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CHAPTER 6

TROPIC TERSECTIONS

6.1. Minkowski weights

All polyhedra are implicitly assumed to be rational.

6.1.1. — LetL ~ Z" be a free finitely generated Z-module and let V = Lg =~ R" be the associated R-vector
space.

Let p be an integer such that 0 < p < n. We define as follows the group F,(V) of p-dimensional weighted
polyhedral subspaces of V: it is generated by closed polyhedra of dimension < p in V with the following
relations:

(i) [P] = 0O for every polyhedron P such that dim(P) < p;
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(i) [P]+[PNH] =[PNV,]+[PNV_] whenever P is a p-dimensional polyhedron in V and V., V_ are
half-spaces such that V, N V_is a hyperplane Hand V=V, U V_.

Note that this second relation is trivial when P ¢ H; on the other hand, if P ¢ H, then dim(P N H) <
dim(P) < p, so that the first relation implies [P N H] = 0 and that second one relation can be rewritten as
[P]=[PNV,]+[PNnV_].!

The submonoid of F,(V) generated by the classes [P] of polyhedral subspaces is denoted by F; (V). Its
elements are said to be effective.

The group Fo(V) identifies with Z(V), the free abelian group on V. We denote by deg : Fo(V) — Z the
unique morphism of groups such that deg([x]) = 1 for every x € V.

6.1.2. — As for any group defined by generators and relations, one defines a morphism A from F,(V) to
a given abelian group A by prescribing A(P) for every polyhedron P of V such that dim(V) < p such that
AP) =0if dim(P) < p and A(P) +A(PNH) = A(PNV,) +A(PNV_) for every hyperplane H of V dividing V
into two closed half-spaces V. and V_.

The simplest example of such a morphism is given by the Lebesgue measure uw on a subspace W of V
such that dim(W) = p. Let indeed C be a compact polyhedron of W; for every polyhedron P of V such
that dim(P) < p, set Ac(P) = uw(C N P). If dim(P) < p, then dim(C N P) < p hence Ac(P) = 0; on the other

tAjouter un dessin avec P, H, V., V_.
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hand, if H is a hyperplane of V dividing V into two closed half-spaces V, and V_, then the additivity of
measure implies that Ac(P) + Ac(P N H) = Ac(P N V,) + Ac(P N V_). Consequently, there exists a unique
morphism of abelian groups Ac : F,(V) — R such that Ac([P]) = uw(P N C) for every closed polyhedron P
of V such that dim(P) < p.

Observe that Ac(S) > 0 for every effective class S € F(V).

6.1.3. — Every closed polyhedral subspace P of V such that dim(P) < p has a class [P] in F,(V): it is the
sum of all polyhedra of any polyhedral decomposition of V. This class is effective and vanishes if and only
if dim(P) < p.

For every element S of F,(V), there exists a polyhedral decomposition € of V and a family (wc)cesw,,
where @), is the set of all polyhedra C € & such that dim(C) = p, such that

S= Z wc[C].

Ce®y

One then says that € is adapted to S.

Let K be a convex compact polyhedron of dimension p contained in a polyhedron C € &,; then one
has Ak(S) = wcAk(C N K). This shows that the family (wc) is uniquely determined by S and the given
polyhedral decomposition. Moreover, S is effective if and only wc > 0 for every C € €. The element wc
is called the weight of Cin S.
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More generally, if S = X ceq, we [C'] is another class §” € F,(V) adapted to a polyhedral decompo-
sition €, then the equality S = S’ is equivalent to the equalities wc = wy, for every pair of polyhedra
(C,C') € €p X €}, such that dim(C N C’) = p.

The union of all polyhedra C € € such that wc # 0is called the support of S, and is denoted by [S|. Itis a
polyhedral subspace of V, and is everywhere of dimension p.

One has [S+ S| € S| U |S|" and |mS| = |S| for every non-zero integer m.

Let A be an abelian group. A similar definition allows to define the group F,(V; A) of polyhedra with
coefficients in A.

6.1.4. — Let us recast the balancing condition in this context. Let S € F,(V) be a weighted polyhedral
subspace of dimension < p.

Let € be a polyhedral decomposition of V which is adapted to S, and let S = }\ccq, wcl[Cl.

Let D € & be a polyhedron of dimension p — 1. Let €p be the set of all polyhedra C € € of which Dis a
face and such dim(C) = p.

For every C € @, let V¢ be the lineality space of (C); since the polyhedron C is rational, the intersection
Lc = Vc N L is a free finitely generated submodule of L of rank dim(C). For every C € ép, there exists
a vector vector vc € Lc N C which generates the quotient abelian group Lc/Lp; such a vector is unique
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modulo Lp. We say that S satisfies the balancing condition along D if one has

We say that S is balanced (in dimension p) if it satisfies the balancing condition along all (p — 1)-
dimensional polyhedra of .

This condition is independent of the choice of the polyhedral decomposition which is adapted to S.

IfS,S" € F,(V) are balanced weighted polyhedral subspace, then so are S + S’ and mS, for every m € Z.

6.1.5. — Let S € Fy(V) and x € V. One says that S is a fan with apex x if there exists a polyhedral
decomposition of V adapted to S of which every polyhedron is a cone with apex x.

Let S € F,(V) let € be a polyhedral decomposition of V which is adapted to S; write S = > wc[C]. Let
x € V and let €y be the set of polyhedra in € which contain x; their union is a neighborhood of x in V.
For every C € @y, let A,(C) = R(C — x) be the cone with apex x generated by C; the set of all A,(C), for
C € Grisafan of V. Then A,(S) = Y ccg, wc[Ax(C)] is a fan with apex x.

Moreover, S satisfies the balancing condition along a polyhedron D € & if and only if A,(S) satisfies the
balancing condition along A,(D). In particular, if S is balanced, then so is A,(S).

Definition (6.1.6). — A balanced p-dimensional weighted polyhedral subspace is called a p-dimensional Minkowski
weight, or a p-dimensional tropical cycle.



274 CHAPTER 6. TROPICAL INTERSECTIONS

They form a subgroup MW, (V) of F,(V).

2

Example (6.1.7). — Let K be a nonarchimedean valued field, let X be a subvariety of G and let p =
dim(X). The tropicalization 9x of X is a polyhedral subspace of R" of dimension p. There exists a
polyhedral decomposition & of R" such that the set €x of all polyhedra in € that meet x is a polyhedral
decomposition of Jx. For C € @x with dim(C) = p, we have defined a multiplicity multg (C); Then
S = Yceg, multy (C)[C] is a weighted polyhedral subspace of V of dimension p with support Jx. It
satisfies the balancing condition, hence defines a Minkowski weight in MW, (R"). By abuse of language,
this Minkowski weight is still denoted by Jx.

Example (6.1.8). — The Bergman fan X.(M) of a matroid, more generally, the tropical linear space associated
with a valuated matroid, is the support of a Minkowski weight (all weights are equal to 1).

Example (6.1.9). — Let n = dim(V); the class [V] € F,(V) is balanced. The morphism Z — MW, (V) given
by a +— a[V] is injective; let us show that it is an isomorphism

Let S € MW, (V) and let % be polyhedral decomposition of V which is adapted to S; write S = }}c wc[C].
Let D € € be a polyhedron of dimension n — 1. There are exactly two polyhedra C,C’ € € containing D
such that dim(C) = dim(C’) = n: the affine space Vp generated by D is a hyperplane that delimits V in

2Define F,(V; A) and MW(V; A) for any abelian group A?
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two half-spaces, one containing C, the other C". The vectors vc and v that appear in the formulation of
the balancing condition can then be chosen opposite, hence wc = we.

Let then C, C’ be arbitrary polyhedra of dimension #n in €. There exists a sequence (C,...,Cy,) of
polyhedra in € such that Cy = C, C,, = C’, and such that for each k € {1,...,m}, Cx—1 and Ci share a face
of dimension n — 1; By what precedes, one then has wc, , = wc,. Consequently, wc = wc, = wc, = -+ =
wc,, = wcr. Let a be this common value.

Finally, one has S = > a[C] = a[V].

Remark (6.1.10). — One can amplify the previous example for Minkowski weights of arbitrary dimension.
Let indeed S € F,(V) be a weighted polyhedral subspace. The support of S, |S], is a polyhedral subspace,
and the weight of S can be viewed as a function from |S| to Z which is defined and locally constant outside
of a (p —1)-dimensional polyhedral subspace of |S|, the union of the polyhedra of dimension < p contained
in |S| in a polyhedral decomposition of V which is adapted to S.

Let P be a polyhedron of dimension p which is contained in |S| and such that |S| is a submanifold at
every point of P. In other words, P is open in |[S|.

If S is balanced, then its weight is constant on P.
WJ\

0( ’Jeij
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Example (6.1.11). — Let L, L’ be free finitely generated abelian groups, let V = Lg and V' = L;. There
exists a unique bilinear map

F, (V) X Fy (V) = Fpig(V X V)

such that ([C],[C’]) — [C x C’] for every p-dimensional polyhedron C in V and every g-dimensional
polyhedron C’in V'. If S € F,(V) and S’ € F;(V’) are weighted polyhedral subspaces, the image of (S,5’)
is denoted by S x S'.

Choose polyhedral decompositions € and €’ which are respectively adapted to S and S’. The family
(Cx '), for C € € and C’ € ¢, is a polyhedral decomposition which is adapted to S X S’: one has

SxS = Z Z wewl,[Cx C']

Ce®, C'e%,

if, for every (C, C’), wc is the weight of C in S and w(,, is the weight of C'in §'.

If S and S are balanced, then so is S X S'. Indeed, let us consider a polyhedron E of dimension p + g -1
belonging to the polyhedral decomposition € X €’. Let us write E = D X D', where D € ¥ and D’ € ¢".

Let C € € and C’ € €’ be polyhedra such that Eis a face of CxC’. ThenD c Cand D’ € C’,sothatDisa
face of C and D is a face of C’. Since dim(D) + dim(D’) = dim(C) + dim(C’) — 1, there are two possibilities:
either dim(D) = dim(C) — 1 and D’ = C’, or dim(D’) = dim(C’) — 1 and D = C.

This already shows that the balancing condition along E is trivial if dim(D) # p and dim(D’) # 4.
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Let us now assume that dim(D) = p (hence dim(D’) = g — 1). By what precedes, the polyhedra of the
torm C x C’, where C € €, and C’ € %L’i of which E is a face are of the form D X C’, where D’ c C’ € %Z].
The balancing condition along E for S x S’ follows from the balancing condition for S" along D’.

Similarly, if dim(D’) = g and dim(D) = p — 1, then the balancing condition along E for S xS’ follows from
the balancing condition for S along D.

6.1.12. — A Minkowski weight is said to be effective if the corresponding weighted polyhedral subspace
is effective. Effective Minkowski weights form a submonoid MW;r (V) of MW, (V).

Proposition (6.1.13). — Every Minkowski weight is the difference of two effective Minkoswski weights.

Proof. — LetS € MW, (V) be a Minkowski weight and let € be a polyhedral decomposition of V which is
adapted to S; for C € &), let wc be the weight of Cin S. Let 4" be the set of all C € &, such that wc < 0;
for C € &/, let Sc = [(C)] be the weighted polyhedral subspace associated with the affine space generated
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by C; it is balanced. Set S’ = } ¢ s (—wc)Sc; is is an effective Minkowski weight. then one has

S+8'= ) welCl+ ) wel(O)]

= > well+ Y (~we) (1(©)] - [C)).
wc>0

Since C C (C), the weighted polyhedral subspace [(C)] — [C] is effective. Consequently, S + S’ is effective;
itis also balanced. Then S = (S +S’) — S is the difference of two effective Minkowski weights, as was to be
shown. O

6.2. Stable intersection

6.2.1. — Let L, L’ be free finitely generated abelian groups, let V = Lg, V' = Ly and let f : V — V' be a
linear map such that f(L) c L".

There exists a unique linear map f.: F,(V) — F,(V’) satisfying the following properties, for every
p-dimensional polyhedron C of V:

(i) If dim(f(C)) < p, then £.([C]) = 0;
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(i) If dim(f(C)) = p, then (LC) is subgroup of rank p of L¢(c), so that the index [L¢(c) : f(Lc)] is finite,
and £(IC]) = [Lyo : FLOKCT)  [fic)]
For every S € F,(V), one has If*(S)| c £(I9]).

Proposition (6.2.2). — If S is balanced, then f.(S) is balanced. In other words, one has f.(MW,(V)) C MW, (V’).

Proof. — Replacing V' be its image, we may assume that f is surjective. There is a polyhedral decom-
position € of V such that the polyhedra f(C), for C € ¥, form a polyhedral decomposition €’ of V’
(corollary 1.8.5).

Let D’ be polyhedron of dimension p — 1 in €’. Let € be the set of all polyhedra C" in €’ such that
dim(C’) = p and D’ ¢ C". For C’ € 6D, define vcp € L, which generates L, /L},, and is such that
x +toc € C for every x € D’ and every small enough positive real number ¢.

Let Zp be the set of all polyhedra D of dimension p — 1 of € such that f(D) = D’. For every D € 9p,
let €p be the set of all polyhedra C € € such that dim(C) = p and D C C. For every D € 9y and every
C € 6p, letvc/p € Lc be a vector that maps to a generator of Lc/Lp and is such that x + tvc € C for every

x € Dand every small enough positive real number ¢t. The balancing condition at D for S writes

Z wcoe/p € Lp.
DE%D
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Since f(C) contains f(D) = D/, the image f(C) of C is either equal to I, or it belongs to . In the latter
case, set C" = f(C). There exists kc € N* such that f(vc/p) = kcvcr; one has

kc = [Le ¢ (Lp + Zf (vc/p))]-

Then
Lo : f(Lo)l = [Le : f(Lp + Zoc)p)]
= [L& : (f(Lp) + Zf (ve/p))]
= [L¢ s (Ly + Zf(vcp)] [Lpy : f(Lp)]
= kc [ .+ f(Lp)],
so that

= [Le : f(Lo))/[Lp « f(Lp)]-
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Modulo L/

1» the vector of L’ responsible for the balancing condition along D’ is equal to

S Y wcliy: fLo)l foc

Ceby | De9y Ce®p
fO)=C

= Z Z Z wc[Lp ¢ f(Lp)]f(vc/p)

C'E%D/ DeIy Ce®p

f(O)=C
— Z [Ly : Lp] Z wcf(ve/p),
DE@D/ CE%D
dim(f(C))=p

hence it belongs to L7,,. Indeed, for every D € 9p, the balancing condition of S along D asserts that
2.cewp, Wcue/p € Lp; applying f, we get X cce, wef(ve/p) € Lf,; on the other hand, if dim(f(C)) < p, then
f(C) c D’ and f(vc)p) € Lb,.

Consequently, f.(S) is balanced along D', as was to be shown. O
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6.2.3. — Letp, qbetwointegers,letS € MW,(V)and S’ € MW (V). Choose polyhedral decompositions &
and €’ of V which are respectively adapted to Sand S’; write S = ZCE% wc[Cland &' = ZCE% wi[Cl.

Let C € 6 and C' € €} be such that dim(CNC’) = p + g — n (in particular, CN C’ # @). This implies
dim(C+C') =n.?

One says that S and S’ intersect transversally along C N C’ if, moreover, CnC #o.

For v € V, define

u(C,C,v) = Z wpwp,[L: Lp + Ly, ],
D,D/

where the sum is over all pairs (D, D’) of polyhedra such that D € &,, D’ € ‘[5[7, CNnC cDnD,
dim(D+D)=nand DN (v+D’) # @. *

This formula implies that for every x € (C N C’)°, one has u(Star,(C), Stary(C’), v) = u(C,C’, v). Indeed,
the pairs of polyhedra that appear in the formula for u(Stary,(C),Starx(C’), v) are precisely of the form
(Stary(D), Starx(D’)) where (D, D’) appear in the formula for u(C,C’, v), and the weights are the same.

Lemma (6.2.4). — a) If S and S’ intersect transversally along C N C’, then v — u(C,C’, v) is constant in a
neighborhood of 0 in V.
%Does it?

4I'd guess one can/could/should write CNC" = DN D’ here. ..
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b) There exists a strictly positive real number & and a polyhedral subspace B of V of dimension < dim(V), and an
integer u(C, C’) such that u(C,C’,v) = u(C,C’) for allv € V=B such that ||v|| < 6.

Proof. — We may assume that 0 € (C N C’)° and replace S, S’ by the associated conic Minkowski weights
with apex at 0. In particular, all polyhedra in & are cones. Moreover, C N C’ is a vector subspace, and
is contained in the lineality spaces of all cones involved. To check the lemma, we also may mod out by
C N C’, which reduces us to the case where C N C’ = {0}.

a) Assume that S and S’ intersect transversally along C N C’. Since CnCis non-empty, by assumption,
it is equal to (C N C’)°, hence it contains 0, so that both C and C’ are linear subspaces.

Let v € V and (D, D’) be a pair of polyhedra that appear in the definition of u(C,C’,v). Since 0 € C, and
0 e CNC’ c D, one has C c D; since dim(D) = p, this implies D = C. Similarly, D’ = C’. Then the sum
defining u(C, C’, v) reduces to wcw, [L : L¢ + L, |; in particular, it is constant.

b) Let S x S’ be the (p + g)-dimensional weighted polyhedral subspace of V X V defined by

SxS = Z Z wcwe,[C x C'].
Ce%, C'e%,

It is balanced (example 6.1.11).
Let f: VXV — V be the linear map given by f(x,y) = x —y. Let us consider polyhedral decompo-
sitions @1 of V and &> of V X V that respectively refine ¢ and %’, and ¥ X €’, and such that f(C x C’)
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is a union of cones in ¥ for every C,C’ € € (corollary 1.8.5). The expression u(C,C’,v) is the coefficient
of the cone [C — C’] = f(C x C’) in the Minkowski weight £.(S x S’). Since this is a Minkowski weight of
dimension 7, there exists a € Z such that f.(Sx S") = a[V]. It follows that u(C,C’, v) = a for every vector v
which does not belong to a polyhedron of € of dimension < n. O

6.2.5. — Let S € MW, (V) and S € MW (W) be Minkowski weights. If C,C’ € € satisfy dim(C) = p,
dim(C’) = g and dim(C + C’) = n, let us denote by u(C, C’) the common value y(C,C’,v) wherev € Vis a
generic vector; in this case, one has dim(C N C’) = p + g — n. Otherwise, let us set u(C,C’) = 0. We thus
define an element of Fy.,_,(V) by

SNeS' = ) u(C,CHCNC]
c,c

In particular, it is 0 if p + g < n. Moreover, one has [SNg S’| C [S| N [T

This element is called the stable intersection of S and S’. It does not depend on the chosen polyhedral
decomposition € and is bilinear in S and S'.

Since multiplicities u(C,C’) can be computed after passing to links, one also has Star,(S Ngt ') =
Stary(S) Ngt Stary(S’) for every x € V.

At this point, it is not so clear that S N S belongs to Fp, 5, (V), because we have not yet proved that the polyhedra
[C N C'] involved in its definition have dimension p + q — n, if u(C,C’) # 0. (Does it even belong to F.(V)?)
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6.2.6. — LetS € MW,(V) and S" € MW,(V). According to ( ), one says that |S| and
|S’| intersect transversally if dim(|S| N |S’|) = p + g — n and if there exist polyhedral decompositions € of |S|,
and €’ of |S'|, such that for every polyhedron D satisfying dim(D) = p+g—n and D C [S|N|S’|, there exists
a unique pair (C, C’) of polyhedron in & such that dim(C) = p and C C |S|, dim(C’) = g and C’ € |S'|, and
DcCnC.

Proposition (6.2.7). — If Sand S’ intersect transversally, then S Ngt S" € MWy, (V) and |S N S| = [S| N [S'].

Proof. — Fix polyhedral decompositions € and €’ adapted to S and S’ that attest of their transversal
intersection; let (wc), resp. (w(,) be the weights of S, resp. of S’. For every pair (C,C’), where C € €}, and
C’ € 6, are such that wc # 0, w& # 0and CNC’ # @, one has dim(CNC’) = p + g —n, and the definition of
u(C,C’) shows that u(C,C’) = wcwg,. In fact, the sum defining u(C, C’, v) is reduced to (C, C’), for every
small enough v € V. This already proves that S Ng; S’ belongs to F,4,-,(V) and that [SNg S| = |S| N [S'].

Let us prove the balancing condition. By construction, |S Ng S’| is a union of polyhedra of dimension
p +q—n of the form CNC’, for C € ¥ and C’ € €’, and they only meet along faces which are of the form
D xC’, or C x D/, where D is a codimension 1 face of C, or D’ is a codimension 1 face of C’. Consequently,
the balancing condition needs only be checked along such faces. We thus assume that E = D N C’, where
D € €,-1 and C’ € G, the other case being similar by symmetry. The polyhedra of S N S’ that border E
are of the form C N C’, where C € €, contains D.
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For every such C, fix a vector vc/p € Lc which generates Lc/Lp and which is such that x + tvc)p € C for
every x € D and every small enough positive real number ¢. The balancing condition for S along D writes

2.c wcue)p € Lp.
Let us fix a normal vector v& ncprer € Lcncr associated with the face D X C’ of C x C’. There exists a

’
CNC’/DNC’
along D x C" writes Y. u(C, C')pcoc/p € Lp. To conclude the proof, since u(C,C’) = WCW, [L:Lc+ L¢],
it now suffices to prove that pc[Lc + L] is independent of C.

One has

unique integer pc € N*such thatv = pcvc/p (mod L)p, so that the balancing condition for SN S’

Lc NLe = Lener = Lone + Zocner/pners
hence
[(Lc NLer) + Lp = Lp + Zucne/pner = Lp + Zpcoe)p.
Since L¢ = Lp + Zocp, it follows that

pc =[Lc:(LcNLe)+Lp] =[Lc+ Lo : Lo+ Lp]

and
p(j[L :Lc+Lo]=[L:Lc +Lpl.
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Proposition (6.2.8). — a) There exists a polyhedral subspace B of V such that dim(B) < n and such that for every
v € V =B, the Minkowski weights S and S’ + v intersect transversally.
b) If n = p + q, then deg(S Nst (S’ + v)) is independent of v € V =B.

Proof. — We fix polyhedral decompositions € and €’ of V respectively adapted to Sand S'.

Let .7 be the set of all pairs (C, C") such that C € 6, C’ € ‘[5{7, wc # 0, w, # 0. Let (C,C) e s. ForveV,
one has CN (v +C’) # @ifand only if v € C — C’. Let By be the union of all d(C — C’), for (C,C’) € .# such
that dim(C —C’) < n. Let (C,C’) € # be such that dim(C —C’) = nandlet J(C-C") = (C-C)=(C-C")°;
itis a polyhedron of dimension < n. If v ¢ (C—-C’),thenCnN(v+C') = g;ifv € (C-C’)°, thenv € C-C,
hence C N (v + é’) # @. Let By be the union of all (C — ), for (C,C’) € .# such that dim(C — C’) = n. Let
B = B; U B,. This is a polyhedral subspace of V of dimension < n.

Let v € V=B. By construction, S and S’ + v intersect transversally along C N (C’ + v), for every pair
(C,C’) such that CN (C’' + v) # @. This proves that S and S’ + v intersect transversally.

Assume that p +¢ = n. Let U be a connected component of V=B such that 0 € U. Fix (C,C’) € .¥. When
v € U, the pairs (D,D’) € .# such that v € DN (v + f)’) remain the same, and in fact, v is their unique point
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of intersection. This gives

deg(S N (v +5)) = > wpw[L:Lp+Lp]
O,D)

= Z Z wpwly[L : Lp + Liy]

(CC) (DD)
DND’=CnC’

= ), uC,C)
(CC)
= deg(SNst S').

This implies the claim. O

Theorem (6.2.9). — Let p, q be integers such that p + q > n. Forany S € MW, (V) and S" € MW,(V), one has
SNg S € wa+q—n(v)-

Proof. — Let E be a polyhedron of dimension p + g — n — 1 along which we wish to check the balancing
condition for S Ng S’. Choosing an origin in E and replacing S and S’ by the fan-like Minkowski weights,
we can assume that there are polyhedral decompositions of V adapted to S and S/, all polyhedra of which
are cones. We may also quotient by E and reduce to the case where E = {0}; thenp + g =n + 1.
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We will first prove that S Ngt S’ = recc(S Ngt (v + S’)) for all v € V. It suffices to prove this when S and v + S’
intersect transversally. If C and C’ are cones such that C N (C’ + v) # @, then one has recc(C N (C' + v)) =
CNC. (Let x € CN(C' +v); then for every u € CNC’, one has x + u € CN (C’' + v). On the other
hand, if x + tu € CN (C' +v) for every t € Ry, then u € CN C/, as one sees letting t — .) By
transversality, dim(CNC’) = dim(CN(C’ +v)) = 1. Multiplicities add up as well. This implies the equality
recc(SNgt (S" +v)) = SNg S'. Since S and v + S’ intersect transversally, one has S Ng; (8" + v) € MW (V). To
conclude the proof of the theorem, it thus follows to establish the following lemma. O

Lemma (6.2.10). — Let S € MW1(V). Then recc(S) € MWq(V).

Proof. — Let &€ be a polyhedral decomposition of V which is adapted to S; for C € €1, let wc be the weight
of Cin S.
Let C € 61, so that Lc = Z; we fix arbitrarily one generator vc of Lc. There are three possibilities.

— Either there exist xc, yc € Csuch that C = [xc; yc], chosen such that yc € xc+R,vc. Thenits recession
cone is 0;

— Or there exists x € V such that C = xc + Ryvc or C = xc — Ryvc. Up to changing vc into —vc, we
assume that we are in the former case. Then recc(C) = R, v¢;

— Or there exists xc € V such that C = xc + Roc; then recc(C) = Roc.
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Let ‘[512, ‘[511, ‘Iﬁf be the corresponding subsets of €. The recession fan of S is given by the sum

recc(S) = Z we[Ryoc] + Z wc[Roc].

Ce®l Ce®)
The balancing condition at the origin for recc(S) is thus the relation

Z wcoc = 0.

1
Ce‘{g1

We now write the balancing condition for S at a point p € 6. Let 6, be the set of C € €7 such that
peC. IfCe &1 then p = xc; moreover, vc is an admissible normal vector for (p, C). Otherwise, C € ‘[512
and there are two possibilities:

— Either p = xc; then vc is an admissible normal vector for (p, C);
— Or p = yc and then —vc is an admissible normal vector for (p, C).

The balancing condition at p thus writes

Z wcoc + Z wcoc — Z wcoc = 0.

Ce%] Ce‘{gl2 Ce‘c‘?l2
xXc=p xXc=p yc=p
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Adding all of these relations, for all p € &), we obtain

0= Z wcoc + Z wcoc — Z WwCoc = Z wcoc,

Ce®] Ce‘c?l2 Ce‘[glz Ce®l

as was to be shown. O

Proposition (6.2.11). — The stable intersection product endowes the abelian group MW(V) = @p MW, (V) with
a ring structure. The neutral element is [V].

Proof. — It follows from the definitions that the stable intersection product is commutative and bilinear.
It also follows from the definitions that SN [V] = S.

Let us check associativity. LetS,S’, S” be three Minkowski weights of dimensions p, g, r and let us prove
that (SNst S’) Nt S” = SNt (" Nt S”). Let us first treat the case where these Minkowski weights intersect
transversally, in the sense that CNC'E” + @ for every C € 6,,C’ € ‘[5{7, C"” € 6, such that wc, w&,, wg #0
and CNC'NC” # @. If this holds, then S’ and S” intersect transversally and

S’ N S” = Z wlwl,[L : Lo + Ler][C N C”].

™
\ R Wy w1 = MW
M“ M= M % A
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Moreover, S and S’ N S” intersect transversally and

S mst (S/ mst S”)

= Z wewl,wl,[L: Lo + Les[L s Le + (Lo N Ler)] [C N C N C”].
c,c,cr

By symmetry, one also has

(S mst S/) mst S”)

= Z wewpwiy[L: Le + Lo][L : (Le N L) + Ler] [CN C N 7.
c,c,cr

It thus suffices to prove the following equality of indices:
[L:Lor+Ler][L:Le+ (Lo NLer)] =[L: Le + Ler][L: (Le N L) + Ler].
On the other hand, one has

[L:Lc+ (Lo NLer)] = [L:Le+Le][Le + Lo : Le + (Ler N Lev)]
=[L:Lc+Lo][Le : (LeNLer) + (Lo N Ler)],
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so that

[L:Lc + Ler][L: Le + (Lo N Ler)]
=[L:Le +Le][L: Lo + Ler] [Le s (Le N Ler) + (Lo N Ler)],

an expression which is invariant when one exchanges the roles of C and C”. Therefore,
[L:Lo+Ler][L:Le+(LooNLer)] =[L: Lo+ Le][L: Lo + (Lo N Le)],

as was to be shown.

In the general case, we consider arbitrarily small vectors v € V, w € V such thatS, S’ + v and S” + w
intersect transversally. If C,C’,C” are polyhedra of dimensions p, g, 7, the multiplicity u(C,C’,C") of
[CNC'NC"]in (SNgS") Nt S” is a sum of multiplicities u(D, D', D”; v, w), where CNC'NC” =DND’'ND”
and D,D’ + v, D” + w intersect transversally, associated with (S Ng (S” + v)) Ngt (S” + w). By the case of
transverse intersections, they coincide with the multiplicity of [CNC'NC”]in SN ((S'+v) Nt (8" +w)). O

Example (6.2.12) (Unfinished). — Assume that L = Z" and let (ey, ..., e,) be its canonical basis; set also
ep = —ey—---—ey. Forl ¢ {0,...,n}, let C; be the cone generated by the vectors e;, for i € I; one has
dim(Cy) = Card(I). Note that C;NCj = Cinjfor 1] € {0, ..., n}, so that the set of cones (Cy)ic(o,... 4} is a fan
in R".
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so that

[L:Lc +Ler][L: Le + (Lo N Ler)]
=[L:Lco+Lc][L:Lc+Ler][Ler: (Le N Ler) + (Ler N Ler)],

an expression which is invariant when one exchanges the roles of C and C”. Therefore,
[L:Lco+Ler][L:Le+ (Lo NLer)] =[L: Lo + Le][L : Ler + (Lo N L),

as was to be shown.

In the general case, we consider arbitrarily small vectors v € V, w € V such thatS, S’ + v and S” + w
intersect transversally. If C,C’,C” are polyhedra of dimensions p, g, r, the multiplicity u(C,C’,C”) of
[CNC'NC"]in (SNstS") Nt S” is a sum of multiplicities u(D, D', D”; v, w), where CNC'NC” =DND’'ND”
and D,D’ + v, D” + w intersect transversally, associated with (S Nst (8" + v)) Ngt (S” + w). By the case of
transverse intersections, they coincide with the multiplicity of [CNC'NC”]in SN ((S"+v) Nst (S” +w)). O

Example (6.2.12) (Unfinished). — Assume that L = Z" and let (eq, .. ., e,) be its canonical basis; set also
ep = —e1—---—ey. ForI ¢ {0,...,n}, let C; be the cone generated by the vectors ¢;, for i € I; one has
dim(C;) = Card(I). Note that C;NCj = Cinjfor L] € {0, ..., n}, so that the set of cones (Cy)icyo,... ) is a fan
in R”.
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For p € {0,...,n}, we define an effective weighted polyhedral subspace of dimension p by

s,= > [al.

Card(I)=p

(This is a tropical linear space of dimension p.) One has L¢; = )1 Ze;. It is balanced. The only polyhedra
along which the balancing condition is not obvious are of the form Cj, where Card(J) = p — 1, and its

adjacent polyhedra are of the form Cj,(;, fori € {0,...,n} =]; one may take ¢; as a normal Vector The MZ
balancing condition along Cj then writes Nﬁ 573 ot /(M\me L/ j
/)ﬂ« o ,_n
Z e = Z ei_ze]’GLC]

i€{0,...,n}=J i€{0,...,n} j€J )‘L} (,4\) - M{_ (’.., . { /A))

since ),/ ,e; =0

1 . L) n:= /L rse -

Let us prove that Sy Nst Sg = Sp+g-n.- % N 1 =<3 .P:) '
L, e

.

Proposition (6.2.13). — Let S € MW, (V) and let S € MW, (V). If A € MW,,(V X V) is the diagonal, then one has

A Ngy (S X S/) =S mét S.
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6.3. The tropical hypersurface associated with a piecewise linear function

6.3.1. — Let f : R" — Rbea continuous piecewise affine function and let € be a polyhedral decomposition
of R" which is adapted to f. We assume that f has integral slopes, in the sense that for every C € &, there
exists an linear function ¢c € LY such that f(y) — f(x) = ¢c(y — x) for every x,y € C.

Let x € R" and let D be the unique polyhedron of € such that x € D. If dim(D) # n -1, set ws(D) = 0.
Otherwise, if dim(D) = n — 1, then D is a face of exactly two n-dimensional polyhedra C*,C™ in €; one
hasD=C"*nC".

Fix a point x € D.

The quotient group Z" /Lp is isomorphic to Z, and it admits a unique generator which is the image of
an element v* such that x + tv* € C* for every small enough t € R,.

Define v~ similarly. In fact, one has v~ = —v™.

By assumption, f is affine with integral slopes on C*; let ¢* : V — R be the unique linear map such that
fly)— f(x) =9 (y —x)if x,y € C". We define similarly ¢~.

We then set

wp =@ (") + ¢ (v7).
and define

(f)= > wolD.

DE%n_l
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Proposition (6.3.2). — Let f be a piecewise linear function f with integral slopes on V.

a) The weighted polyhedral subspace J(f) is a Minkowski weight of dimension n — 1 adapted to the polyhedral
decomposition €.

b) Its support |d(f)| is the non-linearity locus of f.

c) If f is convex, then d(f) is effective.

Proof. — We have to prove that J(f) statisfies the balancing condition.

Let E € € be a polyhedron of dimension n — 2. Fix a point x € E and consider a 2-dimensional plane
through x which is transverse to E. We get a fan in R? which reduces the verification of the balancing
condition to the case n = 2, for E = {0}.

The 1-dimensional polyhedra that contain the origin are (chunks of) rays D1 = Ryus,..., D, = Ryuy,
where uy, ..., u, € Z? are primitive vectors.> The balancing condition at 0 is the equation

n
Z wp,Uj = 0.
j=1

Up to a reordering of the u;, unique modulo cyclic permutations, the 2-dimensional polyhedra that
contain the origin are (chunks) of sectors C; = cone(u1, u2),...,Cy-1 = cone(uy,, u,),C, = cone(uy, u).

5Picture?
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Set ¢(x) = f(x)— f(0); for every j, let ¢; be the linear function on R? such that f(x) = f(0) + ¢;(x) for every
point x € C; which is close to 0.
If p is the rotation of angle 71/2, we then may take D;r = Cjand D].‘ =Cj1, v;.r = p(u;) and v = p‘l(u]-) =

—UJJF. Then wp, = p;(p(u))) — j-1(p(uy)) forall j € {1,...,n}.
We thus have

Z Wp;Uj = Z @j(p(uj))u; — Z i-1(p(u)))u;
j=1 7= =1
- Z @i(p(u))u; = Z @j(p(j+1))ujr1.
j=1 j=1

The continuity of f along the ray u; writes ¢;(u;) = ¢@(u;) = ¢@j-1(u;). Let aj,b; € R be such that
p(u]) =ajuj+ b]-u]-+1. Then
Pi(p() = ajp;(up) + bjp(up) = a;p(up) + bjp ().

Similarly, p(u+1) = aj_1uj-1 + bj_1uj, hence

pilp(uj+1) = aj19(wj-1) + bj-19j(uj) = aj-1p(wj-1) + bj—1pu;).
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Finally,

n

D woup = ) (ajpuy) + b)) - (aj19(uj-1) + b)) = 0.
=

j=1
This proves that df belongs to MW,,_1(V).
By construction, f is locally differentiable on V= Jpcg,_, D. For D € 6,1 and x € D, observe that f is

differentiable on a neighborhood of x if and only if wp = 0. Consequently, the open non-differentiability
locus of f is equal to |J(f)].

6

a) b) With the previously introduced notation, it suffices to prove that wp > 0 for every D € 6,,_1.
For every positive real number ¢, one has

twp = @ (tv" )+ @ (tv7) = (f(x +tv") = f(x)) + (f(x — tv") = f(x))
if t is small enough. By convexity, one has
filx) = % (f(x+to") + f(x —to)),
so that twp > 0; if t > 0O, this implies wp > 0. O

¢Some points to check. . .
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Proposition (6.3.3). — The map f — d(f) from the abelian group PL(V) of piecewise linear functions on V with
integral slopes to the group MW,,_1(V) of (n — 1)-dimensional Minkowski weights is a surjective morphism of
groups. Its kernel is the subgroup of affine functions with integral slopes on V.
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Proof. — O

Theorem (6.3.4). — Let f be a piecewise linear function with integer slopes and let S € MW, (V). The Minkowski
weight d(f) Nt S can be computed explicitly as follows. Let € be a polyhedral decomposition of V which is adapted
to S and such that f|c is affine, for every C € €. For every D € €),_1, let €D be the set of C € €, such that D C C.

For C € 6p, let vc/p € Lc be a vector that generates Lc /Lp and such that x + tvcp € C for every x € Dand every
small enough positive real number t. Set

Wl = Z wc(lim f(x +tocp) — f(x) |

t—0+ t
Ceép -

Then 3(f) NS = ¥, w)[D].

Theorem (6.3.5) (Projection formula). — Let u : L — L’ be a morphism of free finitely generated abelian groups,
let V.= Lg and V' = L. Still write u for ug : V. — V. Let S be a Minkowski weight on 'V and let f be a piecewise
linear function on V'. One has de M W

w (U (f) Nat S) = f Ngt 1(S). P

e Y S &
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Remark (6.3.6). — There should be a projection formula of the form
u(S Nst u*(S')) = u.(S) N S’ M )\/
“htn
if u : L — L’ is a morphism of free finitely generated abelian groups. M A/ Y V

If u is surjective, thenL ~ L’ X L”, and u*(S") =S’ m L".
Otherwise, one can/needs to define u* by stable intersection, say u*(S') = p.(I'y Nst (Vx S’)) where
I'y, = (id Xu).(V) is the graph of u and p : V X V' — V is the first projection.

—_ — y,
6.4. Comparing algebraic and tropical intersections / WFF”@W.)

Ve 6.4.1\. — Let X and Y be subvarieties of Gn", respectively defined by ideals Iand J of K[T#!, ..., T/, Their
intersection X N'Y is the subvariety of Gn," with ideal I +]J. M
Note that in general, X N'Y might not be integral. It may have frm'l‘l'rg@é/ component! It also may be
non-reduced, for example if Y is a hyperplane tangent to X at some point a: the tangency w1117then be
Weﬂec’ced by the fact that the local ring Oxny,, contains non-trivial nilpotent elements.
Qo By a general inequality in algebraic geometry, one has X

A onf \wﬂogﬁo (L MJLQ) =57 dima(XNY) > dimg(X) + dima(Y) - 7

b, (FN]) £ Gdim, (X) v diw (Y)
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foreverya € XN 51 lity is an equality in certain cases, for example when X and Y are smooth
at a, and T,X + T,Y = T,Gn" (then, we say that the intersection is transverse around a). But the strict
inequality may ho in the trivial case where X =Y, but also in less obvious cases.

We are interested in computing the tropicalization of XNY. How does it compare to the intersection Ix N
Iy, beyond the obvious inclusion? This guess is however often too large, for example if 7x = Fy? Then
how does it compare to the stable intersection Ix Ngt Iy? While that second guess is often too small, it is
indubitably better, since we will show that it suffices to translate “generically” Y in Gp,", without changing
its tropicalization, to make

it correct. 2
We start with the case of Where the picture is particularly nice. z X

Lemma (6.4.2). — Let X, Y be subvarieties of Gp,". x

a) Let x € R". If Ix and Iy meet transversally at x, then

Stary(Fxny) = Starx(Ix Nst Ty).

b) If 9x and Iy intersect transversally everywhere, then f\/

%(QY — 95( Mst Iy.

Proof. — Let],] be the ideals of X, Y in K[Tz—“l, - By assumption, there exists polyhedra C and C’'
of the Grobner polyhedral decompositions of 7x and Jy respectively such that x € C N C’; moreover,
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foreverya € XN lity is an equality in certain cases, for example when X and Y are smooth
at a, and T,X + T,Y = T,Gn" (then, we say that the intersection is transverse around a). But the strict
inequality may ho in the trivial case where X =Y, but also in less obvious cases.
We are interested in computing the tropicalization of XNY. How does it compare to the intersection Ix N
v, beyond the obvious inclusion? This guess is however often too large, for example if 7x = 9y? Then
how does it compare to the stable intersection Ix Ngt Iy? While that second guess is often too small, it is
indubitably better, since we will show that it suffices to translate “generically” Y in G,", without changing
its tropicalization, to make it correct.
We start with the case of transversal tropical intersections, where the picture is particularly nice.

Lemma (6.4.2). — Let X, Y be subvarieties of Gm".

a) Let x € R". If Ix and Ty meet transversally at x, then
Stary(Ixny) = Stary(Ix Nst Iy).
b) If 9x and Iy intersect transversally everywhere, then
IXnY = IX Nst T

Proof. — Let],] be the ideals of X, Y in K[Tiﬂ, N = By assumption, there exists polyhedra C and C’
of the Grobner polyhedral decompositions of x and Jy respectively such that x € C N ¢’; moreover,
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dim(C + C’) = n. ]n particular, W = Star,(9%) and W’ = Star,(Jy) are vector spaces, with a constant
multiplicity is constant, and W + W = R". Let p = dim(W), g = dim(W’); let W’ = W N W', so
that » = dim(W”) = p + g — n. Choose a rational basis of R" as follows, starting from a basis of W”,
and extending it to rational bases of W and W’. This shows that there exists a rational isomorphism
@ : R" — R" such that p(W”) = R” X {0} x {0}, (W) = R" X RP7" x {0} and p(W’) = R" x {0} x R77".
We may also assume that ¢(Z") c Z". Let then f : G, — Gp," be the morphism of tori whose action on
cocharacters is given by ¢. It is finite and surjective.

Let X’ = f(X) and Y’ = f(Y); by proposition 3.7.1, one has Ix = ¢.(9%), Ty = @.(Fy) and Ixny =
~ @«(Ixny). Since . f >a linear isomorphism, we may assume, for proving the lemma that %15 the identity.
7 hre .\
v Let I, :®W k[T+_1H, .., THand ], =]N k[Tﬂ}l, e Tﬂ] By lemma 3.8.4, one ha I - k[T 1— ,...]and
N kA=, codimdTr); s1m11ar1y@ Jx - k[T, ... ] and multg, (C’) = codim(]).
+ We now observe that ERD)
VAR *
e \ in(1+]) = iny(I) + ine (),
and that h
in (I+]) Nk[T=L, ..., TE ] =1, + ]y,
’Oops! That proposition says nothing about multlphcmes
\:{\JV\MD\Q/ \ﬂ/ STl 5 \)\f\/% TQ/\/ eﬂQ\f
\\/ N )

bswww&? A Vk*

/"
—
e
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so that

KT, Tl @+ 00) = (KT, T /L) @ (KT, -, T3 /0)

has dimension multg, (C) multg, (C’). The same result holds for every other point in C N C’. This shows
that CNC’ C Ixny contains a polyhedron of the Grobner decomposition of X N'Y, and that its multiplicity
is the product of the multipl¢ities of C and C’. This concludes the proof of the first assertion of the lemma,

and the second follows directly from it. O
v 6.4.3. — Let K be a valued field. Let L = K(s) be the field of rational functions in one indeterminate s
o  with coefficients in K, endowed with the Gauss absolute value. LetI C L[Ti—“l, ..., T¥1] be an ideal and let

. EX=VD.

' A / Q/f - Consider K(s) as the field of functions of the affine line A'. The Zariski closure 2 of X in Gp,, is defined
; by the ideal .# = K[s][T*!] N 1. For every point a € K, or rather in a valued extension K’ of K, we can then
A consider the ideal .7, of K’[T*!'] deduced from I by setting s = a and the subscheme &, = V(.%;) of Gy,
=W (6 %\ The relations between X and the schemes 2, its specializations, are well-studied in algebraic geometry.
In fact, 2 is a flat Al-scheme, and ;, is its fiber. In particular, the schemes &, are equidimensional if X is,
with the same dimension.
We first prove that, up to finitely many obstructions, the schemes %, have the same tropicalization as X

provifedv(af)y\zg(s_)_= 0. %® runodt T g ]g/
L. KX C ﬁ\ > &Iw\

AN

A
WQ/A

T (sT-1)
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JK/ *
All this should be rewritten replacing A with A", possibly even any integral variety. \j@ C [ T

= W}({ﬂm)éé’/[}_:@’
Proposition (6.4.4). — There exists a finite subset B of k such that for every a in a valued extension K’ of K (wit
residue field k') such that v(a) = 0 and a & B, one has the equality of initial ideals in,(I)« k’'(s) = iny(F) - k'(s),

for every x € R". In particular, for all such a, one has an equality of tropicalizations Ix = Tz,
K

Proof. — We start with a few remarks.

Let (fi,..., fu) be a finite family of elements of K(s)[T*!] generating I. Let h; € K[s] be a non-zero
polynomial such that ki f; € K[s][T*!] for every i € {1,...,n}. Replacing f; with hyf; for every i, we
assume that f; € K[s][T*!] for every i. Then the ideal (fi,..., fu) of K[s][T*!] is contained in .7. Let
also (g1,...,gp) be a generating family of .# in K[s][T*!]. For every j € {1,...,p}, there exist Laurent
polynomials kj1,..., kjm € K(s)[T*!] such that g; = X1, kjifi. Let h € K[s] be a non-zero polynomial
such that hk;; € K[s][T*!] for all i,j. We then obtain inclusions h.% C (fi,..., fu) C & of ideals of
K[s][T*!]. In particular, for every a in a valued extension K’ of K such that /(a) # 0, the ideal .7, of K’[T*!]
coincides with the ideal generated by fi(a;T),..., fu(a;T).

Let f € K[s][T*']; write f = 2imes(f) fm(s)emT™, where ¢y, € K* and f,, € K[s] is a polynomial of
Gauss-norm 1. The reductions f, of the polynomials f,, are non-zero polynomials in k[s]. Let & be their
product. By construction, for every a in a valued extension K’ of k such that v(a) = 0 and h(a) # 0,
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one has v(fu(a)) = 0 for all m € S(f). It follows that for every such a, one has 74(f) = 7.(f(a;T)) and
iny(f)(a; T) = iny(f(a;T)) for all x € R".

Assume that (fi, ..., fim) contains a basis, a uniform Grobner basis of I, and a tropical basis. Assume
also that the coordinates of x belong to the value group of K. Then the initial ideal in,(I) is generated by
the initial forms in,(f;), for i € {1,...,m}. Up to the exceptions described above, the initial ideal iny(I)z is
generated by the initial forms in,(fi(a; T)), hence is contained in the initial ideal in,(.%,). Conversely,... O
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