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Part 0. Faltings’s Theorem

Let g � 0 be an integer. Let C be an irreducible smooth projective
curve of genus g, defined over a number field K .
In 1983, Faltings proved the Mordell Conjecture.

Theorem (Faltings 1983)
When g � 2, the set C(K ) is finite.

� Faltings’s 1983 proof does not give a good upper bound on
#C(K ).

� The cardinality #C(K ) must depend on g and [K : Q] (not hard to
see by examples).
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Part 0. In search of an upper bound on #C(K )

Here is a very ambitious bound.

Question
Is it possible to find a number B(g, [K : Q]) > 0 such that

#C(K )  B?

This question has an affirmative answer if one assumes Lang’s
conjecture (Caporaso–Harris–Mazur, Pacelli).

� Two divergent opinions towards this conditional result: either this
ambitious bound is true, or one could use this to disprove Lang’s
conjecture.
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Part 0. Classical result on #C(K )

In early 90s, Vojta gave a second proof to Faltings’s Theorem. The proof was
simplified and generalized by Faltings, and further simplified by Bombieri.
This new proof (BFV) gives an upper bound, which was later on made explicit
by de Diego, David–Philippon, and Rémond.

Theorem (Vojta, Faltings, Bombieri, de Diego, David–Philippon, Rémond)

#C(K )  c(g, [K : Q],hFal(J))1+rkZJ(K )

where J =Jacobian of C, and hFal(J) is the stable Faltings height of J.

Roughly speaking, the number hFal(J) measures the “complexity” of the
coefficients of the equations defining the curve C.
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Part 0. Bound on #C(K )

Theorem (Dimitrov-G’-Habegger, 2021)
If g � 2, then

#C(K )  c(g, [K : Q])1+rkZJ(K )

where J is the Jacobian of J. Moreover, c(g, [K : Q]) grows at most
polynomially in [K : Q].

� The proof is based on Vojta’s proof of the Mordell Conjecture (Faltings’s
theorem).

� Compared with the classical bound (by Vojta, Faltings, Bombieri, de
Diego, David–Philippon, Rémond), our bound does not depend on the
height of J.

� This proves a conjecture of Mazur (1986, 2000).
� We showed that the dependence of c on [K : Q] can be removed

assuming the Relative Bogomolov Conjecture. More recently, this is
achieved unconditionally by Kühne.
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Part 0. Previously known results on this bound

� By Diophantine method, based on BFV,
� David–Philippon 2007: when J ⇢ En.
� David–Nakamaye–Philippon 2007: for some particular families of

curves.
� Alpoge 2018: average number of #C(K ) when g = 2.

� By the Chabauty–Coleman method,
� Stoll 2015: hyperelliptic curves when rkJ(K )  g � 3.
� Katz–Rabinoff–Zureick-Brown 2016: when rkJ(K )  g � 3.
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Part 0. Uniform Mordell–Lang for curves
Our method allows to prove a more general result, replacing J(K ) by any
finite rank subgroup �† Uniform Mordell–Lang Conjecture for curves.

Theorem (Dimitrov-G’-Habegger)

Let P0 2 C(Q) and J =Jacobian of C. Let C � P0 be the image of the
Abel–Jacobi embedding of C in J based at P0. Let � be a finite rank subgroup
of J(Q). If hFal(J) � �(g), then

#(C(Q)� P0) \ �  c(g)1+rk�.

� In particular, #(C(Q)� P0) \ �  c(g, [K : Q])1+rk� if C is defined over a
number field K and P0 2 C(K ).

� Kühne recently proved the result for curves with hFal(J) < �(g).

� Torsion points: If we take � = J(Q)tor, then this becomes the uniform
Manin-Mumford conjecture (Kühne). Katz–Rabinoff–Zureick-Brown
2016: assuming some good reduction behavior. DeMarco–Krieger–Ye
2018: g = 2 bi-elliptic.
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Part 0. Review of the BFV method

r ⇠g h⇥(J)

0
r

small points

large points

On J(Q), there is a function ĥL : J(Q)! R�0

vanishing precisely on J(Q)tor.
† ĥL : J(K )⌦Z R! R�0.
† “Normed Euclidean space” (J(K )⌦Z R, ĥL),

and J(K ) becomes a lattice in it.

Theorem (Bombieri, de Diego, Alpoge)

#large points  c(g)1.872rkJ(K ).

Up to replacing
1.872 by 7, this theorem is a consequence
of Mumford’s Gap Principle and Vojta’s Inequality.
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Part 0. A New Gap Principle

Theorem (New Gap Principle, Dimitrov–G’–Habegger + Kühne)

Each P 2 C(Q) satisfies

#
¶
Q 2 C(Q) : ĥL(Q � P)  c1 max{hFal(J),1}

©
 c2

for some constants c1 > 0 and c2 > 0 depending only on g.

� This theorem says (roughly) that algebraic points in C(Q) are in general
far from each other in a quantitative way. In particular, this holds true for
rational points in C.
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Part 0. Key new ingredients

� Key notion: non-degenerate subvarieties of any given abelian scheme
(Habegger 2013). Two basic tools to define non-degeneracy are the
Betti map (Corvaja, Masser, Zannier, Bertrand, André) and the Betti form
(N.Mok).

� What are used in the proof?

� Criterion of non-degeneracy and constructions (G’ 2020),
� A height inequality on any given non-degenerate subvariety

(Dimitrov–G’–Habegger 2021),
� An equidistribution result on any given non-degenerate subvariety

(Kühne 2021) + Ullmo–Zhang approach.

Kühne’s proof of the equidistribution result also uses the height inequality.
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Part 1. Bi-algebraic geometry: algebraic tori
Classical transcendence:

Conjecture (Schanuel’s Conjecture)
Assume �1, . . . ,�n 2 C are Q-linearly independent. Then

trdegQ(�1, . . . ,�n,e�1 , . . . ,e�n) � n.

In particular, trdegQ(�1, . . . ,�n) + trdegQ(e�1 , . . . ,e�n) � n.

� n = 2, �1 = 1, �2 = �i ) e and � are algebraically independent (open).

� �1, . . . ,�n 2 Q: Lindemann–Weierstraß Theorem.

Bi-algebraic system:

� u : Cn ! (C�)n given by u = (exp, · · · ,exp).

� Both Cn and (C�)n are algebraic varieties;
� u is transcendental.
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Part 1. Bi-algebraic geometry: algebraic tori

To state the functional analogue, it is more convenient to introduce the
bi-algebraic subvarieties.

Proposition (-Definition)

Take an irreducible algebraic subvariety W ✓ Cn. Then u(W ) is algebraic if
and only if u(W ) is a coset of an algebraic subtorus of (C�)n.

Now we are ready to state the functional transcendence result.

Theorem (Ax, weak version)

Let u = (exp, · · · ,exp): Cn ! (C�)n. Let Z be a complex analytic irreducible
subvariety of Cn. Assume Z is not contained in any proper bi-algebraic
subvariety of Cn. Then

dim Z Zar + dim u(Z )Zar � n + dim Z .
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Part 1. Bi-algebraic geometry: algebraic tori

An equivalent formulation is

Theorem (Ax, weak version)

Let u = (exp, · · · ,exp): Cn ! (C�)n. Let Z be a complex analytic irreducible
subvariety of Cn. Then

dim Z Zar + dim u(Z )Zar � dim Z biZar + dim Z .

Here Z biZar is the smallest bi-algebraic subvariety of Cn which contains Z .

Of course, dim Z biZar = dim u(Z )biZar because u(Z biZar) = u(Z )biZar.
Bi-algebraic system:

� u : Cn ! (C�)n given by u = (exp, · · · ,exp).

� Both Cn and (C�)n are algebraic varieties;
� u is transcendental.
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Part 1. Bi-algebraic geometry: abelian variety

Bi-algebraic system:

� u : Cg ! A with A a complex abelian variety.

� Both Cg and A are algebraic varieties;
� u is transcendental.

One can show that bi-algebraic subvarieties of A for this system are precisely
cosets of A (= translate of an abelian subvariety by a closed point).

Theorem (Ax, weak version)

Consider u : Cg ! A. Let Z be a complex analytic irreducible subvariety of
Cg. Then

dim Z Zar + dim u(Z )Zar � dim u(Z )biZar + dim Z .

Here u(Z )biZar is the smallest bi-algebraic subvariety of A which contains
u(Z ).
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Part 1. Bi-algebraic geometry: hyperbolic case

Ag moduli space of pp abelian varieties, Hg Siegel upper half space.
Bi-algebraic system:

� u : Hg ! Ag uniformizing map.

� Hg ✓ Cg(g+1)/2 open semi-algebraic† algebraic structure on Hg :
W ✓ Hg is algebraic if W is a component of W� \Hg for
W� ✓ Cg(g+1)/2 algebraic.

� Ag has a canonical structure of algebraic variety (Baily–Borel).
� u is transcendental.

Bi-algebraic subvarieties of Ag are characterized by Ullmo–Yafaev, precisely
the totally geodesic subvarieties.
Functional transcendence in this case: Mok–Pila–Tsimerman (Pila, Ullmo,
Yafaev, Tsimerman, Klingler...)
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Part 1. Bi-algebraic geometry: mixed case

What we need is for the universal abelian variety Ag over Ag (mixed Shimura
variety).
Bi-algebraic system:

� u : Cg ⇥ Hg ! Ag uniformizing map.

� Both Cg ⇥ Hg and Ag have natural algebraic structures;
� u is transcendental.

What are the bi-algebraic varieties of Ag?
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Part 1. Bi-algebraic geometry: mixed case
Let Y ✓ Ag be an irreducible subvariety.

Cg ⇥ Hg
u
//

✏✏

Ag

�
✏✏

◆ Ag ⇥Ag �(Y ) ◆ Y
_

✏✏

Hg // Ag ◆ �(Y ).

Then Ag ⇥Ag Y = ��1(�(Y ))! �(Y ) itself is an abelian scheme of relative
dimension g. Set C to be its isotrivial part, i.e. the largest isotrivial abelian
subscheme† constant sections.
One can apply this to Y biZar.

Cg ⇥ Hg
u
//

✏✏

Ag

�
✏✏

◆ Ag ⇥Ag Y biZar ◆ Y biZar
_

✏✏

Hg // Ag ◆ �(Y )biZar.
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Part 1. Bi-algebraic geometry: mixed case

Ag ⇥Ag Y ✓

✏✏

Ag ⇥Ag �(Y )biZar

�
✏✏

◆ Y biZar

ww

�(Y ) ✓ �(Y )biZar.

Proposition (G’)

Y biZar is the translate of an abelian subscheme of Ag ⇥Ag Y biZar ! �(Y )biZar

of a torsion section and then by a constant section.

Better, geometric meaning of dim Y biZar � dim�(Y )biZar.

Proposition (G’)

(Ag ⇥Ag Y ) \ �(Y )biZar is the translate of an abelian subscheme of
Ag ⇥Ag Y ! �(Y ) of a torsion section and then by a constant section,
smallest among such translates which contain Y .
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Part 1. Bi-algebraic geometry: mixed case

Bi-algebraic system u : Cg ⇥ Hg ! Ag .

Theorem (weak Ax–Schanuel for Ag , G’)

Let Z be a complex analytic irreducible subset of Cg ⇥ Hg. Then

dim Z Zar + dim u(Z )Zar � dim Z + dim u(Z )biZar.
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Part 2. Application to Betti map and non-degeneracy

Bi-algebraic system u : Cg ⇥ Hg ! Ag .

� Betti map:

� Identification R2g ⇥ Hg
⇠�! Cg ⇥ Hg , (a,b,Z ) 7! (a + Zb,Z ).

Definition (Corvaja, Masser, Zannier, Bertrand, André)

The Betti map is defined to be the natural projection b : Cg ⇥ Hg ! R2g. It is a
real-analytic map with complex fibers.

� Betti form:

� The 2-form 2da� db descends to a (1,1)-form � on Ag which is
semi-positive (N.Mok).
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Part 2. Application to Betti map and non-degeneracy

Bi-algebraic system u : Cg ⇥ Hg ! Ag .
b : Cg ⇥ Hg ! R2g .

Definition
A subvariety X of Ag is said to be non-degenerate if

rkRdb|eX = 2 dim X .

Here eX is an irreducible component of u�1(X sm).

In particular, X is always degenerate if dim X > g (naive degenerate
subvarieties).

Remark
If one uses the Betti form � on Ag, then X is non-degenerate if and only on
�|�dim X

X 6⌘ 0. † non-degeneracy is in some way a “bigness” condition.
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Part 2. Application to Betti map and non-degeneracy

For the notation
Cg ⇥ Hg ⇠= R2g ⇥ Hg

u
//

✏✏

Ag

�
✏✏

Hg // Ag

with X ✓ Ag and eX a component of u�1(X ), we have

X is degenerate

, eX“ = ”
[

r2R2g ,eC curve in Hg

({r} ⇥ eC)

,X“ = ”
[

r2R2g ,eC curve in Hg

u({r} ⇥ eC)

Here “ = ” means the RHS contains a non-empty open of the LHS.
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Part 2. Application to Betti map and non-degeneracy

So X is degenerate) X =
S

r2R2g ,eC curve in Hg
u({r} ⇥ eC)

Zar
.

Now let us study

Y := u({r} ⇥ eC)
Zar

Apply mixed Ax-Schanuel to Z = {r} ⇥ eC (version of G’). We get

dim Z
Zar

+ dim u(Z )
Zar � dim Z + dim u(Z )

biZar
.

It then becomes

dim({r} ⇥ eCZar) + dim Y > dim Y
biZar

.

As dim eCZar  dim�(Y )
biZar

, we have

dim Y > dim Y
biZar � dim�(Y )

biZar
.
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Part 2. Application to Betti map and non-degeneracy

So we have

X is degenerate,X =
[

dim Y>dim Y
biZar�dim�(Y )

biZar

Y .

The previous slide showed) using mixed Ax-Schanuel. The direction(
follows directly from the description of bi-algebraic subvarieties in Ag (each
member in the union of RHS is a naive degenerate subvariety).

We will show that the union on the right hand side is actually a finite union,
and get a criterion to degeneracy from this!
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Part 3. Handle the unlikely intersection problem

Theorem (Bogomolov, 1981)
Let A be an abelian variety and let X be a subvariety. There are only finitely
many abelian subvarieties B of A satisfying:
(1) dim B > 0 and a + B ✓ X for some a 2 A;
(2) B is maximal for the property described in (1).

Generalization of this theorem, all by using o-minimality.

� Ullmo (2014) proved the corresponding result for pure Shimura varieties,
for the purpose of studying the André-Oort conjecture.

� Inspired by Rémond, Habegger–Pila (2016) introduced the notion of
weakly optimal subvarieties when studying the more general Zilber-Pink
conjecture. They also proved the corresponding finiteness result for the
case Y (1)N .

� Daw–Ren (2018) proved the finiteness result for pure Shimura varieties.

� G’ (2020) for Ag .
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Part 3. Criterion to non-degeneracy

� � : A! S abelian scheme;

� X ✓ A subvariety, dominant to S;

� WMA X not contained in a proper subgroup scheme.

Theorem (G’, 2020)
X is degenerate if and only if there exists an abelian subscheme B of A! S
such that dim X � dim �(X ) > g� g0 (i.e. a generic fiber is “naive degenerate”).

� : A //

✏✏

A/B //

✏✏

Ag0

✏✏

S =
// S // Ag0
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Part 3. Non-degeneracy: a construction
Abelian scheme A! S, modular map � : A! Ag .

Theorem (G’, 2020)
Let X be a subvariety of A which dominates S. Assume furthermore

(a) dim X > dim S.

(b) No proper subgroup of As contains Xs, for some s 2 S(C).

(c) On the geometric generic fiber A�, the stabilizer of X� is finite.

Then as subvarieties of A[M] := A⇥S · · · ⇥S A (M-copies), we have

(i) X [M] is non-degenerate if �[M] is generically finite and M � dim S.

(ii) DM(X [M+1]) is non-degenerate if � is quasi-finite and M � dim X.

� Part (ii) can be easily deduced from part (i) by doing a base change.
� This theorem turns the question of non-degeneracy into an

algebro-geometry question. Part (i) can be applied to maximal moduli.
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Part 3. Application to universal curve

Cg

✏✏

universal curve

Mg moduli space of curves of genus g with level-3-structure

Over each s 2Mg(Q), the fiber is precisely the curve parametrized by s.

C
[M+1]
g

DM
//

&&

Jac(Cg /Mg)[M]

�
✏✏

Mg

while DM is defined fiberwise as (P0,P1, . . . ,PM) 7! (P1 � P0, . . . ,PM � P0).

Theorem

DM(C
[M+1]
g ) is non-degenerate if M � 3g � 2.
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Part 3. Application to Hilbert scheme
Let r � 1 and d � 1. Fix Ag ✓ PN

Ag
.

Set H = Hilbd ,r (Ag /Ag)�, parametrizing all integral subschemes of relative
dimension r and degree d . Finitely many irreducible components because
finitely many choices for the Hilbert polynomial!

X

##

✓
// H ⇥Ag Ag

✏✏

�
// Ag

✏✏

H // Ag

For each irreducible subvariety S ✓ H, �[M]|X [M]⇥H S is generically finite for
M � 1 (maximal moduli). So:

Theorem

X [M] ⇥H S is a non-degenerate subvariety of A[M]
g ⇥Ag S for M � 1.

This leads to the proof of Uniform Mordell–Lang.
Ziyang GAO (CNRS, IMJ–PRG) UML Cetraro 02/08/2021 28 / 35



Part 4. Uniform Mordell–Lang.

� A abelian variety;

� L an ample line bundle;

� X irreducible subvariety;

� � a finite rank subgroup of A(Q).

Theorem (Mordell–Lang Conjecture, Falting 1991 + Hindry 1988)

(X (Q) \ �)Zar =
n[

i=1
(xi + Bi)
[

S

with Bi abelian subvariety dim Bi > 0 and S a finite set.

Rémond (2000) proved a bound n +#S  c(g,degL X ,degL A,hFal(A))1+rk�.
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Part 4. Uniform Mordell–Lang.

Uniform Mordell–Lang, conjectured by David–Philippon:

Theorem (G’–Ge–Kühne, 2021 preprint)

n +#S  c(g,degL X )1+rk�.

A key notion to study Mordell–Lang is the Ueno locus
[

x+B✓X , dim B>0
(x + B).

Set X � to be its complement. It is known that X � is Zariski open in X .
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Part 4. Uniform Mordell–Lang.

Based on results of Rémond (generalized Mumford and Vojta Inequalities +
�), the theorem is reduced to:

Theorem (Generalized New Gap Principle, G’–Ge–Kühne, 2021 preprint)
Assume X generates A, then

{P 2 X �(Q) : ĥL(P)  c1 max{1,hFal(A)}}

is contained in a proper Zariski closed X 0 ✓ X with degL X 0 < c2. Here
c1 = c1(g,degL X ) > 0 and c2 = c2(g,degL X ) > 0.

Case of X ✓ A being C ✓ J (Abel–Jacobi) is precisely the New Gap Principle
for curves by Dimitrov–G’–Habegger + Kühne.

� Impossible to completely remove the hypothesis “X generates A” or to
directly get a bound on the cardinality, due to hFal(A).
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From curve to high dim subvarieties

Sketch of the proof:

� Reduce to (A,L) principally polarized;

� Construct the desired families using Hilbert schemes;

� Construct/Prove non-degenerate subvariety;

� Apply the height inequality of DGH (for A with large height) and
equidistribution of Kühne (for A with small height); one needs to run a
family version of the Ullmo–Zhang approach to obtain a bound from
equidistribution.
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Part 5. Height Inequality
For � : A! S abelian scheme and X ✓ A a subvariety. For L relatively very
ample on A/S and M very ample on S, a compactification of S.

Then L+M := L⌦ ��M|S gives a compactification A ✓ Pn ⇥ Pm of A.

AN
[N]
// A ✓ Pn ⇥ Pm

A
?�

OO

[N]
// A
?�

OO

To prove the desired height inequality ĥL(x) � chS,M(�(x))� c0, it suffices to
prove: for each N = 2l large enough, there exists a Zariski open dense
UN ✓ X on which

hL+M([N]x) � c1N2hS,M(�(x))� c2(N).

†h
[N]

�
O(1,1)(x) � c1N2hO(0,1)(x)� c2(N).

So want [N]
�
O(1,1)⌦ O(0,1)⌦�c1N2 is big on XN .
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Part 5. Height Inequality
Want [N]

�
O(1,1)⌦ O(0,1)⌦�c1N2 is big on XN . Write d = dim X = dim XN .

By a criterion of Siu, we need to bound ([N]
�
O(1,1))·d · [XN ] from below, and

([N]
�
O(1,1))·(d�1)O(0,1) · [XN ] from above.

Proposition

� If X is non-degenerate, then [N]
�
O(1,1)·d · [XN ]�X N2d for all N.

� If N = 2l , then O(1,1)·(d�1)O(0,1) · [XN ]⌧X N2(d�1).

For ([N]
�
O(1,1))·d · [XN ]: take U ✓ Ssm,an compact. Then restricted to ��1(U) we have �FS > cU� for some cU > 0. So

([N]
�
O(1,1))·d · [XN ] =

Z

XN
[N]

�
��d

FS �
Z

XN\��1(U)
[N]

�
��d

FS

> cd
U

Z

X\��1(U)
[N]���d = cd

U

Z

X\��1(U)
(N2�)�d

= cd
U N2d
Z

X\��1(U)
��d .

If X is non-degenerate, there exists U such that the last integral is > 0.
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Thanks!
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