Special subvarieties of non-arithmetic ball quotients Joint work with Gregorio Baldi

Emmanuel Ullmo, IHES

Arithmetic of Shimura varieties over global fields

05/08/2021

Lattices

Let G be a semisimple real group without compact factors and $X=G / K_{\infty}$ the associated symmetric space. A discrete subgroup Γ of G is a lattice if $\Gamma \backslash G$ has finite G-invariant measure. Let $S:=\Gamma \backslash X$.

- Lattices are Zariski dense (Borel);
- They contain a finite index subgroup which is torsion free (Selberg);
- If Γ is discrete and $\Gamma \backslash G$ is compact, then Γ is a lattice.

Arithmetic subgroups

- A subgroup $\Gamma \subset G$ is arithmetic if there exists a semisimple linear algebraic group \mathbf{G} / \mathbb{Q} and a surjective morphism with compact kernel $p: \mathbf{G}(\mathbb{R}) \rightarrow G$ such that Γ lies in the commensurability class of $p(\mathbf{G}(\mathbb{Z}))$;
- Arithmetic subgroups are lattices;
- Example A subgroup Γ of $G=\mathrm{SL}_{2}(\mathbb{R})$ is arithmetic iff there exists a totally real number field F, a quaternion algebra \mathbb{B} over F which is split at one archimedean place and non split at the others such that Γ is commensurable to $\operatorname{Res}_{F / \mathbb{Q}} \mathbb{B}^{*, 1}(\mathbb{Z})$ (where $\mathbb{B}^{*, 1}$ denotes the units of reduced norm 1 in \mathbb{B}).

Where can we find irreducible non-arithmetic lattices? After Margulis (1974)

- (Margulis) A lattice $\Gamma \subset G$ is arithmetic if and only if it has infinite index in its commensurator $\operatorname{Comm}(\Gamma)$:

$$
\left\{g \in G: \Gamma_{g}:=\Gamma \cap g \Gamma g^{-1} \text { has finite index in both } \Gamma \text { and } g \Gamma g^{-1}\right\}
$$

- Any $g \in \operatorname{Comm}(\Gamma)$ defines a Hecke correspondence $\Gamma_{g} \backslash X \subset \Gamma \backslash X \times \Gamma \backslash X$. There is a link between arithmeticity of Γ and special subvarieties of $\Gamma \backslash X \times \Gamma \backslash X$.
- Non-arithmetic lattices can only exist in real rank one (Margulis).
- Actually only in $\mathrm{SO}(1, n)$ and $\mathrm{PU}(1, n)$ (Margulis, Corlette, Gromov-Schoen).

Associated symmetric space: $X_{\mathrm{SO}(1, n)}$ is the real ball, $X_{\mathrm{PU}(1, n)}$ is the complex ball. So $\Gamma \backslash X$ can be a complex algebraic variety only in the latter case...

Examples of non-arithmetic lattices

- $\mathrm{SO}(1, n)$. There are non-arithmetic lattices for any $n \geq 2$ (Gromov-Piatetski-Shapiro);
- $\mathrm{PU}(1, n)$. Known examples only for $n=1,2,3$ by the work of Deligne, Mostow, Deraux, Parker and Paupert. For $n=2$ there are 22 commensurability known classes. For $n=3$ only 2 (and they are not cocompact). Most of them are related to the monodromy of hyper-geometric functions...

For each $n>1$ how many non-arithmetic lattices in $\mathrm{PU}(1, n)$ are there? How can arithmeticity be detected?

Motivation: generalising the theory of Shimura varieties

- Γ a (torsion free) lattice in $G=\mathrm{PU}(1, n), n>1$;
- $X=\mathbb{B}^{n}$ the Hermitian space associated to G;
- S_{Γ} be the n-dimensional ball quotient $\Gamma \backslash X$. It has a unique structure of complex algebraic variety, with nice compactifications (Baily-Borel, Mumford, Mok);

By looking at special correspondences in $S_{\Gamma} \times S_{\Gamma}$, we can detect arithmeticity. Can we do it in S_{Γ} ?
What is a special subvariety of S_{Γ} ?

Main result

Theorem (Baldi-U.)

If S_{Γ} contains infinitely many maximal complex totally geodesic subvarieties, then $\Gamma \subset G$ is arithmetic.

Bader, Fisher, Miller and Stover proved the real and complex hyperbolic version of the theorem using some superrigidity theorems and results on equidistribution from homogeneous dynamics.
A similar strategy applied to $S_{\Gamma} \times S_{\Gamma}$ gives.

Theorem (Baldi-U.)

New proof of Margulis commensurator theorem for lattices in $\mathrm{PU}(1, n)$ (for $n>1$).

Main steps of the strategy

Goal: parametrise maximal special subvarieties by a countable and definable set (in some o-minimal structure)!
(1) Realise S_{Γ} inside a Shimura variety/a period domain for some \mathbb{Z}-VHS (that we construct);
(2) Totally geodesic subvarieties $=$ unlikely intersection;
(3) Prove the geometric part of (Klingler's generalised) Zilber-Pink.

Main tools:
(1) Simpson's theory;
(2) Monodromy/Mumford-Tate computations (André-Deligne monodromy's theorem);
(3) Ax-Schanuel for \mathbb{Z}-VHS of Bakker-Tsimerman.

Constructing a \mathbb{Z}-Variation of Hodge structures

Theorem (Baldi-U.)

Every element in Γ has trace in the ring of integers of a totally real number field K. Up to conjugation by some $g \in G, \Gamma$ lies in $\mathbf{G}\left(\mathcal{O}_{K}\right)$. Moreover the natural \mathbb{C}-VHS \mathbb{V} induces a \mathbb{Z}-variation of Hodge structures $\widehat{\mathbb{V}}$ on S_{Γ}.

Rigidities for lattices (after Calabi, Vesentini, Weil, Garland and Raghunathan):

- Infinitesimal rigidity: $H^{1}(\Gamma, \mathrm{Ad})=0$.

It follows $K:=\mathbb{Q}\{\operatorname{tr} \operatorname{Ad} \gamma: \gamma \in \Gamma\}$ is a number field (rather than a f.g. field, not true for $n=1$)! As Γ is Zariski dense $\rightsquigarrow \exists \mathbf{G} / K, K$-form of G and

$$
\Rightarrow \Gamma \subset \mathbf{G}(K) .
$$

Simpson's theory and Weil restriction

Let S be a smooth quasi-projective variety. Starting point: every representation of $\pi_{1}(S)$ can be deformed to a \mathbb{C}-VHS.

Conjecture (Simpson)

Rigid semisimple representations of $\pi_{1}(S)$ with quasi-unipotent monodromy at infinity come from geometry.

- Recent progress of Esnault and Groechenig: "nice" cohomologically rigid representations with quasi-unipotent monodromy at ∞ admit an integral structure;
- Infinitesimal \Rightarrow cohomologically rigidity;
- Explicit toroidal compactification of S_{Γ} shows that \mathbb{V} has quasi-unipotent monodromy at ∞, so we can apply EG;
- Twists by $\sigma: K \rightarrow \mathbb{R}$ preserve infinitesimal rigidity $\Rightarrow \mathbb{V}^{\sigma}$ is a VHS;
- Eventually $\bigoplus_{\sigma} \mathbb{V}^{\sigma}$ has a natural structure of \mathbb{Z}-VHS.

Fundamental commutative diagram

- $\widehat{\mathbb{V}}:=\bigoplus_{i} \mathbb{V}^{\sigma_{i}}, \sigma_{1}=\mathrm{id}, \ldots, \sigma_{r}: K \rightarrow \mathbb{R}$;
- $\widehat{\mathbf{G}}:=$ Weil restriction from K to \mathbb{Q} of \mathbf{G}.

Griffiths theory of period domains and period maps gives a commutative diagram in the complex analytic category:

It may happen that $\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D$ is a Shimura variety. But in general $\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D$ is not algebraic, and ψ is just an holomorphic map.

More about $D_{\widehat{G}}$ and $\tilde{\psi}$

- $D_{\widehat{G}}$ is a $\widehat{G}=\widehat{\mathbf{G}}(\mathbb{R})=\prod G_{\sigma_{i}}$-orbit of one of the HSs constructed above, and the stabiliser is compact (in general not a maximal compact subgroup) ;
- All the $G_{\sigma_{i}}$ are isomorphic over \mathbb{C}, so they are $\operatorname{PU}\left(p_{\sigma_{i}}, q_{\sigma_{i}}\right)$, $p_{\sigma_{i}}+q_{\sigma_{i}}=n+1$;
- We can write $D_{\widehat{G}}=X \times X^{\prime}$ where X^{\prime} is homogeneous under $\prod_{i>1}^{r} G_{\sigma_{i}} ;$
- $\tilde{\psi}$ is holomorphic and Γ-equivariant:

$$
\tilde{\psi}(\gamma \cdot x)=\left(\gamma \cdot x, \sigma_{2}(\gamma) \cdot x_{\sigma_{2}}, \ldots, \sigma_{r}(\gamma) \cdot x_{\sigma_{r}}\right),
$$

where $x_{\sigma_{i}}$ is the fibre of $\mathbb{V}^{\sigma_{i}}$ at x;

- $\tilde{\psi}$ detects arithmeticity: Γ is arithmetic iff X^{\prime} is a point, i.e $G_{\sigma_{i}}$ is compact for any $i \geq 2$ (Mostow-Vinberg).

Γ-world vs \mathbb{Z}-world

Two ways for constructing irreducible algebraic subvarieties of S_{Γ} :
Γ. Take a subgroup $H \subset G$, s.t. $\Gamma_{H}:=\Gamma \cap H$ a lattice and $H . x \subset X$ a sub-Hermitian domain, then $W=\pi(H . x) \subset S_{\Gamma}$ is algebraic. We say that such a W is Γ-special;
\mathbb{Z}. Take a \mathbb{Q}-subgroup $\mathbf{M} \subset \widehat{\mathbf{G}}$, which is the Mumford-Tate group of some element $\hat{x} \in D_{\widehat{G}}$, then $\psi^{-1}(\mathbf{M}(\mathbb{Z}) \backslash \mathbf{M}(\mathbb{R}) . \hat{x})$ is algebraic (Cattani-Deligne-Kaplan). Algebraic subvarieties (= Hodge locus) constructed in this way are called \mathbb{Z}-special.

What makes a subvariety special?

Theorem (Baldi-U.)

Let $W \subset S_{\Gamma}$ be an irreducible algebraic subvariety. The following are equivalent:
(1) W is totally geodesic;
(2) W is bi-algebraic: some (equivalently any) analytic component of the preimage of W along $\pi: X \rightarrow S_{\Gamma}$ is algebraic;
(3) W is Γ-special;
(4) W is \mathbb{Z}-special;
(5) W is a component of $\psi^{-1}(\pi(Y))$ for some algebraic subvariety Y of D^{\vee} 。

A picture

Main idea: If Γ is not arithmetic, W is an unlikely intersection! Ax-Schanuel for $\mathbb{Z}-V H S \Longrightarrow$ (Geometric part of) Zilber-Pink \Longrightarrow the main theorem

Ax-Schanuel implies the geometric part of Zilber-Pink

- If $\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D_{\widehat{G}}$ is a Shimura variety: Daw-Ren proved that "Ax-Schanuel \Longrightarrow the geometric part of Zilber-Pink" generalising the proof that "Ax-Lindeman implies the geometric part of André-Oort".
- We adapted the proof of such a statement generalising the method for ball quotients.
- Recently with (Baldi and Klingler) we proved the geometric part of Zilber-Pink for general $\mathbb{Z}-V H S$.
- All these proofs uses functional transcendence results to parametrize the set of maximal "atypical intersections" by a countable definable set in some o-minimal theory.

Example

- $\Gamma \subset G=\mathrm{PU}(1,2)$ non arithmetic, with trace field K of degree 2 over \mathbb{Q}. So $\widehat{G}=G \times G$.
- $W \subset S_{\Gamma}$ special subvariety (associated to $\mathbf{H} \subset \mathbf{G} / K$);
- Suppose that $\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D_{\widehat{G}}$ is a Shimura variety;
- Write $W=S_{\Gamma} \cap \widehat{\mathbf{H}}(\mathbb{Z}) \backslash D_{\widehat{H}}$;
- $\operatorname{codim}_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D_{\widehat{G}}} S_{\Gamma}=2$;
- $\operatorname{codim}_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D_{\widehat{G}}} \widehat{\mathbf{H}}(\mathbb{Z}) \backslash D_{\widehat{H}}=2$;
- $\operatorname{codim}_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D_{\widehat{G}}} W=3$.

Two objects of codimension 2 in a 4-dimensional space, should intersect in a finite number of points, not in a curve!...

Ax-Schanuel For Period domain

Denote by $D^{\vee}=D_{\widehat{G}}{ }^{\vee}$ the compact dual of $D=D_{\widehat{G}}$.

Theorem (Hodge Ax-Schanuel) Bakker-Tsimerman

Let $\widehat{W} \subset D^{\vee} \times S_{\Gamma}$ be an algebraic subvariety. Let \widehat{U} be an irreducible component of $\widehat{W} \cap D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D} S_{\Gamma}$ such that

$$
\operatorname{codim} \widehat{U}<\operatorname{codim} \widehat{W}+\operatorname{codim} D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D} S_{\Gamma}
$$

the codimension being in $D^{\vee} \times S_{\Gamma}$. Then the projection of \widehat{U} to S_{Γ} is contained in a strict weak Mumford-Tate subvariety of S_{Γ}.

Dimension counting- Atypical Intersection

- $D_{\widehat{G}}=X \times D_{\sigma_{2}} \times \cdots \times D_{\sigma_{r}}$
- Let $d_{i}:=\operatorname{dim} D_{\sigma_{i}}, d_{1}=\operatorname{dim} X$.
- Let $S^{\prime} \simeq \Gamma_{\mathbf{H}} \backslash H . x_{0}=\Gamma_{H} \backslash X_{H} \subset S_{\Gamma}$ be a totally geodesic subvariety.
- Let $\widehat{\mathbf{H}}=\operatorname{Res}_{K / \mathbb{Q}} \mathbf{H}$ and $D_{\widehat{H}}=\widehat{H} \cdot \tilde{\psi}\left(x_{0}\right)=X_{H} \times D_{H_{\sigma_{2}}} \times \cdots \times D_{H_{\sigma_{r}}}$.
- Then $S^{\prime}=\Gamma_{H} \backslash X_{H}=\psi^{-1}\left(\pi\left(D_{\widehat{H}} \cap \tilde{\psi}(X)\right)\right)$.
- Let $d_{H_{i}}:=\operatorname{dim} D_{H_{\sigma_{i}}}, d_{H_{1}}=\operatorname{dim} X_{H_{1}}$.
- Take $\widehat{W}=D_{\widehat{H}}^{\vee} \times S_{\Gamma}$. Then $\widehat{U}=\operatorname{graph}\left(\tilde{\psi}(X) \cap D_{\widehat{H}} \longrightarrow S_{\Gamma}\right)$.
- Then $\operatorname{dim} \widehat{W}=d_{1}+\sum_{i=1}^{r} d_{H_{i}}, \operatorname{dim} \widehat{U}=d_{H_{1}}$
- $\operatorname{codim} \widehat{U}-\operatorname{codim} \widehat{W}-\operatorname{codim} D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D} S_{\Gamma}=\sum_{i=2}^{r}\left(d_{H_{i}}-d_{i}\right)<0$ unless for all $i \geq 2, d_{H_{i}}=d_{i}=0$. Which occures iff Γ is arithmetic.

Internal Ax-Schanuel

Theorem (Baldi-U.)

Let $W \subset X \times S_{\Gamma}$ be an algebraic subvariety and $\Pi \subset X \times S_{\Gamma}$ be the graph of $\pi: X \rightarrow S_{\Gamma}$. Let U be an irreducible component of $W \cap \Pi$ such that

$$
\operatorname{codim} U<\operatorname{codim} W+\operatorname{codim} \Pi
$$

the codimension being in $X \times S_{\Gamma}$ or, equivalently,

$$
\operatorname{dim} W<\operatorname{dim} U+\operatorname{dim} S_{\Gamma}
$$

If the projection of U to S_{Γ} is not zero dimensional, then it is contained in a strict totally geodesic subvariety of S_{Γ}.

Sketch of Proof of the Main theorem

We want to prove that maximal totally geodesic subvarieties are parametrised by a countable and definable set (in $\mathbb{R}_{\mathrm{an}, \exp }$):

- Let $S^{\prime} \subsetneq S_{\Gamma}$ be a special subvariety of S_{Γ} of maximal dimension;
- S^{\prime} is associated to a K-subgroup $\mathbf{H} \subset \mathbf{G}$.

$$
S^{\prime}=\Gamma_{\mathbf{H}} \backslash H \cdot x_{0}=\psi^{-1} \pi\left(\tilde{\psi}(X) \cap \hat{H} \cdot \psi\left(x_{0}\right)\right)
$$

- $\mathcal{F} \subset X$ definable fundamental domain for Γ. The set

$$
\Pi_{0}(\mathbf{H}):=\left\{(x, \hat{g}) \in \mathcal{F} \times \widehat{G}: \operatorname{Im}(\tilde{\psi}(x): \mathbb{S} \rightarrow \widehat{G}) \subset \hat{g} \widehat{H} \hat{g}^{-1}\right\}
$$

is definable.

- Given $(x, \hat{g}) \in \Pi_{0}(\mathbf{H})$, when is

$$
S_{x, \hat{g}}:=\psi^{-1} \pi\left(\tilde{\psi}(X) \cap \hat{g} \widehat{H} \hat{g}^{-1} . \tilde{\psi}(x)\right) \subset S_{\Gamma}{ }^{a n}
$$

a special subvariety? By definition $S_{x_{0}, \hat{1}}=S^{\prime}$ is special.

Sketch of Proof of the Main theorem

Consider the set
$\Sigma=\left\{\hat{g} \widehat{H} \hat{g}^{-1}:(x, \hat{g}) \in \Pi_{0}(\mathbf{H})\right.$ for a x and $\left.\operatorname{dim} S_{x, \hat{g}} \geq \operatorname{dim} S^{\prime}=\operatorname{dim} S_{x_{0}, \hat{1}}\right\} ;$

- It is definable and we will deduce from "Hodge Ax-Schanuel" that it parametrises special subvariety of S_{Γ} (of dimension $\operatorname{dim}\left(S^{\prime}\right)$). We only have to prove that it is countable (then induction);
- Claim: each $\hat{g} \widehat{H} \hat{g}^{-1} \in \Sigma$ is a \mathbb{Q}-subgroup of $\widehat{\mathbf{G}}$;
- Set $\widehat{W}:=\left(\hat{g} \widehat{H} \hat{g}^{-1} . \tilde{\psi}(x)\right) \times S_{\Gamma}$. It is algebraic in $D \times S_{\Gamma}$;
- Let \widehat{U} be a component at $\tilde{\psi}(x)$ of the intersection

$$
\widehat{W} \cap D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D} S_{\Gamma},
$$

such that the projection of \widehat{U} to S_{Γ} contains $S_{x, \hat{g}}$

Sketch of Proof of the Main theorem

Proposition

If Γ is non-arithmetic, then \widehat{U} is an atypical intersection. That is

$$
\operatorname{codim}_{D \times S_{\Gamma}} \widehat{U}<\operatorname{codim}_{D \times S_{\Gamma}} \widehat{W}+\operatorname{codim}_{D \times S_{\Gamma}}\left(D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \backslash D} S_{\Gamma}\right) .
$$

- The proof is the dimensional computation we did, when you realise that \widehat{U} for $S_{x, \hat{g}}$ is even more atypical that the analogue for the special subvariety $S_{x_{o}, \hat{1}}$ when you use the property

$$
\operatorname{dim} S_{x, \hat{g}} \geq \operatorname{dim} S^{\prime}=\operatorname{dim} S_{x_{0}, \hat{1}}
$$

Sketch of Proof of the Main theorem

- By "Hodge Ax-Schanuel", $S_{x, \hat{g}}$ is contained in a strict special subvariety. By maximality $S_{x, \hat{g}}$ is special.
- So the set Σ is definable (in $\mathbb{R}_{a n, \exp }$) and countable and therefore finite.
- End of the proof: Up to $G(\mathbb{R})$-conjugacy class, you have only finitely many H to consider.
- Induction to obtain the finiteness of the maximal totally geodesics subvarieties of S_{Γ}, of maximal possible dimension which are not contained in the algebraic set consisting of totally geodesic subvarieties of maximal dimension.

THANKS FOR YOUR ATTENTION!

