Special subvarieties of non-arithmetic ball quotients Joint work with Gregorio Baldi

Emmanuel Ullmo, IHES

Arithmetic of Shimura varieties over global fields

05/08/2021

A B < A B </p>

Let G be a semisimple real group without compact factors and $X = G/K_{\infty}$ the associated symmetric space. A discrete subgroup Γ of G is a *lattice* if $\Gamma \setminus G$ has finite G-invariant measure. Let $S := \Gamma \setminus X$.

- Lattices are Zariski dense (Borel);
- They contain a finite index subgroup which is torsion free (Selberg);
- If Γ is discrete and $\Gamma \backslash G$ is compact, then Γ is a lattice.

イロト イポト イヨト イヨト 二日

- A subgroup Γ ⊂ G is arithmetic if there exists a semisimple linear algebraic group G/Q and a surjective morphism with compact kernel p : G(ℝ) → G such that Γ lies in the commensurability class of p(G(Z));
- Arithmetic subgroups are lattices;
- Example A subgroup Γ of $G = SL_2(\mathbb{R})$ is arithmetic iff there exists a totally real number field F, a quaternion algebra \mathbb{B} over F which is split at one archimedean place and non split at the others such that Γ is commensurable to $\operatorname{Res}_{F/\mathbb{Q}}\mathbb{B}^{*,1}(\mathbb{Z})$ (where $\mathbb{B}^{*,1}$ denotes the units of reduced norm 1 in \mathbb{B}).

イロト イポト イヨト イヨト

Where can we find irreducible non-arithmetic lattices? After Margulis (1974)

 (Margulis) A lattice Γ ⊂ G is arithmetic if and only if it has infinite index in its commensurator Comm(Γ):

 $\{g \in G : \Gamma_g := \Gamma \cap g\Gamma g^{-1} \text{ has finite index in both } \Gamma \text{ and } g\Gamma g^{-1}\}$

- Any $g \in \text{Comm}(\Gamma)$ defines a Hecke correspondence $\Gamma_g \setminus X \subset \Gamma \setminus X \times \Gamma \setminus X$. There is a link between arithmeticity of Γ and special subvarieties of $\Gamma \setminus X \times \Gamma \setminus X$.
- Non-arithmetic lattices can only exist in real rank one (Margulis).
- Actually only in SO(1, n) and PU(1, n) (Margulis, Corlette, Gromov-Schoen).

Associated symmetric space: $X_{SO(1,n)}$ is the *real* ball, $X_{PU(1,n)}$ is the *complex* ball. So $\Gamma \setminus X$ can be a complex algebraic variety only in the latter case...

- SO(1, n). There are non-arithmetic lattices for any n ≥ 2 (Gromov–Piatetski-Shapiro);
- PU(1, n). Known examples only for n = 1, 2, 3 by the work of Deligne, Mostow, Deraux, Parker and Paupert. For n = 2 there are 22 commensurability known classes. For n = 3 only 2 (and they are not cocompact). Most of them are related to the monodromy of hyper-geometric functions...

For each n > 1 how many non-arithmetic lattices in PU(1, n) are there? How can arithmeticity be detected?

イロト イポト イヨト イヨト 二日

Motivation: generalising the theory of Shimura varieties

- Γ a (torsion free) lattice in G = PU(1, n), n > 1;
- $X = \mathbb{B}^n$ the Hermitian space associated to G;
- S_Γ be the *n*-dimensional ball quotient Γ\X. It has a unique structure of complex algebraic variety, with nice compactifications (Baily-Borel, Mumford, Mok);

By looking at special correspondences in $S_{\Gamma} \times S_{\Gamma}$, we can detect arithmeticity. Can we do it in S_{Γ} ? What is a *special subvariety* of S_{Γ} ?

イロト イポト イヨト イヨト 二日

Theorem (Baldi–U.)

If S_{Γ} contains infinitely many <u>maximal</u> complex totally geodesic subvarieties, then $\Gamma \subset G$ is arithmetic.

Bader, Fisher, Miller and Stover proved the real and complex hyperbolic version of the theorem using some superrigidity theorems and results on equidistribution from homogeneous dynamics. A similar strategy applied to $S_{\Gamma} \times S_{\Gamma}$ gives.

Theorem (Baldi–U.)

New proof of Margulis commensurator theorem for lattices in PU(1, n) (for n > 1).

Goal: parametrise maximal special subvarieties by a countable and definable set (in some o-minimal structure)!

- Realise S_Γ inside a Shimura variety/a period domain for some Z-VHS (that we construct);
- Otally geodesic subvarieties = unlikely intersection;
- Prove the geometric part of (Klingler's generalised) Zilber-Pink.

Main tools:

- Simpson's theory;
- Monodromy/Mumford–Tate computations (André-Deligne monodromy's theorem);
- Ax-Schanuel for ℤ-VHS of Bakker-Tsimerman.

イロト 不得下 イヨト イヨト 二日

Theorem (Baldi–U.)

Every element in Γ has trace in the ring of integers of a totally real number field K. Up to conjugation by some $g \in G$, Γ lies in $\mathbf{G}(\mathcal{O}_K)$. Moreover the natural \mathbb{C} -VHS \mathbb{V} induces a \mathbb{Z} -variation of Hodge structures $\widehat{\mathbb{V}}$ on S_{Γ} .

Rigidities for lattices (after Calabi, Vesentini, Weil, Garland and Raghunathan):

• Infinitesimal rigidity: $H^1(\Gamma, \operatorname{Ad}) = 0$.

It follows $K := \mathbb{Q}\{\operatorname{tr} \operatorname{Ad} \gamma : \gamma \in \Gamma\}$ is a number field (rather than a f.g. field, not true for n = 1)! As Γ is Zariski dense $\rightsquigarrow \exists \mathbf{G}/K$, K-form of G and

 $\Rightarrow \Gamma \subset \mathbf{G}(K).$

Simpson's theory and Weil restriction

Let S be a smooth quasi-projective variety. Starting point: every representation of $\pi_1(S)$ can be deformed to a $\mathbb{C}\text{-VHS}.$

Conjecture (Simpson)

Rigid semisimple representations of $\pi_1(S)$ with quasi-unipotent monodromy at infinity come from geometry.

- Recent progress of Esnault and Groechenig: "nice" cohomologically rigid representations with quasi-unipotent monodromy at ∞ admit an integral structure;
- Infinitesimal ⇒ cohomologically rigidity;
- Explicit toroidal compactification of S_{Γ} shows that \mathbb{V} has quasi-unipotent monodromy at ∞ , so we can apply EG;
- Twists by $\sigma: K \to \mathbb{R}$ preserve infinitesimal rigidity $\Rightarrow \mathbb{V}^{\sigma}$ is a VHS;
- Eventually $\bigoplus_{\sigma} \mathbb{V}^{\sigma}$ has a natural structure of $\mathbb{Z}\text{-}\mathsf{VHS}.$

Fundamental commutative diagram

•
$$\widehat{\mathbb{V}} := \bigoplus_i \mathbb{V}^{\sigma_i}, \ \sigma_1 = \mathrm{id}, \ldots, \sigma_r : K \to \mathbb{R};$$

• $\widehat{\mathbf{G}} := \mathrm{Weil}$ restriction from K to \mathbb{Q} of \mathbf{G} .

Griffiths theory of period domains and period maps gives a commutative diagram in the complex analytic category:

It may happen that $\widehat{\mathbf{G}}(\mathbb{Z}) \setminus D$ is a Shimura variety. But in general $\widehat{\mathbf{G}}(\mathbb{Z}) \setminus D$ is not algebraic, and ψ is just an holomorphic map.

August 5th 2021

More about $D_{\widehat{G}}$ and $\widetilde{\psi}$

- $D_{\widehat{G}}$ is a $\widehat{G} = \widehat{\mathbf{G}}(\mathbb{R}) = \prod G_{\sigma_i}$ -orbit of one of the HSs constructed above, and the stabiliser is compact (in general not a maximal compact subgroup);
- All the G_{σ_i} are isomorphic over \mathbb{C} , so they are $\mathrm{PU}(p_{\sigma_i}, q_{\sigma_i})$, $p_{\sigma_i} + q_{\sigma_i} = n + 1$;
- We can write $D_{\widehat{G}} = X \times X'$ where X' is homogeneous under $\prod_{i>1}^{r} G_{\sigma_i}$;
- $\tilde{\psi}$ is holomorphic and Γ -equivariant:

$$\tilde{\psi}(\gamma.x) = (\gamma.x, \sigma_2(\gamma).x_{\sigma_2}, \dots, \sigma_r(\gamma).x_{\sigma_r}),$$

where x_{σ_i} is the fibre of \mathbb{V}^{σ_i} at x;

• $\tilde{\psi}$ detects arithmeticity: Γ is arithmetic iff X' is a point, i.e G_{σ_i} is compact for any $i \geq 2$ (Mostow-Vinberg).

- 3

Two ways for constructing *irreducible* algebraic subvarieties of S_{Γ} :

- Γ . Take a subgroup $H \subset G$, s.t. $\Gamma_H := \Gamma \cap H$ a lattice and $H.x \subset X$ a sub-Hermitian domain, then $W = \pi(H.x) \subset S_{\Gamma}$ is algebraic. We say that such a W is Γ -special;
- Z. Take a Q-subgroup $\mathbf{M} \subset \widehat{\mathbf{G}}$, which is the Mumford-Tate group of some element $\hat{x} \in D_{\widehat{G}}$, then $\psi^{-1}(\mathbf{M}(\mathbb{Z}) \setminus \mathbf{M}(\mathbb{R}).\hat{x})$ is algebraic (Cattani-Deligne-Kaplan). Algebraic subvarieties (=Hodge locus) constructed in this way are called Z-special.

イロト イポト イヨト イヨト 二日

Theorem (Baldi–U.)

Let $W \subset S_{\Gamma}$ be an irreducible algebraic subvariety. The following are equivalent:

- **1** *W* is totally geodesic;
- W is bi-algebraic: some (equivalently any) analytic component of the preimage of W along π : X → S_Γ is algebraic;
- W is Γ-special;
- W is \mathbb{Z} -special;
- W is a component of ψ⁻¹(π(Y)) for some algebraic subvariety Y of D[∨].

イロト 不得下 イヨト イヨト

A picture

Main idea: If Γ is not arithmetic, W is an unlikely intersection! Ax-Schanuel for $\mathbb{Z} - VHS \implies$ (Geometric part of) Zilber-Pink \implies the main theorem

August 5th 2021

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Ax-Schanuel implies the geometric part of Zilber-Pink

- If $\widehat{\mathbf{G}}(\mathbb{Z}) \setminus D_{\widehat{G}}$ is a Shimura variety: Daw-Ren proved that "Ax-Schanuel \implies the geometric part of Zilber-Pink" generalising the proof that "Ax-Lindeman implies the geometric part of André-Oort".
- We adapted the proof of such a statement generalising the method for ball quotients.
- Recently with (Baldi and Klingler) we proved the geometric part of Zilber-Pink for general $\mathbb{Z} VHS$.
- All these proofs uses functional transcendence results to parametrize the set of maximal "atypical intersections" by a countable definable set in some o-minimal theory.

Example

- $\Gamma \subset G = PU(1,2)$ non arithmetic, with trace field K of degree 2 over \mathbb{Q} . So $\hat{G} = G \times G$.
- $W \subset S_{\Gamma}$ special subvariety (associated to $\mathbf{H} \subset \mathbf{G}/K$);
- Suppose that $\widehat{\mathbf{G}}(\mathbb{Z}) ackslash D_{\widehat{G}}$ is a Shimura variety;
- Write $W = S_{\Gamma} \cap \widehat{\mathbf{H}}(\mathbb{Z}) \backslash D_{\widehat{H}}$;
- $\operatorname{codim}_{\widehat{\mathbf{G}}(\mathbb{Z})\setminus D_{\widehat{G}}} S_{\Gamma} = 2;$
- $\operatorname{codim}_{\widehat{\mathbf{G}}(\mathbb{Z})\setminus D_{\widehat{G}}} \widehat{\mathbf{H}}(\mathbb{Z})\setminus D_{\widehat{H}} = 2;$
- $\operatorname{codim}_{\widehat{\mathbf{G}}(\mathbb{Z}) \setminus D_{\widehat{G}}} W = 3.$

Two objects of codimension 2 in a 4-dimensional space, should intersect in a finite number of points, not in a curve!...

Denote by $D^{\vee} = D_{\widehat{G}}^{\vee}$ the compact dual of $D = D_{\widehat{G}}$.

Theorem (Hodge Ax-Schanuel) Bakker-Tsimerman

Let $\widehat{W} \subset D^{\vee} \times S_{\Gamma}$ be an algebraic subvariety. Let \widehat{U} be an irreducible component of $\widehat{W} \cap D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \setminus D} S_{\Gamma}$ such that

$$\operatorname{codim} \widehat{U} < \operatorname{codim} \widehat{W} + \operatorname{codim} D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \setminus D} S_{\Gamma},$$

the codimension being in $D^{\vee} \times S_{\Gamma}$. Then the projection of \widehat{U} to S_{Γ} is contained in a strict weak Mumford–Tate subvariety of S_{Γ} .

E. Ullm	υ		υ	с.	

Dimension counting- Atypical Intersection

< ロト (個) (三) (三) (

19 / 25

Theorem (Baldi–U.)

Let $W \subset X \times S_{\Gamma}$ be an algebraic subvariety and $\Pi \subset X \times S_{\Gamma}$ be the graph of $\pi : X \to S_{\Gamma}$. Let U be an irreducible component of $W \cap \Pi$ such that

 $\operatorname{codim} U < \operatorname{codim} W + \operatorname{codim} \Pi,$

the codimension being in $X \times S_{\Gamma}$ or, equivalently,

 $\dim W < \dim U + \dim S_{\Gamma}.$

If the projection of U to S_{Γ} is not zero dimensional, then it is contained in a strict totally geodesic subvariety of S_{Γ} .

	mo

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of Proof of the Main theorem

We want to prove that maximal totally geodesic subvarieties are parametrised by a countable and definable set (in $\mathbb{R}_{an,exp}$):

- Let $S' \subsetneq S_{\Gamma}$ be a special subvariety of S_{Γ} of maximal dimension;
- S' is associated to a K-subgroup $\mathbf{H} \subset \mathbf{G}$. $S' = \Gamma_{\mathbf{H}} \setminus H.x_0 = \psi^{-1} \pi(\tilde{\psi}(X) \cap \hat{H}.\psi(x_0))$
- $\mathcal{F} \subset X$ definable fundamental domain for Γ . The set

$$\Pi_0(\mathbf{H}) := \{ (x, \hat{g}) \in \mathcal{F} \times \widehat{G} : \operatorname{Im}(\tilde{\psi}(x) : \mathbb{S} \to \widehat{G}) \subset \hat{g}\widehat{H}\hat{g}^{-1} \},\$$

is definable.

• Given $(x, \hat{g}) \in \Pi_0(\mathbf{H})$, when is

$$S_{x,\hat{g}} := \psi^{-1} \pi(\tilde{\psi}(X) \cap \hat{g} \hat{H} \hat{g}^{-1}.\tilde{\psi}(x)) \subset S_{\Gamma}{}^{an}$$

a special subvariety? By definition $S_{x_0,\hat{1}} = S'$ is special.

Sketch of Proof of the Main theorem

Consider the set

 $\Sigma = \{ \hat{g} \hat{H} \hat{g}^{-1} : (x, \hat{g}) \in \Pi_0(\mathbf{H}) \text{ for a } x \text{ and } \dim S_{x, \hat{g}} \geq \dim S' = \dim S_{x_0, \hat{1}} \};$

- It is definable and we will deduce from "Hodge Ax-Schanuel" that it parametrises special subvariety of S_{Γ} (of dimension dim(S')). We only have to prove that it is countable (then induction);
- Claim: each $\hat{g}\hat{H}\hat{g}^{-1} \in \Sigma$ is a Q-subgroup of $\widehat{\mathbf{G}}$;
- Set $\widehat{W} := \left(\hat{g} \widehat{H} \hat{g}^{-1} . \tilde{\psi}(x) \right) \times S_{\Gamma}$. It is algebraic in $D \times S_{\Gamma}$;
- Let \widehat{U} be a component at $\widetilde{\psi}(x)$ of the intersection

$$\widehat{W} \cap D \times_{\widehat{\mathbf{G}}(\mathbb{Z}) \setminus D} S_{\Gamma},$$

such that the projection of \widehat{U} to S_{Γ} contains $S_{x, \widehat{g}}$

Proposition

If Γ is non-arithmetic, then \widehat{U} is an atypical intersection. That is

 $\operatorname{codim}_{D\times S_{\Gamma}} \widehat{U} < \operatorname{codim}_{D\times S_{\Gamma}} \widehat{W} + \operatorname{codim}_{D\times S_{\Gamma}} \left(D \times_{\widehat{\mathbf{G}}(\mathbb{Z})\setminus D} S_{\Gamma} \right).$

• The proof is the dimensional computation we did, when you realise that \widehat{U} for $S_{x,\hat{g}}$ is even more atypical that the analogue for the special subvariety $S_{x_o,\hat{1}}$ when you use the property

$$\dim S_{x,\hat{g}} \ge \dim S' = \dim S_{x_0,\hat{1}}.$$

- By "Hodge Ax-Schanuel", $S_{x,\hat{g}}$ is contained in a strict special subvariety. By maximality $S_{x,\hat{g}}$ is special.
- So the set Σ is definable (in $\mathbb{R}_{an,exp}$) and countable and therefore finite.
- End of the proof: Up to $G(\mathbb{R})$ -conjugacy class, you have only finitely many H to consider.
- Induction to obtain the finiteness of the maximal totally geodesics subvarieties of S_{Γ} , of maximal possible dimension which are not contained in the algebraic set consisting of totally geodesic subvarieties of maximal dimension.

THANKS FOR YOUR ATTENTION!

(日) (四) (日) (日) (日)