DEGENERATION OF ℓ-ADIC LOCAL SYSTEMS ON PRODUCTS OF TWO CURVES

ANNA CADORET

Abstract

Let X be a smooth, geometrically connected variety over a field k of characteristic 0 and let \mathcal{V} be a \mathbb{Q}_{ℓ}-local system on X. A central problem is to understand the arithmetico-geometric structure of the degeneration locus $X_{\mathcal{V}}$ of \mathcal{V}. To \mathcal{V} one can attach a projective system of level varieties $$
\underline{X}_{\mathcal{V}}=\cdots \rightarrow X_{\mathcal{V}, n+1} \rightarrow X_{\mathcal{V}, n} \rightarrow \cdots \rightarrow X_{\mathcal{V}, 1} \rightarrow X_{\mathcal{V}, 0}=X
$$ whose transition morphisms are (non-connected) étale covers with the property that for every $x \in X, \mathcal{V}$ degenerates at x if and only if x lifts to a projective system of $k(x)$-points on $\underline{X}_{\mathcal{V}}$. When k is algebraically closed, $X=X_{1} \times X_{2}$ is the product of two hyperbolic curves and the algebraic monodromy of \mathcal{V} is, we show that for every integers $g \geq 1, \gamma \geq 1$ there exists an integer $N=N(g, \gamma) \geq 1$ such that for $n \geq N$ every connected component $X_{\mathcal{V}, n}^{\circ}$ of $X_{\mathcal{V}, n}$ is either birational to a smooth projective surface of general type and contains only finitely many closed integral curves with geometric genus $\leq g$ or dominates a smooth connected curve of gonality $\geq \gamma$. This implies that for every integer $g \geq 0$ the degeneration locus $X_{\mathcal{V}} \subset X$ of \mathcal{V} contains only finitely many transverse curves (that is closed integral curves $C \hookrightarrow X$ dominating both X_{1} and X_{2}) with geometric genus $\leq g$. When k is a number field and assuming the Bombieri-Lang conjecture for (product quotient) surfaces of general type, this also implies (uniform) boundedness results of arithmetic nature - for instance the following generalization of the ℓ-primary part of a question of Mazur for elliptic curves: let C be a smooth curve over k and $A \rightarrow C$ an abelian scheme then there exists an integer $N=N(A, \ell)$ such that for every $c_{1}, c_{2} \in C(k), A_{c_{1}}(\bar{k})\left[\ell^{N}\right] \simeq A_{c_{1}}(\bar{k})\left[\ell^{N}\right]$ as $\pi_{1}(k)$-modules implies that $A_{c_{1}}$ and $A_{c_{1}}$ are k-isogenous. The proof of our main result, which is inspired from a strategy initiated by A. Tamagawa and the author when X is a curve, combines three main ingredients: the combinatorial description of the Chern numbers of product quotient surfaces in terms of ramification data, asymptotic estimates for the reduction modulo- ℓ^{n} of homogeneous spaces for ℓ-adic Lie groups and, ultimately, a celebrated theorem of Bogolomov (the geometric Lang conjecture for surfaces of general type with $c_{1}^{2}-c_{2}>0$).

2020 Mathematics Subject Classification. Primary: 14E20, 14F20, 14H30; Secondary: 14J29, 14J20, 14K15.

1. Introduction

Let k be a field of characteristic 0 . A variety over k (or a k-variety) is a separated scheme of finite type over k.
1.1. Let X be a smooth, geometrically connected variety of dimension d over k and let $f: Y \rightarrow X$ be a smooth proper morphism. An important problem in arithmetic geometry is to describe the locus X_{f} of all $x \in X$ where the powers $\left(Y_{x}\right)^{r}, r \geq 1$ of the fiber Y_{x} at x carry more algebraic cycles (modulo homological equivalence) than the powers $\left(Y_{\eta}\right)^{r}, r \geq 1$ of the fiber Y_{η} at the generic point η of X. Fix a prime ℓ and consider the \mathbb{Q}_{ℓ}-local system $\mathcal{V}:=\oplus_{i \geq 0} R^{2 i} f_{*} \mathbb{Q}_{\ell}(i)$. For every $x \in X$, fix a geometric point \bar{x} over x and an étale path from \bar{x} to $\bar{\eta}$ inducing a canonical isomorphism $\mathcal{V}_{\bar{x}} \mathcal{G}_{\bar{\eta}}=: V$ equivariant with respect to the canonical isomorphism of étale fundamental groups $\pi_{1}(X, \bar{x}) \tilde{\rightarrow} \pi_{1}(X, \bar{\eta})$. Let $\Pi_{\mathcal{V}} \subset \mathrm{GL}(V)$ denote the image of $\pi_{1}(X, \bar{\eta})$ acting on V and $\Pi_{\mathcal{V}, x} \subset \Pi_{\mathcal{V}}$ the image of $\pi_{1}(x, \bar{x})$ acting on V via $\pi_{1}(x, \bar{x}) \rightarrow \pi_{1}(X, \bar{x}) \underset{\rightarrow}{\sim} \pi_{1}(X, \bar{\eta})$. Assume k is finitely generated over \mathbb{Q}. Then, conjecturally, the degeneration locus $X_{\mathcal{V}}$ of \mathcal{V} - that is the locus of all $x \in X$ where $\Pi_{\mathcal{V}, x}$ has codimension ≥ 1 in Π - coincides with X_{f} and, if instead of algebraic cycles one considers motivated cycles in the sense of André [An96] then (unconditionnally) $X_{f} \subset X_{\mathcal{V}}$.
1.2. This prompts more generally the question of describing the degeneration locus $X_{\mathcal{V}} \subset X$ of an arbitrary \mathbb{Q}_{ℓ}-local system \mathcal{V} over X. Under mild assumptions on \mathcal{V}, one expects that $X(k) \cap X_{\mathcal{V}}$ is not Zariski-dense in X. Indeed, every fundamental system ${ }^{1} \Pi_{\mathcal{V}}(n), n \geq 0$ of neighbourhoods of 1 in $\Pi_{\mathcal{V}}$ gives rise to a projective system of "level varieties" (See Section 2.1.2 for details)

$$
\underline{X}_{\mathcal{V}}=\cdots \rightarrow X_{\mathcal{V}, n+1} \rightarrow X_{\mathcal{V}, n} \rightarrow \cdots \rightarrow X_{\mathcal{V}, 1} \rightarrow X_{\mathcal{V}, 0}=X
$$

[^0]whose transition morphisms are (non-connected) étale covers of X with the property that for every $x \in X$, $x \in X_{\mathcal{V}}$ if and only if x lifts to a projective system of $k(x)$-points on $\underline{X}_{\mathcal{V}}$. In particular, $X(k) \cap X_{\mathcal{V}}$ is exactly the image of
$$
\lim _{n} X_{\mathcal{V}, n}(k) \rightarrow X(k)
$$

The rough expectation is that for $n \gg 0$, every connected component $X_{\mathcal{V}, n}^{\circ}$ of $X_{\mathcal{V}, n}$ is either defined ${ }^{2}$ over an extension k_{U} of k of degree ≥ 2 (in which case $X_{\mathcal{V}, n}^{\circ}(k)=\emptyset$) or is "complicated enough" so that $X_{\mathcal{V}, n}^{\circ}(k)$ is not Zariski-dense in $X_{\mathcal{V}, n}^{\circ}$.

For $d=1$, the Mordell conjecture [FW84] gives a sufficient geometric condition for the non-Zariski-density (viz the finiteness) of $X_{\mathcal{V}, n}^{\circ}(k)$ in $X_{\mathcal{V}, n}^{\circ}$, namely that $X_{\mathcal{V}, n}^{\circ}$ has geometric genus ≥ 2. In turn, a sufficient condition on \mathcal{V} so that every connected component of $X_{\mathcal{V}, n}$ defined over k has geometric genus ≥ 2 for $n \gg 0$ is that \mathcal{V} be geometrically Lie-perfect (GLP for short) that is the Lie algebra Lie $\left(\bar{\Pi}_{\mathcal{V}}\right)$ of the image $\bar{\Pi}_{\mathcal{V}}$ of $\pi_{1}\left(X_{\bar{k}}, \bar{\eta}\right)$ acting on V is perfect $-\sec ^{3}[\mathrm{CT} 12 \mathrm{~b}$, Thm. 1.1].

For $d \geq 2$ the picture is drastically more complicated. A main obstruction is that there is no unconditional geometric criterion like the Mordell conjecture ensuring the non-Zariski density of k-points on higher dimensional varieties. Classically, a higher-dimensional conjectural substitute for the Mordell conjecture is the following. For a geometrically integral variety Y over k define the special locus $s p_{Y} \subset Y$ as the Zariskiclosure of the union of the images of all rational maps from a variety birational to a smooth projective variety of Kodaira dimension ≤ 0 over k to X. Then,
Conjecture 1. (Bombieri-Lang - e.g. [A09, 1.5], [HS00, F.5.2]) Let k be a number field and let Y be a geometrically integral variety over k, birational to a smooth projective variety of general type over k. Then $s p_{Y} \subset Y$ is of codimension ≥ 1 in Y and $\left(Y \backslash s p_{Y}\right)(k)$ is finite.

Say that \mathcal{V} is geometrically curve-Lie-perfect (GCLP for short) if for every connected smooth curve C over \bar{k} and non-constant morphism $\phi: C \rightarrow X, \phi^{*} \mathcal{V}$ is GLP. Define the notion of being geometrically Liesemisimple (GLS for short) and geometrically curve-Lie-semisimple (GCLS for short) similarly, replacing the condition of being perfect by the condition of being semisimple; of course, GLS (resp. GCLS) implies GLP (resp. GCLP). Note that as a quotient of a perfect (resp. semisimple) Lie algebra is again perfect (resp. semisimple) the properties of being GLP, GCLP (resp. GLS, GCLS) are preserved by quotient. Pure \mathbb{Q}_{ℓ}-local systems - in particular those lying in the Tannakian category generated by the $R^{i} f_{*} \mathbb{Q}_{\ell}(j), i \in \mathbb{Z}_{\geq 0}$, $j \in \mathbb{Z}$ for $f: Y \rightarrow X$ a smooth proper morphism - are GLS [D80, (3.4.12), (3.4.13)]. For examples of GLP \mathbb{Q}_{ℓ}-local systems which are not GLS in general, see [C21].

Though Conjecture 1 seems currently out of reach even for surfaces, it motivates the following possibly more tractable geometric conjecture.
Conjecture 2. ([C22, Conj. 16]) Assume $k=\bar{k}$ and \mathcal{V} is GCLP. Then every connected component of $X_{\mathcal{V}, n}$ dominates a variety of general type for $n \gg 0$.
1.3. To investigate Conjecture 2 as well as the non-Zariski-density of $X(k) \cap X_{\mathcal{V}}$, one can freely replace X by a non-empty open subscheme. In particular, one may assume that X is a (resp. strongly) hyperbolic Artin neighbourhood i.e. that it decomposes into a sequence

$$
X=X_{d} \rightarrow X_{d-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}=\operatorname{spec}(k)
$$

of elementary fibrations $X_{n} \rightarrow X_{n-1}$ into hyperbolic curves ${ }^{4}$ (resp. with the additionnal property that X_{n} embeds into a product of hyperbolic curves), $n=1, \ldots, d$ [SSt16, Cor. 5.9]. Strongly hyperbolic Artin neighbourhood are anabelian in the sense that they can be reconstructed from their étale homotopy type [SSt16, Thm. 1.2]. As the projective systems $\underline{X}_{\mathcal{V}}$ are also constructed from the representation $\mathcal{V}_{\bar{\eta}}$ of $\pi_{1}(X, \bar{\eta})$, they should be easier to control when X has some strong anabelian features.

In this note we consider the simplest case of 2-dimensional strongly hyperbolic Artin neighbourhoods namely the direct product $X=X_{1} \times X_{2}$ of two smooth, geometrically connected hyperbolic curves X_{1}, X_{2} over k.

[^1]1.4. Assume $k=\bar{k}$ and $X=X_{1} \times_{k} X_{2}$ with X_{i} a smooth, connected curve over k of genus $g_{i}, i=1,2$. Let \mathcal{V} be a $(\mathrm{G}) \mathrm{LP} \mathbb{Q}_{\ell}$-local system on X. From now on we omit base points from the notation as well as the subscripts $(-)_{\mathcal{V}}$. Set $V:=\mathcal{V}_{\bar{\eta}}$. The projections $p r_{i}: X \rightarrow X_{i}, i=1,2$ induce an isomorphism $\pi_{1}(X) \stackrel{\sim}{\rightarrow} \pi_{1}\left(X_{1}\right) \times \pi_{1}\left(X_{2}\right)$. Write $\Pi_{1}:=\rho\left(\pi_{1}\left(X_{1}\right) \times 1\right), \Pi_{2}:=\rho\left(1 \times \pi_{1}\left(X_{2}\right)\right) \subset \Pi$ and let $G_{i} \subset G$ denote the Zariski-closure of Π_{i} in $\mathrm{GL}(V), i=1,2$. Let $p: \Pi_{1} \times \Pi_{2} \rightarrow \Pi$ and $p_{i}: \Pi_{1} \times \Pi_{2} \rightarrow \Pi_{i}, i=1,2$ denote the canonical projections; for a closed subgroup $H \subset \Pi$, write $\widetilde{H}:=p^{-1}(H) \subset \Pi_{1} \times \Pi_{2}$ and for a closed subgroup $H \subset \Pi_{1} \times \Pi_{2}$ write $H_{i}:=p_{i}(H) \subset \Pi_{i}, i=1,2$. One says that $H \subset \Pi$ is transverse if both $\widetilde{H}_{1} \subset \Pi_{1}$ and $\widetilde{H}_{2} \subset \Pi_{2}$ are open subgroups.

For an open subgroup $U \subset \Pi$, let $X_{U} \rightarrow X$ denote the connected étale cover corresponding to the inverse image of U in $\pi_{1}(X)$. Similarly, for $i=1,2$ and $U_{i} \subset \Pi_{i}$ an open subgroup, let $X_{i, U_{i}} \rightarrow X_{i}$ denote the connected étale cover corresponding to the inverse image of U_{i} in $\pi_{1}\left(X_{i}\right)$. Fix a fundamental system $\Pi(n)$, $n \geq 0$ of open neighbourhoods of 1 in Π. Every closed subgroup $H \subset \Pi$ of codimension ≥ 1 gives rise to a projective system of connected étale covers

$$
\underline{X}_{H}=\cdots \rightarrow X_{H \Pi(n+1)} \rightarrow X_{H \Pi(n)} \rightarrow \cdots \rightarrow X_{H \Pi(1)} \rightarrow X_{H \Pi(0)}=X
$$

We can now state our main result, which answers (and refines) Conjecture 2 - see Subsection 2.1.2.
Theorem 3. Let \mathcal{V} be a $(G) L P \mathbb{Q}_{\ell}$-local system on X. Then one has the following dichotomy
(1) $H \subset \Pi$ is not transverse that is, for one of $i=1,2, \widetilde{H}_{i} \subset \Pi_{i}$ is a closed subgroup of codimension ≥ 1. Then the projective system \underline{X}_{H} fits into a projective commutative diagram

with $B_{i, H, n} \rightarrow X_{i}$ a connected étale cover with gonality (hence, a fortiori, geometric genus) going to $+\infty$ with n;
(2) $H \subset \Pi$ is transverse and $X_{H \Pi(n)}$ is birational to a smooth projective surface of general type and, for every integer $g \geq 0$, contains only finitely many closed integral curves with geometric genus $\leq g$ for $n \gg 0$.
1.5. We refer to Section 2 for a sample of (unconditional) geometric applications and, assuming Conjecture 1 for (product-quotient surfaces), arithmetic applications of Theorem 3. Let us just illustrate these by considering a concrete example. For a closed integral subvariety $Z \hookrightarrow X$, write $\bar{\Pi}_{Z}:=\bar{\Pi}_{\left.\mathcal{V}\right|_{Z}}, \Pi_{Z}:=\Pi_{\left.\mathcal{V}\right|_{Z}}$ and $\bar{G}_{Z}, G_{Z} \subset \mathrm{GL}_{V}$ for their Zariski-closure. Say that $Z \hookrightarrow X$ is \mathcal{V}-weakly special (resp. \mathcal{V}-special) if Z is maximal among closed integral subvarieties with connected geometric (resp. arithmetic) monodromy \bar{G}_{Z}° (resp. G_{Z}°); in particular, every closed point is weakly special and, special implies weakly special. Let k be a number field. Fix an integer $d \geq 1$, for $i=1,2$, let $f_{i}: A_{i} \rightarrow X_{i}$ be an abelian scheme of relative dimension d and let $f:=f_{1} \times f_{2}: A_{1} \times A_{2} \rightarrow X_{1} \times X_{2}=X$ denote the resulting product abelian scheme. Set $\mathcal{V}:=R^{1} f_{*} \mathbb{Q}_{\ell}=R^{1} f_{1 *} \mathbb{Q}_{\ell} \oplus R^{2} f_{1 *} \mathbb{Q}_{\ell}$. Say that a closed integral curve $Z \hookrightarrow X$ is transverse if the resulting morphisms $Z \hookrightarrow X \xrightarrow{p r_{i}} X_{i}, i=1,2$ are dominant. Then the following holds.
(1) (Corollary 5) There are only finitely many transverse \mathcal{V}-weakly special curves $Z \hookrightarrow X$ with bounded geometric genus; furthermore for a given integer $g \geq 0$, there exists an integer $B \geq 1$ such that for every transverse non \mathcal{V}-weakly special curve $Z \hookrightarrow X,\left[\bar{\Pi}: \bar{\Pi}_{Z}\right] \leq B$.
(2) (Corollary 6) Assume Conjecture 1 holds for (product-quotient) surfaces of general type over k, then $X_{\mathcal{V}}(k)$ is not Zariski-dense in X and there exists an integer $B \geq 1$ such that for every $x \in X(k) \backslash X_{\mathcal{V}} \cap X(k)$, $\left[\Pi: \Pi_{x}\right] \leq B ;$
(3) (Corollary 8) Assume Conjecture 1 holds for (product-quotient) surfaces of general type over k, then there exists an integer $N=N\left(A_{1}, A_{2}, \ell\right) \geq 0$ such that for every $\left(x_{1}, x_{2}\right) \in X(k)$ the following properties are equivalent:
(i) $\quad A_{1, x_{1}}(\bar{k})\left[\ell^{N}\right] \simeq A_{2, x_{2}}(\bar{k})\left[\ell^{N}\right]$ as $\pi_{1}(k)$-modules;
(ii) $\quad A_{1, x_{1}}(\bar{k})\left[\ell^{n}\right] \simeq A_{2, x_{2}}(\bar{k})\left[\ell^{n}\right]$ as $\pi_{1}(k)$-modules for some $n \geq N$;
(iii) $A_{1, x_{1}}(\bar{k})\left[\ell^{n}\right] \simeq A_{2, x_{2}}(\bar{k})\left[\ell^{n}\right]$ as $\pi_{1}(k)$-modules for every $n \geq N$;
(iv) $A_{1, x_{1}}$ and $A_{2, x_{2}}$ are k-isogenous.

For instance, when $f_{1}: A_{1} \rightarrow X_{1}=f_{2}: A_{2} \rightarrow X_{2}$ is "the" universal elliptic scheme $f: \mathcal{E} \rightarrow Y(1)$, the transverse \mathcal{V}-weakly special curves $Z \hookrightarrow Y(1) \times Y(1)$ are exactly the images $C(N)$ of the Hecke correspondances $Y_{0}(N) \rightarrow Y(1) \times Y(1)$ so that (1) recovers the classical fact (which can of course be deduced directly from the explicit Hodge-theoretic description of $C(N)$) that the geometric genus of $C(N)$ goes to $+\infty$ with N. Also, as there are only finitely many \mathcal{V}-special points of bounded degree on $Y(1),(2)$ amounts to saying that $\cup_{N} C(N)(k)$ is not Zariski-dense in $Y(1) \times Y(1)$, which is still an open question (See e.g. [U04, Sec. 4.1]). (3) follows from (2) and is the ℓ-primary part of a - still widely open - question of Mazur [M78, p. 133]. For some closely related explicit results using the specific feature of the moduli of elliptic curves see [KS98].
1.6. Organization of the paper and brief sketch of the strategy for Theorem 3. We begin by giving some applications of Theorem 3 in Section 2. The geometric applications (Subsection 2.1.2) are unconditional but the arithmetic applications (Subsection 2.2) require the assumption that Conjecture 1 holds for surfaces of general type over k. The remaining part of the paper is devoted to the proof of Theorem 3. In Section 3, we give the general architecture of the proof and reduces it to a core geometric statement - Theorem 13 - for certain projective systems $\underline{Y}=\cdots \rightarrow Y_{n+1} \rightarrow Y_{n} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y_{0}=X$ of product-quotient surfaces. In a preliminary step (Subsection 3.2.1), we reduce to the case where Lie(П) has abelian radical, which ensures that \mathcal{V} is not only GLP but GCLP (Corollary 10). The GCLP assumption is used here through Fact 12. The proof of Theorem 13 in turn is carried out in two steps. For Theorem 13, one easily reduces to the case where \mathcal{V} is GCLS. The first step (Section 4) consists in checking that the Chern classes of our product-quotient surfaces satisfy some numerical relations ensuring that they are of general type and, by a celebrated theorem of Bogomolov, that their set of closed integral curves of geometric genus $\leq g$ are bounded provided $n \gg 0$ (depending on g). This step uses heavily the specific geometric features of product-quotient surfaces and technical results about reduction modulo- ℓ^{n} of homogeneous spaces for ℓ-adic Lie groups as developped in [CT12b], [CT13] (Fact 20). The GCLS assumption is used there to perform a technical reduction (Lemma 15) ensuring one can apply Fact 20. The second step (Section 5) consists in showing that the boundedness of the set of closed integral curves of geometric genus $\leq g$ implies its finiteness provided $n \gg 0$ (depending on g). Ultimately (See proof of Corollary 23) this uses again the GCLS assumption.

The study of the degeneration locus of a GLP \mathbb{Q}_{ℓ}-local system is the étale counterpart of the study of the Hodge locus of a polarizable \mathbb{Z}-variation of Hodge structures, which, in the recent years, has drawn lots of attention with spectacular results based on tame geometry and the use of complex analytic period maps (See [K122] for a survey). One important feature of the proof of Theorem 3 is that it is purely algebraic and works under a very mild assumption - namely that \mathcal{V} be GLS; in particular it does not require \mathcal{V} to satisfy any of the additional properties of \mathbb{Q}_{ℓ}-local systems arising from geometry (such as purity, rationality or, given an embedding $k \hookrightarrow \mathbb{C}$, that \mathcal{V} admit a singular incarnation underlying a \mathbb{Z}-VHS on the analytification $X^{\text {an }}$ of $X_{\mathbb{C}}$).

Acknowledgements: The author was partially supported by the I.U.F. and the ANR grant ANR-15-CE40-0002-01. She is grateful to Akio Tamagawa for enlightening discussions, in particular around Lemma 10, which enabled her to extend her results from GCLS to GLP local systems. This article, initiated in Paris, while going under several "CoViD" lockdowns, was finalized during visits to the Simons Foundation NY and to RIMS. She thanks heartily both institutes for wonderful research conditions.

2. Applications

2.1. Geometric Applications.

2.1.1. For a profinite group Π, let $\Phi(\Pi) \subset \Pi$ denote its Frattini subgroup (that is the intersection of all the maximal open subgroups of Π).

Let Π be a compact ℓ-adic Lie group and let $\Pi(n), n \geq 0$ be a fundamental system of neighbourhoods of 1 in Π. For every $n \geq 1$, let $\mathcal{H}_{n}(\Pi)$ denote the (finite) set of open subgroups $U \subset \Pi$ such that $\Phi(\Pi(n-1)) \subset U$ but $\Pi(n-1) \not \subset U$ and let $\mathcal{H}_{0}(\Pi):=\{\Pi\}$. Then ([CT12b, Lem. 3.3, (Proof of Cor. 3.6)],
(1) $\mathcal{H}_{n}(\Pi)$ is finite, $n \geq 0$.
(2) The maps $\mathcal{H}_{n+1}(\Pi) \rightarrow \mathcal{H}_{n}(\Pi), U \mapsto U \Phi(\Pi(n-1)$) (with the convention that $\Phi(\Pi(-1))=\Pi)$ endow the $\mathcal{H}_{n}(\Pi), n \geq 0$ with a canonical structure of projective system $\left(\mathcal{H}_{n+1}(\Pi) \xrightarrow{\phi_{n}} \mathcal{H}_{n}(\Pi)\right)_{n \geq 0}$.
(3) For every $\underline{H}:=(H[n])_{n \geq 0} \in \lim _{n} \mathcal{H}_{n}(\Pi)$,

$$
H[\infty]:=\lim _{n} H[n]=\cap_{n \geq 0} H[n] \subset \Pi
$$

is a closed subgroup of codimension ≥ 1 in Π and $H[n]=H[\infty] \Pi(n), n \gg 0$.
(4) For every closed subgroup $H \subset \Pi$ such that $\Pi(n-1) \not \subset H$ there exists $U \in \mathcal{H}_{n}(\Pi)$ such that $H \subset U$.
2.1.2. We retain the notation and assumption of Subsection 1.4. From 2.1.1 (1),

$$
X_{n}:=\bigsqcup_{U \in \mathcal{H}_{n}(\Pi)} X_{U} \rightarrow X
$$

is a (non-connected) étale cover of X and, by functoriality of étale fundamental group, the maps $\mathcal{H}_{n+1}(\Pi) \rightarrow$ $\mathcal{H}_{n}(\Pi), n \geq 0$ of (2.1.1.2) endow the $X_{n}, n \geq 0$ with a structure of projective system

$$
\cdots \rightarrow X_{n+1} \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X
$$

whose transition morphisms are étale covers.

Corollary 4. For every integers $g \geq 1, \gamma \geq 1$ there exists an integer $N=N(g, \gamma) \geq 1$ such that for every $n \geq N$ every connected component X_{n}° of X_{n} is either birational to a smooth projective surface of general type and contains only finitely many closed integral curves with geometric genus $\leq g$ or, for one of $i=1,2$, fits into a commutative square of non-constant morphisms

with $B_{i, n}$ a smooth connected curve of gonality $\geq \gamma$.
Proof. (See also [C22, Sec. 4.2]) Let $\mathcal{H}_{n,<g, \gamma}(\Pi) \subset \mathcal{H}_{n}(\Pi)$ denote the subset of all $U \in \mathcal{H}_{n}(\Pi)$ such that X_{U} is not of the type described in Corollary 4 . Then the projective system $\mathcal{H}_{n+1}(\Pi) \rightarrow \mathcal{H}_{n}(\Pi), n \geq 0$ restricts to a projective system $\mathcal{H}_{n+1,<g, \gamma}(\Pi) \rightarrow \mathcal{H}_{n,<g, \gamma}(\Pi), n \geq 0$. Assume $\mathcal{H}_{n,<g, \gamma}(\Pi) \neq \emptyset, n \geq 1$. By 2.1.1 (1), $\mathcal{H}_{n,<g, \gamma}(\Pi)$ is finite, $n \geq 0$ hence $\lim _{n} \mathcal{H}_{n,<g, \gamma}(\Pi) \neq \emptyset$. Let $\underline{H}:=(H[n])_{n \geq 1} \in \lim _{n} \mathcal{H}_{n,<g, \gamma}(\Pi)$. By 2.1.1 (3), $H[\infty]:=\cap_{n \geq 1} H[n]$ is a closed subgroup of codimension ≥ 1 in Π and $H[n]=H[\infty] \Pi(n)$, for $n \gg 0$, which contradicts Theorem 3 for $H=H[\infty]$.
2.1.3. Recall that a closed integral curve $Z \hookrightarrow X$ is said to be transverse if the resulting morphisms $Z \hookrightarrow$ $X \xrightarrow{p r_{i}} X_{i}, i=1,2$ are dominant. If $Z \hookrightarrow X$ is transverse then the image $\Pi_{Z} \subset \Pi$ of $\pi_{1}(Z) \rightarrow \pi_{1}(X) \rightarrow \Pi$ is transverse in the sense of Subsection 1.4. The following can be regarded as a uniform variant of Bertini theorem.

Corollary 5. With the same notation and assumptions as in Theorem 3, for every integer $g \geq 0$ and for all but finitely many transverse closed integral curves $Z \hookrightarrow X$ of geometric genus $\leq g, \Pi_{Z} \subset \Pi$ is open and there exists an integer $B \geq 1$ such that for all transverse closed integral curves $Z \hookrightarrow X$ with geometric genus $\leq g$ and $\Pi_{Z} \subset \Pi$ open, $\left[\Pi: \Pi_{Z}\right] \leq B$.

Proof. Let $\mathcal{H}_{n}^{+}(\Pi) \subset \mathcal{H}_{n}(\Pi)$ denote the subset of all $U \in \mathcal{H}_{n}(\Pi)$ such that X_{U} is birational to a smooth projective surface of general type and contains only finitely many closed integral curves with geometric genus $\leq g$; set

$$
X_{n}^{+}:=\bigsqcup_{U \in \mathcal{H}_{n}^{+}(\Pi)} X_{U} \rightarrow X
$$

for the corresponding (non-connected) étale cover. Let $S[n] \subset X$ denote the union of the images of the finitely many closed integral curves $Z \hookrightarrow X_{n}^{+} \rightarrow X$ with geometric genus $\leq g$. By construction $S[n+1] \subset S[n]$ hence, as X is Noetherian, $S[\infty]:=S\left[N_{0}\right]=S[n], n \geq N_{0}$ for some integer $N_{0} \geq 1$. Let $Z \hookrightarrow X$ be a closed integral transverse curve with geometric genus $\leq g$. By 2.1.1 (4), $Z \not \subset S[\infty]$ implies that $\Pi_{Z} \subset \Pi$ is open, which already shows the first part of Corollary 5. For the second part, fix an integer $\gamma>\frac{g+3}{2}$ and let $N_{1}=N(g, \gamma) \geq 1$ be as in Corollary 4 ; write $N:=\max \left\{N_{0}, N_{1}\right\}$. Let $Z \hookrightarrow X$ be a closed integral transverse curve with geometric genus $\leq g$ and such that $Z \not \subset S[\infty]$. Assume $Z \hookrightarrow X$ lifts to $X_{N} \rightarrow X$. By the Brill-Noether inequality, Z has gonality $\leq\left\lfloor\frac{g+3}{2}\right\rfloor<\gamma$ hence $Z \hookrightarrow X$ necessarily lifts to $X_{N}^{+} \rightarrow X$. But this contradicts the assumption that $Z \not \subset S[\infty]$. So $Z \hookrightarrow X$ does not lift to $X_{N} \rightarrow X$ or, equivalently 2.1.1 (4), $\Pi(N-1) \subset \Pi_{Z}$. Hence, in particular, $\left[\Pi: \Pi_{Z}\right] \leq[\Pi: \Pi(N-1)]$.

Example. (Geometric torsion conjecture for abelian scheme over X) Let $A \rightarrow X$ be an abelian scheme. Then, for every prime ℓ and integer $g \geq 0$ there exists an integer $B=B(A, \ell, g) \geq 1$ such that for every closed integral curve $Z \hookrightarrow X$ with geometric genus $\leq g$ either $A \times_{X} Z \rightarrow Z$ is k-isotrivial or $\left|A\left[\ell^{\infty}\right](Z)\right| \leq B$.
2.2. (Conjectural) arithmetic implications. We now assume k is a number field. For a GLS \mathbb{Q}_{ℓ}-local system \mathcal{V} on $X=X_{1} \times X_{2}$ we let again $\Pi_{x} \subset \Pi \subset G L(V)$ denote respectively the image of $\pi_{1}(x)$ and $\pi_{1}(X)$ acting on $\mathcal{V}_{\bar{x}} \tilde{\rightarrow} \mathcal{V}_{\bar{\eta}}=: V$. We refer to [C22, Sec. 4.2] for the proof of how Corollary 6 below, which is the main arithmetic motivation for Theorem 3, follows from Corollary 4.
Corollary 6. Assume Conjecture 1 holds for (product-quotient) surfaces of general type ${ }^{5}$. Let \mathcal{V} be a $G L S$ \mathbb{Q}_{ℓ}-local system on X. Then $X_{\mathcal{V}} \cap X(k)$ is not Zariski-dense in X and

$$
\sup \left\{\left[\Pi: \Pi_{x}\right] \mid x \in X(k) \backslash X_{\mathcal{V}} \cap X(k)\right\}<+\infty .
$$

and to [C22, Sec. 3] for the following applications of Corollary 6.
Corollary 7. Assume Conjecture 1 holds for (product-quotient) surfaces of general type over k. Let $f: Y \rightarrow$ X be a smooth projective morphism.
(1) The set of all $x \in X(k)$ such that the motivated motivic Galois group of $Y_{\bar{x}}$ is of codimension ≥ 1 in the motivated motivic Galois group of $Y_{\bar{\eta}}$ is not Zariski-dense in X;
(2) The set of all $x \in X(k)$ such that the (injective) specialization map of Neron-Severi groups $s p_{\bar{x}}: N S\left(Y_{\bar{\eta}}\right) \otimes$ $\mathbb{Q} \rightarrow N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q}$ is not an isomorphism is not Zariski-dense in X.
(3) There exists an integer $n=n(f, \ell, k) \geq 0$ such that for every $x \in X(k)$ with Y_{x} satisfying the Tate conjecture for divisors $\left|\operatorname{Br}\left(Y_{\bar{x}}\right)^{\pi_{1}(k)}\left[\ell^{\infty}\right]\right| \leq \ell^{n}$.
Assume furthermore $f: Y \rightarrow X$ is an abelian scheme, then
(3) There exists an integer $n=n(f, \ell, k) \geq 0$ such that $\left|Y_{x}\left[\ell^{\infty}\right](k)\right| \leq \ell^{n}, x \in X(k)$.
(4) There exists an integer $n=n(f, \ell, k) \geq 0$ such that $\left|Y_{x}\left[\ell^{\infty}\right](k)\right| \leq \ell^{n}, x \in X(k)$.

Remark. The proof of Corollary 7 (1), (2) only requires Corollary 6 (1) while the proof of Corollary 7 (3), (4) requires the full strength of Corollary 6. Again, see [C22, Sec. 3] for details.

The following application, which - modulo Conjecture1 - answers positively a higher-dimensional generalization of the ℓ-primary part of a question of Mazur [M78, p. 133] is specific to the direct product situation and is not treated in [C22]. Let \mathcal{V}_{i} be a rank- r GLS \mathbb{Q}_{ℓ}-local system on X_{i} with torsion-free \mathbb{Z}_{ℓ}-model \mathcal{T}_{i}, $i=1,2$. Consider the GLS \mathbb{Q}_{ℓ}-local system $\mathcal{V}=p_{1}^{*} \mathcal{V}_{1} \oplus p_{2}^{*} \mathcal{V}_{2}$ on $X=X_{1} \times X_{2}$.
Corollary 8. Assume that Conjecture 1 holds for (product-quotient) surfaces of general type over k. Then, there exists an integer $N=N(\mathcal{V}, k) \geq 1$ such that for every $x=\left(x_{1}, x_{2}\right) \in X(k)$ the following properties are equivalent:
(i) $x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{N}\right) \simeq x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{N}\right)$;
(ii) $x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{n}\right) \simeq x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{n}\right)$ for some $n \geq N$;
(iii) $x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{n}\right) \not \not ㇒ x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{n}\right)$ for every $n \geq N$;
(iv) $x_{1}^{*} \mathcal{V}_{1} \simeq x_{2}^{*} \mathcal{V}_{2}$.

Proof. The implications (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i) are trivial. We prove (i) \Rightarrow (ii) that is, equivalently, $x_{1}^{*} \mathcal{V}_{1} \not 千 x_{2}^{*} \mathcal{V}_{2} \Rightarrow x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{N}\right) \not 千 x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{N}\right)$. Set $T_{i}:=\mathcal{T}_{i, \bar{\eta}_{i}}, T:=T_{1} \oplus T_{2}$ and let $\Pi(n)$ denote the kernel of the morphism $\Pi \subset \mathrm{GL}(T) \rightarrow \mathrm{GL}\left(T / \ell^{n}\right)$ induced by reduction modulo- ℓ^{n}. Observe first that for every closed subgroup $H \subset \Pi$ reduction modulo- ℓ^{n} induces a structure of projective system on the set $\operatorname{Isom}_{H}\left(T_{1} / \ell^{n}, T_{2} / \ell^{n}\right)$ of H-equivariants isomorphisms, whence a canonical morphism

$$
\lim _{n} \operatorname{Isom}_{H}\left(T_{1} / \ell^{n}, T_{2} / \ell^{n}\right) \rightarrow \operatorname{Isom}_{H}\left(T_{1}, T_{2}\right) \rightarrow \operatorname{Isom}_{H}\left(V_{1}, V_{2}\right)
$$

[^2]As $\operatorname{Isom}_{H}\left(T_{1} / \ell^{n}, T_{2} / \ell^{n}\right)$ is finite for every $n \geq 0, \operatorname{Isom}_{H}\left(V_{1}, V_{2}\right)=\emptyset$ implies that there exists an integer $n_{H} \geq 0$ such that $\operatorname{Isom}_{H}\left(T_{1} / \ell^{n}, T_{2} / \ell^{n}\right)=\emptyset, n \geq n_{H}$ ．

From Corollary $6, X_{\mathcal{V}} \cap X(k)$ is not Zariski－dense in X and there exists an integer $N=N(\mathcal{V}, k) \geq 1$ such that for every $x \in X(k) \backslash X_{\mathcal{V}}, \Pi(N) \subset \Pi_{x}$ ．In particular，letting $\Pi(N) \subset U_{1}, \ldots, U_{r} \subset \Pi$ denote the finitely many open subgroups of Π containing $\Pi(N)$ ，for every $x=\left(x_{1}, x_{2}\right) \in X(k) \backslash X_{\mathcal{V}}, \Pi_{x}=U_{i_{x}}$ for some $i_{x} \in\{1, \ldots, r\}$ ．Let $I \subset\{1, \ldots, r\}$ denote the subset of $1 \leq i \leq r$ such that $\operatorname{Isom}_{U_{i}}\left(V_{1}, V_{2}\right)=\emptyset$ and $n_{i}:=n_{U_{i}} \geq 0$ the corresponding integer．Then
－Either $i_{x} \notin I$ hence $\operatorname{Isom}_{\Pi_{x}}\left(V_{1}, V_{2}\right) \neq \emptyset$ and there is nothing to say；
－or $i_{x} \in I$ and $\operatorname{Isom}_{\Pi_{x}}\left(T_{1} / \ell^{n}, T_{2} / \ell^{n}\right)=\emptyset, n \geq n_{i_{x}}$ ．
As a result，with $N_{0}=\max \left\{n_{i} \mid i \in I\right\}$ ，for every $x \in X(k) \backslash X_{\mathcal{V}}$ and $n \geq N_{0}$ ，one has：$x_{1}^{*} \mathcal{V}_{1} \nsim x_{2}^{*} \mathcal{V}_{2} \Rightarrow$ $x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{n}\right) \not \not x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{n}\right)$ ．Next，let Z_{1}, \ldots, Z_{r} denote the 1－dimensional irreducible components of the Zariski－ closure $Z_{\mathcal{V}}$ of $X_{\mathcal{V}}(k)$ in $X, Z_{1}^{\text {sm }}, \ldots, Z_{s}^{\text {sm }}$ their smooth loci and $Z_{\mathcal{V}, 0}:=\left\{z_{1}, \ldots, z_{t}\right\}$ the finitely many k－rational points which are either a 0 －dimensional component of $Z_{\mathcal{V}}$ or in one of the $Z_{i} \backslash Z_{i}^{\mathrm{sm}}, i=1, \ldots, s$ ．As \mathcal{V} is GLS hence GCLS（See Remark 11 below）， $\mathcal{W}_{i}:=\left.\mathcal{V}\right|_{Z_{i}}$ is GLS as well so that by［CT12b，Thm．1］，$Z_{i \mathcal{W}_{i}}(k)$ is finite and there exists an integer $N=N\left(\mathcal{W}_{i}, k\right) \geq 1$ such that for every $x \in Z_{i}(k) \backslash Z_{i \mathcal{W}_{i}}, \Pi_{Z_{i}}(N) \subset \Pi_{x}$ ， where $\Pi_{Z_{i}} \subset \Pi$ is the image of $\pi_{1}\left(Z_{i}\right)$ acting on V and $\Pi_{Z_{i}}(N):=\Pi_{Z_{i}} \cap \Pi(N)$ ．One can thus argue as above considering the finitely many open subgroups $\Pi_{Z_{i}}(N) \subset U_{1}, \ldots, U_{r} \subset \Pi_{Z_{i}}$ to obtain an integer $n_{i} \geq 0$ such that for every $x=\left(x_{1}, x_{2}\right) \in Z_{i}(k) \backslash Z_{i \mathcal{W}_{i}}$ and $n \geq n_{i}$ ，one has：$x_{1}^{*} \mathcal{V}_{1} \not 千 x_{2}^{*} \mathcal{V}_{2} \Rightarrow x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{n}\right) \not 千 x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{n}\right)$ ． Hence，setting $N_{1}:=\max \left\{N_{0}, n_{1}, \ldots, n_{s}\right\}$ ，for every $x=\left(x_{1}, x_{2}\right) \in X(k) \backslash\left(Z_{\mathcal{V}, 0} \cup Z_{1 \mathcal{W}_{1}} \cup \cdots Z_{s \mathcal{W}_{s}}\right)$ and $n \geq N_{1}$ ，one has $x_{1}^{*} \mathcal{V}_{1} \nsucceq x_{2}^{*} \mathcal{V}_{2} \Rightarrow x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{n}\right) \not \not x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{n}\right)$ ．It remains to treat the finitely many k－rational points in $Z_{\mathcal{V}, 0} \cup Z_{1 \mathcal{W}_{1}} \cup \cdots Z_{s \mathcal{W}_{s}}$ but，for each $z \in Z_{\mathcal{V}, 0} \cup Z_{1 \mathcal{W}_{1}} \cup \cdots Z_{s \mathcal{W}_{s}}$ ，
－Either $\operatorname{Isom}_{\Pi_{z}}\left(V_{1}, V_{2}\right) \neq \emptyset$ and there is nothing to say；
－or $\operatorname{Isom}_{\Pi_{z}}\left(V_{1}, V_{2}\right) \neq \emptyset$ and $\operatorname{Isom}_{\Pi_{z}}\left(T_{1} / \ell^{n}, T_{2} / \ell^{n}\right)=\emptyset, n \geq n_{z}:=n_{\Pi_{z}}$ ．
So，if $I \subset Z_{\mathcal{V}, 0} \cup Z_{1 \mathcal{W}_{1}} \cup \cdots Z_{s \mathcal{W}_{s}}$ denotes the subset of $z \in Z_{\mathcal{V}, 0} \cup Z_{1 \mathcal{W}_{1}} \cup \cdots Z_{s \mathcal{W}_{s}}$ such that $\operatorname{Isom}_{\Pi_{z}}\left(V_{1}, V_{2}\right) \neq \emptyset$ ， $N_{2}:=\max \left\{N_{1}, n_{z}, z \in I\right\}$ has the requested property，namely：for every $x=\left(x_{1}, x_{2}\right) \in X(k)$ and $n \geq N_{2}$ ， one has $x_{1}^{*} \mathcal{V}_{1} \not 千 x_{2}^{*} \mathcal{V}_{2} \Rightarrow x_{1}^{*}\left(\mathcal{T}_{1} / \ell^{n}\right) \not 千 x_{2}^{*}\left(\mathcal{T}_{2} / \ell^{n}\right)$ ．

Example：Let $A_{i} \rightarrow X_{i}$ be an abelian scheme，$i=1,2$ ．By the Tate conjecture for abelian varieties［FW84］， Corollary 8 applied with $V_{i}=V_{\ell}\left(A_{i, \bar{\eta}_{i}}\right)$ and $T_{i}=T_{\ell}\left(A_{i, \bar{\eta}_{i}}\right)$ yields the following ℓ－primary generalization of a question of Mazur for elliptic curves［M78，p．133］．Assume that Conjecture 1 holds for（product－quotient） surfaces of general type over k ．Then there exists an integer $N=n\left(A_{1}, A_{2}, \ell, k\right) \geq 0$ such that for every $x_{1} \in X_{1}(k), x_{2} \in X_{2}(k)$ ，if the $\pi_{1}(k)$－modules $A_{\bar{x}_{1}}\left[\ell^{n}\right], A_{\bar{x}_{2}}\left[\ell^{n}\right]$ are isomorphic then the abelian varieties $A_{x_{1}}$ ， $A_{x_{2}}$ are k－isogenous．

From now on and till the end of the paper，let k be an algebraically closed field of characteristic 0．Before diving in the proof of Theorem 3，we begin by the following observation．Let \mathfrak{g} be a Lie algebra with solvable radical $\mathfrak{r} \subset \mathfrak{g}$ ．Recall that $\mathfrak{g} / \mathfrak{r}$ is a semisimple Lie algebra and that the short exact sequence of Lie algebras

$$
0 \rightarrow \mathfrak{r} \rightarrow \mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{r} \rightarrow 0
$$

splits；choose a Levi complement $\mathfrak{g} \supset \mathfrak{s} \xrightarrow{\sim} \mathfrak{g} / \mathfrak{r}$ ．Set

$$
\mathfrak{r}_{\mathfrak{s}}:=\mathfrak{r} /[\mathfrak{s}, \mathfrak{r}], \quad \mathfrak{r}^{\mathfrak{s}}:=\{r \in \mathfrak{r} \mid[s, r]=0, s \in \mathfrak{s}\} .
$$

Lemma 9．The following hold．

（1）Assume \mathfrak{r} is abelian．Then $\mathfrak{g}^{\text {ab }}=\mathfrak{r}_{\mathfrak{s}}$ and \mathfrak{g} is perfect if and only if $\mathfrak{r}^{\mathfrak{s}}=0$ ．
（2）Assume there exists commuting Lie subalgebras $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{g}$ such that $\mathfrak{g}=\mathfrak{g}_{1}+\mathfrak{g}_{2}$ ．Let $\mathfrak{r}_{i} \subset \mathfrak{g}_{i}$ denote the solvable radical of \mathfrak{g}_{i} and $\mathfrak{s}_{i} \subset \mathfrak{g}_{i}$ a Levi complement，$i=1$ ，2．Then $\mathfrak{r}=\mathfrak{r}_{1}+\mathfrak{r}_{2}$ and，if \mathfrak{g} is perfect with \mathfrak{r} abelian，the following hold．
（a） $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ ；
（b） $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ are perfect；
（c）Every Lie subalgebra $\mathfrak{g}_{0} \subset \mathfrak{g}$ such that the induced morphisms $\mathfrak{g}_{0} \hookrightarrow \mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \xrightarrow{p r_{i}} \mathfrak{g}_{i}, i=1,2$ are surjective is perfect．

Proof. The equality $\mathfrak{g}^{\text {ab }}=\mathfrak{r}_{\mathfrak{s}}$ in (1) follows from $[\mathfrak{r}, \mathfrak{r}]=0$ (as \mathfrak{r} is abelian), $[\mathfrak{s}, \mathfrak{s}]=0$ (as \mathfrak{s} is semisimple) and $\mathfrak{g}=\mathfrak{r}+\mathfrak{s}$. For the second assertion in (1), as \mathfrak{s} is semisimple, the short exact sequences of \mathfrak{s}-modules

$$
0 \rightarrow \mathfrak{r}^{\prime} \rightarrow \mathfrak{r} \rightarrow \mathfrak{r}_{\mathfrak{s}} \rightarrow 0
$$

and

$$
0 \rightarrow \mathfrak{r}^{\mathfrak{s}} \rightarrow \mathfrak{r} \rightarrow \mathfrak{r}^{\prime \prime} \rightarrow 0
$$

split that is $\mathfrak{r} \simeq \mathfrak{r}^{\prime} \oplus \mathfrak{r}_{\mathfrak{s}} \simeq \mathfrak{r}^{\mathfrak{s}} \oplus \mathfrak{r}^{\prime \prime}$ as \mathfrak{s}-modules hence $\mathfrak{r}_{\mathfrak{s}} \subset \mathfrak{r}^{\mathfrak{s}}$ and $\mathfrak{r}_{\mathfrak{s}} \rightarrow \mathfrak{r}^{\mathfrak{s}}$. For $i=1,2$, as $\mathfrak{g}_{i} \subset \mathfrak{g}$ is an ideal and $\mathfrak{r}_{i} \subset \mathfrak{g}_{i}$ is characteristic in $\mathfrak{g}_{i}, \mathfrak{r}_{i} \subset \mathfrak{g}$ is a solvable ideal hence $\mathfrak{r}_{i} \subset \mathfrak{r}$. This already shows $\mathfrak{r}_{1}+\mathfrak{r}_{2} \subset \mathfrak{r}$. On the other hand, the canonical morphism $\mathfrak{g}_{1} / \mathfrak{r}_{1} \oplus \mathfrak{g}_{2} / \mathfrak{r}_{2} \rightarrow \mathfrak{g} /\left(\mathfrak{r}_{1}+\mathfrak{r}_{2}\right)$ is surjective hence, as $\mathfrak{g}_{1} / \mathfrak{r}_{1} \oplus \mathfrak{g}_{2} / \mathfrak{r}_{2}$ is semisimple, $\mathfrak{g} /\left(\mathfrak{r}_{1}+\mathfrak{r}_{2}\right)$ is semisimple as well, which shows $\mathfrak{r} \subset \mathfrak{r}_{1}+\mathfrak{r}_{2}$ and proves the first part of (2). Assume furthermore \mathfrak{g} is perfect. Write $\mathfrak{u}:=\mathfrak{r}_{1} \cap \mathfrak{r}_{2}$. Then $\left[\mathfrak{u}, \mathfrak{g}_{i}\right] \subset\left[\mathfrak{g}_{1}, \mathfrak{g}_{2}\right]=0, i=1,2$ so that $[\mathfrak{u}, \mathfrak{g}]=0$ hence a fortiori $[\mathfrak{u}, \mathfrak{s}]=0$. In other words, $\mathfrak{u} \subset \mathfrak{r}^{\mathfrak{s}}$ but, from (1), $\mathfrak{r}^{\mathfrak{s}}=0$. This already shows $\mathfrak{r}=\mathfrak{r}_{1} \oplus \mathfrak{r}_{2}$. But then, $\mathfrak{g}_{1} \cap \mathfrak{g}_{2} \subset Z(\mathfrak{g}) \subset \mathfrak{g}_{1} \cap \mathfrak{g}_{2} \cap \mathfrak{r}=\mathfrak{r}_{1} \cap \mathfrak{r}_{2}=0$, which concludes the proof of (2) (a). For the proof of (2) (b), observe that as $\mathfrak{r}_{i} \subset \mathfrak{r}$, \mathfrak{r}_{i} is abelian hence, from (1), \mathfrak{g}_{i} is perfect if and only if $\mathfrak{r}_{i}^{\mathfrak{s}_{i}}=0$. But $\mathfrak{r}=\mathfrak{r}_{1} \oplus \mathfrak{r}_{2}$ implies $\mathfrak{r}^{\mathfrak{s}}=\mathfrak{r}_{1}^{\mathfrak{s}} \oplus \mathfrak{r}_{2}^{\mathfrak{s}}=\mathfrak{r}_{1}^{\mathfrak{s}_{1}} \oplus \mathfrak{r}_{2}^{\mathfrak{s}_{2}}$ and from (1), $\mathfrak{r}^{\mathfrak{s}}=0$, which implies $\mathfrak{r}_{i}^{\mathfrak{s}_{i}}=0, i=1,2$ and proves (2) (b). Let $\mathfrak{r}_{0} \subset \mathfrak{g}_{0}$ denote the solvable radical of \mathfrak{g}_{0} and $\mathfrak{s}_{0} \subset \mathfrak{g}_{0}$ a Levi complement. Consider the canonical projection $p r: \mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{r} \simeq \mathfrak{s}_{1} \oplus \mathfrak{s}_{2}$. By assumption the canonical projection $\mathfrak{s}_{1} \oplus \mathfrak{s}_{2} \rightarrow \mathfrak{s}_{i}$ restricts to a surjective morphism $\operatorname{pr}\left(\mathfrak{g}_{0}\right) \rightarrow \mathfrak{s}_{i}, i=1,2$ hence, as $\mathfrak{s}_{1}, \mathfrak{s}_{2}$ are semisimple, $\operatorname{pr}\left(\mathfrak{r}_{0}\right) \subset \mathfrak{s}_{1} \cap \mathfrak{s}_{2}=0$ that is $\mathfrak{r}_{0} \subset \mathfrak{r}_{1} \oplus \mathfrak{r}_{2}=\mathfrak{r}$. In particular, \mathfrak{r}_{0} is abelian and $\mathfrak{r}_{0}=\mathfrak{g}_{0} \cap \mathfrak{r}$ so that $\mathfrak{s}_{0} \simeq \mathfrak{g}_{0} / \mathfrak{r}_{0} \hookrightarrow \mathfrak{p}_{1} / \mathfrak{r}_{1} \oplus \mathfrak{p}_{2} / \mathfrak{r}_{2} \simeq \mathfrak{s}_{1} \oplus \mathfrak{s}_{2}$. This shows $\mathfrak{r}_{0}^{\mathfrak{s}_{0}} \subset \mathfrak{r}_{1}^{\mathfrak{s}_{0}} \oplus \mathfrak{r}_{2}^{\mathfrak{s}_{0}}=\mathfrak{r}_{1}^{\mathfrak{s}_{1}} \oplus \mathfrak{r}_{2}^{\mathfrak{s}_{2}}=\mathfrak{r}^{\mathfrak{s}}=0$ hence, by (1), \mathfrak{g}_{0} is perfect.
Corollary 10. Let \mathcal{V} be $a \mathbb{Q}_{\ell}$-local system on X. Assume that the solvable radical of Lie(Π) is abelian. Then \mathcal{V} is $(G) C L P$ if and only if \mathcal{V} is $(G) L P$.
Proof. The direct implication follows from the Bertini theorem and does not use the assumption that X is a product of two hyperbolic curves. Conversely, we retain the notation of Subsection 1.4. Let C be a connected, smooth curve over k and $\phi: C \rightarrow X$ a non-constant morphism. Write $\Pi_{C} \subset \Pi$ for the image of $\pi_{1}(C)$ acting on V via $\pi_{1}(C) \xrightarrow{\phi} \pi_{1}(X)$. Set $\mathfrak{p}:=\operatorname{Lie}(\Pi), \mathfrak{p}_{i}:=\operatorname{Lie}\left(\Pi_{i}\right), i=1,2$ and $\mathfrak{p}_{C}:=\operatorname{Lie}\left(\Pi_{C}\right)$. By assumption \mathfrak{p} has abelian solvable radical and $\mathfrak{p}_{1}, \mathfrak{p}_{2} \subset \mathfrak{p}$ are commuting Lie subalgebras such that $\mathfrak{p}=\mathfrak{p}_{1}+\mathfrak{p}_{2}$ so that we are in the setting of Lemma 9. Assume the image of $\phi: C \rightarrow X$ is non-transverse that is there exists $i=1,2$ - say $i=1$ - such that $p r_{1} \circ \phi: C \rightarrow X_{1}$ is constant with image x_{1} so that $\phi: C \rightarrow X$ factors through a dominant morphism $\phi: C \rightarrow X_{x_{1}}=\left\{x_{1}\right\} \times X_{2}$, which identifies Π_{C} with Π_{2}. Then $\mathfrak{p}_{C}=\mathfrak{p}_{2}$ and the assertion follows from Lemma 9 (2) (b). Assume the image of $\phi: C \rightarrow X$ is transverse. Then the induced morphisms $\mathfrak{p}_{C} \hookrightarrow \mathfrak{p} \simeq \mathfrak{p}_{1} \oplus \mathfrak{p}_{2} \xrightarrow{p r_{i}} \mathfrak{p}_{i}, i=1,2$ are both surjective and the assertion follows from Lemma 9 (2) (c).

Remark 11. For the GLS property, one easily shows that \mathcal{V} is (G)CLS if and only if \mathcal{V} is (G)LS. Indeed, the proof is exactly the same as for Corollary 10 observing that, in Lemma 9 (2), if \mathfrak{g} is furthermore assumed to be semisimple (equivalently, $\mathfrak{r}=0$) then
$-\mathfrak{r}=\mathfrak{r}_{1}=\mathfrak{r}_{2}=0$ hence $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ are both semisimple;

- Every Lie subalgebra $\mathfrak{g}_{0} \subset \mathfrak{g}$ as in Lemma (2) (c) is semismple (as its solvable radical \mathfrak{r}_{0} is contained in $\mathfrak{r}=0$).

3. Proof of Theorem 3 - General strategy

For every variety X over k, \mathbb{Q}_{ℓ}-local system \mathcal{V} on X and open subgroup $U \subset \Pi_{\mathcal{V}}$, write $X_{U} \rightarrow X$ for the connected étale cover corresponding to the inverse image of U in $\pi_{1}(X)$.
3.1. Theorem 3 in the non-transverse case easily reduces to the main result of [CT13]. Namely, let X be a smooth connected curve over k. Let \mathcal{V} be a \mathbb{Q}_{ℓ}-local system on X. Fix a fundamental system $\Pi(n), n \geq 0$ of neighbourhoods of 1 in $\Pi:=\Pi_{\mathcal{V}}$.

Fact 12. $([\mathrm{CT} 13, \mathrm{Thm} .3 .3])$ Assume \mathcal{V} is $(G) L P$. Then, for every closed subgroup $H \subset \Pi$ of codimension ≥ 1, the gonality of $X_{H \Pi(n)}$ goes to $+\infty$ with n.

Theorem 3 in the transverse case reduces to the case of a projective system of "product-quotient surfaces", which is encapsulated in the following statement. Let Γ be a positive dimensional compact ℓ-adic Lie group and let $\Gamma(n) \subset \Gamma, n \geq 0$ be a fundamental system of neighborhoods of 1 in Γ. Write $(-)_{n}: \Gamma \rightarrow \Gamma_{n}:=\Gamma / \Gamma(n)$ for the reduction-modulo- $\Gamma(n)$ morphism, $n \geq 0$. For $i=1,2$, let X_{i} be a smooth, connected curve over
k with smooth compactification $X_{i} \hookrightarrow X_{i}^{+}$and assume we are given a continuous surjective representation $\rho_{i}: \pi_{1}\left(X_{i}\right) \rightarrow \Gamma$. Let $Y_{i, n} \rightarrow X_{i}$ denote the étale cover corresponding to $\rho_{i}^{-1}(\Gamma(n)) \subset \pi_{1}\left(X_{i}\right)$ and $Y_{i, n} \hookrightarrow Y_{i, n}^{+}$ its smooth compactification, which is also the normalization of X_{i}^{+}in $Y_{i, n} \rightarrow X_{i} \hookrightarrow X_{i}^{+}$. By construction, Γ_{n} acts faithfully on $Y_{i, n}^{+}$. Let $\Delta_{n} \underset{\rightarrow}{\sim} \Gamma_{n} \subset \Gamma_{n} \times \Gamma_{n}$ denote the diagonal subgroup and $Y_{n}^{+}:=\left(Y_{1, n}^{+} \times Y_{2, n}^{+}\right) / \Delta_{n}$ the resulting "product-quotient surface", $q_{n}: \widetilde{Y}_{n}^{+} \rightarrow Y_{n}^{+}$a minimal resolution of singularities.

Theorem 13. Assume Lie (Γ) is perfect. Then, for every integer $g \geq 0, \widetilde{Y}_{n}^{+}$is of general type and contains only finitely many closed integral curves $C \hookrightarrow \widetilde{Y}_{n}^{+}$with geometric genus $\leq g$ for $n \gg 0$ (depending on g).

3.2. Proof of Theorem 3 - preliminary reductions.

3.2.1. Reduction to abelian radical. (See [CT13, §3.2] for details) Write $\mathfrak{p}:=\operatorname{Lie}(\Pi)$ and let $\mathfrak{r} \subset \mathfrak{p}$ denote the solvable radical of \mathfrak{p}. One can always find closed normal subgroups $R^{\prime} \subset R \subset \Pi$ of Π corresponding via the Lie algebra functor to the inclusions of Lie ideals $\mathfrak{r}^{\prime}:=[\mathfrak{r}, \mathfrak{r}] \subset \mathfrak{r} \subset \mathfrak{p}$; let $p: \Pi \rightarrow \bar{\Pi}:=\Pi / R^{\prime}$ denote the canonical projection and for a closed subgroup $U \subset \Pi$, write $\bar{U}:=p(U) \subset \bar{\Pi}$. Then one easily checks the following:
(1) For every closed subgroup $H \subset \Pi$ of codimension $\geq 1, \bar{H} \subset \bar{\Pi}$ is again a closed subgroup of codimension ≥ 1 (see item (3) after Rem. 3.4 in [CT13, §3.2]);
(2) For every closed subgroup $H \subset \Pi$ of codimension ≥ 1, the inclusion $H \Pi(n) \subset H R^{\prime} \Pi(n)=p^{-1}(\overline{H \Pi(n)}) \subset$ Π of open subgroups corresponds to a connected étale cover

$$
X_{H \Pi(n)} \rightarrow X_{H R^{\prime} \Pi(n)}=X_{\overline{H \Pi(n)}}
$$

so that it is enough to prove Theorem 3 for the projective system

$$
\cdots \rightarrow X_{\overline{H \Pi(n)}} \rightarrow X_{\overline{H \Pi(n)}} \rightarrow \cdots X_{\overline{H \Pi(1)}} \rightarrow X
$$

(3) $\overline{\Pi(n)}, n \geq 0$ is again a fundamental system of neighbourhoods of 1 in $\bar{\Pi}$ so that, fixing a closed embedding $\bar{\Pi} \hookrightarrow \mathrm{GL}_{r}\left(\mathbb{Z}_{\ell}\right)$ of ℓ-adic Lie groups [L88, Prop. 4], it is enough to prove Theorem 3 for the \mathbb{Q}_{ℓ}-local system $\overline{\mathcal{V}}$ on X corresponding to the representation $\pi_{1}(X) \rightarrow \bar{\Pi} \hookrightarrow \mathrm{GL}_{r}\left(\mathbb{Z}_{\ell}\right)$.

So, from now on, assume the solvable radical of $\operatorname{Lie}(\Pi)$ is abelian. From Lemma 10, this ensures \mathcal{V} is (G)CLP.
3.2.2. Reduction to direct product. From now on, we retain the notation and assumptions of Subsection 1.4. We identify $\Pi_{1} \underset{\rightarrow}{\rightarrow} \Pi_{1} \times 1 \subset \Pi_{1} \times \Pi_{2}$ and $\Pi_{2} \underset{\rightarrow}{ } 1 \times \Pi_{2} \subset \Pi_{1} \times \Pi_{2}$. By definition the restriction of the product map $\mu: \Pi_{1} \times \Pi_{2} \rightarrow \Pi,\left(\pi_{1}, \pi_{2}\right) \mapsto \pi_{1} \pi_{2}$ to Π_{i} is injective so that one can also identify $\Pi_{i} \tilde{\rightarrow} \mu\left(\Pi_{i}\right) \subset \Pi$. With these conventions, and as $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=0$ (see (2) (a) of the claim in the proof of Lemma 10), $\Pi_{1} \cap \Pi_{2} \tilde{\rightarrow} \operatorname{ker}(p)$, $z \mapsto\left(z, z^{-1}\right)$ is finite.

To prove Theorem 3 one can choose the fundamental system $\Pi(n), n \geq 0$ of open neighbourhoods of 1 in Π freely. So that, for $i=1,2$, we fix a fundamental system $\Pi_{i}(n), n \geq 0$ of open neighbourhoods of 1 in Π_{i} and take $\Pi(n)=\Pi_{1}(n) \Pi_{2}(n)\left(=\mu\left(\Pi_{1}(n) \times \Pi_{2}(n)\right)\right) \subset \Pi, n \geq 0\left(\right.$ as $\Pi_{1}(n) \times \Pi_{2}(n), n \geq 0$ is a fundamental system of open neighbourhoods of 1 in $\Pi_{1} \times \Pi_{2}$ and $\mu: \Pi_{1} \times \Pi_{2} \rightarrow \Pi$ is surjective, $\Pi(n), n \geq 0$ is indeed a fundamental system of open neighbourhoods of 1 in Π).

Let $H \subset \Pi$ be a closed subgroup of codimension ≥ 1. By definition, one has a commutative diagram of profinite groups

corresponding to a commutative diagram of connected étale covers

This shows that Theorem 3 for $\rho: \pi_{1}(X) \rightarrow \Pi$ and $H \subset \Pi$ follows from Theorem 3 for $\rho_{1} \times \rho_{2}: \pi_{1}(X) \rightarrow$ $\Pi_{1} \times \Pi_{2}$ and $\widetilde{H} \subset \Pi_{1} \times \Pi_{2}$. So, in the following, we will assume $\rho=\rho_{1} \times \rho_{2}: \pi_{1}(X) \rightarrow \Pi_{1} \times \Pi_{2}$ and consider only closed subgroups $\widetilde{H} \subset \Pi_{1} \times \Pi_{2}$ containing the finite abelian antidiagonal subgroup $Z:=\Pi_{1} \cap \Pi_{2}$.

3.3. Proof of Theorem 3 assuming Theorem 13.

3.3.1. Non transverse case. Assume that for one of $i=1,2, \widetilde{H}_{i} \subset \Pi_{i}$ is a closed subgroup of codimension ≥ 1. It is enough to show that the gonality of $X_{i, \widetilde{H}_{i} \Pi_{i}(n)}$ is unbounded. But since $\widetilde{H}_{i} \subset \Pi_{i}$ is a closed subgroup of codimension ≥ 1, and the $\mathbb{Q} \ell_{\ell}$-local system $\left.\mathcal{V}\right|_{X_{i}}$ is GLP (Lemma 10) this follows from Fact 12.
3.3.2. Transverse case. Assume now $\widetilde{H}_{i} \subset \Pi_{i}$ is an open subgroup, $i=1,2$. As we are interested only in the asymptotic behavior of $X_{H \Pi(n)}$, without loss of generality one may replace X_{i} with $X_{\widetilde{H}_{i}}$ hence assume that $\widetilde{H}_{i}=\Pi_{i}, i=1,2$.

By the structure of closed subgroups of $\Pi_{1} \times \Pi_{2}$, there exists closed normal subgroups $N_{i} \subset \Pi_{i}, i=1,2$ and a profinite group isomorphism $\varphi: \Pi_{1} / N_{1} \tilde{\rightarrow} \Pi_{2} / N_{2}$ such that $\widetilde{H} \subset \Pi_{1} \times \Pi_{2}$ is the inverse image of the graph $\operatorname{Graph}(\varphi) \subset \Pi_{1} / N_{1} \times \Pi_{2} / N_{2}$ of φ via the canonical projection $q: \Pi_{1} \times \Pi_{2} \rightarrow \Pi_{1} / N_{1} \times \Pi_{2} / N_{2}$. In particular, $N_{1} \times N_{2} \subset \widetilde{H}$. Hence up to replacing $\rho: \pi_{1}(X) \rightarrow \Pi_{1} \times \Pi_{2}$ with $q \circ \rho: \pi_{1}(X) \rightarrow \Pi_{1} \times \Pi_{2} \rightarrow \Pi_{1} / N_{1} \times \Pi_{2} / N_{2}$ (which corresponds again to a (G)LP \mathbb{Q}_{ℓ}-local system on X), \widetilde{H} with $q(\widetilde{H})$ and $\Pi_{1}(n) \times \Pi_{2}(n)$ with $q\left(\Pi_{1}(n) \times\right.$ $\Pi_{2}(n)$), one may assume $N_{i}=1, i=1,2$. But then, up to replacing again $\rho=\rho_{1} \times \rho_{2}: \pi_{1}(X) \rightarrow \Pi_{1} \times \Pi_{2}$ with $\rho=\varphi \rho_{1} \times \rho_{2}: \pi_{1}(X) \rightarrow \Pi_{2} \times \Pi_{2}$ one may assume $\Pi_{1}=\Pi_{2}=: \Gamma$ and $\widetilde{H}:=\Delta \tilde{\rightarrow} \Gamma \subset \Gamma \times \Gamma=\Pi_{1} \times \Pi_{2}$ is the diagonal subgroup. We may also assume $\Pi_{1}(n)=\Pi_{2}(n)=: \Gamma(n)$. Let $(-)_{n}: \Gamma \rightarrow \Gamma_{n}:=\Gamma / \Gamma(n)$ denote the canonical projection and set $Y_{i, n}:=X_{i, \Pi_{i}(n)}:=X_{i, \Gamma(n)} \rightarrow X_{i}, i=1,2$. Let $X_{i} \hookrightarrow X_{i}^{+}, Y_{i, n} \hookrightarrow Y_{i, n}^{+}$ denote the smooth compactification of $X_{i}, Y_{i, n}$ respectively and let $p_{n}^{\prime}: Y_{1, n}^{+} \times Y_{2, n}^{+} \rightarrow Y_{n}^{+}:=\left(Y_{1, n}^{+} \times Y_{2, n}^{+}\right) / \Delta_{n}$ denote the quotient of $Y_{1, n}^{+} \times Y_{2, n}^{+}$by the action of the diagonal subgroup $\Delta_{n} \stackrel{\sim}{\rightarrow} \Gamma_{n} \subset \Gamma_{n} \times \Gamma_{n}$. By construction $Y_{n}:=X_{\widetilde{H}\left(\Pi_{1}(n) \times \Pi_{2}(n)\right)}:=X_{\Delta(\Gamma(n) \times \Gamma(n))}$ identifies with the dense open subset $\left(Y_{1, n} \times Y_{2, n}\right) / \Delta_{n} \hookrightarrow Y_{n}^{+}$. It is thus enough to show that if $q_{n}: \widetilde{Y}_{n}^{+} \rightarrow Y_{n}^{+}$is a minimal resolution of singularities then \widetilde{Y}_{n}^{+}is of general type and contains only finitely many irreducible curves with geometric genus $\leq g$. But this is precisely the statement of Theorem 13.
3.4. Proof of Theorem 13-general strategy. The remaining part of the paper is devoted to the proof of Theorem 13.
3.4.1. Recall that the surfaces \widetilde{Y}_{n}^{+}are constructed from a ℓ-adic Lie group Γ with Lie (Γ) perfect and continuous surjective morphisms $\pi_{1}\left(X_{i}\right) \rightarrow \Gamma, i=1,2$. Recall that for every continuous surjective morphisms (-$)^{b}$: $\Gamma \rightarrow \Gamma^{b}, \operatorname{Lie}\left(\Gamma^{b}\right)$ is again perfect.
Lemma 14. Let $(-)^{b}: \Gamma \rightarrow \Gamma^{b}$ be a continuous surjective morphism. Assume that Theorem 13 holds for the surfaces \widetilde{Y}_{n}^{+}constructed from $\pi_{1}\left(X_{i}\right) \rightarrow \Gamma \rightarrow \Gamma^{b}, i=1,2$. Then Theorem 13 for the surfaces \widetilde{Y}_{n}^{+}constructed from $\pi_{1}\left(X_{i}\right) \rightarrow \Gamma, i=1,2$.
In other words, to prove Theorem 13, one may freely replace Γ by a continuous quotient $\Gamma \rightarrow \Gamma^{b}$.
Proof. Set $\Gamma^{b}(n):=\Gamma(n)^{b} \subset \Gamma^{b}, n \geq 0$, which form again a fundamental system of neighbourhoods of 1 in Γ^{b}. For $i=1,2$, consider the resulting representation $\rho_{i}^{b}: \pi_{1}\left(X_{i}\right) \rightarrow \Gamma \rightarrow \Gamma^{b}$. As before, let $Y_{i, n}^{b} \rightarrow X_{i}$ denote the étale cover corresponding to $\rho_{i}^{b-1}\left(\Gamma^{b}(n)\right) \subset \pi_{1}\left(X_{i}\right)$ and $Y_{i, n}^{b} \hookrightarrow Y_{i, n}^{b,+}$ its smooth compactification, which is also the normalization of X_{i}^{+}in $Y_{i, n}^{b} \rightarrow X_{i} \hookrightarrow X_{i}^{+}$. By construction, $\Gamma_{n}^{b}:=\Gamma^{b} / \Gamma^{b}(n)$ acts faithfully on $Y_{i, n}^{b,+}$. Let $\Delta_{n}^{b} \simeq \Gamma_{n}^{b} \subset \Gamma_{n}^{b} \times \Gamma_{n}^{b}$ denote the diagonal subgroup and $Y_{n}^{b,+}:=\left(Y_{1, n}^{b,+} \times Y_{2, n}^{b,+}\right) / \Delta_{n}^{b}$ the resulting product-quotient surface, $q_{n}^{b}: \widetilde{Y}_{n}^{b,+} \rightarrow Y_{n}^{b,+}$ a minimal resolution of singularities. Write $N:=\operatorname{ker}\left(\Gamma \rightarrow \Gamma^{b}\right)$. Corresponding to the morphism of short exact sequences with exact columns

one has a commutative diagram

(where the right vertical arrow is only a rational map). If the $\widetilde{Y}_{n}^{b,+}, n \geq 0$ satisfy the cionclusion of Theorem 13 then so do the $\widetilde{Y}_{n}^{+}, n \geq 0$.

In particular, if $R \subset \Gamma$ is a closed normal subgroup of Π corresponding via the Lie algebra functor to the inclusion of the solvable radical of $\operatorname{Lie}(\Gamma)$ in $\operatorname{Lie}(\Gamma)$, replacing Γ with $\Gamma \rightarrow \Gamma^{b}:=\Gamma / R$, one may assume $\operatorname{Lie}(\Gamma)$ is semisimple.

Lemma 15. Let Γ be a compact ℓ-adic Lie group such that Lie (Γ) is semisimple. Then Γ fits into a short exact sequence of profinite groups

$$
1 \rightarrow N \rightarrow \Gamma \rightarrow \Gamma^{b} \rightarrow 1,
$$

with N finite and Γ^{b} such that for every non-trivial abelian subgroup $\Lambda \subset \Gamma^{b}$, the normalizer $N_{\Gamma^{b}}(\Lambda) \subset \Gamma^{b}$ is a closed subgroup of codimension ≥ 1.

Proof. Fix a finite dimensional faithful continuous \mathbb{Q}_{ℓ}-representation V of $\Gamma[$ L88, Prop. 4] and let $G \subset G L(V)$ denote the Zariski-closure of Γ. As $\operatorname{Lie}(\Gamma)$ is semisimple, G is semisimple as well and $\operatorname{Lie}(\Gamma)=\operatorname{Lie}(G)$. It is enough to show that there is an isogeny $G \rightarrow G^{b}$ with G^{b} containing no non-trivial abelian subgroup normalized by the neutral component $G^{b o}$ of G^{b}. Then one can take Γ^{b} to be the image of $\Gamma \rightarrow G\left(\mathbb{Q}_{\ell}\right) \rightarrow$ $G^{b}\left(\mathbb{Q}_{\ell}\right)$. Indeed, let $\Lambda \subset G^{b}\left(\mathbb{Q}_{\ell}\right)$ be a non-trivial abelian subgroup with Zariski-closure $L \subset G^{b}$. Then L is again abelian and $N_{\Gamma^{b}}(\Lambda) \subset N_{G^{b}}(L)$. In particular, if $N_{\Gamma^{b}}(\Lambda) \subset \Gamma^{b}$ is open then $G^{b \circ} \subset N_{G^{b}}(L)$: a contradiction. To construct the isogeny $G \rightarrow G^{b}$, observe first that replacing G by $G / Z\left(G^{\circ}\right)$ one may assume G° is adjoint. In particular, if $L \subset G$ is an abelian subgroup normalized by G° then, $L \cap G^{\circ}=1$. Indeed, $\left(L \cap G^{\circ}\right)^{\circ} \subset G^{\circ}$ is then a connected normal solvable subgroup hence contained in the solvable radical of G°, which is trivial as G° is semisimple so that $L \cap G^{\circ} \subset G^{\circ}$ is finite, hence central since G° is connected, hence trivial since G° is adjoint. This shows that L is finite so, as G° is connected, L is contained in the centralizer $Z_{G}\left(G^{\circ}\right)$ of G° in G. But as G° is normal in $G, Z_{G}\left(G^{\circ}\right)$ is also normal in G and as G° is adjoint, $G^{\circ} \cap Z_{G}\left(G^{\circ}\right)=1$. To sum it up, identifying L and $Z_{G}\left(G^{\circ}\right)$ with their image via the canononical projection $G \rightarrow \pi_{0}(G):=G / G^{\circ}$, one has $L \subset Z_{G}\left(G^{\circ}\right) \triangleleft \pi_{0}(G)$. One can thus argue by induction on $\left|\pi_{0}(G)\right|$: if $G=G^{\circ}$ then the above shows that G contains no non-trivial abelian subgroup. If G contains no non-trivial abelian subgroup normalized by G°, take $G=G^{b}$. Otherwise, replace G by $G_{1}:=G / Z_{G}\left(G^{\circ}\right)$ so that $\left|\pi_{0}\left(G_{1}\right)\right|<\left|\pi_{0}(G)\right|$ and apply the induction hypothesis to G_{1}.

So, replacing further Γ with $\Gamma \rightarrow \Gamma^{b}:=\Gamma / N$, where $N \subset \Gamma$ is as in Lemma 15 , one may assume that $\operatorname{Lie}(\Gamma)$ is semisimple and that the normalizer $N_{\Gamma}(\Lambda) \subset \Gamma$ of every non-trivial abelian subgroup $\Lambda \subset \Gamma$ is a closed subgroup of codimension ≥ 1.
3.4.2. Our starting point is the following celebrated theorem of Bogomolov. Let Y be a smooth projective surface over k. For a divisor D on Y, write $h^{0}(D):=\operatorname{dim}\left(H^{0}\left(Y, \mathcal{O}_{X}(D)\right)\right)$ for the k-dimension of its global sections, $P_{m}(D):=h^{0}(m D)$ for its m th plurigenus, $\kappa(D)$ for its Kodaira dimension and $c_{i}(D), i=1,2$ for its first and second Chern class. For $D=K_{Y}$ a canonical divisor, we simply write $P_{m}:=P_{m}\left(K_{Y}\right), \kappa:=\kappa\left(K_{Y}\right)$, $c_{i}:=c_{i}\left(K_{Y}\right), i=1,2$.

Fact 16. ([B77], see also [D04, Thm. 10, Thm. 11]) Assume Y is of general type with $c_{1}^{2}-c_{2}>0$. Then Y contains only finitely many closed integral curves $C \hookrightarrow Y$ with geometric genus ≤ 1 and for every integer $g \geq 0$, closed integral curves $C \hookrightarrow Y$ with geometric genus $\leq g$ form a bounded family ${ }^{6}$.

Lemma 17. Assume $c_{1}^{2}+c_{2}>24$. Then Y is of general type.
Proof. Since $c_{1}^{2}+c_{2}>24$, the Euler-Poincaré characteristic $\chi=\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)$ of Y is >2 hence $P_{1} \geq \chi-1>1$. From the Enriques-Kodaira classification this imposes $\kappa \geq 1$ since a smooth projective variety with Kodaira dimension $-\infty$ (resp. 0) has geometric genus 0 (resp. ≤ 1). But $\kappa=1$ is impossible as well. Indeed, as the set of all $m \geq 0$ such that $P_{m} \neq 0$ is a semigroup, $P_{1}>0$ implies $P_{m}>0$ for every $m \geq 1$ and that there exists $\alpha_{-}, \alpha_{+}>0$ such that $\alpha_{-} m^{\kappa} \leq P_{m} \leq \alpha_{+} m^{\kappa}, m \geq 0$ [I81, Thm. 10.2]. By Riemann-Roch and Serre duality for $m K_{Y}$,

$$
P_{m}+h^{0}\left(-(m-1) K_{Y}\right) \geq \chi+\frac{m(m-1)}{2} c_{1}^{2}=c_{1}^{2} m^{2}+O(m)
$$

As a result, $\kappa=1$ would force $\kappa\left(-K_{Y}\right)=2$ that is, $-K_{Y}$ is big. Write $-K_{Y}=A+E$ as the sum of an ample divisor A and an effective divisor E and choose $m \geq 1$ such that $m A$ is very ample. Then, as a high enough multiple of a very ample divisor is effective, $-N m K_{Y}$ is both big and effective for $N \gg 0$. This in turn would imply $P_{N m}=h^{0}\left(-\left(-N m K_{Y}\right)\right)=0$ for $N \gg 0$: a contradiction. Hence $\kappa=2$ as claimed.
3.4.3. We now retain the notation of Subsection 3.1. Recall that we may assume (Subsection 3.4.1) that $\operatorname{Lie}(\Gamma)$ is semisimple and that the normalizer $N_{\Gamma}(\Lambda) \subset \Gamma$ of every non-trivial abelian subgroup $\Lambda \subset \Gamma$ is a closed subgroup of codimension ≥ 1. Write $c_{i, n}:=c_{i}\left(K_{\widetilde{Y}_{n}^{+}}\right), i=1,2, n \geq 0$. From Lemma 17, to show that \widetilde{Y}_{n}^{+}satisfies the assumptions of Fact 16 it is enough to prove the following.

Theorem 18. Let $\epsilon= \pm 1$. Then $\lim _{n \rightarrow+\infty} c_{1, n}^{2}+\epsilon c_{2, n}=+\infty$.
The proof of Theorem 18 is carried out in Section 4. It uses the fact that the size of the Chern classes of \widetilde{Y}_{n}^{+} can be controlled asymptotically by the representation theoretic data attached to $\rho_{1} \times \rho_{2}: \pi_{1}\left(X_{1}\right) \times \pi_{1}\left(X_{2}\right) \rightarrow$ $\Gamma \times \Gamma$. This, in turn, relies on the specific features of product-quotient surfaces and asymptotic estimates from [CT12b] about the number of points on the reduction modulo- ℓ^{n} of certain homogeneous spaces for compact ℓ-adic Lie groups. It is to apply these asymptotic estimates that we need the technical assumption that the normalizer $N_{\Gamma}(\Lambda) \subset \Gamma$ of every non-trivial abelian subgroup $\Lambda \subset \Gamma$ is a closed subgroup of codimension ≥ 1.

From Fact 16 and Lemma 17, Theorem 18 already implies
Corollary 19. Assume Lie (Γ) is semisimple. Then, for every integer $g \geq 0$ and $n \gg 0$ (depending on g), \widetilde{Y}_{n}^{+}is of general type, contains only finitely many closed integral curves $C \hookrightarrow \widetilde{Y}_{n}^{+}$with geometric genus ≤ 1, and closed integral curves $C \hookrightarrow \widetilde{Y}_{n}^{+}$with geometric genus $\leq g$ form a bounded family.

Roughly Corollary 19 ensures the existence of an integral variety \mathcal{H} of dimension ≥ 1 over k and a morphism $C \rightarrow X \times \mathcal{H}$ such that $C \rightarrow \mathcal{H}$ is a relative smooth hyperbolic curve with geometric genus $\geq 2, C \rightarrow X$ is dominant and that for every $n \geq 0$ there exists $h_{n} \in \mathcal{H}(k)$ such that $C_{h_{n}} \rightarrow X$ lifts along $Y_{n} \rightarrow X$. But the existence of such a $C \rightarrow X \times \mathcal{H}$ should impose that the diagonal Lie subalgebra $\operatorname{Lie}(\Gamma) \stackrel{\sim}{\rightarrow} \operatorname{Lie}(\Delta) \subset \operatorname{Lie}(\Gamma \times \Gamma)=\operatorname{Lie}(\Gamma) \oplus \operatorname{Lie}(\Gamma)$ is an ideal, which is only possible if $\operatorname{Lie}(\Gamma)$ is abelian. The details are carried out in Section 5.

4. Proof of Theorem 18

4.1. Product-quotient surfaces. We briefly recall basics about product-quotient surfaces, following [BCGP12, $\S 2]$ and $[\mathrm{BP} 12, \S 1]$. Let Γ be a finite group and Y_{i}^{+}a smooth projective curve endowed with a faithful action of Γ; write $p_{i}: Y_{i}^{+} \rightarrow X_{i}^{+}:=Y_{i}^{+} / \Gamma i=1,2$ and let g_{i} and $g_{i, 0}$ denote the genus of Y_{i}^{+}and X_{i}^{+}respectively.

[^3]Consider the following canonical commutative diagram

where $\Gamma \underset{\rightarrow}{\boldsymbol{G}} \Delta \subset \Gamma \times \Gamma$ denotes the diagonal subgroup. Set $p=\left(p_{1}, p_{2}\right)=p^{\prime \prime} \circ p^{\prime}: Y_{1}^{+} \times Y_{2}^{+} \rightarrow X_{1}^{+} \times X_{2}^{+}$. Let q : $\widetilde{Y}^{+} \rightarrow Y^{+}$denote a minimal resolution of singularities. Eventually, for $i=1,2$, let $\partial X_{i}=\left\{x_{i, 1}, \ldots, x_{i, r_{i}}\right\} \subset$ X_{i}^{+}denote the branch locus of $p_{i}: Y_{i}^{+} \rightarrow X_{i}^{+}$and for $x_{i, j} \in \partial X_{i}$, let $e_{i, j} \geq 2$ denote the corresponding ramification index. Write $\Sigma:=\partial X_{1} \times \partial X_{2}$.
4.1.1. Since Δ acts freely on $Y_{1}^{+} \times Y_{2}^{+} \backslash p^{-1}(\Sigma)$, the singular locus $Y^{+, \text {sing }}$ of Y^{+}is contained in $p^{\prime \prime-1}(\Sigma)$ hence is finite. Furthermore every $y=p^{\prime}\left(y_{1}, y_{2}\right) \in Y^{+, \text {sing }}$ is a cyclic quotient singularity of type $\frac{1}{m_{y}}\left(1, a_{y}\right)$, for some $1 \leq a_{y} \leq m_{y}-1$ with $m_{y} \wedge a_{y}=1$, where $m_{y}:=\left|\operatorname{Stab}_{\Delta}\left(y_{1}, y_{2}\right)\right|$ that is, locally analytically around y, Y^{+}is isomorphic to $\mathbb{C}^{2} / \mu_{m_{y}}$, where $\mu_{m_{y}}$ acts on \mathbb{C}^{2} via $\mu_{m_{y}} \times \mathbb{C}^{2} \rightarrow \mathbb{C}^{2},\left(\zeta,\left(z_{1}, z_{2}\right)\right) \mapsto\left(\zeta z_{1}, \zeta^{a_{y}} z_{2}\right)$. Note that the type of the singularity is only defined up to the equivalence relation $\frac{1}{m_{y}}\left(1, a_{y}\right) \sim \frac{1}{m_{y}}\left(1, a_{y}^{\prime}\right)$, where a_{y}^{\prime} is the unique integer $1 \leq a_{y}^{\prime} \leq m_{y}-1$ such that $a_{y} a_{y}^{\prime} \equiv 1\left[m_{y}\right]$. The type $\frac{1}{m_{y}}\left(1, a_{y}\right)$ encodes the geometry of the exceptional divisor $E_{y}:=q^{-1}(y) \subset \widetilde{Y}^{+}$as follows. Consider the continuous fraction

$$
\frac{m_{y}}{a_{y}}=b_{y, 1}-\frac{1}{b_{y, 2}-\frac{1}{\ldots-b_{y, l_{y}}}}=:\left[b_{y, 1}, \ldots, b_{y, l_{y}}\right],
$$

where $b_{y, i} \in \mathbb{Z}_{\geq 2}, i=1, \ldots, l_{y}$. Then E_{y} decomposes as a connected union $E_{y}=\sum_{1 \leq i \leq l_{y}} Z_{y, i}$ of smooth rational curves $Z_{y, 1}, \ldots, Z_{y, l_{y}}$ with $Z_{y, i} \cdot Z_{y, i}=-b_{y, i}, Z_{y, i} \cdot Z_{y, i+1}=1$ and $Z_{y, i} \cdot Z_{y, j}=0$ for $|i-j| \geq 2$.
4.1.2. For every $y \in Y^{+, \text {sing }}$, consider the 'correction terms'

$$
\begin{array}{ll}
\kappa_{y}:=-2+\frac{2+a_{y}+a_{y}^{\prime}}{m_{y}}+\sum_{1 \leq i \leq l_{y}}\left(b_{y, i}-2\right) & , \kappa:=\sum_{y \in Y^{+, \text {sing }}} \kappa_{y} ; \\
e_{y}:=1+l_{y}-\frac{1}{m_{y}} & , e:=\sum_{y \in Y^{+, \text {sing }}} e_{y} ; \\
B_{y}:=2 e_{y}+\kappa_{y} & , B:=\sum_{y \in Y^{+, s i n g}} B_{y} .
\end{array}
$$

Note that, by construction, $\kappa_{y}, e_{y}, B_{y} \geq 0$. These data compute the Chern classes $c_{i}:=c_{i}\left(\widetilde{Y}^{+}\right), i=1,2$ of \widetilde{Y}^{+}

$$
\begin{aligned}
& c_{1}^{2}=K_{\tilde{{ }_{W}}}+2 \\
& 2 \\
& c_{2}=\frac{8}{|\Gamma|}\left(g_{1}-1\right)\left(g_{2}-1\right)-\kappa ; \\
& \left.\mid g_{1}-1\right)\left(g_{2}-1\right)+e=\frac{1}{2}\left(K_{\tilde{Y}^{+}}^{2}+B\right) ;
\end{aligned}
$$

hence its Euler-Poincaré characteristic

$$
\chi\left(\widetilde{Y}^{+}\right)=h^{0}\left(\widetilde{Y}^{+}, \mathcal{O}_{\tilde{Y}^{+}}\right)-h^{1}\left(\widetilde{Y}^{+}, \mathcal{O}_{\tilde{Y}^{+}}\right)+h^{2}\left(\widetilde{Y}^{+}, \mathcal{O}_{\tilde{Y}^{+}}\right)=\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)=\frac{1}{24}\left(3 K_{\tilde{Y}^{+}}^{2}+B\right) .
$$

4.1.3. Given integers $g \geq 0, e_{1}, \ldots, e_{r} \geq 1$, let $\pi\left(g ; e_{1}, \ldots, e_{r}\right)$ denote the profinite completion of the group

$$
\left\langle c_{1}, c_{1}^{\prime}, \ldots, c_{g}, c_{g}^{\prime}, \gamma_{1}, \ldots, \gamma_{r} \mid\left[c_{1}, c_{1}^{\prime}\right] \cdots\left[c_{g}, c_{g}^{\prime}\right] \cdot \gamma_{1} \cdots \gamma_{r}=1, \gamma_{i}^{e_{i}}=1, i=1, \ldots, r\right\rangle .
$$

For $i=1,2$, fixing canonical generators $\gamma_{1}^{(i)}, \ldots, \gamma_{r_{i}}^{(i)}$ of the inertia for $\pi_{1}\left(X_{i}\right)$, the finite cover $Y_{i} \rightarrow X_{i}$ corresponds to a continuous epimorphism $\psi_{i}: \pi\left(g_{i, 0}, e_{i, 1}, \ldots, e_{i, r_{i}}\right) \rightarrow \Gamma$. Write $\gamma_{i, j}:=\psi_{i}\left(\gamma_{j}^{(i)}\right)$ and $I_{i, j}:=$ $\left\langle\gamma_{i, j}\right\rangle \subset \Gamma$ for the corresponding inertia group. Group-theoretically, for $\underline{x}_{i, j}=\left(x_{1, i}, x_{2, j}\right) \in \Sigma$, the fiber $p^{-1}\left(\underline{x}_{i, j}\right)$ is in bijection with $\Gamma / I_{1, i} \times \Gamma / I_{2, j}$ while the fiber $p^{\prime \prime}-1\left(\underline{x}_{i, j}\right)$ is in bijection with

$$
I_{1, i} \backslash \Gamma / I_{2, j}\left(\tilde{\rightarrow}\left(\Gamma / I_{1, i} \times \Gamma / I_{2, j}\right) / \Delta, I_{1, i} g I_{2, j} \mapsto \Delta \cdot\left((1, g) \cdot\left(I_{1, i} \times I_{2, j}\right)\right) .\right.
$$

For $y \in p^{\prime \prime}-1\left(\underline{x}_{i, j}\right)$ corresponding to a class $I_{1, i} g_{y} I_{2, j} \in I_{1, i} \backslash \Gamma / I_{2, j}$, one can compute the corresponding type as follows. One has $m_{y}=\left|I_{1, i} \cap g_{y} I_{2, j, n} g_{y}^{-1}\right|$. Hence

$$
\left\langle\gamma_{1, i}^{e_{1, i} / m_{y}}\right\rangle=I_{1, i} \cap g_{y} I_{2, j} g_{y}^{-1}=\left\langle g_{y} \gamma_{2, j}^{e_{2, j} / m_{y}} g_{y}^{-1}\right\rangle
$$

and a_{y} is the unique $1 \leq a_{y} \leq m_{y}-1$ such that

$$
\gamma_{1, i}^{e_{1, i} / m_{y}}=\left(g_{y} \gamma_{2, j}^{e_{2, j} / m_{y}} g_{y}^{-1}\right)^{a_{y}} .
$$

4.2. Group-theoretical preliminaries. For a profinite group Γ, an open subgroup $U \subset \Gamma$ and closed subgroups $I, J \subset \Gamma$, write $K_{I}(U):=\cap_{g \in U} g I g^{-1} \subset I$ for the largest subgroup of I normalized by U. Then $J \cap K_{I}(\Gamma)$ is the kernel of the canonical morphism $J \rightarrow \operatorname{Aut}(\Gamma / I)$ induced by left translation; write also $J_{I}:=J / J \cap K_{I}(\Gamma)$ for the image of $J \rightarrow \operatorname{Aut}(\Gamma / I)$.
4.2.1. Assume now Γ is a compact ℓ-adic Lie group. Let $\Gamma(n) \subset \Gamma, n \geq 0$ be a fundamental system of neighborhoods of 1 . Write $(-)_{n}: \Gamma \rightarrow \Gamma_{n}:=\Gamma / \Gamma(n)$ for the reduction-modulo- $\Gamma(n)$ morphism, $n \geq 0$. Let $I \subset \Gamma$ be a closed subgroup. The technical condition

$$
(I, \Gamma) \quad K_{I}(U)=K_{I}(\Gamma) \text { for every open subgroup } U \subset \Gamma
$$

is motivated by the following statement.
Fact 20. ([CT12b, Thm. 2.1, Lemma 2.4]) Let $I_{1}, I_{2} \subset \Gamma$ be closed subgroups. Assume $I_{2} \subset \Gamma$ is of codimension ≥ 1 and $\left(I_{2}, \Gamma\right)$ holds. Then the following holds.
(1) For every closed subgroup $J \subset I_{1}, \lim _{n \rightarrow+\infty} \frac{\left|\left(\Gamma_{n} / I_{2, n}\right)^{J_{n}}\right|}{\left|\Gamma_{n} / I_{2, n}\right|}=0$ unless $J_{I_{2}}=1$:
(2) $\lim _{n \rightarrow+\infty} \frac{\left|I_{1, n} \backslash \Gamma_{n} / I_{2, n}\right|}{\left|\Gamma_{n} / I_{2, n}\right|}=\frac{1}{\left|\left(I_{1}\right)_{I_{2}}\right|}$.
4.2.2. Let $I_{1}, I_{2} \subset \Gamma$ be closed, procyclic subgroups contained in Γ. For every $g \in \Gamma_{n}$, write

$$
I_{n, g}:=I_{1, n} \cap g I_{2, n} g^{-1}\left(=\operatorname{Stab}_{I_{1, n}}\left(g I_{2, n}\right)\right) .
$$

Let $\left(\Gamma_{n} / I_{2, n}\right)^{\prime} \subset \Gamma_{n} / I_{2, n}$ denote the $I_{1, n}$-subset of $\Gamma_{n} / I_{2, n}$ where $I_{1, n}$ does not act freely and $\left(I_{1, n} \backslash \Gamma_{n} / I_{2, n}\right)^{\prime} \subset$ $I_{1, n} \backslash \Gamma_{n} / I_{2, n}$ denote the subset of all $I_{1, n} g I_{2, n} \in I_{1, n} \backslash \Gamma_{n} / I_{2, n}$ such that $\left|I_{n, g}\right| \geq 2$ so that $\left(I_{1, n} \backslash \Gamma_{n} / I_{2, n}\right)^{\prime}=$ $I_{1, n} \backslash\left(\Gamma_{n} / I_{2, n}\right)^{\prime}$. For every integer $n \geq 1$ write

$$
\kappa(n):=\frac{1}{\left|\Gamma_{n}\right|} \sum_{\left.g \in\left(I_{1, n}\right\rangle \Gamma_{n} / I_{2, n}\right)^{\prime}}\left|I_{n, g}\right| .
$$

Lemma 21. Assume $\left(I_{2}, \Gamma\right)$ holds. Then $\lim _{n \rightarrow+\infty} \kappa(n)=0$ unless $I_{1}=I_{2}=: I$ is normal in Γ.
Proof. One has $\left(I_{i}\right)_{I_{j}}=1$ if and only if $I_{i} \subset K_{I_{j}}(\Gamma)\left(\subset I_{j}\right)$ so that the following are equivalent
(i) $\left(I_{1}\right)_{I_{2}}=\left(I_{2}\right)_{I_{1}}=1$;
(ii) $I_{1} \subset K_{I_{2}}(\Gamma) \subset I_{2} \subset K_{I_{1}}(\Gamma) \subset I_{1}$;
(iii) $I_{1}=K_{I_{2}}(\Gamma)=I_{2} \subset K_{I_{1}}(\Gamma)=I_{1}$;
(iv) $I_{1}=I_{2}=: I$ is normal in Γ.

As a result, unless $I_{1}=I_{2}=: I$ is normal in Γ, one has $\left(I_{1}\right)_{I_{2}} \neq 1$ or $\left(I_{1}\right)_{I_{2}} \neq 1$.
Assume $\left(I_{1}\right)_{I_{2}}$ is both finite and non-trivial. Let $n \gg 0$ so that the canonical morphisms $\left(I_{1}\right)_{I_{2}} \rightarrow\left(I_{1, n}\right)_{I_{2, n}}$ are isomorphisms. Let $\mathcal{M}\left(\left(I_{1}\right)_{I_{2}}\right)$ denote the subset of minimal subgroups $1 \subsetneq J \subset\left(I_{1}\right)_{I_{2}}$ (equivalently, the subset of subgroups of $\left(I_{1}\right)_{I_{2}}$ of prime order). Then

$$
\kappa(n) \leq \frac{1}{\left|\Gamma_{n}\right|} \sum_{J \in \mathcal{M}\left(\left(I_{1}\right)_{I_{2}}\right)} \sum_{g \in I_{1, n} \backslash\left(\Gamma_{n} / I_{2, n}\right)^{J}}\left|I_{n, g}\right| \leq \sum_{J \in \mathcal{M}\left(\left(I_{1}\right)_{I_{2}}\right)} \frac{\left|\left(\Gamma_{n} / I_{2, n}\right)^{J}\right|}{\left|\Gamma_{n} / I_{2, n}\right|}
$$

and the conclusion follows from Lemma 20 (2).
Assume $\left(I_{1}\right)_{I_{2}}$ is infinite. Then the conclusion follows from the rough upper bound

$$
\kappa(n) \leq \frac{1}{\left|\Gamma_{n}\right|}\left|I_{1, n} \backslash \Gamma_{n} / I_{2, n} \| I_{2, n}\right|=\frac{\left|I_{1, n} \backslash \Gamma_{n} / I_{2, n}\right|}{\left|\Gamma_{n} / I_{2, n}\right|}
$$

and from Lemma 20 (1).
4.3. Proof of Theorem 18. Recall that, by assumption, $\operatorname{Lie}(\Gamma)$ is semisimple and the normalizer $N_{\Gamma}(\Lambda) \subset \Gamma$ of every non-trivial closed abelian subgroup $\Lambda \subset \Gamma$, is a closed subgroup of codimension ≥ 1. This ensures that for every non-trivial closed abelian subgroup $J \subset \Gamma$ and open subgroup $U \subset \Gamma, K_{J}(U)=1$ hence, in particular, that the technical assumption (J, Γ) always holds.

For $i=1,2$, set $\partial X_{i}:=X_{i}^{+} \backslash X_{i}:=\left\{x_{i, 1}, \ldots, x_{i, r_{i}}\right\}$, fix corresponding generators of inertia $\gamma_{i, 1}, \ldots, \gamma_{i, r_{i}}$ with $\gamma_{i, 1} \cdots \gamma_{i, r_{i}}=1$. Write again $\gamma_{i, j}:=\rho_{i}\left(\gamma_{i, j}\right) \subset \Gamma$ and $I_{i, j}:=\left\langle\gamma_{i, j}\right\rangle \subset \Gamma$ for the corresponding inertia group. We estimate the $c_{i, n}:=c_{i}\left(\widetilde{Y}_{n}^{+}\right), i=1,2$ using the observations of Subsection 4. Let $g_{i, n}$ denote the geometric genus of $Y_{i, n}^{+}$. Since $\operatorname{Lie}(\Gamma)$ is semisimple, it follows from the case $H=1$ of (the proof of) [CT12b, Thm. 3.4] that

$$
\lim _{n \rightarrow+\infty} \frac{2\left(g_{i, n}-1\right)}{\left|\Gamma_{n}\right|}>0
$$

so that, from the expression for $c_{i, n}$ given in Subsection 4.1.2, it is enough to show that, setting

$$
\kappa_{i, j}(n):=\frac{1}{\Gamma_{n}} \sum_{g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}}\left(-2+\frac{2+a_{g}+a_{g}^{\prime}}{\left|I_{n, g}\right|}+\sum_{1 \leq i \leq l_{g}}\left(b_{g}-2\right)\right)
$$

and

$$
e_{i, j}(n):=\frac{1}{\Gamma_{n}} \sum_{g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}}\left(1+l_{g}-\frac{1}{\left|I_{n, g}\right|}\right)
$$

one has

$$
\lim _{n \rightarrow+\infty} \kappa_{i, j}(n)=0, \quad \lim _{n \rightarrow+\infty} e_{i, j}(n)=0
$$

Here we write $I_{n, g}:=I_{1, i, n} \cap g I_{2, j, n} g^{-1}$ and $a_{g}, a_{g}^{\prime}, b_{g}, l_{g}, m_{g}:=\left|I_{n, g}\right|$ are the invariants introduced in Subsection 4.1.1 and attached to the singular point of Y_{n} corresponding to $g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}$ while the notation $\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}$ is the same as in Subsection 21.

For $\kappa_{i, j}(n)$, since

$$
-2 \leq-2+\frac{2+a_{g}+a_{g}^{\prime}}{\left|I_{n, g}\right|} \leq-2+\frac{2+2\left(\left|I_{n, g}\right|-1\right)}{\left|I_{n, g}\right|}=0
$$

one has

$$
-2 \frac{\left|\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}\right|}{\left|\Gamma_{n}\right|}+\frac{1}{\Gamma_{n}} \sum_{g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}} \sum_{1 \leq i \leq l_{g}}\left(b_{g}-2\right) \leq \kappa_{i, j}(n) \leq \frac{1}{\Gamma_{n}} \sum_{g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}} \sum_{1 \leq i \leq l_{g}}\left(b_{g}-2\right)
$$

hence it is enough to show that

$$
(*) \lim _{n \rightarrow+\infty} \frac{\left|\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}\right|}{\left|\Gamma_{n}\right|}=0
$$

and

$$
(* *) \lim _{n \rightarrow+\infty} \frac{1}{\Gamma_{n}} \sum_{g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}} \sum_{1 \leq i \leq l_{g}}\left(b_{g}-2\right)=0 .
$$

From the claim below, $(0 \leq) \sum_{1 \leq i \leq l_{g}}\left(b_{g}-2\right) \leq\left|I_{n, g}\right|$. Hence it is enough to show that

$$
\lim _{n \rightarrow+\infty} \frac{1}{\Gamma_{n}} \sum_{g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}}\left|I_{n, g}\right|=0
$$

which follows from Lemma 21 since $\left(I_{2}, \Gamma\right)$ holds for every closed abelian (in particular pro-cyclic) subgroup $I_{2} \subset \Gamma$.

For $e_{i, j}(n)$, using again the claim below, we have

$$
0 \leq e_{i, j}(n) \leq \frac{\left|\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}\right|}{\left|\Gamma_{n}\right|}+\frac{1}{\Gamma_{n}} \sum_{g \in\left(I_{1, i, n} \backslash \Gamma_{n} / I_{2, j, n}\right)^{\prime}}\left|I_{n, g}\right|
$$

and the conclusion follows again from $(*),(* *)$.
Claim. Let $n \geq 2$ an integer $1 \leq a \leq n-1$; write $\frac{n}{a}=\left[b_{1}, \ldots, b_{l}\right]$. Then $l \leq n$ and

$$
\sum_{1 \leq i \leq l}\left(b_{i}-2\right)<n-a
$$

Proof. Write $n_{1}:=n, n_{2}=a$. By definition of b_{1}, \ldots, b_{l}, these are determined inductively by the conditions

$$
n_{i}=b_{i} n_{i+1}-n_{i+2} 0 \leq n_{i+2} \leq n_{i+1}-1
$$

and l is the smallest integer such that $n_{l+1} \neq 0$ so that one has a decreasing sequence

$$
1 \leq n_{l+1}<n_{l}<\cdots<n_{2}=a<n_{1}=n
$$

and $l \leq n$. Adding the relations $n_{i}=b_{i} n_{i+1}-n_{i+2}, i=1, \ldots, l$, one gets

$$
n-a=\sum_{1 \leq i \leq l}\left(b_{i}-2\right) n_{i+1}+n_{l+1} \geq n_{l+1}\left(1+\sum_{1 \leq i \leq l}\left(b_{i}-2\right)\right) \geq 1+\sum_{1 \leq i \leq l}\left(b_{i}-2\right)
$$

where the first inequality follows from $b_{i} \geq 2$ (indeed, b_{i} is an integer and $b_{i}=\frac{n_{i}}{n_{i+1}}+\frac{n_{i+2}}{n_{i+1}}>\frac{n_{i}}{n_{i+1}} \geq 1$) and $n_{i+1} \geq n_{l+1}$, and the second inequality follows from $n_{l+1} \geq 1$.

5. Curves of bounded geometric genus in projective systems

Recall $k=\bar{k}$ is algebraically closed of characteristic 0 .
5.1. A general construction. We consider the following situation.

Let

be a projective system of generically finite morphisms between irreducible, smooth varieties Y_{n} over k with smooth compactification $Y_{n}^{+}, n \geq 0$. Assume Y^{+}contains only finitely many closed integral curves $C^{+} \hookrightarrow Y^{+}$ with geometric genus ≤ 1 and that for every integer $g \geq 2$ and $n \geq 0$, the set of closed integral curves $C^{+} \hookrightarrow Y_{n}^{+}$of geometric genus g form a bounded family. Assume that for some integer $g \geq 2$ and every $n \geq 0, Y_{n}^{+}$contains infinitely many closed integral curves $C^{+} \hookrightarrow Y_{n}^{+}$of geometric genus g and let $g \geq 2$ be the smallest such integer.

Lemma 22. There exists an integral variety \mathcal{H} of dimension ≥ 1 over k and a morphism $C \rightarrow Y \times \mathcal{H}$ such that
(1) $C \rightarrow \mathcal{H}$ is a smooth hyperbolic curve of geometric genus $\geq g$;
(2) For every $n \geq 0$ there exists one (actually a Zariski-dense subset of) $h \in \mathcal{H}(k)$ such that $C_{h} \rightarrow Y$ lifts along $Y_{n}^{+} \times_{Y^{+}} Y \rightarrow Y$
(3) $C \rightarrow Y$ is dominant.

Proof. Set $\phi_{n, m}:=\phi_{m} \circ \cdots \circ \phi_{n-1}: Y_{n}^{+} \rightarrow Y_{m}^{+}, n \geq m$ (with the convention that $\phi_{n, n}=I d$). We proceed in two steps.

Step 1: Up to ignoring finitely many $n \geq 0$, we show that there exists an integer $g^{a r} \geq g$, a sequence \mathcal{H}_{n}, $n \geq 0$ of reduced varieties over k and a sequence of divisors $C_{n}^{+} \hookrightarrow Y_{n}^{+} \times \mathcal{H}_{n}, n \geq 0$ such that the resulting morphism $C_{n}^{+} \rightarrow \mathcal{H}_{n}$ is flat, pure of relative dimension 1, with integral fibers of arithmetic genus $g^{a r}$ and that there exists a projective system $\varphi_{n}: \mathcal{H}_{n+1}(g) \rightarrow \mathcal{H}_{n}(g)$ of infinite subsets $\mathcal{H}_{n}(g) \subset \mathcal{H}_{n}(k)$ with the following properties:
(1) For every $h \in \mathcal{H}_{n}(g), C_{n, h}^{+} \hookrightarrow Y_{n}^{+}$is a closed integral curve with geometric genus g, and for every $h \neq h^{\prime} \in \mathcal{H}_{n}(g), C_{n, h}^{+} \neq C_{n, h^{\prime}}^{+} \hookrightarrow Y_{n}[? ;$
(2) $\phi_{n, m}\left(C_{n, h}^{+}\right)=C_{m, \varphi_{n, m}(h)}^{+}, h \in \mathcal{H}_{n}(g), n \geq m$;
(3) $\mathcal{H}_{n}(g) \subset \mathcal{H}_{n}$ is Zariski-dense, $n \geq 0$;
(4) $\varphi_{n, 0}\left(\mathcal{H}_{n}(g)\right) \subset \mathcal{H}_{0}$ is Zariski-dense, $n \geq 0$;
(5) \mathcal{H}_{0} is integral.

Note that since $\mathcal{H}_{n}(g)$ is infinite, \mathcal{H}_{n} has dimension ≥ 1. Note also that replacing \mathcal{H}_{0} by a dense open subscheme $U_{0} \subset \mathcal{H}_{0}, \mathcal{H}_{n}(g)$ by $\mathcal{H}_{n}(g) \cap \varphi_{n, 0}^{-1}\left(U_{0}\right)$ and $\overline{\mathcal{H}}_{n}$ by the Zariski-closure of $\mathcal{H}_{n}(g) \cap \varphi_{n, 0}^{-1}\left(U_{0}\right) \subset \mathcal{H}_{n}$ does not affect the properties (1) - (5) nor the fact that $\mathcal{H}_{n}(g)$ is infinite.

Fix $n \geq 0$. By the theory of Chow and Hilbert moduli schemes, there exists a reduced variety H_{n} over k
and a divisor $C_{n}^{+} \hookrightarrow Y_{n}^{+} \times H_{n}$ such that the resulting morphism $C_{n}^{+} \rightarrow H_{n}$ is flat, pure of relative dimension 1 , with (geometrically) reduced fibers and such that every closed irreducible curve $C^{+} \hookrightarrow Y_{n}^{+}$of geometric genus g is of the form $C^{+}=C_{n, h}^{+}$for one (and only one) $h \in H_{n}(k)$. Let $H_{n}(g) \subset H_{n}(k)$ denote the - infinite by assumption - subset of all $h \in H_{n}(k)$ such that $C_{n, h}^{+}$is an (a geometrically) integral curve with geometric genus g. Up to replacing H_{n} by the Zariski-closure of $H_{n}(g)$, one may assume that $H_{n}(g)$ is Zariski-dense in H_{n}. By [EGAIV.3, (9.7.8)], up to replacing H_{n} by a dense open subscheme $U \hookrightarrow H_{n}$ and $H_{n}(g)$ with the - still infinite - subset $H_{n}(g) \cap U$, one may assume that $C_{n}^{+} \rightarrow H_{n}$ has geometrically integral fibers (hence, in particular, is separable). Also, since the function $H_{n} \rightarrow \mathbb{Z}_{\geq 1}, h \rightarrow \operatorname{dim} H^{1}\left(C_{n, h}^{+}, \mathcal{O}_{C_{n, h}^{+}}\right)$is upper semicontinous, up to replacing further H_{n} by a dense open subscheme $U \hookrightarrow H_{n}$ and $H_{n}(g)$ with the - still infinite - subset $H_{n}(g) \cap U$, one may assume that the fibers of $C_{n}^{+} \rightarrow H_{n}$ have constant arithmetic genus $g_{n}^{a r}$. By minimality of g and since the geometric genus can only decrease under non-constant morphisms of irreducible curves, the subset $H_{n}^{e x}(g) \subset H_{n}(g)$ of all $h \in H_{n}(g)$ such that $\phi_{n, m}\left(C_{n, h}^{+}\right)$is a point or an integral curve with geometric genus $\leq g-1$ for some $0 \leq m \leq n-1$ is finite. Hence replacing again H_{n} with the open subscheme $U:=H_{n} \backslash H_{n}^{e x}(g)$ and $H_{n}(g)$ with the - still infinite - subset $H_{n}(g) \cap U$, one may assume $H_{n}^{e x}(g)$ is empty, $n \geq 0$. Then for every $n \geq m \geq 0$ one gets a well-defined set-theoretic map $\varphi_{n, m}: H_{n}(g) \rightarrow H_{m}(g)$ such that $\phi_{n, m}\left(C_{n, h}^{+}\right)=C_{m, \varphi_{n, m}(h)}^{+}, h \in H_{n}(g)$. Let $\widetilde{C}_{n, h}^{+} \rightarrow C_{n, h}^{+}$and $\widetilde{C}_{m, \varphi_{n, m}(h)}^{+} \rightarrow C_{m, \varphi_{n, m}(h)}^{+}$denote the normalization of $C_{n, h}^{+}$and $C_{m, \varphi_{n, m}(h)}^{+}$respectively. The universal property of normalization yields a canonical commutative square of dominant morphisms of projective curves

By Riemann-Hurwitz, the morphism $\widetilde{C}_{n, h}^{+} \rightarrow \widetilde{C}_{m, \varphi_{n, m}(h)}^{+}$is an isomorphism. Since the normalization morphisms $\widetilde{C}_{n, h}^{+} \rightarrow C_{n, h}^{+}, \widetilde{C}_{m, \varphi_{n, m}(h)}^{+} \rightarrow C_{m, \varphi_{n, m}(h)}^{+}$are birational, the morphism $C_{n, h}^{+} \rightarrow C_{m, \varphi_{n, m}(h)}^{+}$is proper birational. In particular [Stacks, 50.18.4],

$$
g_{m}^{a r}=\operatorname{dim} H^{1}\left(C_{m, \varphi_{n, m}(h)}^{+}, \mathcal{O}_{C_{m, \varphi_{m, n}(h)}^{+}}\right) \geq g_{n}^{a r}=\operatorname{dim} H^{1}\left(C_{n, h}^{+}, \mathcal{O}_{C_{n, h}^{+}}\right) \geq g=\operatorname{dim} H^{1}\left(\widetilde{C}_{n, h}^{+}, \mathcal{O}_{\widetilde{C}_{n, h}^{+}}\right)
$$

so that $g_{n}^{a r}$ becomes constant for $n \gg 0$. Up to ignoring finitely many n, one may assume $g_{n}^{a r}$ is constant, $n \geq 0$. This, in turn, implies that the morphism $C_{n, h}^{+} \rightarrow C_{m, \varphi_{n, m}(h)}^{+}$is an isomorphism, $n \geq m \geq 0$ [Stacks, 50.18.4]. Set $H_{0, n}(g):=\bigcap_{0 \leq m \leq n} \varphi_{m, 0}\left(H_{m}(g)\right) \subset H_{0,0}(g)=H_{0}(g), n \geq 0$. By construction the sets $H_{0, n}(g)$, $n \geq 0$ are infinite and form a decreasing sequence

$$
\cdots \subset H_{0, n+1}(g) \subset H_{0, n}(g) \subset \cdots \subset H_{0,0}(g)=H_{0}(g)
$$

Taking their Zariski-closure in H_{0}, one gets a decreasing sequence of closed subvarieties

$$
\cdots \subset \overline{H_{0, n+1}(g)^{z a r}} \subset \overline{H_{0, n}(g)^{z a r}} \subset \cdots \subset \overline{H_{0,0}(g)^{z a r}}=H_{0}
$$

each of them having at least one irreducible component of dimension ≥ 1. For each $n \geq 0$, let \mathcal{I}_{n} denote the set of chains $X_{n} \subset \cdots \subset X_{0}$ with $X_{m} \subset \overline{H_{0, m}(g)^{z a r}}$ an irreducible component of dimension ≥ 1, $m=0, \ldots, n$. The sets $\mathcal{I}_{n}, n \geq 0$ are non-empty, finite and endowed with a projective system structure $\mathcal{I}_{n+1} \rightarrow \mathcal{I}_{n},\left(X_{n+1} \subset X_{n} \subset \cdots \subset X_{0}\right) \mapsto\left(X_{n} \subset \cdots \subset X_{0}\right)$. Fix $\underline{X}:=\cdots \subset X_{n} \subset X_{n-1} \subset \cdots \subset X_{0} \in \lim _{\longleftarrow} \mathcal{I}_{n}$. Since the dimension of X_{n} stabilizes for $n \gg 0$, there exists $N \geq 0$ such that $X_{n}=X_{N}, n \geq N$. For every $n \geq 0$, let $\mathcal{H}_{n} \subset H_{n}$ denote the Zariski-closure of $\mathcal{H}_{n}(g):=\varphi_{n, 0}^{-1}\left(X_{N}(k)\right) \cap H_{n}(g)$ in H_{n}; by construction these have the announced properties (1) to (5).

Step 2: For simplicity, write $Y^{+}:=Y_{0}^{+}, \mathcal{H}:=\mathcal{H}_{0}$ and $C^{+}:=C_{0}^{+}$. Let η denote the generic point of \mathcal{H}. Let $Y \hookrightarrow Y^{+}$be a dense open subscheme and write $C:=C^{+} \times_{Y^{+}} Y \hookrightarrow C^{+}$. The normalization $\nu: \widetilde{C_{\eta}^{+}} \rightarrow C_{\eta}^{+}$ is a smooth projective curve over η and $\nu^{-1}\left(C_{\eta}\right) \hookrightarrow \widetilde{C_{\eta}^{+}}$is a dense open subscheme which identifies with the normalization $\nu: \widetilde{C_{\eta}} \rightarrow C_{\eta}$ of C_{η}. Then $D_{\eta}:=\widetilde{C_{\eta}^{+}} \backslash \widetilde{C_{\eta}}$ is a disjoint union of a finite number of sections $\sigma_{i, \eta}: \eta \rightarrow \widetilde{C_{\eta}^{+}}, i=1, \ldots, s$. By [EGAIV.3, (8.8.2) (ii), (8.10.5) (xiii), (12.2.4)], [EGAIV.2, (6.9.1)], up to replacing \mathcal{H} by a dense open subscheme, one may assume $\widetilde{C_{\eta}^{+}} \rightarrow \eta$ is the generic fiber of a smooth
projective, geometrically connected morphism $\widetilde{C}^{+} \rightarrow \mathcal{H}$ of relative dimension 1. By [EGAIV.3, (8.8.2) (i)], up to replacing again \mathcal{H} by a dense open subscheme, the commutative diagram of η-schemes

extends uniquely to a commutative diagram of \mathcal{H}-schemes

with $\widetilde{C}^{+} \rightarrow C^{+}, \widetilde{C} \rightarrow C$ finite birational morphisms and $\sigma_{i}: \mathcal{H} \rightarrow \widetilde{C}^{+}, i=1, \ldots, s$ disjoint sections such that $\widetilde{C}=\widetilde{C^{+}} \backslash \sqcup_{1 \leq i \leq s} \sigma_{i}(\mathcal{H})$. The morphism $\widetilde{C} \rightarrow Y \times \mathcal{H}$ has the expected property.
5.2. End of the proof of Theorem 13. We now return to the setting of Subsection 3.1, of which we retain the notation and assumptions.

Corollary 23. For every integer $g \geq 0$ there exists $n_{g} \geq 0$ such that \widetilde{Y}_{n}^{+}contains only finitely many closed integral curves $C \hookrightarrow \widetilde{Y}_{n}^{+}$with geometric genus $\leq g, n \geq n_{g}$.

Proof. From Corollary 19, up to replacing \widetilde{Y}_{0}^{+}with \widetilde{Y}_{n}^{+}for some $n \gg 0$, one may assume that the projective system

$$
\cdots \longrightarrow \widetilde{Y}_{n+1}^{+} \longrightarrow \widetilde{Y}_{n}^{+} \longrightarrow \ldots \longrightarrow \widetilde{Y}_{1}^{+} \longrightarrow \widetilde{Y}_{0}^{+}=X_{1}^{+} \times X_{2}^{+}=: X^{+}
$$

satisfies the assumptions of Subsection 5.1 so that there exists an integral scheme \mathcal{H} of dimension ≥ 1 and of finite type over k, and a morphism $C \rightarrow Y \times \mathcal{H}$ with properties (1), (2), (3) of Lemma 22. Write $Y_{n}:=Y_{1, n} \times Y_{2, n} / \Delta_{n}$, which is a dense open subscheme of $Y_{n}^{+}=Y_{1, n}^{+} \times Y_{2, n}^{+} / \Delta_{n}$ contained in the smooth locus of Y_{n}^{+}so that one can identify Y_{n} with the dense open subscheme $Y \times_{\tilde{Y}^{+}} \widetilde{Y}_{n}^{+} \hookrightarrow \widetilde{Y}_{n}^{+}$of the minimal resolution of singularities $q_{n}: \widetilde{Y}_{n}^{+} \rightarrow Y_{n}^{+}$. For every $n \geq 0$ by (2) in Lemma 22, there exists $h_{n} \in \mathcal{H}(k)$ such that $C_{h_{n}} \rightarrow Y$ lifts along $Y_{n} \rightarrow X:=X_{1} \times X_{2}$. By (1) in Lemma 22 and [SGA1, XIII], one gets a short exact sequence of profinite groups

$$
1 \rightarrow \pi_{1}\left(C_{h_{n}}\right) \rightarrow \pi_{1}(C) \rightarrow \pi_{1}(\mathcal{H}) \rightarrow 1 .
$$

On the other hand, by (3) in Lemma $22, C \rightarrow X$ is dominant hence, since X is normal, the resulting morphism of profinite groups $\pi_{1}(C) \rightarrow \pi_{1}(X)$ has open image. Let $U \subset \Pi=\Gamma \times \Gamma$ denote the image of $\pi_{1}(C) \rightarrow \pi_{1}(X) \rightarrow \Pi$ and $N \subset U$ the image of $\operatorname{ker}\left(\pi_{1}(C) \rightarrow \pi_{1}(\mathcal{H})\right) \hookrightarrow \pi_{1}(C) \rightarrow U$. By construction $U \subset \Pi$ is an open subgroup and $N \subset U$ is a closed normal subgroup which also coincides with the image $\Pi\left(h_{n}\right)$ of $\pi_{1}\left(C_{h_{n}}\right) \rightarrow \pi_{1}(C) \rightarrow U$. But as $C_{h_{n}} \rightarrow Y$ lifts along $Y_{n} \rightarrow Y, N=\Pi\left(h_{n}\right) \subset \Delta \Pi(n), n \geq 0$. Hence $N \subset \Delta=\cap_{n \geq 0}(\Delta \Pi(n))$. But as at least one of the two maps $C_{h_{n}} \rightarrow X \xrightarrow{p r r i_{i}} X_{i}, i=1,2$ is dominant, at least one of the resulting morphisms of profinite groups $\Pi\left(h_{n}\right) \hookrightarrow \Pi=\Gamma \times \Gamma \xrightarrow{p r_{i}} \Pi_{i}=\Gamma$ has open image. This forces $N=\Pi\left(h_{n}\right) \subset \Delta$ to be open. But this contradicts the fact that N is normal in U since then the diagonal Lie subalgebra $\operatorname{Lie}(\Delta) \tilde{\rightarrow} \operatorname{Lie}(\Gamma) \hookrightarrow \operatorname{Lie}(\Gamma) \oplus \operatorname{Lie}(\Gamma)$ would be an ideal of $\operatorname{Lie}(\Gamma) \oplus \operatorname{Lie}(\Gamma)$, which can happen (if and) only if $\operatorname{Lie}(\Gamma)$ is abelian (since $[(x, 0),(y, y)]=([x, y], 0) \in \operatorname{Lie}(\Delta)$ if and only if $[x, y]=0$, $x, y \in \operatorname{Lie}(\Gamma)$). This contradicts the fact that we now assume Lie (Γ) is semisimple (Subsection 3.4.1).

References

[A09] D. Abramovich, Birational geometry for number theorists, in Arithmetic Geometry, Darmon, Ellwood, Hassett, Tschinkel (eds), Amer. Math. Soc. 2009.
[An96] Y. André, Pour une théorie inconditionnelle des motifs, Publ. Math. I.H.E.S. 83, 1996.
[BCGP12] I. Bauer, F. Catanese, F. Grunewald and R. Pignatelli, Quotients of products of curves, new surfaces with $p_{g}=0$ and their fundamental groups, Amer. Journal of Math. 134,, p. 993-1049 2012.
[BP12] I. Bauer and R. Pignatelli, The classification of minimal product-quotient surfaces with $p_{g}=0$, Mathematics of Computation 81 p. 2389-2418, 2012,.
[B77] F. Bogomolov, Families of curves on a surface of general type, Soviet Math. Dokl.. 18, p. 1294-1297, 1977.
[C12] A. Cadoret Motivated cycles under specialization, in Groupes de Galois Géométriques et differentiels, P. Boalch and J.-M. Couveignes eds., Séminaires et Congrès 27, S.M.F., p. 25-55, 2012.
[C21] A. Cadoret Representations of etale fundamental groups and specialization of algebraic cycles in abelian varieties and number theory, M. Jarden and T. Shaska eds, Contemp. Math. 767, Amer. Math. Soc., p. 181-200, 2021.
[CC20] A. Cadoret and F. Charles, A remark on uniform boundedness for Brauer groups, Algebraic Geometry 7, p. 512-522, 2020.
[CT12b] A. Cadoret and A. Tamagawa, A uniform open image theorem for ℓ-adic representations I, Duke Math. Journal 161, p. 2605-2634, 2012.
[CT13] A. Cadoret and A. Tamagawa, A uniform open image theorem for ℓ-adic representations II, Duke Math. Journal 162, p. 2301-2344, 2013.
[C22] A. Cadoret, Degeneration locus of (motivic) \mathbb{Q}_{p}-local systems: conjectures, Preprint, 2022.
[D04] O. Debarre, Hyperbolicity of complex varieties, Lecture Notes for Pragmatic summer school, Catania, 2004.
[D80] P. Deligne, La conjecture de Weil, II, Publ. Math. I.H.E.S. 52, p. 137-252, 1980.
[FW84] G. Faltings, G. Wüstholz (eds.), Rational Points, Aspects of Mathematics E6, Friedr. Vieweg \& Sohn, 1984.
[Fa91] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133, p. 549-576, 1991.
[EGAIV.2] A. Grothendieck, Eléments de géométrie algébrique IV, 2, Publ. Math. I.H.E.S. 24, 1965.
[EGAIV.3] A. Grothendieck, Eléments de géométrie algébrique IV, 3, Publ. Math. I.H.E.S. 28, 1966.
[SGA1] A. Grothendieck et al, Revêtements étales et groupe fondamental (SGA1), Lecture Notes in Mathematics 224, Springer-Verlag, 1971.
[HS00] M. Hindry and J. H. Silverman, Diophantine geometry. An introduction, GTM 201, Springer-Verlag, 2000.
[I81] S. Ittaka, Algebraic geometry - An introduction to Birational Geometry of Algebraic Varieties, GTM 76, Springer-Verlag, 1981.
[KS98] E. Kani and W. Schanz, Modular diagonal quotient surfaces, Math. Z. 227, p. 337-366, 1998.
[Kl22] B. Klingler, Hodge theory, between algebraicity and transcendence, to appear in Proceedings of the ICM 2022.
[Kr21] T. Kreutz, ℓ-Galois special subvarieties and the Mumford-Tate conjecture, Preprint 2021.
[L88] A. Lubotsky, A group theoretic characterization of linear groups, J. Algebra 113, p. 207-214, 1988.
[M78] B. MAzur, Rational isogenies of prime degree. Invent. math. 44, p. 129-162, 1978.
[Stacks] The stacks Project stacks.math.columbia.edu
[SSt16] A. Schmidt and J. Stix, Anabelian geometry with étale homotopy types, Annals of Math.184, p. 817-868, 2016.
[U04] E. Ullmo, Points rationnels des variétés de Shimura, IMRN 76, p. 4109-41125, 2004.
anna.cadoret@imj-prg.fr
IMJ-PRG, Sorbonne Université,
4, place Jussieu, 75252 PARIS Cedex 05, FRANCE

[^0]: ${ }^{1}$ In the following, given a profinite group Γ, a fundamental system of neighbourhoods of 1 in Γ means a decreasing sequence of normal open subgroups $\Gamma=\Gamma(0) \supset \Gamma(1) \supset \cdots \supset \Gamma(n) \supset \Gamma(n+1) \supset \cdots$ such that $\cap_{n \geq 0} \Gamma(n)=1$ (or, equivalently, for every open subgroup $U \subset \Gamma$ there exists $n \geq 0$ such that $\Gamma(n) \subset U)$.

[^1]: ${ }^{2}$ The field of definition of a connected variety Y over k is the finite field extension K / k corresponding to the image of $\pi_{1}(Y) \rightarrow \pi_{1}(k)$ by the morphism of profinite groups induced by the structural morphism $Y \rightarrow \operatorname{spec}(k)$.
 ${ }^{3}$ Actually, one can show that the minimum of the geometric gonality of the irreducible components of $X_{\mathcal{V}, n}$ defined over k goes to $+\infty$ with n which, by the Mordell-Lang conjecture [Fa91], ensures that for every integer $\delta \geq 1$ and $n \gg 0$ depending on δ, the set of closed points $x \in X_{\mathcal{V}, n}$ with degree $[k(x): k] \leq \delta$ is finite; hence, in particular, that the set of closed points $x \in X_{\mathcal{V}}$ with degree $[k(x): k] \leq \delta$ is finite. See [CT13] for details.
 ${ }^{4}$ Let $g, r \geq 0$ be integers such that $2 g-2+r>0$. An hyperbolic curve of type (g, r) over S is a S-scheme $C \rightarrow S$ such that there exists a smooth proper curve $C^{+} \rightarrow S$ of genus g and a closed subscheme $D \hookrightarrow C^{+}$with $D \hookrightarrow C^{+} \rightarrow S$ finite étale of degree r and $C=C^{+} \backslash D$.

[^2]: ${ }^{5}$ The proof of Theorem 3 indeed shows that it is enough to assume Conjecture 1 for product quotient surfaces of general type. A product quotient surface is a minimal resolution of singularity $q: \widetilde{Y} \rightarrow Y$ of a (singular) surface of the form $Y=\left(X_{1} \times X_{2}\right) / \Delta_{\alpha}$, where X_{1}, X_{2} are smooth, projective, geometrically connected curves endowed with a faithfull action of a finite group Γ and $\Gamma \stackrel{\sim}{\rightarrow} \Delta_{\alpha} \subset \Gamma \times \Gamma$ is the graph of an automorphism $\alpha: \Gamma \stackrel{\sim}{\rightarrow} \Gamma$. Let $g_{i, 0}$ denote the genus of $X_{i, 0}:=X_{i} / \Gamma, i=1,2$. Then the irregularity of \widetilde{Y} is $g_{1,0}+g_{2,0}$. As Theorem 3 is very sensitive to base change, we cannot ensure that the product quotient surfaces \widetilde{Y}_{n}^{+}that appear as smooth compactifications of level varieties in Subsection 3.3.2 have irregularity >0 (and actually, the most difficult case is precisely the one where $g_{1,0}+g_{2,0}=0$). In particular we cannot ensure they fall in the class of surfaces of general type for which Conjecture 1 is known - namely essentially those which can be embedded into abelian varieties [Fa91].

[^3]: ${ }^{6}$ That is for one (equivalently every) projective embedding $Y \hookrightarrow \mathbb{P}_{k}^{N}$ there exists a constant $d(g)$ (depending on the projective embedding) such that for every closed irreducible curve $C \hookrightarrow Y$ with geometric genus $g, \operatorname{deg}\left(\mathcal{O}_{\mathbb{P}_{k}^{N}(1)} \mid C\right) \leq d(g)$.

