### RANDOM HYPERBOLIC 3-MANIFOLDS

#### Anna Roig Sanchis, Sorbonne Université

Talk workshopped with Khaterine Merkl, Bratati Som and Leyla Yardimci

TSW 22 - Georgia Tech, July 2022



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

# MOTIVATION

For 2-manifolds...



For 3-manifolds...

L

#### Thurston's geometrization conjecture

 $\mathbb{S}^3,\ \mathbb{E}^3,\ \mathbb{H}^3,\ \mathbb{H}^2\times\mathbb{R},\ \mathbb{S}^2\times\mathbb{R},\ \tilde{SL}(2,\mathbb{Z}),\ \mathrm{Nil},\ \mathrm{Sol}$ 



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# ONE QUESTION TO ASK

#### Given a random hyperbolic 3-manifold...

#### of large volume...

# what is the probability that it has 2000 closed geodesics of length at most 10?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## RANDOM MANIFOLD

#### $\{ \text{ Set of manifolds } \} + \{ \text{ Probability measure } \} = (\Omega, \mathbb{P})$

↓

 $\Rightarrow$  What is the probability that a random manifold has a certain property?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### **CONSTRUCTING RANDOM 3-MANIFOLDS**

# RANDOM TRIANGULATION

Introduced by Bram Petri and Jean Raimbault (2020).

**General idea**: To construct manifolds by randomly gluing polyhedra together along their faces.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

1st attempt:



# RANDOM TRIANGULATION

**General idea**: To construct manifolds by randomly gluing polyhedra together along their faces.

1st attempt:



This doesn't work!

The neighbourhoods of the vertices are not typically homeomorphic to  $\mathbb{R}^3$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

# The model $M_N$

#### Solution:



By gluing them along their hexagonal faces, we obtain:

 $\Rightarrow$  A compact 3-manifold with boundary  $M_N$ ,

where N is the number of tetrahedra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# THE MODEL $Y_N$



If we do this transformation for every tetrahedra in  $M_N$ , we obtain:  $\Rightarrow$  A new 3-manifold with boundary  $Y_N$ , made of octahedra.

# The model $Y_N$ : Hyperbolic metric

We endow each octahedron in  $Y_N$  with the hyperbolic metric of an ideal right-angled octahedron in  $\mathbb{H}^3$ .



 $\triangleright$  With this,  $Y_N$  becomes a complete finite volume hyperbolic 3-manifold with totally geodesic boundary.



#### Given a random hyperbolic 3-manifold

of large volume

 $Y_N$ 

what is the probability that it has 2000 closed geodesics of length at most 10?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### COUNTING CLOSED GEODESICS

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## THE LENGHT SPECTRUM

#### DEFINITION

The length spectrum L(M) of a hyperbolic manifold M is the set of lengths of closed geodesics in M.

 $\triangleright$  We encode  $L(Y_N)$  through the function:

 $L \longrightarrow C_L(Y_N) = # \{ \text{closed geodesics of length} \leq L \text{ on } Y_N \},$ 

where L > 0 and  $C_L(Y_N)$  is a random variable.

### POISSON DISTRIBUTION

#### $\mathbb{P}[\text{there are } \mathbf{k} \text{ events happening in a specified interval } [0, L]]^*$

\* provided that they are independent and occur with a known constant mean rate.

#### DEFINITION

A random variable  $Z : \Omega \to \mathbb{N}$ follows a *Poisson distribution of parameter*  $\lambda > 0$  if for any  $k \in \mathbb{N}$ ,

$$P[Z=k] = \frac{\lambda^k e^{-\lambda}}{k!}.$$



# THEOREM (ROIG SANCHIS)

As  $N \to \infty$ ,  $C_L(Y_N)$  converges in distribution to a Poisson random variable  $C_L(Y)$  with explicit parameter  $\lambda(L)$ .

### THEOREM (ROIG SANCHIS)

As  $N \to \infty$ ,  $C_L(Y_N)$  converges in distribution to a Poisson random variable  $C_L(Y)$  with explicit parameter  $\lambda(L)$ .

$$\lim_{N \to \infty} P[C_L(Y_N) = k] = \frac{\lambda(L)^k e^{-\lambda(L)}}{k!}.$$

### THEOREM (ROIG SANCHIS)

As  $N \to \infty$ ,  $C_L(Y_N)$  converges in distribution to a Poisson random variable  $C_L(Y)$  with explicit parameter  $\lambda(L)$ .

$$\lim_{N \to \infty} P[C_{10}(Y_N) = 2000] = \frac{\lambda(10)^{2000} e^{-\lambda(10)}}{2000!} << \epsilon.$$

### THEOREM (ROIG SANCHIS)

As  $N \to \infty$ ,  $C_L(Y_N)$  converges in distribution to a Poisson random variable  $C_L(Y)$  with explicit parameter  $\lambda(L)$ .

$$\lim_{N \to \infty} P[C_{10}(Y_N) = 2000] = \frac{\lambda(10)^{2000} e^{-\lambda(10)}}{2000!} << \epsilon.$$

#### THANK YOU!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @