1.

(3) Assume F : A1 → A2 is exact. Let N2 ⊂ A2 be a Serre subcategory and
let p2 : A2 → A2 := A2/N2 denote the resulting quotient functor. The
full subcategory

N1 := ker(A1
F→ A2

p2→ A2) ⊂ A1

is also a Serre subcategory and the resulting quotient functor p1 : A1 →
A1 := A1/N1 fits into a canonical commutative diagram of exact func-
tors

A1
p1 //

F

��

A1

F
��

A2 p2
// A2.

As F : A1 → A2 is faithful exact, (SF ,⇐) always holds.

(a) Also, (SF,⇒) always implies (SF ,⇒). Indeed, for every A1 ∈ A1,
consider a Jordan-Hölder filtration

A1 : 0 = A1,r+1 ⊊ A1,r ⊊ · · · ⊊ A1,2 ⊊ A1,1 := A1

of A1 in A1. Assume (SF,⇒) holds. Then
F (A1) : 0 = F (A1,r+1) ⊊ F (A1,r) ⊊ · · · ⊊ F (A1,2) ⊊ F (A1,1) := F (A1)

is again a Jordan-Hölder filtration of F (A1) in A2. If p1(A1) is sim-
ple in A1, then all but one of the A1,i/A1,i+1 lie in N1 which, again
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by definition ofN1, ensures that all but one of the F (A1,i)/F (A1,i+1)
lie in N2, hence that F (p1(A1)) is simple in A2.

(b) The argument in (3) (a) shows more precisely that for every A1 ∈
A1 with a Jordan-Hölder filtration

A1 : 0 = A1,r+1 ⊊ A1,r ⊊ · · · ⊊ A1,2 ⊊ A1,1 := A1

in A1, if F (A1,i)/F (A1,i+1) is a simple object in A2, i = 1, . . . , r,
then one has

lengthA1(A1) = lengthA2(F (A1)), lengthA1
(p1(A1)) = lengthA2

(F (p1(A1)))

and
A1 is semisimple in A1 ⇒ F (A1) is semisimple in A2

p1(A1) is semisimple in A1 ⇒ F (p1(A1)) is semisimple in A2.

4.1.2. Preliminary reductions.

4.1.2.1. Independence of the geometric point. The following observation will
enable us to choose geometric points freely. Let f : X → S be a morphism,
separated and of finite type. Let P ∈ PervULA(X/S). Let t ∈ S and let
t̄1, t̄2 be two geometric points over t. Then
(1) P|Xt̄1

is simple (resp. semisimple) in Perv(Xt̄1) if and only if P|Xt̄2
is

simple (resp. semisimple) in Perv(Xt̄2) and one has

lengthPerv(Xt̄1 )(P|Xt̄1
) = lengthPerv(Xt̄2 )(P|Xt̄2

).

(2) Assume furthermore that f : X → S is an abelian scheme. Then P|Xt̄1
is

simple (resp. semisimple) in P (Xt̄1) if and only if P|Xt̄2
is simple (resp.

semisimple) in P (Xt̄2) and one has

lengthP (Xt̄1 )(P|Xt̄1
) = lengthP (Xt̄2 )(P|Xt̄2

).

Indeed, by considering a geometric point t̄ over both t̄1 and t̄2 one imme-
diately reduces to the case where, say, t̄2 is over t̄1. As the restrictions
functors

−|Xt̄2
: Perv(Xt̄1)→ Perv(Xt̄2), −|Xt̄2

: P (Xt̄1)→ P (Xt̄2)

are exact, fully faithful (e.g. [JKrLM25, Lem. A.1]), the observations in
Paragraph 4.1.1.2 (2) reduce the proof of (1) and (2) to showing respectively
that for every P1 ∈ Perv(Xt̄1),
(1)’ P1 is simple in Perv(Xt̄1) if and only if P1|Xt̄2

is simple in Perv(Xt̄2);

(2)’ (if f : X → S is an abelian scheme) P1 is simple in P (Xt̄1) if and only
if P1|Xt̄2

is simple in P (Xt̄2)
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while the observation of Paragraph 4.1.1.2 (3) (a) shows that Assertion (2)’
follows from Assertion (1)’. Let us prove Assertion (1)’. The if part of follows
from the fact that −|Xt̄2

: Perv(Xt̄1)→ Perv(Xt̄2) is exact and fully faithful.
For the only if part, from [BeBerDG82, Thm. 4.3.1 (ii)] every simple object
S in Perv(Xt̄1) is of the form S = ι1∗j1!∗F1[d] for some irreducible closed
subscheme ι1 : Z1 ↪→ Xt̄1 , non-empty open subscheme j1 : U1 ↪→ Z1, smooth
over k(t̄1) and pure of dimension d, and simple Qℓ-local system F1 on U1.
Consider the base-change diagram

U2
� � j2 //

��
□

��

Z2
� � ι2 //

□
��

Xt̄2 //

□
��

spec(k(t̄2))

��
U1
� � j1 // Z1

� � ι1 // Xt̄1 // spec(k(t̄1))

and set F2 := F1|U2 . Then
S|Xt̄2

= (ι1∗j1!∗F1[d])|Xt̄2
≃ ι2∗j2!∗F2[d]

and the assertion follows from the fact that the restriction functor
−|U2 : Loc(U1)→ Loc(U2)

maps simple objects to simple objects since the canonical morphism π1(U2)→
π1(U1) is surjective (e.g. [St25, Tag 0387]).

4.1.2.2. Let f : X → S be a morphism, separated and of finite type. Every
witness (S′, η′, s′)→ (S, η, s) induces a canonical exact functor

Rψf ′ : Perv(Xη′) ≃→ PervULA(X ′/S′)→ Perv(Xs′),
where the notation are as follows

X ′ //

f ′

��
□

X

f
��

S′ // S.

Assume furthermore f : X → S is an abelian scheme. Then

N(Xη′) ∩ Perv(Xη′) = ker(Perv(Xη′)
Rψf ′
→ Perv(Xs′)→ P (Xs′)).

So, Paragraph 4.1.2.1 and the observations in Paragraph 4.1.1.2 (2) (b)
applied to

A1
p //

F

��

A1

F
��

= Perv(Xη′) //

Rψf ′

��

P (Xη′)

��
A2

p′
// A2 Perv(Xs′) // P (Xs′).

reduce the proof of Theorem 1.2 and Corollary 1.3 to the following state-
ment.

https://stacks.math.columbia.edu/tag/0387
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Theorem 4.1. Let f : X → S be a morphism, separated and of finite type.
Let Pi ∈ Perv(Xη̄), i = 1, . . . , r be finitely many simple objects in Perv(Xη̄).
After possibly replacing S by a non-empty open subscheme S the following
holds. For every s ∈ S, there exists a witness (S′, η′, s′)→ (S, η, s) such that
Rψf ′(Pi|Xη′ ) is simple in Perv(Xs′), i = 1, . . . , r.

4.1.3. Proof of Theorem 4.1.

4.1.3.1. Intermediate extensions and the ULA property. Let ℓ be a prime.
Let Z → S be a separated morphism of finite presentation of quasi-compact
quasi-separated schemes over Z[1/ℓ]. Assume that S has only finitely many
irreducible components, so that by [HS23, Theorem 6.7] the relative perverse
t-structure exists on DULA(Z/S). Let j : U ↪→ Z be an open immersion of fi-
nite presentation. Given K ∈ DULA(U/S) with j!K, j!DU/SK ∈ DULA(Z/S),
write j!∗/SK for the image of the natural morphism

p/SH0(j!K)→ p/SH0(DZ/Sj!DU/SK)

in the abelian category PervULA(Z/S). Observe the following
(1) When S is the spectrum of a field and K ∈ Perv(U), j!∗/SK is the usual

middle extension of K to Z.
(2) As, for ULA objects, both the formation of relative Verdier duality and

j! commute with base change S′ → S ([HS23, Proposition 3.4 (ii)]),
the formation of j!∗/SK also commutes with base-changes S′ → S. In
particular, for every geometric point s̄ on S, if js̄ : Us̄ ↪→ Zs̄ denotes the
base change of j : U ↪→ Z along s̄→ S, one has (j!∗/SK)|Zs̄ = js̄,!∗(K|Us̄).

Lemma 4.2. Consider a diagram

(13) Ũ �
� j̃ //

□h
��

Z̃
g

��
U �
� j // Z

f // S

of quasi-compact quasi-separated schemes. Assume that
- f : Z → S is separated of finite presentation and j : U ↪→ Z is an open

immersion with U → S smooth, ;

- g : Z̃ → Z is proper, and h : Ũ → U is finite étale;

- Z̃ → S is smooth and D̃ := Z̃ \ Ũ is a divisor on Z̃ with strict normal
crossings relative to Z̃ → S.

Let ℓ be a prime invertible on S. Let F be a Qℓ-local system on U . Assume
that h∗F is tamely ramified along D̃. Then j!F , j!(F∨) are constructible
sheaves that are ULA relative to f : Z → S. In particular, if S has only
finitely many irreducible components and d denotes the relative dimension
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of U → S, then j!∗/SF [d] is a well defined object in PervULA(Z/S), whose
formation commutes with base-changes.

Proof. By [St25, Tag 0818], j : U ↪→ Z is of finite presentation. From [L81,
Proposition 1.4.4], and as U → S is smooth, F ∈ DULA(U/S). So, since
DU/S(F [d]) = F∨[d], the second part of Lemma 4.2 follows from the first
part.

The sheaves j!F and j̃!h
∗F are constructible. From [S17, Lemma 3.14],

and as h∗F is tamely ramified along D̃, j̃!h∗F is ULA relative to Z̃ → S.
From [HS23, p.643], and as g : Z̃ → Z is proper, Rg∗j̃!h

∗F ∈ DULA(Z/S).
Hence j!h∗h

∗F ≃ Rg∗j̃!h
∗F ∈ DULA(Z/S).

Since h : Ũ → U is finite étale, the natural morphism Qℓ,U → h∗Qℓ,Ũ of
lisse sheaves is the inclusion of a direct summand. By the projection formula
[St25, Tag 0F0G], as h : Ũ → U is proper, one has h∗(h∗F) = F ⊗Qℓ

h∗Qℓ,Ũ .
Thus, F ↪→ h∗h

∗F and hence j!F ↪→ j!h∗h
∗F are direct summands. Since

universal local acyclicity is preserved under passing to direct summands, one
has j!F ∈ DULA(Z/S). As h∗F∨ is also tamely ramified along D̃, one has
j!F∨ ∈ DULA(Z/S).

□

4.1.3.2. Proof of Theorem 4.1. From [BeBerDG82, Thm. 4.3.1 (ii)], for every
i = 1, . . . , r, there exists an integral closed subscheme ιi : Zi ↪→ Xη̄ and
a non-empty open subscheme ji : Ui ↪→ Zi, smooth over k(η̄) and pure of
dimension di, and a simple object Fi in Loc(Ui) such that Pi = ιi,∗ji,!∗Fi[di].
Fix also a k(η̄)-point ui ∈ Ui and a smooth normal crossing compactification
Ui ↪→ U cpt

i . There exists a finite field extension K0 of k(η) such that, for
every i = 1, . . . , r,

U cpt
i Ui?

_oo � � ji // Zi
� � ιi // Xη̄ // spec(k(η̄))

ui

vv

is defined over K0 and spread out as

U cpt
i

□
��

Ui
� � ji //

��
□

? _oo Zi
� � ιi //

��
□

Xη0

��

// spec(K0)

η0

��

ui

uu

Ucpt
i Ui �

� ji //? _oo Zi �
� ιi // X ×S S0 // S0

ui

ii

with
- ιi : Zi ↪→ X ×S S0 a closed immersion and Zi → S0 geometrically irre-

ducible;

https://stacks.math.columbia.edu/tag/0818
https://stacks.math.columbia.edu/tag/0F0G
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- ji : Ui ↪→ Zi an open immersion and Ui → S0 is smooth, pure of relative
dimension di;

- Ui ↪→ Ucpt
i is a relative smooth normal crossing compactification over S0,

where S0 ⊂ S̃0 is a non-empty open in the normalization S̃0 → S of S in
spec(K0)→ spec(k(η)) η→ S.

By Lemma 4.3, as char(k) = 0, shrinking S0 if necessary, one may fur-
thermore assume that there is a diagram

Ũi �
� //

��
□

Z̃i

��
Ui �
� ji // Zi // S0

satisfying the conditions of Lemma 4.2. Then the diagram base changed
along a witness S′ → S0 also satisfies the conditions of Lemma 4.2. From
char(k) = 0, the tame ramification condition holds.

As the image of every non-empty open subscheme of S0 contains a non-
empty open subscheme of S and as, for every s0 ∈ S0 with image s ∈
S any witness (S′

0, η
′
0, s

′
0) → (S0, η0, s0) induces a witness (S′

0, η
′
0, s

′
0) →

(S0, η0, s0) → (S, η, s), one may freely replace S with S0 so that we re-
move the subscripts (−)0 from the notation. Let now s ∈ S and fix a
witness (S′, η′, s′) → (S, η, s). By invariance of étale fundamental group
under extensions of algebraically closed fields in characteristic 0, one has
π1(Ui,η′)→̃π1(Ui) hence Fi|Ui,η′ is again irreducible. As S′ is strictly henselian,
π1(S′) = 1 and as U ′

i := Ui×SS′ → S′ has a section, the canonical morphisms
π1(U ′

i,η′)→̃π1(U ′
i)←̃π1(U ′

i,s′)

are both isomorphisms [SGA1, XIII, 4.3, 4.4]. In particular, Fi|Ui,η′ extends
uniquely to an object F ′

i in Loc(U ′
i), and F ′

i |U ′
i,s′

is simple in Loc(U ′
i,s′). From

[BeBerDG82, Thm. 4.3.1 (ii)], it is thus enough to show that
(14) Rψf ′(Pi|Xη′ ) ≃ ιi,s′∗ji,s′!∗(F ′

i |U ′
i,s′

[di]).

Consider the commutative diagram

U ′
i
� � j

′
i //

��
□

Z ′
i
� � ι

′
i //

��
□

X ′ f ′
//

��
□

S′

��
Ui �
� ji // Zi �

� ιi // X
f // S

of schemes with cartesian squares. By Lemma 4.2, j′
i,!∗/S′F ′

i [di] ∈ PervULA(Z ′
i/S

′).
Therefore, K := ι′i∗j

′
i,!∗/S′F ′

i [di] is in PervULA(X ′/S′). By Observation (2)
in Paragraph 4.1.3.1 and the proper base change theorem, as ι′i : Z ′

i ↪→
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X ′ is proper, K|Xη′ is the pullback of Pi along Xη′ → Xη̄, and K|Xs′ is
ιi,s′∗ji,s′!∗(F ′|U ′

i,s′
[di]), which proves (14).

Lemma 4.3. Let S be an irreducible scheme with generic point η. Assume
that k(η) is of characteristic 0. Let f : Z → S be a morphism separated
of finite presentation, with Zη integral. Let U ↪→ Zη be an open subset
smooth over k(η). Then up to shrinking S to an affine open subset, there is
a diagram (13) satisfying the conditions of Lemma 4.2, such that Uη = U

and h : Ũ → U is an isomorphism.
Proof. By Hironaka’s resolution of singularities (see, e.g., [SGA5, I, 3.1.5 b)
a)]), as k(η) is of characteristic 0, Zη is strongly desingularizable. As Zη is
integral, there is a proper morphism Z̃ → Zη with Z̃ smooth over k(η), such
that the pullback Ũ := U ×Zη Z̃ → U is an isomorphism, and that Z̃ \ Ũ is
a strict normal crossing divisor. The result follows by spreading out. □

Remark 4.4. The nearby cycles functor may not preserve simplicity of
perverse sheaves nor commute with middle extension. Let S be the spectrum
of a strictly Henselian discrete valuation ring with generic point η and closed
point s. Let f : X → S be a proper semi-stable morphism with geometrically
integral fibers of dimension d. Assume that the special fiber Xs ↪→ X is a
strict normal crossing divisor on X . Then there is an open subset j : U ↪→ X
smooth over S, such that Uη = Xη and that Us is Zariski-dense in Xs. Let
Rψf : Db

c(Xη̄) → Db
c(Xs) be the nearby cycles functor. By [I94, Théorème

3.2 (c) (i)], H0Rψf (Qℓ,Xη̄
) ≃ Qℓ,Xs

. Let js : Us ↪→ Xs be the pullback
of j : U ↪→ X along s → S. Let ICXs := js,!∗Qℓ,Us

[d] be the intersection
cohomology complex on Xs. In general, H−dICXs is not constant, in which
case the perverse sheaf Rψf (Qℓ,Xη̄

[d]) is not isomorphic to ICXs . Also, from
[SGA4-III, XV, Thm 2.1], one has(

Rψf (Qℓ,Xη̄
)
)
|Us = Rψf◦j(Qℓ,Xη̄

) = Qℓ,Us
.

Then by [BeBerDG82, Théorème 4.3.1 (ii)], Rψf (Qℓ,Xη̄
[d]) is not simple in

Perv(Xs) (otherwise, it would be isomorphic to the simple object ICXs) while
Qℓ,Xη̄

[d] is simple in Perv(Xη̄).
4.2. Lifting semisimplicity.

4.2.1. Let A be an artinian and noetherian abelian category, let ι : N ↪→ A
be a Serre subcategory and let p : A → A := A/N denote the resulting
quotient functor. The inclusion functor ι : N ↪→ A admits both a right
adjoint (−)¬ : N → A ("maximal subobject in N ") and a left adjoint (−)¬ :
N → A ("maximal quotient object in N "). Explicitly, for A ∈ A, A¬ =∑
N∈S¬(A)N ↪→ A, where S¬(A) denotes the subset of all subobjects of A

in N and A↠ A¬ = A/∩S∈S¬(A) S, where S¬(A) denotes the subobjects S
of A such that A/S ∈ N . Then for every A ∈ A,

A∗ := ker(A/A¬ → (A/A¬)¬)
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is a subquotient of A in A satisfying (A∗)¬ = (A∗)¬ = 0 and p(A∗) ≃ p(A)
in A. Observing that for every A1, A2 ∈ A with A¬

1 = 0 and A2,¬ = 0 the
canonical morphism

HomA(A1, A2)→ HomA(p(A1), p(A2))
is an isomorphism, one gets that for every A1, A2 ∈ A,

p(A1) ≃ p(A2) in A if and only if A∗
1 ≃ A∗

2 in A.

Lemma 4.5. Let A ∈ A such that p(A) is semisimple in A. Then A∗ is
semisimple in A and

lengthA(A∗) = lengthA(p(A)).

Proof. Assume first p(A) is simple in A. As p(A∗) ≃ p(A) in A, A∗ has
a single Jordan-Hölder factor in A which is not in N . But as (A∗)¬ =
(A∗)¬ = 0, this forces A∗ to be simple in A. In general, let S1, . . . , Sr
denote the simple factors (counted with multiplicities) of p(A) in A and let
S1, . . . , Sr ∈ A with p(Si) ≃ Si in A, i = 1, . . . , r. Set

S := S∗
1 ⊕ · · · ⊕ S∗

r .

Then, S is semisimple in A, S = S∗, and p(S) ≃ p(A) in A. This shows
A∗ ≃ (S∗ ≃)S is semisimple in A and

lengthA(A∗) = lengthA(S) = r = lengthA(p(A)).
□

4.2.2. If X is an abelian variety over a field K of characteristic 0, write
(−)¬ : Perv(X)→ N(X) ∩ Perv(X), (−)¬ : Perv(X)→ N(X) ∩ Perv(X)

for the right adjoint ("maximal negligible subobject") and left adjoint ("max-
imal negligible quotient object") of the inclusion functor

N(X) ∩ Perv(X) ↪→ Perv(X)
respectively. By Galois descent [Ri14, Lem. A.6], for every P ∈ Perv(X),
(P¬)|XK̄

= (P|XK̄
)¬ ↪→ P|XK̄

and P|XK̄
↠ (P¬)|XK̄

= (P|XK̄
)¬; in partic-

ular

(15) (−)∗ ◦ −|XK̄
≃ −|XK̄

◦ (−)∗ : Perv(X)→ Perv(XK̄).
If f : X → S is an abelian scheme, write again

(−)¬ : PervULA(X/S)→ NULA(X/S) ∩ PervULA(X/S),
(−)¬ : PervULA(X/S)→ NULA(X/S) ∩ PervULA(X/S)

for the right adjoint and left adjoint of the inclusion functor
NULA(X/S) ∩ PervULA(X/S) ↪→ PervULA(X/S)

respectively. Furthermore, as for every s ∈ S,
NULA(X/S) ∩ PervULA(X/S) = ker(PervULA(X/S)→ P (Xs̄)),
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and, for s = η, −|Xη : PervULA(X/S) → Perv(Xη) is fully faithful with
essential image stable under subquotients, one has

(16) (−)∗ ◦ −|Xη ≃ −|Xη ◦ (−)∗ : PervULA(X/S)→ Perv(Xη).

Combining (15), (16) one gets

(−)∗ ◦ −|Xη̄ ≃ −|Xη̄ ◦ (−)∗ : PervULA(X/S)→ Perv(Xη̄).
This observation together with Lemma 4.5 yields the following result.

Corollary 4.6. Let f : X → S an abelian scheme. Let P ∈ PervULA(X/S).
Assume that P|Xη̄ is semisimple in P (Xη̄). Then P∗|Xη̄ is semisimple in
Perv(Xη̄) with

lengthPerv(Xη̄)(P
∗|Xη̄ ) = lengthP (Xη̄)(P|Xη̄ ).

and, for every s ∈ S, P∗|Xs̄ ≃ P|Xs̄ in P (Xs̄).

4.3. Proof of Corollary 1.4. Let f : X → S an abelian scheme. Let P ∈
PervULA(X/S) such that P|Xη̄ is semisimple in P (Xη̄). From Corollary 4.6,
up to replacing P with P∗, one may assume P|Xη̄ is semisimple in Perv(Xη̄)
and, from Theorem 1.2, up to replacing S by a non-empty open subscheme,
one may assume that for every s ∈ S, P|Xs̄ is semisimple in Perv(Xs̄). This
reduces the proof of Corollary 1.4 (2) to the one of Corollary 1.4 (1). Under
the assumptions of Corollary 1.4 (1), G(P|Xη̄ ) is a reductive group and, for
every s ∈ S, G(P|Xs̄) ⊂ G(P|Xη̄ ) is a closed reductive subgroup. Recall that
[D82, Prop. 3.1 (c)] for a reductive group G over a field Q of characteristic
0, a finite-dimensional Q-rational faithful representation V of G and a closed
reductive subgroup H ⊂ G, one has

H = FixG(uH) ⊂ G,

for some integers m,n ≥ 0 and 0 ̸= uH ∈ Tm,n(V ). In particular, H ⊊ G if
and only if

dimQ(Im,n(V )) < dimQ(Im,n(V |H)),
for some integers m,n ≥ 0.

This reduces the proof of Corollary 1.4 (1) to the following.

Corollary 4.7. Let f : X → S an abelian scheme. Let P ∈ PervULA(X/S)
such that P|Xs̄ is semisimple in Perv(Xs̄) for every s ∈ S. Then for every
integers m,n ≥ 0, there exists a strict closed subscheme Sm,n ↪→ S such that
for every s ∈ S,

dimQℓ
(Im,n(P|Xη̄ )) < dimQℓ

(Im,n(P|Xs̄))

if and only if s ∈ Sm,n.
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Proof. Write
Pm,n := p/SH0(Tm,n(P)),

which is again in PervULA(X/S) with the properties that, for every s ∈ S,
pH0(Tm,n(P|Xs̄)) ≃ Pm,n|Xs̄

and, by Lemma 4.8, Pm,n|Xs̄ is semisimple in Perv(Xs̄). For s ∈ S, decom-
pose Pm,n|Xs̄ as

Pm,n|Xs̄ ≃ (Pm,n|Xs̄)¬ ⊕ S,
where S is the sum of all simple non-negligible subobjects of Pm,n|Xs̄ in
Perv(Xs̄). As for every N ∈ N(Xs̄) ∩ Perv(Xs̄) one has

HomPerv(Xs̄)(N , δ0) = 0,
the canonical morphism

HomPerv(Xs̄)(S, δ0)→ HomPerv(Xs̄)(Pm,n|Xs̄ , δ0)
is an isomorphism. On the other hand, as for every non-negligible simple
objects S1,S2 in Perv(Xs̄) the canonical morphism

HomPerv(Xs̄)(S1,S2)→ HomP (Xs̄)(S1,S2)
is an isomorphism, the canonical morphism

HomPerv(Xs̄)(S, δ0)→ HomP (Xs̄)(S, δ0)
is also an isomorphism. This proves that
dimQℓ

(Im,n(P|Xs̄)) = dimQℓ
(I1,0(Pm,n|Xs̄)) = dimQℓ

(HomPerv(Xs̄)(Pm,n|Xs̄ , δ0)).

By Lemma 4.9, there is a quotient Pm,n ↠ Pm,n,{0} in Perv(X/S) such that
for every geometric point s̄ on S, Pm,n|Xs̄ ↠ Pm,n,{0}|Xs̄ is the maximal
quotient of Pm,n|Xs̄ in Perv(Xs̄) with support in {0}. In particular, the
canonical injective morphism

HomPerv(Xs̄)(Pm,n,{0}|Xs̄ , δ0)→ HomPerv(Xs̄)(Pm,n|Xs̄ , δ0)
is an isomorphism. But as the full subcategory Perv0(Xs̄) ⊂ Perv(Xs̄) of all
objects with support in {0} identifies with Perv(0̄) ≃ VectQℓ

via

0∗ : Perv(0̄)→̃Perv0(Xs̄),
one has Pm,n,{0}|Xs̄ ≃ δ

⊕µs
0 with

µs := dimQℓ
(HomPerv(Xs̄)(Pm,n,{0}|Xs̄ , δ0) = χ(Xs̄,Pm,n,{0}|Xs̄).

This eventually reduces Corollary 4.7 to proving that for every b ≥ 0 the
subset

U≤b := {s ∈ S | µs ≤ b} ⊂ S
is open. As the map µ : S → Z≥0 is constructible, it is enough to prove that
U≤b is stable under generization. This essentially follows from the existence
of the cospecialization morphism since, for every specialization t1 ⇝ t0 of
points in S, cspt̄1,t̄0 identifies G(Pm,n|Xt̄0

) with a subgroup

G(Pm,n|Xt̄0
) ⊂ G(Pm,n|Xt̄1

) ⊂ GL(ωt̄1(Pm,n|Xt̄1
)),
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so that µt0 ≥ µt1 . □

Lemma 4.8. Let k be an algebraically closed field of characteristic 0, let X
be an abelian variety over k and let P ∈ Perv(X). Assume P is semisim-
ple in Perv(X). Then for every integers m,n ≥ 0, pH0(Tm,n(P)) is again
semisimple in Perv(X).

Proof. (Sketch of) This is mentioned as [KrW15, Ex. 5.1]. The fact that
Rm∗ : Db

c(X × X) → Db
c(X) preserves direct sums of shifts of simple per-

verse sheaves follows from Kashiwara’s conjecture (Kashiwara’s conjecture
is reduced to a conjecture of de Jong in [Dr01], and de Jong’s conjecture is
proved in [BoK06], [G07]) while the fact that the exterior tensor product
P1⊠LP2 of two simple objects P1,P2 ∈ Perv(X) is a direct sums of shifts of
simple perverse sheaves follows from the structure of simple perverse sheaves
and the fact that for every immersion ιi : Ui ↪→ X and Li ∈ Loc(Ui), i = 1, 2
one has

(ι1 × ι2)!∗(L1 ⊠
L L2) ≃ ι1,!∗(L1)⊠L ι2,!∗(L2).

See e.g. [MS22, Ex. 10.2.31]. □

Lemma 4.9. Let f : X → S be a separated morphism of finite type and let
ι : Z ↪→ X be a closed immersion. For every P ∈ Perv(X/S), there is a
quotient P ↠ PZ in Perv(X/S) such that for every geometric point s̄ on S,
P|Xs̄ ↠ PZ |Xs̄ is the maximal quotient of P|Xs̄ in Perv(Xs̄) with support in
Zs̄.

Proof. Define P ↠ PZ as the image of the composite

P adι→ ι∗ι
∗P → p/Sτ≥0(ι∗ι∗P)

of the adjunction morphism for ι : Z ↪→ X and the relative perverse trun-
cation with respect to f : X → S. As ι∗ : Db

c(Z) → Db
c(X ) is t-exact and

ι∗ : Db
c(X ) → Db

c(Z) is right t-exact with respect to the relative perverse
t-structure on f : X → S, one has
p/Sτ≥0(ι∗ι∗−) ≃ ι∗p/Sτ≥0(ι∗−) ≃ ι∗p/SH0(ι∗−) : Perv(X/S)→ Perv(X/S).
Furthermore, for every geometric point s̄ on S, by proper base-change,

−|Xs̄ ◦ ι∗ ≃ ιs̄∗ ◦ −|Zs̄ : Perv(Z/S)→ Perv(Xs̄),
while, by definition of the relative perverse t-structure,

−|Zs̄ ◦ p/SH0(−) ≃ pH0(−|Zs̄) : Perv(Z/S)→ Perv(Zs̄).
This proves that for every geometric point s̄, the formation of P ↠ PZ
commutes with −|Xs̄ : Perv(X/S) → Perv(Xs̄) and reduces the proof of
Lemma 4.9 to the case where S = spec(k̄) is the spectrum of an algebraically
closed field. By construction PZ has support in Z. Let j : X \Z ↪→ X denote
the complementary open immersion. Conversely, for every quotient P ↠ Q
in Perv(X ) with support in Z, the distinguished triangle

j!j
∗Q → Q→ ι∗ι

∗Q +1→
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ensures that Q→̃ι∗ι∗Q so that, by adjunction, P ↠ Q→̃ι∗ι∗Q factors as

(17) P // //

adι ""

ι∗ι
∗Q

ι∗ι
∗P

:: ,

and, as Q ∈ Perv(X ), (17) factors further as

P // //

adι !!

ι∗ι
∗Q

ι∗ι
∗P

88

// p/Sτ≥0(ι∗ι∗P),

OO

which concludes the proof of Lemma 4.9. □

4.4. Proof of Corollary 1.5. Let f : X → S be an abelian scheme. We
begin with the following observation.

Lemma 4.10. Let P ∈ PervULA(X/S). Assume P|Xη̄ has torsion determi-
nant of order N . Then for every s ∈ S, P|Xs̄ also has torsion determinant
of order dividing N .

Proof. Let n denote the dimension of P in PULA(X/S) and det(P) := ∧nP
its determinant. It follows from the general formalism of Tannakian cate-
gories that for every t ∈ S, P|Xt , P|Xt̄

again have dimension n and that
(∧nP)|Xt ≃ ∧n(P|Xt), (∧nP)|Xt̄

≃ ∧n(P|Xt̄
). In particular, as for every

s ∈ S, one has
G(∧n(P|Xs̄)) ⊂ G(∧n(P|Xη̄ )),

hence ∧n(P|Xs̄) is also torsion, with order dividing N . □

Note that if G(P|Xη̄ ) is semisimple then any object in ⟨P|Xη̄⟩ has torsion
determinant of order dividing |π0(G(P|Xη̄ ))|.

We now turn to the proof of Corollary 1.5 itself. Let P ∈ PervULA(X/S).
After possibly replacing P ∈ PervULA(X/S) with P|Xk̄

∈ PervULA(Xk̄/Sk̄),
one may assume k = k̄ is algebraically closed.

- Proof of Corollary 1.5 (1). Up to replacing P with P∗ - see Corollary
4.6, one may assume P|Xη̄ is simple in Perv(Xη̄), and not only in P (Xη̄).
Then Corollary 1.5 (1) immediately follows from Fact 1.1, Theorem 1.2
and Lemma 4.10.

- Proof of Corollary 1.5 (2). Let us first observe that for a connected reduc-
tive group G and a closed subgroup H ⊂ G, the following are equivalent
(1) H ⊂ G↠ Gss factors through an isogeny Hss ↠ Gss;
(2) dim(R(G)∩H) =dim(R(H)) and dim(H)−dim(R(H)) =dim(G)−dim(R(G));
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(3) dim(R(G)∩H◦) =dim(R(H◦)) and dim(H◦)−dim(R(H◦)) =dim(G)−dim(R(G));
(4) H◦ ⊂ G↠ Gss factors through an isogeny H◦,ss ↠ Gss.
In particular, to prove the first part of Corollary 1.5 (2), one can replace
G(P|Xs̄)◦ with G(P|Xs̄)∩G(P|Xη̄ )◦ (which will simplify a bit the notation).

Replacing P ∈ PervULA(X/S) with [N ]∗P ∈ PervULA(X/S) for some inte-
ger N ≥ 1, one may assume G(P|Xη̄ ) is connected (see [W15, §2]). From
the short exact sequence

1→ G(P|Xη̄ )→ G(P)→ G(⟨P⟩0)→ 1

and the description ofG(⟨P⟩0) in terms of representation of π1(S) (see Sub-
section 4.5 below), replacing P ∈ PervULA(X/S) with P|XS′ ∈ PervULA(XS′/S′)
for some connected étale cover S′ → S, one may also assume G(P) is con-
nected.

Let
G(P)↠ G(P)ad

denote the maximal adjoint quotient5 of G(P). The morphism G(P) ↠
G(P)ad factors as G(P) ↠ G(P)ss ↠ G(P)ad. On the other hand, as
G(P|Xη̄ ) is normal in G(P), R(G(P|Xη̄ )) = (R(G(P))∩G(P|Xη̄ ))◦ so that
the morphism G(P|Xη̄ ) ↪→ G(P) ↠ G(P)ss factors through a morphism
G(P|Xη̄ )ss → G(P)ss inducing an isogeny onto its image, which is a closed
normal subgroup of G(P)ss. By the structure theory of connected semisim-
ple groups, there is a (unique) connected (automatically adjoint) quotient
G(P)ad ↠ G̃ such that the resulting canonical morphism

G(P|Xη̄ )ss → G(P)ss ↠ G(P)ad ↠ G̃

is an isogeny. As G̃ is adjoint, it admits an irreducible faithful representa-
tion corresponding to a simple object Q ∈ ⟨P⟩; in particular, G̃ = G(Q).
The commutative diagram of exact tensor functors

(18) ⟨Q|Xη̄⟩
_�

��

cspη̄,s̄

**
⟨Q⟩

|Xη̄oo
|Xs //

_�

��

⟨Q|Xs⟩
|Xs̄ //

_�

��

⟨Q|Xs̄⟩_�

��
⟨P|Xη̄⟩

cspη̄,s̄

44⟨P⟩
|Xη̄oo

|Xs // ⟨P|Xs⟩
|Xs̄ // ⟨P|Xs̄⟩

5Namely, G(P)ad = G(P)red/Z(G(P)red), where G(P) ↠ G(P)red :=
G(P)/Ru(G(P)) is the maximal reductive quotient of G(P).
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induces a commutative diagram of algebraic groups

(19) G(Q|Xη̄ ) �
� // G(Q) G(Q|Xs)? _oo G(Q|Xs̄)? _oo

cspη̄,s̄

ss

G(P|Xη̄ )ss

OOOO

// G(P)ss

OOOO

G(P|Xη̄ )

OOOO

� � // G(P)

OOOO

G(P|Xs)? _oo

OOOO

G(P|Xs̄)? _oo

OOOO

cspη̄,s̄

kk

As G(P|Xη̄ )ss ↠ G(Q) is an isogeny, G(Q|Xη̄ )→ G(Q) is an isomorphism.
In particular, Q|Xη̄ is a simple object in P (Xη̄) and every object in ⟨Q|Xη̄⟩
has trivial determinant. By Corollary 1.5 (1) applied to Q up to replac-
ing S by a non-empty open subscheme, one may assume that for every
s ∈ S the cospecialization morphism cspη̄,s̄ : G(Q|Xs̄) ↪→ G(Q|Xη̄ ) is an
isomorphism so that one has a canonical commutative diagram

(20) G(Q|Xη̄ ) G(Q|Xs̄)
cspη̄,s̄

≃
oo

G(P|Xη̄ )ss

OOOO

G(P|Xs̄)/(R(G(P|Xη̄ )) ∩G(P|Xs̄))? _oo G(P|Xs̄)ss

OOOO

G(P|Xs̄)/(R(G(P|Xη̄ )) ∩G(P|Xs̄))◦

OOOO 44 44

G(P|Xη̄ )

OOOO

G(P|Xs̄).

OOOO

? _
cspη̄,s̄

oo

jjjj

OOOO

In particular,
dim(G(P|Xs̄)ss) ≥ dim(G(P|Xη̄ )ss) ≥ dim(G(P|Xs̄)/(R(G(P|Xη̄ )) ∩G(P|Xs̄)))

= dim(G(P|Xs̄)/(R(G(P|Xη̄ )) ∩G(P|Xs̄))◦)
≥ dim(G(P|Xs̄)ss)

which, as G(P|Xη̄ ) - hence G(P|Xη̄ )ss - are connected, imposes that the
morphisms

G(P|Xs̄)/(R(G(P|Xη̄ )) ∩G(P|Xs̄)) ≃→ G(P|Xη̄ )ss

and
G(P|Xs̄)/(R(G(P|Xη̄ )) ∩G(P|Xs̄))◦ ≃→ G(P|Xs̄)ss,

are isomorphisms. This concludes the proof of the first part of Corollary
1.5 (2). The second part when G(P|Xη̄ ) is semisimple tautologically follows
from the first part as, then, G(P|Xη̄ )◦ = G(P|Xη̄ )◦,ss while the second part
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when G(P|Xη̄ ) is reductive follows from the first part and the fact that, for
every s ∈ S such that G(P|Xs̄)◦ ⊂ G(P|Xη̄ )◦ factors through an isogeny
G(P|Xs̄)◦,ss ↠ G(P|Xη̄ )◦,ss, the arrows (∗-s̄), (∗-η̄) and the right vertical
arrow in the canonical commutative diagram

G(P|Xs̄)◦,der � � //
� _

��

(∗-s̄)
**

G(P|Xs̄)◦ // //
� _

��

G(P|Xs̄)◦,ss

��
G(P|Xη̄ )◦,der � � //

(∗-η̄)

44
G(P|Xη̄ )◦ // // G(P|Xη̄ )◦,ss.

are isogenies.

4.5. Proof of Proposition 1.7. Let k be a field of characteristic 0, S a
smooth geometrically connected variety over k with generic point η and
f : X → S an abelian scheme. Let PULA(X/S)0 ⊂ PULA(X/S) denote the
essential image of

0∗ : Loc(S) = PervULA(S/S)→ PervULA(X/S)→ PULA(X/S)

and for every P ∈ PULA(X/S), consider the full subcategory ⟨P⟩0 :=
⟨P⟩ ∩ PULA(X/S)0 ⊂ ⟨P⟩. From Lemma 3.2, the equivalence of Tannakian
categories −|Xη : ⟨P⟩→̃⟨P|Xη⟩ restricts to an equivalence

−|Xη : ⟨P⟩0→̃⟨P|Xη⟩0.
This yields an explicit categorical description of the morphism G(⟨P|Xs⟩0)→
G(⟨P|Xη⟩0) as the composite G(⟨P|Xs⟩0) → G(⟨P⟩0)←̃G(⟨P|Xη⟩0) arising
from the diagram of Tannakian categories

⟨P|Xs⟩0
|Xs← ⟨P⟩0

|Xη→ ⟨P|Xη⟩0

Assume furthermore Sgeo
P = ∅ that is, for every s ∈ S, the cospecialization

morphism G(P|Xs̄) → G(P|Xη̄ ) is an isomorphism so that the morphism
G(⟨P|Xs⟩0) ↪→ G(⟨P⟩0) is a closed immersion. Then every ⊗-generator 0∗L
of ⟨P⟩0 yields a ⊗-generator (0∗L)|Xs ≃ 0s∗s∗L of ⟨P|Xs⟩0 and from the
canonical diagram of Tannakian categories

⟨L⟩ �
� //

≃ 0∗
��

**
PervULA(S/S) s

∗
//

≃ 0∗
��

Perv(s)

≃ 0s∗
��

⟨s∗L⟩? _oo

≃ 0s∗
��

⟨0∗L⟩ �
� //

44
PULA(X/S)0

|Xs // P (Xs)0 ⟨0s∗s∗L⟩ ≃ ⟨(0∗L)|Xs⟩? _oo
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the morphism G(⟨P|Xs⟩0) ↪→ G(⟨P⟩0) also describes the functor of Tan-
nakian categories s∗ : ⟨L⟩ → ⟨s∗L⟩ hence corresponds to the embedding

G(L)s ↪→ G(L) ↪→ GL(Ls̄)

of the Zariski-closures of the images

Π(L)s ⊂ Π(L) ⊂ GL(Ls̄)

of π1(s, s̄)→ π1(S, s̄) acting on Ls̄ respectively.

This observation yields the following.

Lemma 4.11. Assume S has dimension > 0. Let P ∈ PervULA(X/S) with
Sgeo

P = ∅. Then,

(1) if k is Hilbertian, there exists an integer d ≥ 1 such that |S|≤d\SP∩|S|≤d
is infinite.

(2) if S is a curve, k is finitely generated over Q and G(P|Xk̄
) is semisimple,

for every integer d ≥ 1, S◦
P ∩ |S|≤d is finite.

Proof. From the exact specialization diagram (6) and the fact that, by our
assumptions, for every s ∈ |S| the morphisms G(P|Xs̄)→ G(P|Xη̄ ) is an iso-
morphism and the morphism G(⟨P|Xs⟩0)→ G(⟨P⟩0) is a closed immersion,
it is enough to prove that, under the assumptions
- in (1): there exists an integer d ≥ 1 such that for infinitely many s ∈ |S|≤d

the closed immersion G(⟨P|Xs⟩0) ↪→ G(⟨P⟩0) is an isomorphism.

This follows from the defining property of Hilbertian fields and a Frattini
argument [Se89, §10.6], which ensures that there exists an integer d ≥ 1
such that for infinitely many s ∈ |S|≤d one has Π(L)s = Π(L).

- in (2): for every integer d ≥ 1 and for all but finitely many s ∈ |S|≤d the
closed immersion G(⟨P|Xs⟩0)◦ ↪→ G(⟨P⟩0)◦ is an isomorphism.

This follows from [CT13, Thm. 1], which asserts that if ρ : π1(S) →
GLN (Zℓ) is a continuous GLP representation then, for every integer d ≥ 1
and all but finitely many s ∈ |S|≤d, ρ(π1(s)) ⊂ ρ(π1(S)) is open. The
GLP condition means that every open subgroup of Π := ρ(π1(Sk̄)) has
finite abelianization or, equivalently, that the Lie algebra Lie(Π) of Π (as
an ℓ-adic Lie group) is perfect. This is for instance the case if (*) one
can realize Π as a closed subgroup Π ⊂ H0(Qℓ) of the group of Qℓ-points
of an algebraic group H0 over Qℓ such that the Zariski-closure of Π in
H0 is semisimple. The assumption that G(P|Xk̄

) is semisimple ensures
that one can reduce to this situation. Indeed, as G(L|Sk̄

) is a quotient of
G(P|Xk̄

), G(L|Sk̄
) is semisimple as well and, as there exists a finite Galois

extension Qℓ of Qℓ such that L arises from a Qℓ-local system on S, one
may assume Π(L) ⊂ GL(Ls̄) ≃ GLr(Qℓ). But as GLr(Qℓ) has a natural
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structure of Lie group over Qℓ, so has Π(L) [Se65, L.G., Chap. V, §9]
hence, as Π(L) is also compact being the continuous image of a profinite
group, it admits a faithful embedding into GLN (Zℓ) for some N ≥ 1 [Lu88,
Prop. 4]. To apply [CT13, Thm. 1] to the resulting ℓ-adic representation
π1(S) ↠ Π(L) ⊂ GLN (Zℓ), it is thus enough to show that Π := Π(L|Sk̄

)
satisfies the criterion (*). This follows from the claim below, applied with
K/k = Qℓ/Qℓ, Π := Π(L|Sk̄

) and G0 := GLr,Qℓ
.

Claim. Let K/k be a finite Galois extension and write R := ResK|k :
Sch/K → Sch/k for the Weil restriction functor. Let G0 be an algebraic
group over k and set G := G0,K . Let Π ⊂ G(K) = (RG)(k) be a subgroup.
Let ι : H ↪→ G denote the Zariski closure of Π in G and ι0 : H0 ↪→ RG
the Zariski-closure of Π in RG. Write ad : G0 ↪→ RG for the adjunction
morphism. Then the morphism c : H ι

↪→ G
adK
↪→ (RG)K factors through an

isomorphism

H �
� ι //

≃
c

((

G �
� adK// (RG)K

H0,K .
� ?

ι0,K

OO

Proof of the claim. At the level of K-points, the diagram

H �
� ι // G �

� adK// (RG)K H0,K? _
ι0,Koo

induces a commutative diagram

H(K) �
� // G(K) �

� // (RG)K(K) H0,K(K)? _oo

Π
2 R

dd

� w
44RG(k)

� ?

OO

H0(k).
� ?

OO

? _oo

As Π is Zariski-dense in H, this already shows the existence of the factor-
ization c : H ↪→ H0,K . On the other hand, at the level of k-points the
diagram

RH �
� Rι // RG H0?

_ι0oo

induces a commutative diagram

RH(k) = H(K) �
� // (RG)(k) = G(K)

Π �
� //
� ?

OO

H0(k)
� ?

OO
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As Π is Zariski-dense in H0, this shows that H0
ι0
↪→ RG factors as ι0 : H0

d0
↪→

RH
Rι
↪→ RG. One thus gets

RH �
� Rι //
 j

Rc
22

RG �
� R(adK)// R((RG)K)

H0
� � ad //
� ?

ι0

OO

0 P

d0

aa

R(H0,K)
� ?

R(ι0,K)

OO

Let d : H0,K → H denote the morphism corresponding by functoriality,
to d0 : H0 ↪→ RH. Then, by construction, c ◦ d = Id : H0,K→̃H0,K and
d ◦ c = Id : H→̃H. □

Proposition 1.7 (and its strengthening when S is a curve and k is finitely
generated over Q) follows from Lemma 4.11 applied to the restriction of P
to X ×S U , where U ⊂ S denotes the complement of the Zariski-closure of
Sgeo

P in S.

5. Geometric applications

Let X → S be an abelian scheme and let Y ↪→ X be a closed subscheme,
smooth and geometrically connected over S.

5.1. Preliminaries. As S is smooth, X → S is projective [R70, Thm.
XI.1.4] hence X carries a line bundle OX (1) which is very ample with respect
to X → S. Let P ∈ Q[T ] denote the Hilbert polynomial of Yη̄ ↪→ Xη̄ with
respect to OX (1)|Xη̄ and let HPX/S → S be the Hilbert scheme classifying
closed subschemes of X ×ST which are flat over T and with constant Hilbert
polynomial P [Gro61, Thm. 3.2]. By construction, X acts by translation on
HPX/S over S. Let [Y] ∈ HPX/S(S) be the S-point corresponding to ι : Y ↪→ X
and consider the corresponding morphism of S-schemes

ϕ[Y] : X → HPX/S ×S HPX/S , x 7→ ([Y], [Y + x]).

Let also
∆ : HPX/S ↪→ HPX/S ×S HPX/S

denote the diagonal embedding, which is a closed immersion as HPX/S → S is
projective. Define the stabilizer StabX/S(Y) of Y in X as the fiber product

StabX/S(Y) �
� //

��
□

X

ϕ[Y]
��

HPX/S
� �

∆
// HPX/S ×S HPX/S .
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By construction StabX/S(Y) ↪→ X is a closed subgroup scheme of X → S,
whose formation commutes with arbitrary Noetherian base change T → S.
In particular, for every t ∈ S one has

(21) StabX/S(Y)t̄ = StabXt̄
(Yt̄).

Lemma 5.1. Let X → S an abelian scheme and Y ↪→ X a closed subscheme,
smooth, geometrically connected, and of relative dimension d over S. Then,
(1) the relative perverse sheaf P := ι∗Qℓ,Y [d] lies in PervULA(X/S);
(2) Assume furthermore Yη̄ ↪→ Xη̄ has

i) ample normal bundle NYη̄/Xη̄
then, after possibly replacing S by

a non-empty open subset, one may assume that for all s ∈ S,
Ys̄ ↪→ Xs̄ also has ample normal bundle NYs̄/Xs̄

ii) trivial stabilizer StabXη̄ (Yη̄) then, after possibly replacing S by a
non-empty open subset, one may assume that for all s ∈ S, Ys̄ ↪→
Xs̄ also has trivial stabilizer.

Proof. For (1), as Y → S is smooth, Qℓ,Y ∈ DULA(Y/S) [B24, 3.6, Lemma
(i)] and as Y ↪→ X is proper, ι∗Qℓ,Y ∈ DULA(X/S) [B24, 3.6, Lemma (ii)]
hence P := ι∗Qℓ,Y [d] ∈ PervULA(X/S). Assertion (2) ii) follows from (21)
and [EGAIV3, Thm. 8.10.5. (i)]. For assertion (2) i), under our assumptions
for every t ∈ S and with the notation in the base-change diagram

Yt̄
� � ιt̄ //

□
��

ιYt̄

""

Xt̄
□

//

��

spec(k(t̄))

��
Yt �
� ιt //

□

� _

ιYt

��

Xt
□

//
� _

ιXt

��

spec(k(t))

��
Y �
� ι // X // S

,

the canonical morphisms

(22) ι∗Yt
NY/X → NYt/Xt

, ι∗Yt̄
NY/X → NYt̄/Xt̄

are isomorphisms. Indeed, applying ι∗Yt
to the short exact sequence of locally

free OY -modules [Li02, §6.3, Prop. 3.13]

0→ CY/X → ι∗Ω1
X |S → Ω1

Y|S → 0

and using the canonical identifications

ι∗Yt
Ω1

Y|S ≃ Ω1
Yt|k(t), ι∗Yt

ι∗Ω1
X |S ≃ ι

∗
t ι

∗
Xt

Ω1
X |S ≃ ι

∗
tΩ1

Xt|k(t),

one gets the short exact sequence of locally free OYt-modules

0→ ι∗Yt
CY/X → ι∗tΩ1

Xt|k(t) → Ω1
Yt|k(t) → 0,
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which yields ι∗Yt
CY/X ≃ CYt/Xt

, whence the assertion, by dualizing. On the
other hand, as NYη̄/Xη̄

(≃ (NY/X )|Yη̄ ) is ample, by fpqc descent of ampleness,
(NY/X )|Yη is ample [St25, Tag 0D2P]; the assertion thus follows from [Ha66,
Prop. 4.4]. □

5.2. Sample of rigidity phenomena. We give here two examples of rigid-
ity phenomena, building on the classification results of [JKrLM25] and
Corollary 1.5 (2).

For an abelian variety X over a field K of characteristic 0 and a closed
subvariety Y ⊂ X, smooth, geometrically connected and of dimension d ≥ 2
over K, one says that Y is:
- a product if there exist closed subvarieties Y1, Y2 ⊂ X, smooth over K and

of dimension > 0, such that the sum map + : Y1 × Y2 → X induces an
isomorphism + : Y1 × Y2→̃Y ;

- a symmetric power of a curve if there is a closed smooth irreducible curve
C ↪→ X such that the sum morphism SymdC → X is a closed embedding
with image Y .

Note that if K is algebraically closed and L/K is a field extension, then Y
is a product (resp. a symmetric power of a curve) if and only if Y ×K L is.
The only if assertion is straightforward and the if one follows from spreading
out and specialization, using Hilbert Nullstellensatz.

Corollary 5.2. Let X → S an abelian scheme of relative dimension g ≥ 3
and Y ↪→ X a closed subscheme, smooth and geometrically connected over
S. Assume Yη̄ ↪→ Xη̄ has ample normal bundle and trivial stabilizer. Then
the set of all s ∈ S such that Ys̄ is a product is Zariski-dense in S (if and)
only if Yη̄ is itself a product.

Proof. From Lemma 5.1 (1), P := ι∗Qℓ,Y [d] ∈ PervULA(X/S) and from
Lemma 5.1 (2), up to replacing S by a non-empty open subscheme, one may
assume that for all s ∈ S, Ys̄ ↪→ Xs̄ has ample normal bundle NYs̄/Xs̄

and
trivial stabilizer. The if assertion is by spreading out. To prove the only if
assertion, observe first that, as Yη̄ is smooth and irreducible P|Xη̄ is simple
- hence semisimple [BeBerDG82, Thm. 4.3.1 (ii)] so that Corollary 1.5 (2)
(b) applies. The assertion thus follows from [JKrLM25, Thm. 6.1], which
asserts that, for any t ∈ S, Yt̄ is a product if and only if G(P|Yt̄

)◦ der is not
simple. □

Remark 5.3. For Y = X → S, in general, it is not true that the set of
all s ∈ S such that Xs̄ is a product is Zariski-dense in S (if and) only if
Xη̄ is itself a product. For instance, let k = C, S = M2 the moduli space
of genus 2 smooth projective curves (with suitable level structures) and
X := Jac(C|S)→ S the Jacobian of the universal genus 2 curve C → S. Then

https://stacks.math.columbia.edu/tag/0D2P
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the set of all points s ∈ S such that Xs̄ is a product of two elliptic curves6

is supported on infinitely many irreducible curves Cd ↪→ S. Let Sprod ⊂ S
denote the Zariski-closure of the union of all Cd. Then the geometric generic
fiber Xξ̄ over the generic point ξ of an irreducible component of Sprod of
dimension ≥ 2 is not a product of two elliptic curves. See [K16] and the
references therein for details.

Corollary 5.4. Let X → S an abelian scheme of relative dimension g and
ι : Y ↪→ X a closed subscheme, smooth, geometrically connected and of
relative dimension d < g−1

2 over S. Assume Yη̄ ↪→ Xη̄ has ample normal
bundle and trivial stabilizer. Then the set of all s ∈ S such that Ys̄ is a
symmetric power of a curve is Zariski-dense in S (if and) only if Yη̄ is itself
a symmetric power of a curve.

Proof. The argument is similar to the one for Corollary 5.2. If d = 1 there
is nothing to prove so that we may assume d ≥ 2. Again, P := ι∗Qℓ,Y [d]
lies in PervULA(X/S) with P|Xη̄ simple - hence semisimple, and, up to re-
placing S by a non-empty open subscheme, one may assume that for all
s ∈ S, Ys̄ ↪→ Xs̄ has ample normal bundle NYs̄/Xs̄

and trivial stabilizer.
The if assertion is by spreading out. To prove the only if assertion, let
r := χ(Xt̄,P) = (−1)dχ(Yt̄) denote the Euler-Poincaré characteristic of
P|Xt̄

for one (equivalently every) t ∈ S. Assume that for some s ∈ S,
Ys̄ ≃Symd(C) is a symmetric power of a curve. Then from [JKrLM25, Lem.
7.2], G(P|Ys̄)◦ der acting on ω(P|Xs̄) identifies with the image of SLnQℓ

act-
ing on a wedge power ∧dStdn of the standard representation of SLnQℓ

with
n = −χ(C,Qℓ) = 2gC − 2 (where gC denotes the genus of C). Note that,
as r =

(n
d

)
, 2gC − 2 = n =: n(r, d) = is uniquely determined by r and d

hence is independent of s ∈ S. Furthermore, as Wd(C) ⊂ Alb(C) is then
automatically smooth, it follows from Riemann’s singularity theorem (e.g.
[GrH78, p. 344]) that C has gonality ≥ d + 1 hence genus gC ≥ 2d − 1.
As d ≥ 2, this imposes gC ≥ 3 hence n(r, d) ≥ 4, whence, 2 ≤ d ≤ n(r,d)

2 .
Under this numerical condition, it follows from [JKrLM25, Thm. 7.3] that,
for any t ∈ S, Yt̄ ≃Symd(C) is a symmetric power of a curve if and only if
G(P|Yt̄

)◦ der acting on ω(P|Xt̄
) identifies with the image of SLnQℓ

acting on
a wedge power ∧dStdn(r,d) of the standard representation of SLn(r,d)Qℓ

. The
assertion thus follows, again, from Corollary 1.5 (2) (b). □

Remark 5.5. Using [KrM25, Thm. 6.1] instead of [JKrLM25, Thm. 7.3],
one could probably relax the assumption that Y → S is smooth.
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