VARIATION OF TANNAKA GROUPS OF PERVERSE

SHEAVES IN FAMILY
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ABSTRACT. Let k be a field of characteristic 0, let S be a smooth,
geometrically connected variety over k, with generic point n, and f :
X — S a morphism separated and of finite type. Fix a prime ¢. Let
P be an f-universally locally acyclic relative perverse Q,-sheaf on X'/S.
We prove that if for some (equivalently, every) geometric point 77 over n
the restriction P|x; is simple as a perverse Q-sheaf on X5, then there
is a non-empty open subscheme U C S such that, for every geometric
point 5 on U, the restriction P|x, is simple as a perverse Q,-sheaf on
Xs. When f: X — S is an abelian scheme, we give applications of this
result to the variation with s € S of the Tannaka group of P|x,.
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2 ANNA CADORET AND HAOHAO LIU

1. INTRODUCTION

Let k£ be a field of characteristic 0, let S be a smooth, geometrically con-
nected variety over k, with generic point 7, and let g : JV — S be a smooth
projective S-scheme of relative dimension d. A general and central ques-
tion in algebraic geometry is to understand how the fibers ) vary with
s € S. For instance, one may ask when some power V2 of Vs carries excep-
tional algebraic cycles. If & C C, the Hodge conjecture predicts that this
is the same as asking when the Mumford Tate group G(V)s of the polariz-
able Q-Hodge structure H*()?", Q) ~ s*R*¢>"Q becomes smaller than the
generic Mumford-Tate group G(V) of the polarizable Q-variation of Hodge
structures V := R*¢2"Q on the analytification S*" of S x; C. Here "be-
comes smaller" makes sense because the Tannaka categories of polarizable
Q-variations of Hodge structures are functorial with respect to pullbacks
along morphism of complex analytic spaces S’ — S so that one can view
naturally G(V)s as a subgroup of G(V). This leads to introduce and study
the Hodge locus

Sy:={seS|GV)s CGV)}

of a polarizable Q-variation of Hodge structures V on S**. If k is finitely
generated over Q, similar considerations apply with ¢-adic étale local systems
on S yielding the introduction of the Tate locus Sy, C S of such a Qs-local
system Vy. Under mild assumptions, general heuristics predict that these
exceptional loci Sy, Sy, are sparse in some precise sense - e.g. that the
atypical part of the Hodge locus Sy is not Zariski-dense in S [KI23| or
that the set of k-rational points in the Tate locus Sy, is not Zariski-dense
in S [C23]. Proving such sparsity results is notoriously challenging as it
requires constructing bridges between the Zariski topology of S and the
analytic natures of the coefficients V, V,. The results of this article are also
partly motivated by the problem of understanding how the fibers ), vary
with s € S and inspired by the above Tannaka approaches, but in a more
restricted setting and with a rather different category of coefficients, which
makes the sparsity of the exceptional loci more accessible. Namely, if one
assumes ¢ : Y — S factors as

g:)ﬁi)XAS

with ¢ : Y — X a closed immersion and f : X — S an abelian scheme,
one can consider the f-universally locally acyclic (f-ULA or simply ULA
for short) relative perverse sheaf P := 1,Qy[d] on f : X — S. As the quo-
tient of the category of f-ULA relative perverse sheaves by negligible ones is
Tannaka and functorial with respect to pullback along morphism of schemes
S’ — S, one can attach to each s € S a Tannaka group G(P)s which detects
some of the symmetric features of ) regarded as a closed subvariety of X
and ask for the structure of the corresponding degeneracy locus Sp C S.
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More formally, let f : X — S be an abelian scheme. Fix a prime ¢. Let
Dlg(X ) denote the triangulated category of étale Q,-sheaves with bounded
constructible cohomology on & and let DV (X /S) C D%(X) denote the full
subcategory® of those complexes which are f-universally locally acyclic; this
is a triangulated subcategory. The convolution product built out from the
multiplication on X endows DV4(X/S) with a structure of Q,-linear rigid
symmetric monoidal category. This monoidal structure, in turn, induces
a structure of Q,-Tannakian category on the quotient PervV“*(Xx/S) —»
PULA(X/S) of the full subcategory Perv'™* (X /S) ¢ DVMA(Xx/S) of f-ULA
relative perverse Qy-sheaf by the Serre subcategory of negligible objects.
When S is a point, one recovers the usual construction Perv(X) — P(X)
of the Q-Tannakian category of perverse sheaves on an abelian variety X.
Further, in the relative setting, for every s € S and geometric point s over
s, the canonical restriction functors

PervU (X /5) % Perv(,) ™5 Perv(Ay)

induce exact tensor functors

PUA(x/8) % p(a) % p(a).
In particular, fixing a fiber functor ws : P(X5) — Vect@l, one may ask, for
P € PervU“4 (X /S), how the corresponding Tannaka groups

G(P|X§,W§) - G(P‘st(“)g) C G(P,wg)
vary? with s € S. Further, as S is smooth over k, the canonical functor
—lx, : (P) = (Plx,)

is an equivalence of categories and, for every s € S one gets a natural (up
to inner automorphisms) cospecialization diagram (see Section 3):

(1) l— G(P|X§7w§) - G(P‘Xs7w§) - G(<P‘Xs>07w§) —1

|

1 —— G(Plx;; wy) — G(Plx,, wy) —= G((P|x, )0, wy) — 1,

where, for ¢ € S, the category (P|x,)o C (P|x,) denotes the full subcat-
egory whose objects are of the form 0.,L for £ € Perv(spec(k(t))) and
0¢ : spec(k(t)) — X, the zero-section. As the existence of this cospecializa-
tion diagram does not depend on the choice of the fiber functors, we omit

IThe assumption f-ULA is not very restrictive as, for every K € D2(X) there exists a
non-empty open subscheme U C S such that K|xx v € DYTA (X xsU/U); see [SGA4 1/2,
Thm. 2.13, p. 242] and [B24, Lemma 3.10].

2Recall that if k is algebraically closed and K/k is an extension of algebraically closed
fields then the canonical restriction functor P(X) — P(Xk), is a fully faithful tensor
functor with image stable under subquotients, so that the category (Xs) and the group
G(P|x,) do not depend on the choice of the geometric point § over s € S but only on s
itself.
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them from the notation from now on. In other words, one would like to
understand the arithmetico-geometric structure of the following degeneracy
loci:
Sp={s € S| G(Plx,)" € G(P|x,)"}
Sp™ = {s € S| G(Plx.)" S G(Plx,)’},
where e.g.

7= no decoration | G ;

) G° = neutral component of G;
der Gdr = derived subgroup of G;
o, der Gorder,

For S%°, this question has been tackled in Kramer’s dissertation thesis
[Kr13, 3.7]; in particular Krdmer observes that one cannot expect, in gen-
eral, that S%° be a strict, Zariski-closed subset of S unless the determinant
det(P|x,) of P|r, is torsion and uniformly bounded with s [Kr13, Ex. 3.17
a)]. In the converse direction, Kramer proves the following.

Fact 1.1. ([Kr13, Prop. 3.20)], [KW15, Prop. 7.4]) Let P € Perv'™*(X/S).
Assume that for every geometric point 5 over s € S, the restriction P|x, is
simple in Perv(Xs) with torsion determinant® and that the order of det(P|x.)
is uniformly bounded with s € S. Then S%° is not Zariski-dense in S.

Our main result is about the simplicity assumption.

Theorem 1.2. Let f: X — S be a morphism, separated and of finite type.
For every P € Perv'lA(X/S), after possibly replacing S by a non-empty
open subscheme (depending on P ) the following holds. For every s € S,

lengthPerV(Xﬁ)(P’Xf]) = lengthPerv(Xg) (P|X§)
In particular, if Plx, is simple (resp. semisimple) in Perv(Xy) then P|x, is
simple (resp. semisimple) in Perv(AXs).
Corollary 1.3. Assume furthermore f : X — S is an abelian scheme. Then
for every P € PervU™ (X /S), after possibly replacing S by a non-empty open
subscheme (depending on P) the following holds. For every s € S,

lengthp ) (Plx;) = lengthp v (Plas)-

In particular, if Plx, is simple (resp. semisimple) in P(Xj) then Plx; is
simple (resp. semisimple) in P(Xs).
Theorem 1.2 yields the following generalization of Fact 1.1 to arbitrary
semisimple perverse sheaves.

3As a connected reductive group G over an algebraically closed field @ of characteristic
0 admits an irreducible faithful representation if and only if its center is G, g or finite
cyclic, the condition that P|x, is simple with torsion determinant imposes that G(P|x;)°
is semisimple with finite cyclic center.
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Corollary 1.4. Let f : X — S be an abelian scheme and let P € Perv'lA (X /S9).

1) Assume Ply. is semisimple in Perv(X;s) for every s € S. Then S%° is
( ) Xs p S y P
a countable union of strict, Zariski-closed subvarieties of S.

(2) Assume P|x, is semisimple in P(Xy). Then S%° is contained in a count-
able union of strict, Zariski-closed subvarieties of S.

If k is countable, we do not know if S3° C S in general though we sus-
pect it is true. Still, combined with Fact 1.1 and some tannakian formalism
Theorem 1.2 yields the following. For an algebraic group G over a field
Q, let R(G) C G denote its solvable radical (viz its largest connected nor-
mal solvable subgroup) and G — G* := G/R(G) its maximal semisimple
quotient.

Corollary 1.5. Let f : X — S be an abelian scheme and let P € Perv'IA (X /9).

(1) Assume P|x, is simple in P(X;) with torsion determinant. Then S%°
is not Zariski-dense in S.

(2) Up to replacing S by a non-empty open subscheme, one may assume
that for all s € S the canonical morphism induced by cospecialization

G(Plx;)” = G(Plx;)” = G(Pla;)™™
factors through an isogeny

G(Pla;)*—— G(Plx,)°

| i

G(Plag)7 o G(Pla )™
In particular,

(a) if G(P|x,) is semisimple (e.g. Plx, is simple with torsion deter-
minant in P(Xg)) then S5°° is not Zariski-dense in S.

(b) if G(P|x;,) is reductive (viz P|x, is semisimple in P(Xj)) then
S5 s not Zariski-dense in S.

Here is a sample of geometric application of Corollary 1.5 (see also Remark
5.3).

Corollary 1.6. (Corollary 5.2) Let X — S be an abelian scheme of relative
dimension g > 3 and Y — X a closed subscheme, smooth and geometrically
connected over S. Assume Vi — Xy has ample normal bundle and trivial
stabilizer. Then the set of all s € S such that Vs is a product is Zariski-dense
in S (if and) only if Yy is itself a product.

We refer to Section 5 for more details.
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As for Sp, at least if k is arithmetically rich enough, the non-Zariski density
of S%° in S automatically implies that Sp is sparse in the following sense.
For an integer d > 1, write

|50 = {s € S| | [k(s) : k] < d}.

Proposition 1.7. Let f : X — S be an abelian scheme and let P €
PervV" (X /S). Assume S3° is not Zariski-dense in S. Assume furthermore
that S has dimension > 0 and that k is Hilbertian (e.g. finitely generated
over Q). Then there exists an integer d > 1 such that |S|=%\ (Sp N[S|=9)
is infinite.

When S is a curve, k is a number field and G(P|x;,) is semisimple, the con-
clusion of Proposition 1.7 can be strengthened to: for every integer d > 1
the set Sp N S| is finite. This applies, for instance, to the intersection
complex L*@g[d] for ¢ : Y — X a closed immersion such that Y — S is
smooth, geometrically connected of relative dimension d and symmetric in
the sense that [—1]*)Y = ).

Organization of the paper. In Section 2, we briefly review the Tannakian
formalism of perverse sheaves on abelian schemes, both in the absolute and
relative setting. In Section 3, we elucidate the existence of the specializa-
tion diagram (1), giving two constructions. The proofs of Theorem 1.2, its
corollaries and Proposition 1.7 are performed in Section 4. The final Section
5 is devoted to a sample of geometric applications of Corollary 1.5.

Acknowledgements. We thank Emiliano Ambrosi for suggesting the geo-
metric applications analyzed in Section 5, Francois Charles for pointing out
the example in Remark 5.3, and Lie Fu for asking about an analogue of the
Cattani-Deligne-Kaplan theorem, which led to the statement of Corollary
1.4 (1). We are also grateful to Luc Illusie and Peter Scholze for their an-
swers to our questions about nearby cycles and Theorem 1.2 respectively.
We express sincere gratitude to Beat Zurbuchen, for Remark 4.4 and for
pointing out a gap in an earlier version of our proof of Theorem 4.1; the
constructive discussions with him helped repair this gap.

Notation and conventions

For an additive functor F' : A; — As between abelian categories, we write
F: Ay 3 Ay if it is fully faithful with image stable under subquotients and
F: A1 S Ay if it is an equivalence.

For a rigid symmetric monoidal category (7,®) with unit I and an ob-
ject X in T, let XV denote its dual and, for every integers m,n > 0, set
TmMX) = X @ XV®" write T(X) = @pmapzoT™™(X). If (T,Q) is



VARIATION OF TANNAKA GROUPS OF PERVERSE SHEAVES IN FAMILY 7

Tannakian, for every integers m,n > 0, let also I"™"(X) C T™"(X) denote
the sum of all subobjects of T™"(X) which are isomorphic to I in 7 (so
that Homy (I, I™"™(X))=>Hom (I, 77"(X))). If T is Tannakian with fiber
functor w : T — Vectq, let G(7,w) denote its Tannaka group; recall that
G(T,w) may depend on w but that if @ is algebraically closed then G(T,w)
is uniquely determined up to non-canonical isomorphism. For an object X
in T let (X) C T denote the smallest Tannakian category containing X and,
given a fiber functor w : (X) — Vectg set G(X,w) := G((X),w).

In the whole paper, we fix a prime ¢. For a scheme S, let Loc(S) denote the
category of étale Q-local systems on .S and D?Y(S) the triangulated category
of étale Qp-sheaves with bounded constructible cohomology on S.

A variety over a field K is a scheme separated and of finite type over K.

When S is a variety, let Perv(S) C D%(S) denote the full subcategory of
perverse sheave and, for a morphism f : X — S of varieties, write
Dx;s(=) := RHom(—, Rf'Q) : DY(X)** — DJ(X)
for the relative Verdier duality functor. When S is a point, we simply set
Dx(—):= Dx/s(—)-
For morphisms of varieties S7 — S < S9, one writes
X% : DY(S1) x DY(S2) — DV(S1 x5 8a), (Ki1,Ka) — piK1 @ piKs,

for the outer tensor product, where p; : S1 xXg So — S; denotes the ith
projection, i = 1,2. When S = spec(k), one simply writes XL := KL,

2. TANNAKIAN CATEGORY OF RELATIVE PERVERSE SHEAVES

2.1. Absolute setting. Let K be a field of characteristic 0 and let X be
an abelian variety over K with group law m : X xxg X — X.

2.1.1. Construction. See [Kr13], [KrW15] for details, and [JKrLM25, §3.1]
for a shorter overview. The convolution product

% : D2(X) x DY(X) = D2(X), (Ki,K2) — Ky %Ky := Rm, (K1 B )

endows D%(X) with the structure of a Q,-linear rigid symmetric monoidal
category with duality functor

(=)V:DYX) = DYX), K— K" :=[-1]"Dx(K)

and unit the rank one skyscraper sheaf &y := 10.Q, € D?(X) supported on 0.

The full subcategory Perv(X) C D%(X) is abelian and stable under Verdier
duality, but not under convolution. To remedy this, one can mod out by
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negligible objects. Recall that every P € Perv(X) has non negative Euler-
Poincaré characteristic:
X(X,P) = (~1)'dimg, (H'(Xg, P)) > 0
1€Z
Let PH"(—) : D%(X) — Perv(X), n € Z denote the perverse cohomology
functors and let N(X) C D% X) denote the full subcategory of all K €
DY%(X) such that y(X,PH"(K)) = 0 for all n € Z; this is a null system
such that the convolution bifunctor * : DY%(X) x D(X) — D5X), the
dualization functor (=) : D(X)°? — D?(X) and the perverse cohomology
PHO(—=) : D%(X) — Perv(X) restrict to
%: N(X) x DY(X) = N(X), *:D%X) x N(X) = N(X)
(=) N(X)* = N(X)
and
PHO(—): N(X) — N(X) N Perv(X).
Consider the quotient functor
Perv(X) — P(X) := Perv(X)/(N(X) NPerv(X))
so that one gets

. PHO(—
Perv(X) x Perv(X) —— Db(X) —> Perv(X)

| |

P(X) x P(X) ~ P(X)

The abelian category P(X) endowed with
x: P(X) x P(X) = P(X)
is Tannakian with duality functor induced by

\

Perv(X)°P i Perv(X)

l l

and unit the image of dp in P(X).

2.1.2. Extension of the base field. See [JKrLM25, Sec. 4] for details. Let
L/K be a field extension and let K C L denote the algebraic closure of K in
L; assume K /K is Galois. Let 7 C P(X) be a full abelian ®-subcategory
and let 7 C P(Xp) denote the full abelian ®-subcategory generated by

~Ix,

the essential image of T — P(X) —" P(X), namely the full subcategory
of all @ € P(Xp) such that there exists P € T with Q a subquotient of
P|x, . For instance, for every P € P(X), (P)r = (P|x, ). The structure of
T is closely related to the structure of 77, and the structure of the category
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Rep@e(Gal(K L/K)) of finite dimensional continuous Q,-representations of
the Galois group Gal(K'/K) of K*/K. More precisely,
- The canonical functor

lx, : Perv(X) ¥ Perv(X1) — P(X1)

is an exact functor of Q-linear categories which induces a faithful functor
of Tannakian categories

|
Perv(X) L Perv(Xp) .
o
P(X) - P(XL)
- For simplicity, write Perv(K) := Perv(spec(K)). The canonical functor
0, : Perv(K) %5 Perv(X) — P(X)

is an exact fully faithful functor of Tannakian categories with essential
image Py(X) C P(X) stable under subquotients. Precomposing 0, :
Perv(K) — Py(X) < P(X) with the fully faithful exact ®-tensor functor
Repg, (Gal(K L/K)) < Perv(K), one gets an exact fully faithful functor
of Tannakian categories

0¢ : Repg, (Gal(K*/K)) — P(X);
let P (X) C Py(X) denote its essential image.

Consider the full Tannakian subcategory 7" := 7 N P#(X) C T. Then, for
every fiber functor w : 7r, — Vectg,, the sequence of Tannakian categories

|
TE-T 3T
induces a short exact sequence of proalgebraic groups
1 — G(Tp,w) — G(T,w) — G(TF,w) — 1,
from which one immediately deduces that

- (2.1.2-1) For every P € P(X), the sequence of Tannakian categories
|x
(P)y = (P) = (Plx,)
induces a short exact sequence of algebraic groups
1 — G(P|x,,w) —= G(P,w) —= G{P)},w) — 1.

- (2.1.2-2) If K is algebraically closed, the restriction functor —|z : T = Tz,
is an equivalence of Tannakian categories. In particular, for every P €
P(X), G(P|x,,w)=>G(P,w).

We drop the superscript (—)” when L = K.
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2.2. Relative setting. Let k be a field of characteristic 0, S a smooth,
geometrically connected variety over k with generic point n. Let f: X — S
be an abelian scheme.

2.2.1. Construction. See [HS23] for details. Let DV (X/S) C D%(X) de-
note the full subcategory of f-universally locally acyclic (f-ULA or just ULA
for short) complexes on X' /S; this is a triangulated subcategory. As in the
absolute setting, the convolution product

* DULA(X/S)XDULA(X/S) — DULA(X/S), (ICI,’CQ) — ,Cl*,CQ = Rm*(lclﬁélcg)

endows DVEA (X' /S) with the structure of a Q-linear rigid symmetric monoidal
category with duality functor

(=)Y: DUMMX/S) = DA (X/S), K = KV = [~1]"Das(K)

and unit dgp = 0.Q, € DY(X), where 0 : S < X is the O-section. By
construction and proper base change, for every s € S, the pull-back functor
—|a, : DY"A(X/S) — D5(X;) is a tensor functor.

Let Perv'™ (X /S) C DA (X /S) denote the full subcategory of ULA rela-
tive perverse sheaves on X. This is an abelian category, stable by relative
Verdier duality Dy ,5(—) : Db(X)°P — DY(X) and such that for every s € S,
the pull-back functor —|x, : D%(X) — Db(X;) restricts to an exact functor
—|x, : Perv'™(X/S) — Perv(X;) which, when s = 7, is fully faithful
with essential image stable under subquotients. Actually, Perv'“ (X' /S) C
DUMA (X /S) is the heart of a t-structure DVFA<0(x/S), DVEA20(x /S) C
DYLA(X/8) - the relative perverse t-structure with associated truncation
functors P/S7=0 . DVLA(X/S) — DULAS0(x/S), P/S720 . DULA(x/S) —
DULA20(x/S) and perverse cohomology functors

PISHM . DUMA (X /S) — PervV"A(X/S), n e Z.
As f : X — S is proper, Rf, : DV (X/S) — Db(S) factors as Rf, :

DVMA(X/S) — DV (S/8S) = Dp_(S) [B24, Lem. (ii), p.20, Lem. (i), p.21].
Combined with the fact that, for every ¢ € S, the following diagrams

,‘ _
DVMA(X/S) — > Db(X;) | nel
p/an()i lpﬂnu
PervV4 (X /S) —— Perv(X))
i

commute, one gets that, for K € DV (X/S), the following properties are
equivalent:
(i) Klx, € N(A);
(ii) For every s € S, K|x, € N(X;);
(iii) There exists s € S such that K|x, € N(AXs).
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In other words, for every s € S, the following null systems of DVLA(X/9)

(2)  NUMAX/S) = ker(DUMA(X/S) 537 DY(X,) - DU(X,)/N ()
— ker(DVMA(X/S) 1% Db(X,) — DY(X)/N(AXy)).

coincide.

By construction the functors * : DV (X /S) x DV (X /S) — D4 (X /S),
(=)Y : DVA(X/S)°P — DVLA(X/S), P/SHO (=) : DV (X /S) — PervV (X /S)
and —|x, : DV (X/S) — DY(X;), s € S restrict to
x: NUA X /S)x DV (X /S) — NYA(X/S), *: DU (X /S)x N4 (X /S) — NV (x/S)
(=) : NA(x/8)P — NV (x/9)
PISHO(—) : NVMA(X/S) — NV (X /S) N PervV™ (X /S)
and
—|a, : NVE4(x/8S) — N(Xs), s€S.
Consider the quotient functor
Perv'™ (X /S) — P (x/S) := Perv'™ (X /S) /(Perv'™ (X /S)NN V4 (X/9))
so that one gets

p/S

0(_
PervUMA (X /5) x PervU (X /S) —> DULA(X /S) —s BervUMA (/)

| |

PUA(X/S) x PUMA(X/S) -~ PULA(X/S)

The abelian category PY(X/S) endowed with
*: PR (X /8) x PY"4(X/S) — PY4(X/9)
is a Q-linear rigid symmetric monoidal category with duality functor in-

duced by

PervhA (X /5y s peryUiA(x/5)

| |

PUIAXS)P = PUA(XS)

and unit the image of g in PV (X/S). For every s € S, the exact pull-
back functor —|x, : PervU (X /S) — Perv(X;) induces an exact faithful
functor of Q,-linear rigid symmetric monoidal categories

(3) PervULI(é\,’ /8) s Pervl(é\fs)
PULA(x/8) > P(X,),

—lxs
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which, when s = 5, is fully faithful with essential image stable under sub-
quotients. In particular, —|x, : PUM*(X/S) — P(X,) identifies PV (X /S)
with a full Tannakian subcategory of P(X,) and for every P € PV (Xx/S),
induces an equivalence of Tannakian categories

~|x, + (P) = (Pla,).

3. SPECIALIZATION

In the following, to simplify notation, given an exact tensor functor of Tan-
nakian categories F': 7' — T and a fiber functor w on 7, we will again write
w := w o F for the resulting fiber functor on 7’; as the functor F : 7' — T
should always be clear from the context, this should not give rise to confu-
sion.

Let k be a field of characteristic 0, let S a smooth, geometrically connected
variety over k with generic point 1. Let f : X — S be an abelian scheme.
From (2), the canonical diagram of Q,-linear abelian categories (4-1) induces
the canonical diagram of Tannakian categories (4-2)

(4)

(4-1)  Perv(X,)o Perv(Xy) — 5~ Perv(Xy)  (42) P(X) P(X) —% o pay)
o] ]
PervU:4(X/9) PULA(x/S)
Perv(&,)o Perv(A&,) ——— Perv(X;) P(X,)o P(X,) ——= P(X;)

and for every P € PV (X /9),

(5) (Pla)o — (Pla)) —2 (P|,)
]
P)

|X7,l~
|2,

(Plx,)o — (Plx,) —= (Plx,)-

For every t € S, fix a fiber functor wy : (P|x;) — Vectg,. We claim that for
every s € S and choice of an isomorphism of fiber functors

Wz O —|X§L>w,7 o _‘Xﬁ : PULA(X/S) — Vect@z,
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the diagram (5) induces a diagram of algebraic groups with exact lines,
which can be completed as indicated by the dotted arrows

(6) 1 ——=G(Plysws) — G(Pla,,ws) — G((Pla,)o,ws) —1

CSPn,s = (espy,s)o

Y Y
1—— G(P|Xﬁ,wﬁ) —_— G(P|Xn7wﬁ) — G(<P|Xn>o,wﬁ) —1

The exactness of the lines is (2.1.2-1). The fact that G(P|x,,ws) — G(P,ws)
is a closed immersion is formal®.

Note that the existence of the dotted arrows is independent of the choice
of the isomorphism ws o —|x;, w0 —| x; hence of the fiber functors wy, ws.
So we will be free to choose wj, ws. Note also that the existence of the
arrow cspj s is equivalent to the one of the arrow (cspjs)o. We provide
two constructions of (6), one wvia a construction of csp;s and one wia a
construction of (cspj5)o. In both cases, we actually complete (4-1), (4-2)
(5) by introducing some intermediate categories (to be defined) - (¥)75 to
construct cspps and ((x)535)o to construct (cspys)o as indicated in (7-1),
(7-2) and (8) below.

(7)

(7-1)  Perv(X,)g —— Perv(X,) ., Perv(Xs) (7-2)  P(X,)g —— P(X,) — = P(X5)

A . T A A . T A
((#)7,5)0 > PervU" (X /S) > (*)n,s ((R)is)o o= PURAX/S) oo (%)5

~ Ix,,,iz ~ ~ \anz ~

v - v v |x, v
Perv(X;)o Perv(X,) Perv(Xy) P(Xy)o P(X,) P(X5)

“Indeed, by definition of (P|x,), every object in (P|x.) is a subquotient of some
T™"™(Plx,) ~T™"(P)|x, for some integers m,n > 0.
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%

(Pla,)o —= (Plx,) — (Plx,)

Remark 3.1. Actually, the constructions of (7-1) do not use that f : X — S
is an abelian scheme; they only require that f : X — S be separated and of
finite type (with a section).

3.1. A construction of (cspj5)o. We begin with the following observation.

Lemma 3.2. Let f: X — S be a separated morphism of finite type with a
section v : S — X. The following commutative diagram

Loc(S) = PervV'(S/8) —> PervV (X /S)

‘ -

Perv(n) Perv(A;)

is cartesian. Namely for every Ly, € Perv(n), if there exists P € Perv""*(X/5)
such that 1y Ly =~ Plx, then there exists L € Loc(S) such that n*L ~ Ly,
and 1 L ~P.

Proof. As f : X — S is separated, ¢+ : § — X is a closed immersion;
let j: U := X\ (S) — X denote the complementary open immersion.
Then (*P)|u, ~ ji(Plx,) = jiims«Ly) ~ 0. As j*P € Perv""(U/S) and
—|u, : Perv/™(U/S) — Perv(Uy) is fully faithful, this forces j*P = 0. From
the distinguished triangle

P = P = P

in Db(X), P=51.0*P hence, by [B24, Lem. 3.6 (iv)], ¢*P € DY"4(S/S). From
[B24, Lem. 3.7 (ii)], ¢*P € D} (S). But n**P ~ 1 (Pla,) = tyineLlpy =~

Ly, so that £ := ¢*P lies in Loc(S) and has the requested property. O
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We return to the case where f : X — S is an abelian scheme and P €
PervU4(X/S). From Lemma 3.2, one can complete (5) as

| x5

(9) (Plx,)o —= (Pla,) — (Plxy)
XST XST
(P)o (P)

|Xy,lﬁ |xnl:
|2

(Play)o — (Pla,) — (Plx,),

which, as claimed, formally yields a commutative diagram of algebraic groups:

(10) 1 ——G(Plas, ws) — G(Plx,, ws) — G((P|x,)o,ws) ——1

m

G(P,ws) G((P)o,ws)
G(P,wy) G((P)o,ws)

~ ~

\
l—— G(P|Xﬁ7wﬁ) - G(P‘Xnvwﬁ) - G(<P‘Xn>0’wﬁ) — L

3.2. A construction of cspj 3.

3.2.1. Absolutely integrally closed valuation rings and nearby cycles. Recall
that a valuation ring V' is said to be absolutely integrally closed (AIC for
short) if it satisfies the following equivalent conditions

(AIC-1) The fraction field of V is algebraically closed,;
(AIC-2) Every monic polynomial of degree > 1 in V[T has a root
in V.

In particular, such a valuation ring V is strictly henselian.

Fact 3.3. ([HS23, Thm. 1.7, Thm. 6.1 (ii), Cor. 4.2]) Let S = spec(V)

be the spectrum of an AIC valuation ring with generic point n and closed

point s. Let f: X — S be a morphism, separated and of finite presentation

and write X ﬁ) x & A, for the inclusions of the generic and closed fibers

respectively. Then,

(1) The functor B* : DVA(X/S) — Db(X,) is an equivalence of cate-
gories with quasi-inverse RfB, : D(X,) — DU™(X/S). In particular,
B* . DVLA(X/S) — Db(X,) restricts to an equivalence of categories
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B* : PervUM (X /S) — Perv(X,) with quasi-inverse R, : Perv(X,) —
PervU4(X/S).

(2) The nearby cycle functor Ry = o*RB, : D(&X,) — D(X;) restricts to
a functor Ry : DY(X,) — DE(Xs) which is t-ezact with respect to the
perverse t-structures hence induces an exact functor Ris : Perv(&X,) —
Perv(Xs).

(3) Assume furthermore that f : X — S is an abelian scheme. Then Ry :

R
Db(X,) — DP(X;) is a tensor functor and N(X,) = ker(D3(X,) W
Db(Xs) — Db(X5)/N(Xs); in particular, Riy : Perv(X,) — Perv(Xs)
induces a faithful exact tensor functor Ry : P(Xy) — P(X;).

From [BhM21, Lem. 3.28], for a quasi-compact, quasi-separated scheme T,
a specialization t; ~» t of points on T, one can always find a morphism
S — T with source the spectrum S = Spec(V') of an AIC valuation ring
V', mapping the generic point 1 (resp. the closed point s) of S to ¢; (resp.
t). We will call such a morphism - usually written as (S,n,s) — (T,t1,1),
a witness for t; ~» ¢ in T. The proof of [BhM21, Lem. 3.28] shows that, if
furthermore one fixes a geometric point ¢; over t1, one can choose S in such
a way that n — t; factors as n — t; — t1; if we want to specify a geometric
point over which n — ¢; factors, we will rather write (S,n,s) — (T, t1,1).

3.2.2.  We return to the case where S is a smooth, geometrically connected
variety over k and f : X — S is an abelian scheme. For every specialization
n ~ s of points on S, fix a witness (S’,7',s") — (5,7n,s) and geometric
points ' =1 —mn, s -85 — s Set f/: X =X xgS — S'. From Fact
3.3, one gets a canonical diagram of Q-linear abelian categories

PervUt4 (X /9) v, PervVE4(X7/57)

~
~

|X7]
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which induces, for every P € Perv'"*(X/S), a canonical diagram of Tan-
nakian categories

(11) (Pla,) —= (Pla.) —= (Plar,) ,

(Pl,) — (Play) — (Plar,)
|Xﬁ ‘X’ n

nl

which in turn, as claimed, formally yields a commutative diagram of alge-
braic groups

(12)
1 —— G(P|;,0w) —= G(Pl.,ww) —= G((Pla)o,we) — 1

~

G(,P’X;NWE)

¢SPn,s Ripgr G(P|X’7ws’)c—> G(P, Ws’) G((P)o, Ws’) —1

~

G(p’X?;lywS/) = =

~

,;\ L

1 —— G(P|x,,ws) — G(P|x,, ws) — G((P|x,)0,wsy) —1

For simplicity, we now omit fiber functors from the notation.
4. PROOFS

Unless otherwise stated, in this Section k denotes a field of characteristic 0,
S a smooth geometrically connected variety over k with generic point 1 and
f: X — S a morphism, separated and of finite type.

4.1. Proof of Theorem 1.2 and Corollary 1.3.

4.1.1. Recollection on artinian and noetherian abelian categories.

“(espi,s)o
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4.1.1.1. Let A be a an artinian and noetherian abelian category. Then,

(1)

For every A € Aand ¢ € End 4(A), one has a ¢-stable direct sum decom-
position (Fitting lemma): A ~ Ay o ® Ay, with the property that the
induced morphism ¢ : Ay o — Ay is nilpotent and ¢ : Ay oo — Ag oo is
an automorphism; explicitly Ay o = ker(¢"), for n > 0, Ay oo = im(¢"),
for n > 0. In particular, for every A € A, A is indecomposable in A if
and only if End4(A) is a local ring and every A € A admits a Krull-
Schmidt decomposition: A decomposes into a direct sum A = $1<;<,A;
with Aq,..., A, € A indecomposable and the indecomposable objects
A1, ..., A, (counted with multiplicity) are unique up to isomorphism
and called the Krull-Schmidt or indecomposable factors of A. In par-
ticular, A is semisimple if and only if its indecomposable factors are
simple.

Every A € A admits a composition series that is a filtration
0=A41 CAC-CACA =4

in A with S; := A;/A; 41 asimple object in A, i = 1,...,r. Furthermore,
the simple objects Si,...,S, (counted with multiplicity) are unique up
to isomorphism and called the Jordan-Hélder or simple factors of A. In
particular the length length 4(A) := r of A is a well-defined integer.

Let N' C A be a Serre subcategory and let p : A — A := A/N denote
the resulting quotient functor, which is exact and essentially surjective.
Then, for every simple object S in A not lying in N, p(S) is again a
simple object in A. This follows from the definition of morphisms in A.
Indeed, consider a diagram

xhyis

in A with N := coker(s) € N such that the resulting morphism

o o L
p(X) = p(Y) = p(S)
p(s)
is injective. In particular, the morphism p(S) — p(Y) — p(Y/X) is

surjective. So either p(Y/X) = 0 and p(X) ) p(Y) is an isomorphism

in A or the morphism S Y — Y/X is non-zero hence injective. But
p(s)

then the morphism p(S) = p(Y) — p(Y/X) is an isomorphism in A

hence so is p(Y) — p(Y/X), which imposes p(X) = 0. In particular,

for every A € A, if one defines length 4 y/(A) < length4(A) to be the

number of Jordan-Holder factors of A which lies in N, one has

length—(p(A)) + length 4 r(A) = length 4(A).
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4.1.1.2. Let now Aq, Ay be artinian and noetherian abelian categories and
let F': Ay — As be an additive functor.

(1) Assume F' : A} — Ay is fully faithful. Then for every A; € Ay, A is
indecomposable in A; if and only if F'(A;) is indecomposable in Aj.

(2) Consider the following conditions
(Sppzy))  For every Ay € Aj, Aj is simple in Ay [?7] F(A;) is simple in Ajy;
(SSp27) For every Ay € Ay, A; is semisimple in Ay [??]  F(A;) is semisimple in Aj.
with [?7] one of <, =, ©.
(a) Then (Sp~) always implies (SSp =) and, if furthermore F' : A; —
As is exact, then for every A; € Ay,
length 4 (A1) = length 4, (F'(A1)).
(b) If F : Ay — Ay is fully faithful then (Sg ) implies (SSg«). Indeed,
let A7 € A; and consider the Krull-Schmidt decomposition A1 =

@ISiSTAl,i of A1 in A;. Then F(Al) = @ISiSTF(Al,i) is the Krull-
Schmidt decomposition of F(A;) in As. So, one has

F(A;) is semisimple in Ay <= F(A;;) is simple in A, i =1,...r
SF,«< .. . .
(Grg) Ay is simplein Ay, e =1,...r
<= A; is semisimple in Aj.

(3) Assume F': A — As is exact. Let Ny C Ay be a Serre subcategory and
let po : Ay — Ay := Az /N> denote the resulting quotient functor. The
full subcategory

N = ker(A; E> Ay LY Xg) c A

is also a Serre subcategory and the resulting quotient functor p; : A1 —
A;j := A1 /N fits into a canonical commutative diagram of exact func-
tors

Al Lzl

1
Ay ——> As.
As F : Ay — Ay is faithful exact, (Sz ) always holds.

(a) Also, (Sp=) always implies (Sz ). Indeed, for every A; € Ay,

consider a Jordan-Holder filtration
A 0=A1, 11 C AL S CAC A =4
of Ay in A;. Assume (S ) holds. Then
F(A)):0=F(A1p41) C F(Aiy) - C F(A12) © F(Arn) == F(A)

is again a Jordan-Holder filtration of F'(Ay) in Ag. If p (A7) is sim-
ple in Aj;, then all but one of the Ay /A1 i1 lie in N7 which, again
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by definition of N7, ensures that all but one of the F(A; ;)/F (A1,i+1)
lie in A3, hence that F(p;(A7)) is simple in As.

(b) The argument in (3) (a) shows more precisely that for every A; €
A; with a Jordan-Holder filtration

A 0=A11 C AL S C A C A=A
in Ay, if F(A1;)/F(A1,i+1) is a simple object in Ay, ¢ = 1,...,7,

then one has

length 4, (A1) = length 4, (F(A1)), lengthz (p1(A1)) = lengthy (F(p1(A1)))

and
A; is semisimple in A; = F(A;) is semisimple in Ay

p1(A;) is semisimple in A; = F(p1(A;)) is semisimple in As.

4.1.2. Preliminary reductions.

4.1.2.1. Independence of the geometric point. The following observation will

enable us to choose geometric points freely. Let f : X — S be a morphism,

separated and of finite type. Let P € Perv'lA(X/S). Let t € S and let

t1,t2 be two geometric points over ¢t. Then

(1) Pla;, is simple (resp. semisimple) in Perv(A, ) if and only if Ply, is
simple (resp. semisimple) in Perv(A7,) and one has

lengthperV ) P’Xt 1€ﬂgthperv (P’Xt )-

(2) Assume furthermore that f : X — Sis an abehan scheme. Then P| x;, s
simple (resp. semisimple) in P(AF,) if and only if P| x;, is simple (resp.
semisimple) in P(A7,) and one has

lengthp (., (P|Xt ) = lengthp(/y, (P|Xt'2)'

Indeed, by considering a geometrlc point ¢ over both ¢; and ¢ one imme-
diately reduces to the case where, say, to is over t;. As the restrictions
functors

_|X£2 : Perv(Xgl) — Perv(ng), _’XEQ : P(Xgl) — P(X;Z)

are exact, fully faithful (e.g. [JKrLM25, Lem. A.l]), the observations in
Paragraph 4.1.1.2 (2) reduce the proof of (1) and (2) to showing respectively
that for every Py € Perv(&y, ),

(1)” Py is simple in Perv(A7, ) if and only if P | x;, Is simple in Perv (A3, );

(2)" (if f: & — S is an abelian scheme) Py is simple in P(A7,) if and only
if P1|x,, is simple in P(Xj,)
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while the observation of Paragraph 4.1.1.2 (3) (a) shows that Assertion (2)’
follows from Assertion (1)’ Let us prove Assertion (1). The if part of follows
from the fact that —| X, Perv(Xf, ) — Perv(Ag,) is exact and fully faithful.
For the only if part, from [BeBerDG82, Thm. 4.3.1 (ii)] every simple object
S in Perv(Af,) is of the form S = 114711+ F1[d] for some irreducible closed
subscheme ¢1 : Z1 < A%, non-empty open subscheme j; : Uy < Z3, smooth
over k(t;) and pure of dimension d, and simple Q,-local system F; on Uj.
Consider the base-change diagram

UsC 72 A X, spec(k(ts))
oo ] oo |
U 2, X, —— spec(k(iy)

and set F2 := Fi|y,. Then
3’2(;2 = (L1=J1eF1 [d])\;\g{2 ~ 19, jo1xF2[d]
and the assertion follows from the fact that the restriction functor
—|v, : Loc(Uy) — Loc(Us)
maps simple objects to simple objects since the canonical morphism 71 (Us) —
m1(U7) is surjective (e.g. [St25, Tag 0387]).
4.1.2.2. Let f: X — S be a morphism, separated and of finite type. Every
witness (S',1,s") = (5,7, s) induces a canonical exact functor
Rippr : Perv(X,y) = PervV(X'/S") — Perv(Xy),
where the notation are as follows
X —=X
f’l O J/f
S ——= 8.

Assume furthermore f: X — S is an abelian scheme. Then

Ry o1
N(X,) N Perv(X,) = ker(Perv(X,)) — Perv(Xy) — P(Xy)).

So, Paragraph 4.1.2.1 and the observations in Paragraph 4.1.1.2 (2) (b)
applied to

Ay P, Ay = PerV(Xn/) —_— P(Xn/)
L
Ay — Ay Perv(Xy) — P(Xy).

reduce the proof of Theorem 1.2 and Corollary 1.3 to the following state-
ment.
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Theorem 4.1. Let f: X — S be a morphism, separated and of finite type.
Let P; € Perv(AXj), i = 1,...,7 be finitely many simple objects in Perv(Xj).
After possibly replacing S by a non-empty open subscheme S the following
holds. For every s € S, there exists a witness (S’,n',s") — (5,7, s) such that
Ry (Pilx,,) is simple in Perv(Xy), i =1,...,r.

4.1.3. Proof of Theorem 4.1.

4.1.3.1. Intermediate extensions and the ULA property. Let ¢ be a prime.
Let Z — S be a separated morphism of finite presentation of quasi-compact
quasi-separated schemes over Z[1/¢]. Assume that S has only finitely many
irreducible components, so that by [HS23, Theorem 6.7] the relative perverse
t-structure exists on DV (Z/8). Let j : U < Z be an open immersion of fi-
nite presentation. Given K € DV (U /S) with 51K, j1Dy,sK € DV(Z2/S),
write ji, sk for the image of the natural morphism

PISHO (1K) — P/ H(D 2,551 Dy sK)
in the abelian category PervU“*(Z/S). Observe the following

(1) When S is the spectrum of a field and K € Perv(U), ji,/sK is the usual
middle extension of I to Z.

(2) As, for ULA objects, both the formation of relative Verdier duality and
Ji commute with base change S — S ([HS23, Proposition 3.4 (ii)]),
the formation of ji, 5K also commutes with base-changes S"— 5. In
particular, for every geometric point s on S, if js : Us — Z5 denotes the
base change of j : U — Z along 5 — S, one has (ji,/sK)|z; = Js1=(Kluss)-

Lemma 4.2. Consider a diagram
(13) U—l-z
hl O J{g
J !
U——2z—=3=5
of quasi-compact quasi-separated schemes. Assume that

- f: 2 — S is separated of finite presentation and j : U — Z is an open
immersion with U — S smooth, ;

-g: Z— Zis proper, and h : U—Uis finite étale;
- Z — S is smooth and D := Z~\g is a divisor on Z with strict normal
crossings relative to Z — S.

Let ¢ be a prime invertible on S. Let F be a Q;-local system on U. Assume
that h*F is tamely ramified along D. Then nF, W(FY) are constructible
sheaves that are ULA relative to f : Z — S. In particular, if S has only
finitely many irreducible components and d denotes the relative dimension
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of U — S, then ji.;sF[d] is a well defined object in PervU'A(Z/8), whose
formation commutes with base-changes.

Proof. By [St25, Tag 0818], j : U < Z is of finite presentation. From [L81,
Proposition 1.4.4], and as U — S is smooth, F € D4 (1//S). So, since
Dys(Fld]) = FY[d], the second part of Lemma 4.2 follows from the first
part.

The sheaves jiF and jih*F are constructible. From [S17, Lemma 3.14],
and as h*F is tamely ramified along 25, Jih*F is ULA relative to Z 8.
From [HS23, p.643], and as g : £ — Z is proper, Rg,jih*F € DVA(Z/9).
Hence jih,h*F ~ Rg.jih*F € DU (Z/8S).

Since h : U — U is finite étale, the natural morphism @g}u — h*@gﬁ of
lisse sheaves is the inclusion of a direct summand. By the projection formula
[St25, Tag OF0G], as h : U — U is proper, one has he(W*F) = .7:®@£ h*@g 7
Thus, F — h.h*F and hence jiF < jih,h*F are direct summands. Since
universal local acyclicity is preserved under passing to direct summands, one
has jiF € DVMA(Z/S). As h*FV is also tamely ramified along D, one has
HFY € DUA(Z/S).

O

4.1.3.2. Proof of Theorem 4.1. From [BeBerDG82, Thm. 4.3.1 (ii)], for every
i = 1,...,r, there exists an integral closed subscheme ¢; : Z; — AXj and
a non-empty open subscheme j; : U; < Z;, smooth over k(7)) and pure of
dimension d;, and a simple object F; in Loc(U;) such that P; = ¢; +J; 1. Fi[di].
Fix also a k(n)-point u; € U; and a smooth normal crossing compactification
U; < UP". There exists a finite field extension Ky of k(1) such that, for
everyt=1,...,7,
u;

e,

UP U, gt x, spec(k(77))

is defined over K and spread out as

Us

Ufpt U, C g A KXo spec(Kp)
\L O i O l O l l'ﬂo
UPt Ul 2, X g Sy ———= Sy

1
ug
with

-1 2 Z; — X Xg Sy a closed immersion and Z; — Sy geometrically irre-
ducible;
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- j; : U; — Z; an open immersion and U; — Sy is smooth, pure of relative
dimension d;;

cpt . . . . .
- U; — UP" is a relative smooth normal crossing compactification over S,

where Sy C Sy is a non-empty open in the normalization Sy — S of S in
spec(Ky) — spec(k(n)) - S.

By Lemma 4.3, as char(k) = 0, shrinking Sy if necessary, one may fur-
thermore assume that there is a diagram

| o |
ui(i)zi*)SO

satisfying the conditions of Lemma 4.2. Then the diagram base changed
along a witness S’ — Sy also satisfies the conditions of Lemma 4.2. From
char(k) = 0, the tame ramification condition holds.

As the image of every non-empty open subscheme of Sy contains a non-
empty open subscheme of S and as, for every sg € Sy with image s €
S any witness (S),n0,s) — (So0,m0,S0) induces a witness (Sg, 7, s5) —
(So0,m0,50) — (S,7,s), one may freely replace S with Sy so that we re-
move the subscripts (—)p from the notation. Let now s € S and fix a
witness (S’,7/,s) — (S,7,s). By invariance of étale fundamental group
under extensions of algebraically closed fields in characteristic 0, one has
T1 (Ui ) =1 (U;) hence Fify, , is again irreducible. As S’ is strictly henselian,
m(S") = land asU] := U;xsS’" — S’ has a section, the canonical morphisms

(U ) =T (U) U )
are both isomorphisms [SGA1, XIII, 4.3, 4.4]. In particular, F|y. o extends
uniquely to an object J; in Loc(lf;), and F|;  is simple in Loc(Yf; /). From
[BeBerDG82, Thm. 4.3.1 (ii)], it is thus enough to show that
(14 R (Pily) = it (Fluld1).

Consider the commutative diagram

Z/{Z(C J{ ZZ/( L; X’ f/ SI
EREE RS
Utz iy g

of schemes with cartesian squares. By Lemma 4.2, j},, ¢/ F[di] € PervUE4(Z!/97).
Therefore, K := L;*jz{,!*/S"Fi/[di] is in PervU“4(X’/S"). By Observation (2)
in Paragraph 4.1.3.1 and the proper base change theorem, as ¢, : Z/ <
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X’ is proper, K| x,, is the pullback of P; along Xy — Aj, and Klx,, is
Li,stxJi,s (F g [di]), which proves (14).

Lemma 4.3. Let S be an irreducible scheme with generic point n. Assume
that k(n) is of characteristic 0. Let f : Z — S be a morphism separated
of finite presentation, with Z, integral. Let U — Z, be an open subset
smooth over k(n). Then up to shrinking S to an affine open subset, there is
a diagram (13) satisfying the conditions of Lemma 4.2, such that U, = U
and h:U — U is an isomorphism.

Proof. By Hironaka’s resolution of singularities (see, e.g., [SGA5, I, 3.1.5 b)
a)]), as k(n) is of characteristic 0, Z, is strongly desmgularlzable As Z, is
integral, there is a proper morphism Z = Z, with Z smooth over k(n ) such
that the pullback U:=U x z, Z — U is an isomorphism, and that Z \ U is
a strict normal crossing divisor. The result follows by spreading out. ([l

Remark 4.4. The nearby cycles functor may not preserve simplicity of
perverse sheaves nor commute with middle extension. Let S be the spectrum
of a strictly Henselian discrete valuation ring with generic point 1 and closed
point s. Let f : X — S be a proper semi-stable morphism with geometrically
integral fibers of dimension d. Assume that the special fiber X <— X is a
strict normal crossing divisor on X'. Then there is an open subset j : U — X
smooth over S, such that U, = &), and that U is Zariski-dense in X;. Let
Rips : DY(X;) — Db(Xs) be the nearby cycles functor. By [194, Théoréme
3.2 (¢) (i)], HOwa(@&Xﬁ) ~ Qux,. Let js : Us — X be the pullback
of j : U < X along s — S. Let ICx, := j51.Qypy,[d] be the intersection
cohomology complex on X,. In general, H=%ICy, is not constant, in which
case the perverse sheaf Ry ;(Qy,x, [d]) is not isomorphic to ICy,. Also, from
[SGA4-IIT, XV, Thm 2.1], one has

(RW(@Z,X,—,)) lu, = Ribsoj(Qux,) = Quyy, -

Then by [BeBerDG82, Théoreme 4.3.1 (ii)], Ripr(Qq x, [d]) is not simple in
Perv(X;) (otherwise, it would be isomorphic to the simple object ICx,) while
Q,x, [d] is simple in Perv(Aj).

4.2. Lifting semisimplicity.

4.2.1. Let A be an artinian and noetherian abelian category, let ¢ : N — A
be a Serre subcategory and let p : A — A := A/N denote the resulting
quotient functor. The inclusion functor ¢ : N' < A admits both a right
adjoint (=)= : N' = A ("maximal subobject in N'") and a left adjoint (—)~
N — A ("maximal quotient object in N'"). Explicitly, for A € A, A
>Nes.(a) N = A, where S-(A) denotes the subset of all subobjects of A
in MV and A - A™ = A/ Ngeg-(a) S, where S7(A) denotes the subobjects S
of A such that A/S € N. Then for every A € A,

A" i=ker(A/A- — (AJAS)D)
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is a subquotient of A in A satisfying (A*)” = (A*) = 0 and p(A*) ~
in A. Observing that for every Ay, Ay € A with A7 =0 and Ay - =
canonical morphism

Hom 4 (A1, A2) — Homz(p(A1), p(A2))
is an isomorphism, one gets that for every Aj, As € A,
p(Ay) ~ p(As) in A if and only if A¥ ~ A% in A.

p(A)
0 the

Lemma 4.5. Let A € A such that p(A) is semisimple in A. Then A* is
semisimple in A and

length 4(A*) = lengthz(p(A)).
Proof. Assume first p(A) is simple in A. As p(A*) ~ p(A) in A, A* has
a single Jordan-Holder factor in A which is not in A. But as (A*), =
(A*)™ = 0, this forces A* to be simple in A. In general, let Si,...,S,
denote the simple factors (counted with multiplicities) of p(A4) in A and let
S1,...,S8 € Awith p(S;) ~S;in A, i=1,...,r. Set

S:=9i @S

Then, S is semisimple in A, S = S*, and p(S) ~ p(A) in A. This shows
A* ~ (5% ~)S is semisimple in A and

length 4(A*) = length 4(S) = r = length4(p(A)).
O
4.2.2. If X is an abelian variety over a field K of characteristic 0, write
(=)= :Perv(X) = N(X)NPerv(X), (=) :Perv(X)— N(X)NPerv(X)

for the right adjoint ("maximal negligible subobject") and left adjoint ("max-
imal negligible quotient object") of the inclusion functor

N(X) N Perv(X) — Perv(X)

respectively. By Galois descent [Ril4, Lem. A.6], for every P € Perv(X),
(P-)lxz = (Plxz)- = Plx and P|x. — (P7)|xz = (P|x;)"; in partic-
ular

(15) (=)o —lx, ~ —|x; o (=) : Perv(X) — Perv(X ).
If f: X — S is an abelian scheme, write again
(=)= : PervV™(x/S) — NY-4(X/S) N Perv'™* (X /9),
(=) : Perv"™ (X /S) — NUVEA(X/S) N Perv'™(X/9)
for the right adjoint and left adjoint of the inclusion functor
NUEA (X /S) N PervV™ (X /S) < Perv't4(X/9)
respectively. Furthermore, as for every s € S,
N4 (X /S) N Perv'™ (X /S) = ker(Perv'™ (X' /S) — P(X5)),
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and, for s = n, —|x, : Perv/™(X/S) — Perv(X,) is fully faithful with
essential image stable under subquotients, one has

(16) (=)o —|x, =~ —|x, o (=) : PervV“4 (X /S) — Perv(X;).
Combining (15), (16) one gets

(=) o —|x, = —|x, o (=) : Perv"" (X' /) — Perv(Xy).
This observation together with Lemma 4.5 yields the following result.

Corollary 4.6. Let f : X — S an abelian scheme. Let P € Perv'"(Xx/S).
Assume that Plx, is semisimple in P(Xj;). Then P*|x, is semisimple in
Perv (&) with

1engthPeer()(;,) (P* ‘Xﬁ) = lengthP(Xﬁ) (’P|Xﬁ)'
and, for every s € S, P*|x, ~ Plx, in P(X5).

4.3. Proof of Corollary 1.4. Let f: X — S an abelian scheme. Let P €
Perv/"(X/S) such that P|x, is semisimple in P(X;). From Corollary 4.6,
up to replacing P with P*, one may assume P|y, is semisimple in Perv(&7)
and, from Theorem 1.2, up to replacing S by a non-empty open subscheme,
one may assume that for every s € S, P|x, is semisimple in Perv(Xs). This
reduces the proof of Corollary 1.4 (2) to the one of Corollary 1.4 (1). Under
the assumptions of Corollary 1.4 (1), G(P|x;) is a reductive group and, for
every s € S, G(P|x,) C G(P|x,) is a closed reductive subgroup. Recall that
[D82, Prop. 3.1 (c)] for a reductive group G over a field @ of characteristic
0, a finite-dimensional @)-rational faithful representation V' of G and a closed
reductive subgroup H C G, one has

H = Fixg(ug) C G,
for some integers m,n > 0 and 0 # uy € T""(V). In particular, H C G if
and only if
dimg (I""(V)) < dimg(I"™"(V|x)),

for some integers m,n > 0.

This reduces the proof of Corollary 1.4 (1) to the following.

Corollary 4.7. Let f : X — S an abelian scheme. Let P € Perv'“4 (X /S)
such that P|x, is semisimple in Perv(Xs) for every s € S. Then for every
integers m,n > 0, there exists a strict closed subscheme Sy, ,, — S such that
for every s € S,

dimg, (I""(P|x;)) < dimg, (I"" (P x5))
if and only if s € Sy .
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Proof. Write
Pm,n = p/SHO(Tm’n(P))’

which is again in PervV™ (X /S) with the properties that, for every s € S,

pHO(Tmm(P’Xg)) = Pm,n‘?(g
and, by Lemma 4.8, Py, »|x, is semisimple in Perv(Xs). For s € S, decom-
pose P nlx, as

pm,n Xs = (Pm,n‘)(g)—' @ S,
where S is the sum of all simple non-negligible subobjects of Py, |y, in
Perv(Xs). As for every N' € N(X5) N Perv(Xs) one has

HomPerv(Xg) (N7 50) = 07

the canonical morphism

HomPerv(Xg) (Sv 50) - HomPerv(Xg) (Pm,n|)(§, 50)

is an isomorphism. On the other hand, as for every non-negligible simple
objects 81,82 in Perv(AXs) the canonical morphism

Hompe,y(x;)(S1,S2) — Homp(x,)(S1, Sa)
is an isomorphism, the canonical morphism
HomPerv(Xg) ('57 50) — HomP(Xg) (87 50)
is also an isomorphism. This proves that
dlm@e (Im7n (P‘Xg)) = dlm@g (ILO (pm,n ’-Xg)) = dlm@e (Homperv(Xg) (Pm,n ’ng 50))

By Lemma 4.9, there is a quotient Py, n — Py, g0y in Perv(&'/S) such that
for every geometric point 5 on S, Pmnlx; = Py oylas is the maximal
quotient of Py, |y, in Perv(Xs) with support in {0}. In particular, the
canonical injective morphism

HomPerv(Xg) (Pm,n,{O} |X§a 50) — HomPerv(Xg) (,Pm,n|X§, 50)

is an isomorphism. But as the full subcategory Pervo(Xs) C Perv(X5) of all
objects with support in {0} identifies with Perv(0) ~ Vecty, via

0. : Perv(0)=Pervy(X5),
one has Py, ,, 03| a; =~ dg " with

Hs = dim@(HomPerv(Xg) (Pm,n,{0}|é\f§v 50) = X(Xg, 7Dm,n,{O} ’Xg)
This eventually reduces Corollary 4.7 to proving that for every b > 0 the
subset
USbI:{SGS’,lLSSb}CS

is open. As the map p: S — Z>q is constructible, it is enough to prove that
U<y is stable under generization. This essentially follows from the existence
of the cospecialization morphism since, for every specialization t; ~ tg of
points in S, cspy, 7, identifies G(Py n| Xfo) with a subgroup

G(Pm,n‘X{O) C G<Pm,n‘Xgl) C GL(wg, (Pm,n’«"fgl))a
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so that g, > pu,. O

Lemma 4.8. Let k be an algebraically closed field of characteristic 0, let X
be an abelian variety over k and let P € Perv(X). Assume P is semisim-
ple in Perv(X). Then for every integers m,n > 0, PH(T™"(P)) is again
semisimple in Perv(X).

Proof. (Sketch of) This is mentioned as [KrW15, Ex. 5.1]. The fact that
Rm, : D%(X x X) — D%X) preserves direct sums of shifts of simple per-
verse sheaves follows from Kashiwara’s conjecture (Kashiwara’s conjecture
is reduced to a conjecture of de Jong in [Dr01], and de Jong’s conjecture is
proved in [BoKO06], [G07]) while the fact that the exterior tensor product
P XL Py of two simple objects Py, Py € Perv(X) is a direct sums of shifts of
simple perverse sheaves follows from the structure of simple perverse sheaves
and the fact that for every immersion ¢; : U; < X and £; € Loc(U;), 1 = 1,2
one has
(11 % 12)1 (L1 B L2) = 191, (L1) B 19,1, (L2).

See e.g. [MS22, Ex. 10.2.31]. O

Lemma 4.9. Let f: X — S be a separated morphism of finite type and let
t: Z < X be a closed immersion. For every P € Perv(X/S), there is a
quotient P — Pz in Perv(X /S) such that for every geometric point s on S,
Plx, — Pz|x, is the mazimal quotient of P|x, in Perv(Xs) with support in
Zs.

Proof. Define P — Pz as the image of the composite
PP P50, 0 P)
of the adjunction morphism for ¢ : Z — X and the relative perverse trun-
cation with respect to f : X — S. As 1, : DY(Z) — DY(X) is t-exact and
¥ 2 DYX) — DP(Z) is right t-exact with respect to the relative perverse
t-structure on f : X — S, one has
P20 ¥ =) ~ o, P/ 720 (1 =) ~ 1 PISHO (L =) : Perv(X/S) — Perv(X/S).
Furthermore, for every geometric point § on S, by proper base-change,
—|a; 0ty >~ 15 0 — |z, : Perv(Z/S) — Perv(Xs),
while, by definition of the relative perverse t-structure,
—|z. o P/SHO (=) ~ PHO(—|2,) : Perv(Z/S) — Perv(Zs).

This proves that for every geometric point s, the formation of P —» Pz
commutes with —|y, : Perv(X'/S) — Perv(X;5) and reduces the proof of
Lemma 4.9 to the case where S = spec(k) is the spectrum of an algebraically
closed field. By construction Pz has support in Z. Let j : X\ Z < X denote
the complementary open immersion. Conversely, for every quotient P — Q
in Perv(X’) with support in Z, the distinguished triangle

150 = Q= o
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ensures that Q-=.,.*Q so that, by adjunction, P —» Q->,.*Q factors as

7
ad,
L 5P
and, as Q € Perv(&X), (17) factors further as
P L l*Q
A
ad,

Ll P —— p/STZO(L*L*P),
which concludes the proof of Lemma 4.9. O

4.4. Proof of Corollary 1.5. Let f : X — S be an abelian scheme. We
begin with the following observation.

Lemma 4.10. Let P € PervV"(X/S). Assume P|x, has torsion determi-
nant of order N. Then for every s € S, P|x, also has torsion determinant
of order dividing N .

Proof. Let n denote the dimension of P in PUM(X/S) and det(P) := A"P
its determinant. It follows from the general formalism of Tannakian cate-
gories that for every t € S, P|x,, P|x; again have dimension n and that
(N"P)lx, ~ N(Plx,), (AN"P)lx; ~ A*(Plx;). In particular, as for every
s € S, one has

G(A*(Pla;)) € GIA*(Pla)),

hence A"(P|x,) is also torsion, with order dividing N. O

Note that if G(P|x,) is semisimple then any object in (P|x,) has torsion
determinant of order dividing |7o(G(P|x;,))|-

We now turn to the proof of Corollary 1.5 itself. Let P € PervU**(X/S).
After possibly replacing P € PervV™ (X /S) with P| x, € Perv*(X;/SE),
one may assume k = k is algebraically closed.

- Proof of Corollary 1.5 (1). Up to replacing P with P* - see Corollary
4.6, one may assume P|y, is simple in Perv(A7j), and not only in P(Aj).
Then Corollary 1.5 (1) immediately follows from Fact 1.1, Theorem 1.2
and Lemma 4.10.

- Proof of Corollary 1.5 (2). Let us first observe that for a connected reduc-
tive group G and a closed subgroup H C G, the following are equivalent

(1) H C G — G*™ factors through an isogeny H* — G*;
(2) dim(R(G)NH) =dim(R(H)) and dim(H )—dim(R(H)) =dim(G)—dim(R(G));
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(3) dim(R(G)NH®) =dim(R(H®)) and dim(H°)—dim(R(H°)) =dim(G)—dim(R(G));
(4) H° C G — G* factors through an isogeny H* — G*.

In particular, to prove the first part of Corollary 1.5 (2), one can replace
G(P|x,)° with G(P|x,)NG(P|x,)° (which will simplify a bit the notation).

Replacing P € PervV™* (X /S) with [N],P € Perv'™ (X /S) for some inte-
ger N > 1, one may assume G(P|x,) is connected (see [W15, §2]). From
the short exact sequence

1= G(Plx,;) = G(P) = G((P)o) — 1

and the description of G((P)o) in terms of representation of m (.S) (see Sub-
section 4.5 below), replacing P € Perv'" (X /S) with P|x,, € Perv""*(Xg /5"
for some connected étale cover S’ — S, one may also assume G(P) is con-
nected.

Let
G(P) — G(P)™

denote the maximal adjoint quotient® of G(P). The morphism G(P) —»
G(P)™ factors as G(P) - G(P)* — G(P)*!. On the other hand, as
G(P|x;) is normal in G(P), R(G(P|x;)) = (R(G(P)) NG(P|x,))° so that
the morphism G(P|x,) < G(P) —» G(P)* factors through a morphism
G(P|x,)*® — G(P)* inducing an isogeny onto its image, which is a closed
normal subgroup of G(P)*. By the structure theory of connected semisim-
ple groups, there is a (unique) connected (automatically adjoint) quotient
G(P)* — G such that the resulting canonical morphism

G(Plx,)* = G(P)* - G(P)*! — G

is an isogeny. As G is adjoint, it admits an irreducible faithful representa-

tion corresponding to a simple object Q € (P); in particular, G = G(Q).
The commutative diagram of exact tensor functors

CSpij,5
(18) (Qlx;) (Q) (Qla,) — (Qlxx)
|, | x g
(Pla;) (P) (Plx,) —= (Plx)
cspi,s
SNamely, G(P)* = GP)"*/z(GP)*Y), where G(P) — GP)* =

G(P)/Ru.(G(P)) is the maximal reductive quotient of G(P).
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induces a commutative diagram of algebraic groups

CSPq,5

/—\
(19) G(Qlx,;) — G(Q) =——G(Qlx,) =——G(Qlx;)

G(Plx,) — G(P) =—G(Plx,) =—G(Plx,)

CSPn,5

As G(P|x;)* — G(Q) is an isogeny, G(Q|x;) — G(Q) is an isomorphism.
In particular, Q| x, is a simple object in P(Aj) and every object in (Q|x,)
has trivial determinant. By Corollary 1.5 (1) applied to Q up to replac-
ing S by a non-empty open subscheme, one may assume that for every
s € S the cospecialization morphism csp;s : G(Qlx;) — G(Q|x;) is an
isomorphism so that one has a canonical commutative diagram

CSpPq,s

(20)  G(Qlx,) ~ G(Qlx,)

G(Plx,)™ =——G(P|x,)/(R(G(Plx;)) N G(Plx;)) G(Plx,)™

P

G(Pla;)/(R(G(Plx,)) N G(Plas))°

\

°G(Pxs)-

G(P’Xﬁ)

csp@g
In particular,

dim(G(P|x,)*) = dim(G(P|x,)™) = dim(G(P|,)/(B(G(P|x,)) N G(P]x;)
= dim(G(P|x,)/ (R(G(P|a;)) N G(Plx;)
> dim(G(P‘?@)SS)

which, as G(P|x;) - hence G(P|x,)™ - are connected, imposes that the

morphisms

G(Plx.)/(R(G(P|x;)) N G(Plx,) = G(Pla,)™

)
)°)

and

G(Pla;)/(R(G(Plx;)) NG(Pla;)* = G(Pl)™,
are isomorphisms. This concludes the proof of the first part of Corollary
1.5 (2). The second part when G(P|x;) is semisimple tautologically follows
from the first part as, then, G(P|x,)° = G(P|x,)>™ while the second part
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when G(P|y;, ) is reductive follows from the first part and the fact that, for
every s € S such that G(P|x;)° C G(P|x,)° factors through an isogeny
G(Pla,)°™ = G(Pla,)™, the arrows (x-5), (+-77) and the right vertical
arrow in the canonical commutative diagram

(+-3)

/\
G(P|X )O dcr(—>G X *»G('])‘Xg)o,ss

£ |

G(P’X )o der(_)G X 4»G(1P’Xﬁ)o,ss_
v

(%-1)

are isogenies.

4.5. Proof of Proposition 1.7. Let k be a field of characteristic 0, .S a
smooth geometrically connected variety over k with generic point 1 and
f: X — S an abelian scheme. Let PUM (X /S), C PULA(X/S) denote the
essential image of

04 : Loc(S) = Perv'™(S/S) — PervV™ (X /S) — PV*4(X/9)

and for every P € PULA(X/S), consider the full subcategory (P)o :=
(Py N PUX4(x/S)o C (P). From Lemma 3.2, the equivalence of Tannakian
categories —|x, : (P)—>(P|x,) restricts to an equivalence

—lx, : (P)o=(Plx,)o-

This yields an explicit categorical description of the morphism G((P|x,)o) —
G((P|x,)o) as the composite G({P|x,)o) — G((P)o)<G((P|x,)0) arising

from the diagram of Tannakian categories

4

(Plado & (Po

geo

{Plx,)o

Assume furthermore S5° = ) that is, for every s € S, the cospecialization
morphism G(P|x,) — G(P| x;) is an isomorphism so that the morphism
G((P|x,)o) = G({P)o) is a closed immersion. Then every ®-generator 0,L
of (P)g yields a ®-generator (0.L)|x, =~ 0s.8"L of (P|x,)o and from the
canonical diagram of Tannakian categories

(L) PervU(5/8) £ Perv(s) < (s*L)

:J{O* :io* :\LOS* :los*
| x

(0.L)—— PUMA(X/S)o ——= P(Xs)o <—(0s5"L) = ((0+L)]x,)
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the morphism G((P|x,)0) — G({P)o) also describes the functor of Tan-
nakian categories s* : (£) — (s*L£) hence corresponds to the embedding

G(L)s = G(L) — GL(Ls5)
of the Zariski-closures of the images
II(L)s C II(L) € GL(Ls)

of m1(s,5) = m1(S, ) acting on Lz respectively.

This observation yields the following.

Lemma 4.11. Assume S has dimension > 0. Let P € Perv'“*(X/S) with
S5° =0. Then,

(1) if k is Hilbertian, there exists an integer d > 1 such that |S|<%\ SpN|S|=¢
is infinite.

(2) if S is a curve, k is finitely generated over Q and G(P|x,) is semisimple,
for every integer d > 1, Sp N |S|=4 is finite.

Proof. From the exact specialization diagram (6) and the fact that, by our
assumptions, for every s € |S| the morphisms G(P|x,) — G(P|x;) is an iso-
morphism and the morphism G((P|x,)o) — G({P)o) is a closed immersion,
it is enough to prove that, under the assumptions

- in (1): there exists an integer d > 1 such that for infinitely many s € |S|<¢
the closed immersion G({P|x,)o0) < G((P)o) is an isomorphism.

This follows from the defining property of Hilbertian fields and a Frattini
argument [Se89, §10.6], which ensures that there exists an integer d > 1
such that for infinitely many s € [S|=? one has II(£)s = II(L).

- in (2): for every integer d > 1 and for all but finitely many s € |S|<% the
closed immersion G({P|x,)0)° < G((P)o)° is an isomorphism.

This follows from [CT13, Thm. 1], which asserts that if p : m(S) —
GLnN(Zy) is a continuous GLP representation then, for every integer d > 1
and all but finitely many s € |S|=%, p(mi(s)) C p(m1(S)) is open. The
GLP condition means that every open subgroup of II := p(m1(S;)) has
finite abelianization or, equivalently, that the Lie algebra Lie(II) of II (as
an (-adic Lie group) is perfect. This is for instance the case if (*) one
can realize II as a closed subgroup IT C Hy(Qy) of the group of Qg-points
of an algebraic group Hy over Q such that the Zariski-closure of II in
Hy is semisimple. The assumption that G(P|x;) is semisimple ensures
that one can reduce to this situation. Indeed, as G(L|s;) is a quotient of
G(P|x;), G(L|s;) is semisimple as well and, as there exists a finite Galois
extension (Qy of Q; such that L arises from a @s-local system on S, one
may assume I1(£) C GL(L5) ~ GL,(Q/). But as GL,(Q/) has a natural
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structure of Lie group over Qy, so has II(L) [Se65, L.G., Chap. V, §9]
hence, as II(L) is also compact being the continuous image of a profinite
group, it admits a faithful embedding into GLy(Zy) for some N > 1 [Lu88,
Prop. 4]. To apply [CT13, Thm. 1] to the resulting ¢-adic representation
m1(S) = II(L) € GLn(Zy), it is thus enough to show that I := II(L|s; )
satisfies the criterion (*). This follows from the claim below, applied with
K/k = Qz/@g, IT := H(£|Sk) and GO = GLnQé.

Claim. Let K/k be a finite Galois extension and write R := Resgy, :
Sch/k — Sch/y for the Weil restriction functor. Let Go be an algebraic
group over k and set G := Go . Let Il C G(K) = (RG)(k) be a subgroup.
Let v : H — G denote the Zariski closure of I1 in G and 1y : Hy — RG
the Zariski-closure of 11 in RG. Write ad : Gy — RG for the adjunction

d
morphism. Then the morphism ¢ : H < G ‘¥ (RG)k factors through an
isomorphism

ad g

H > G—"F (RG)k

e Lo, K
[
_

0,K -
Proof of the claim. At the level of K-points, the diagram

ady

HC > G5 (RG) <LOL>H0,K
induces a commutative diagram
H(K)—— G(K)— (RG)k (K) =<—Ho x (K)
II RG(k) <——Hy(k).

As II is Zariski-dense in H, this already shows the existence of the factor-
ization ¢ : H — Hy . On the other hand, at the level of k-points the
diagram

R Lo
RH“"> RG >H,
induces a commutative diagram

RH(k) = H(K)—— (RG)(k) = G(K)

IIC Ho(k)
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d
As Il is Zariski-dense in Hj, this shows that Hy &% RG factors as w: Hy <
RH g RG. One thus gets

R RGMR(RG) k)

X ,LLO TJR(LOYK)

Ho——“% R(Hy k)
Re

Let d : Hyx — H denote the morphism corresponding by functoriality,
to dy : Hy < RH. Then, by construction, cod = Id : Hy x—Hp k and
doc=1d: H>H. O

Proposition 1.7 (and its strengthening when S is a curve and k is finitely
generated over Q) follows from Lemma 4.11 applied to the restriction of P
to X xg U, where U C S denotes the complement of the Zariski-closure of
S3°in S.

5. GEOMETRIC APPLICATIONS

Let X — S be an abelian scheme and let ) <— X be a closed subscheme,
smooth and geometrically connected over S.

5.1. Preliminaries. As S is smooth, X — S is projective [R70, Thm.
XI.1.4] hence X carries a line bundle Oy (1) which is very ample with respect
to X — S. Let P € Q[T] denote the Hilbert polynomial of V; — Xj with
respect to Ox(1)|x, and let H s — S be the Hilbert scheme classifying
closed subschemes of X’ x ¢T" which are flat over T" and with constant Hilbert
polynomial P [Gro61, Thm. 3.2]. By construction, X’ acts by translation on
535,/5 over S. Let [)] € ﬁi/S(S) be the S-point corresponding to ¢ : ) < X
and consider the corresponding morphism of S-schemes

b 1 X = N5 X5 Hyys © e (Y], 1Y+ 7).
Let also
A 95— s Xs /s

denote the diagonal embedding, which is a closed immersion as f)i /s S'is
projective. Define the stabilizer Staby,g()) of ) in X" as the fiber product

Staby /g(¥) > X
i o ?1y)

f@/sC—A> ﬁi/s XS j352/5'
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By construction Staby, 5(Y) <= X is a closed subgroup scheme of X — S,
whose formation commutes with arbitrary Noetherian base change T' — S.
In particular, for every t € S one has

(21) Stab){/g(y)gz Stab/\({(yg).

Lemma 5.1. Let X — S an abelian scheme and Y — X a closed subscheme,
smooth, geometrically connected, and of relative dimension d over S. Then,

(1) the relative perverse sheaf P := 1, Qyy[d] lies in Perv'" (X /S);

(2) Assume furthermore Vi — Xy has
i) ample normal bundle Nyﬁ/xf, then, after possibly replacing S by
a non-empty open subset, one may assume that for all s € S,
Vs — Xz also has ample normal bundle Nyg/;(g
i) trivial stabilizer Staby, (Vy) then, after possibly replacing S by a
non-empty open subset, one may assume that for all s € S, Vs —
X5 also has trivial stabilizer.

Proof. For (1), as Y — S is smooth, Qg € DV (Y/S) [B24, 3.6, Lemma
(i)] and as Y < X is proper, 1.Q,y € DV"A(X/S) [B24, 3.6, Lemma (ii)]
hence P := 1,Qy y[d] € Perv'"(X/S). Assertion (2) ii) follows from (21)
and [EGAIV3, Thm. 8.10.5. (i)]. For assertion (2) i), under our assumptions
for every t € S and with the notation in the base-change diagram

the canonical morphisms
(22) Ny = Ny, 15Ny = Ny,

are isomorphisms. Indeed, applying ¢3, to the short exact sequence of locally
free Oy-modules [Li02, §6.3, Prop. 3.13]

1 1
0— Cy/x — L*QX‘S — Qy|s -0
and using the canonical identifications
1 .ol 1 1 1
215 = Wy ey 9 Qs = ex, Qs = 6 Qg
one gets the short exact sequence of locally free Oy,-modules

0= 3,Cysw = ey = Moy — 0
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which yields ¢3,Cy/x =~ Cy,/x,, whence the assertion, by dualizing. On the
other hand, as Ny, x, (=~ (Ny,x)|y;) is ample, by fpqc descent of ampleness,
(Ny,x)ly, is ample [St25, Tag 0D2P]; the assertion thus follows from [Ha66,
Prop. 4.4]. O

5.2. Sample of rigidity phenomena. We give here two examples of rigid-
ity phenomena, building on the classification results of [JKrLM25] and
Corollary 1.5 (2).

For an abelian variety X over a field K of characteristic 0 and a closed
subvariety Y C X, smooth, geometrically connected and of dimension d > 2
over K, one says that Y is:

- a product if there exist closed subvarieties Y7, Yo C X, smooth over K and
of dimension > 0, such that the sum map + : Y7 x Yo — X induces an
isomorphism + : Y7 X Yo=Y

- a symmetric power of a curve if there is a closed smooth irreducible curve
C < X such that the sum morphism Sym?C — X is a closed embedding
with image Y.

Note that if K is algebraically closed and L/K is a field extension, then Y

is a product (resp. a symmetric power of a curve) if and only if Y xx L is.

The only if assertion is straightforward and the if one follows from spreading

out and specialization, using Hilbert Nullstellensatz.

Corollary 5.2. Let X — S an abelian scheme of relative dimension g > 3
and Y — X a closed subscheme, smooth and geometrically connected over
S. Assume Vi — X has ample normal bundle and trivial stabilizer. Then
the set of all s € S such that Vs is a product is Zariski-dense in S (if and)
only if Yy is itself a product.

Proof. From Lemma 5.1 (1), P = 1.Q,y[d] € Perv'"*(X/S) and from
Lemma 5.1 (2), up to replacing S by a non-empty open subscheme, one may
assume that for all s € S, Vs — X5 has ample normal bundle Ny, /x; and
trivial stabilizer. The if assertion is by spreading out. To prove the only if
assertion, observe first that, as ) is smooth and irreducible P|x, is simple
- hence semisimple [BeBerDG82, Thm. 4.3.1 (ii)] so that Corollary 1.5 (2)
(b) applies. The assertion thus follows from [JKrLM25, Thm. 6.1], which
asserts that, for any ¢ € S, )y is a product if and only if G(P|y,)°%" is not
simple. O

Remark 5.3. For Y = X — S, in general, it is not true that the set of
all s € S such that X5 is a product is Zariski-dense in S (if and) only if
Ay is itself a product. For instance, let £ = C, S = M, the moduli space
of genus 2 smooth projective curves (with suitable level structures) and
X = Jac(C|S) — S the Jacobian of the universal genus 2 curve C — S. Then
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the set of all points s € S such that X; is a product of two elliptic curves®

is supported on infinitely many irreducible curves Cy < S. Let SP™4 C S
denote the Zariski-closure of the union of all C,;. Then the geometric generic
fiber Xg over the generic point ¢ of an irreducible component of SP™¢ of
dimension > 2 is not a product of two elliptic curves. See [K16] and the
references therein for details.

Corollary 5.4. Let X — S an abelian scheme of relative dimension g and
t: Y <= X a closed subscheme, smooth, geometrically connected and of
relative dimension d < % over S. Assume Yy — X5 has ample normal
bundle and trivial stabilizer. Then the set of all s € S such that Y5 is a
symmetric power of a curve is Zariski-dense in S (if and) only if Yy is itself
a symmetric power of a curve.

Proof. The argument is similar to the one for Corollary 5.2. If d = 1 there
is nothing to prove so that we may assume d > 2. Again, P := L*@&y[d]
lies in Perv'™ (X' /S) with P| x; simple - hence semisimple, and, up to re-
placing S by a non-empty open subscheme, one may assume that for all
s € 5, Vs — X5 has ample normal bundle Nyg /X5 and trivial stabilizer.
The if assertion is by spreading out. To prove the only if assertion, let
r o= x(X,P) = (=1)%(Y;) denote the Euler-Poincaré characteristic of
P|x, for one (equivalently every) t € S. Assume that for some s € S,
Vs ~Sym?(C) is a symmetric power of a curve. Then from [JKrLM25, Lem.
7.2], G(Ply.)°%" acting on w(P|x,) identifies with the image of SL, g, act-
ing on a wedge power A%Std,, of the standard representation of SLn@E with

n = —x(C,Qy) = 2gc — 2 (where gc denotes the genus of C). Note that,
as 7 = (), 2gc —2 = n =: n(r,d) = is uniquely determined by r and d
hence is independent of s € S. Furthermore, as Wy(C) C Alb(C) is then
automatically smooth, it follows from Riemann’s singularity theorem (e.g.
[GrH78, p. 344]) that C has gonality > d + 1 hence genus go > 2d — 1.
As d > 2, this imposes go > 3 hence n(r,d) > 4, whence, 2 < d < @.
Under this numerical condition, it follows from [JKrLM25, Thm. 7.3] that,
for any t € S, Y; ~Sym?(C) is a symmetric power of a curve if and only if
G(Ply;)° " acting on w(P|x;) identifies with the image of SL, g, acting on
a wedge power /\dStdn(rvd) of the standard representation of SLn(n Ty The
assertion thus follows, again, from Corollary 1.5 (2) (b). O

Remark 5.5. Using [KrM25, Thm. 6.1] instead of [JKrLM25, Thm. 7.3],
one could probably relax the assumption that ) — S is smooth.
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