TOPICS IN TROPICAL GEOMETRY

Antoine Chambert-Loir

Cours du 28 mai : polycopié annoté en même temps que la discussion orale, avec ajouts et digressions

CHAPTER 6

TROPICAL INTERSECTIONS

6.1. Minkowski weights

All polyhedra are implicitly assumed to be rational.

6.1.1. — Let $L \simeq \mathbb{Z}^n$ be a free finitely generated **Z**-module and let $V = L_{\mathbb{R}} \simeq \mathbb{R}^n$ be the associated **R**-vector space.

Let p be an integer such that $0 \le p \le n$. We define as follows the group $F_p(V)$ of p-dimensional weighted polyhedral subspaces of V: it is generated by closed polyhedra of dimension $\le p$ in V with the following relations:

(i) [P] = 0 for every polyhedron P such that dim(P) < p;

(ii) $[P] + [P \cap H] = [P \cap V_+] + [P \cap V_-]$ whenever P is a *p*-dimensional polyhedron in V and V_+, V_- are half-spaces such that $V_+ \cap V_-$ is a hyperplane H and $V = V_+ \cup V_-$.

Note that this second relation is trivial when $P \subset H$; on the other hand, if $P \not\subset H$, then $\dim(P \cap H) < \dim(P) \leq p$, so that the first relation implies $[P \cap H] = 0$ and that second one relation can be rewritten as $[P] = [P \cap V_+] + [P \cap V_-].^1$

The submonoid of $F_p(V)$ generated by the classes [P] of polyhedral subspaces is denoted by $F_p^+(V)$. Its elements are said to be *effective*.

The group $F_0(V)$ identifies with $\mathbf{Z}^{(V)}$, the free abelian group on V. We denote by $\deg : F_0(V) \to \mathbf{Z}$ the unique morphism of groups such that $\deg([x]) = 1$ for every $x \in V$.

6.1.2. — As for any group defined by generators and relations, one defines a morphism λ from $F_p(V)$ to a given abelian group A by prescribing $\lambda(P)$ for every polyhedron P of V such that $\dim(V) \leq p$ such that $\lambda(P) = 0$ if $\dim(P) < p$ and $\lambda(P) + \lambda(P \cap H) = \lambda(P \cap V_+) + \lambda(P \cap V_-)$ for every hyperplane H of V dividing V into two closed half-spaces V_+ and V_- .

The simplest example of such a morphism is given by the Lebesgue measure μ_W on a subspace W of V such that $\dim(W) = p$. Let indeed C be a compact polyhedron of W; for every polyhedron P of V such that $\dim(P) \leq p$, set $\lambda_C(P) = \mu_W(C \cap P)$. If $\dim(P) < p$, then $\dim(C \cap P) < p$ hence $\lambda_C(P) = 0$; on the other

 $[\]overline{^{1}}$ Ajouter un dessin avec P, H, V₊, V₋.

hand, if H is a hyperplane of V dividing V into two closed half-spaces V_+ and V_- , then the additivity of measure implies that $\lambda_C(P) + \lambda_C(P \cap H) = \lambda_C(P \cap V_+) + \lambda_C(P \cap V_-)$. Consequently, there exists a unique morphism of abelian groups $\lambda_C : F_p(V) \to \mathbf{R}$ such that $\lambda_C([P]) = \mu_W(P \cap C)$ for every closed polyhedron P of V such that $\dim(P) \leq p$.

Observe that $\lambda_{C}(S) \ge 0$ for every effective class $S \in F_{p}^{+}(V)$.

6.1.3. — Every closed polyhedral subspace P of V such that $\dim(P) \le p$ has a class [P] in $F_p(V)$: it is the sum of all polyhedra of any polyhedral decomposition of V. This class is effective and vanishes if and only if $\dim(P) < p$.

For every element S of $F_p(V)$, there exists a polyhedral decomposition \mathscr{C} of V and a family $(w_C)_{C \in \mathscr{C}_p}$, where \mathscr{C}_p is the set of all polyhedra $C \in \mathscr{C}$ such that $\dim(C) = p$, such that

$$S = \sum_{C \in \mathscr{C}_p} w_C[C].$$

One then says that \mathscr{C} is adapted to S.

Let K be a convex compact polyhedron of dimension p contained in a polyhedron $C \in \mathcal{C}_p$; then one has $\lambda_K(S) = w_C \lambda_K(C \cap K)$. This shows that the family (w_C) is uniquely determined by S and the given polyhedral decomposition. Moreover, S is effective if and only $w_C \ge 0$ for every $C \in \mathcal{C}_p$. The element w_C is called the *weight* of C in S.

More generally, if $S' = \sum_{C' \in \mathscr{C}'_p} w'_{C'}[C']$ is another class $S' \in F_p(V)$ adapted to a polyhedral decomposition \mathscr{C}' , then the equality S = S' is equivalent to the equalities $w_C = w'_{C'}$ for every pair of polyhedra $(C, C') \in \mathscr{C}_p \times \mathscr{C}'_p$ such that $\dim(C \cap C') = p$.

The union of all polyhedra $C \in \mathcal{C}$ such that $w_C \neq 0$ is called the *support* of S, and is denoted by |S|. It is a polyhedral subspace of V, and is everywhere of dimension p.

One has $|S + S'| \subset |S| \cup |S|'$ and |mS| = |S| for every non-zero integer m.

Let A be an abelian group. A similar definition allows to define the group $F_p(V; A)$ of polyhedra with coefficients in A.

6.1.4. — Let us recast the balancing condition in this context. Let $S \in F_p(V)$ be a weighted polyhedral subspace of dimension $\leq p$.

Let \mathscr{C} be a polyhedral decomposition of V which is adapted to S, and let $S = \sum_{C \in \mathscr{C}_p} w_C[C]$.

Let $D \in \mathscr{C}$ be a polyhedron of dimension p-1. Let \mathscr{C}_D be the set of all polyhedra $C \in \mathscr{C}$ of which D is a face and such dim(C) = p.

For every $C \in \mathcal{C}$, let V_C be the lineality space of $\langle C \rangle$; since the polyhedron C is rational, the intersection $L_C = V_C \cap L$ is a free finitely generated submodule of L of rank dim(C). For every $C \in \mathcal{C}_D$, there exists a vector vector $v_C \in L_C \cap C$ which generates the quotient abelian group L_C/L_D ; such a vector is unique

modulo L_D. We say that S satisfies the balancing condition along D if one has

$$\sum_{\mathsf{C}\in\mathscr{C}_{\mathsf{D}}} w_{\mathsf{C}} v_{\mathsf{C}} \in \mathsf{L}_{\mathsf{D}}.$$

We say that S is balanced (in dimension p) if it satisfies the balancing condition along all (p-1)-dimensional polyhedra of \mathscr{C} .

This condition is independent of the choice of the polyhedral decomposition which is adapted to S. If $S, S' \in F_p(V)$ are balanced weighted polyhedral subspace, then so are S + S' and mS, for every $m \in \mathbb{Z}$.

6.1.5. — Let $S \in F_p(V)$ and $x \in V$. One says that S is a fan with apex x if there exists a polyhedral decomposition of V adapted to S of which every polyhedron is a cone with apex x.

Let $S \in F_p(V)$ let $\mathscr C$ be a polyhedral decomposition of V which is adapted to S; write $S = \sum w_C[C]$. Let $x \in V$ and let $\mathscr C_x$ be the set of polyhedra in $\mathscr C$ which contain x; their union is a neighborhood of x in V. For every $C \in \mathscr C_x$, let $\lambda_x(C) = \mathbf R_+(C - x)$ be the cone with apex x generated by C; the set of all $\lambda_x(C)$, for $C \in \mathscr C_x$ is a fan of V. Then $\lambda_x(S) = \sum_{C \in \mathscr C_x} w_C[\lambda_x(C)]$ is a fan with apex x.

Moreover, S satisfies the balancing condition along a polyhedron $D \in \mathcal{C}_x$ if and only if $\lambda_x(S)$ satisfies the balancing condition along $\lambda_x(D)$. In particular, if S is balanced, then so is $\lambda_x(S)$.

Definition **(6.1.6)**. — *A balanced p-dimensional weighted polyhedral subspace is called a p-dimensional* Minkowski weight, *or a p-dimensional* tropical cycle.

They form a subgroup $MW_p(V)$ of $F_p(V)$.

Example **(6.1.7)**. — Let K be a nonarchimedean valued field, let X be a subvariety of $G_{m_K}^n$ and let $p = \dim(X)$. The tropicalization \mathcal{T}_X of X is a polyhedral subspace of \mathbf{R}^n of dimension p. There exists a polyhedral decomposition \mathcal{C} of \mathbf{R}^n such that the set \mathcal{C}_X of all polyhedra in \mathcal{C} that meet \mathcal{T}_X is a polyhedral decomposition of \mathcal{T}_X . For $C \in \mathcal{C}_X$ with $\dim(C) = p$, we have defined a multiplicity $\mathrm{mult}_{\mathcal{T}_X}(C)$; Then $S = \sum_{C \in \mathcal{C}_X} \mathrm{mult}_{\mathcal{T}_X}(C)[C]$ is a weighted polyhedral subspace of V of dimension p with support \mathcal{T}_X . It satisfies the balancing condition, hence defines a Minkowski weight in $\mathrm{MW}_p(\mathbf{R}^n)$. By abuse of language, this Minkowski weight is still denoted by \mathcal{T}_X .

Example **(6.1.8)**. — The Bergman fan $\Sigma(M)$ of a matroid, more generally, the tropical linear space associated with a valuated matroid, is the support of a Minkowski weight (all weights are equal to 1).

Example **(6.1.9)**. — Let $n = \dim(V)$; the class $[V] \in F_n(V)$ is balanced. The morphism $\mathbb{Z} \to MW_n(V)$ given by $a \mapsto a[V]$ is injective; let us show that it is an isomorphism

Let $S \in MW_n(V)$ and let \mathscr{C} be polyhedral decomposition of V which is adapted to S; write $S = \sum_C w_C[C]$. Let $D \in \mathscr{C}$ be a polyhedron of dimension n-1. There are exactly two polyhedra $C, C' \in \mathscr{C}$ containing D such that $\dim(C) = \dim(C') = n$: the affine space V_D generated by D is a hyperplane that delimits V in

²Define $F_p(V; A)$ and MW(V; A) for any abelian group A?

two half-spaces, one containing C, the other C'. The vectors v_C and $v_{C'}$ that appear in the formulation of the balancing condition can then be chosen opposite, hence $w_C = w_{C'}$.

Let then C, C' be arbitrary polyhedra of dimension n in \mathscr{C} . There exists a sequence (C_0, \ldots, C_m) of polyhedra in \mathscr{C} such that $C_0 = C$, $C_m = C'$, and such that for each $k \in \{1, \ldots, m\}$, C_{k-1} and C_k share a face of dimension n-1; By what precedes, one then has $w_{C_{k-1}} = w_{C_k}$. Consequently, $w_C = w_{C_0} = w_{C_1} = \cdots = w_{C_m} = w_{C'}$. Let a be this common value.

Finally, one has $S = \sum_{C} a[C] = a[V]$.

Remark **(6.1.10)**. — One can amplify the previous example for Minkowski weights of arbitrary dimension. Let indeed $S \in F_p(V)$ be a weighted polyhedral subspace. The support of S, |S|, is a polyhedral subspace, and the weight of S can be viewed as a function from |S| to Z which is defined and locally constant outside of a (p-1)-dimensional polyhedral subspace of |S|, the union of the polyhedra of dimension < p contained in |S| in a polyhedral decomposition of V which is adapted to S.

Let P be a polyhedron of dimension p which is contained in |S| and such that |S| is a submanifold at every point of \mathring{P} . In other words, \mathring{P} is open in |S|.

si la con de j'on de vant.

If S is balanced, then its weight is constant on P.

Example (6.1.11). — Let L, L' be free finitely generated abelian groups, let $V = L_R$ and $V' = L'_R$. There exists a unique bilinear map

$$F_p(V) \times F_q(V') \to F_{p+q}(V \times V')$$

such that ([C], [C']) \rightarrow [C \times C'] for every p-dimensional polyhedron C in V and every q-dimensional polyhedron C' in V'. If S \in F $_p$ (V) and S' \in F $_q$ (V') are weighted polyhedral subspaces, the image of (S, S') is denoted by S \times S'.

Choose polyhedral decompositions \mathscr{C} and \mathscr{C}' which are respectively adapted to S and S'. The family $(C \times C')$, for $C \in \mathscr{C}$ and $C' \in \mathscr{C}'$, is a polyhedral decomposition which is adapted to $S \times S'$: one has

$$S \times S' = \sum_{C \in \mathcal{C}_p} \sum_{C' \in \mathcal{C}'_q} w_C w'_{C'}[C \times C']$$

if, for every (C, C'), w_C is the weight of C in S and w'_C , is the weight of C' in S'.

If S and S' are balanced, then so is $S \times S'$. Indeed, let us consider a polyhedron E of dimension p + q - 1 belonging to the polyhedral decomposition $\mathscr{C} \times \mathscr{C}'$. Let us write $E = D \times D'$, where $D \in \mathscr{C}$ and $D' \in \mathscr{C}'$.

Let $C \in \mathscr{C}$ and $C' \in \mathscr{C}'$ be polyhedra such that E is a face of $C \times C'$. Then $D \subset C$ and $D' \subset C'$, so that D is a face of C and D' is a face of C'. Since $\dim(D) + \dim(D') = \dim(C) + \dim(C') - 1$, there are two possibilities: either $\dim(D) = \dim(C) - 1$ and D' = C', or $\dim(D') = \dim(C') - 1$ and D = C.

This already shows that the balancing condition along E is trivial if $\dim(D) \neq p$ and $\dim(D') \neq q$.

Let us now assume that $\dim(D) = p$ (hence $\dim(D') = q - 1$). By what precedes, the polyhedra of the form $C \times C'$, where $C \in \mathscr{C}_p$ and $C' \in \mathscr{C}_q'$ of which E is a face are of the form $D \times C'$, where $D' \subset C' \in \mathscr{C}_q'$. The balancing condition along E for $S \times S'$ follows from the balancing condition for S' along D'.

Similarly, if $\dim(D') = q$ and $\dim(D) = p - 1$, then the balancing condition along E for $S \times S'$ follows from the balancing condition for S along D.

6.1.12. — A Minkowski weight is said to be *effective* if the corresponding weighted polyhedral subspace is effective. Effective Minkowski weights form a submonoid $MW_p^+(V)$ of $MW_p(V)$.

Proposition (6.1.13). — Every Minkowski weight is the difference of two effective Minkoswski weights.

Proof. — Let $S \in MW_p(V)$ be a Minkowski weight and let $\mathscr C$ be a polyhedral decomposition of V which is adapted to S; for $C \in \mathscr C_p$, let w_C be the weight of C in S. Let $\mathscr N$ be the set of all $C \in \mathscr C_p$ such that $w_C < 0$; for $C \in \mathscr N$, let $S_C = [\langle C \rangle]$ be the weighted polyhedral subspace associated with the affine space generated

by C; it is balanced. Set $S' = \sum_{C \in \mathcal{N}} (-w_C) S_C$; is is an effective Minkowski weight. then one has

$$S + S' = \sum_{C \in \mathcal{C}_p} w_C[C] + \sum_{C \in \mathcal{N}} w_C[\langle C \rangle]$$
$$= \sum_{\substack{C \in \mathcal{C}_p \\ w_C > 0}} w_C[C] + \sum_{C \in \mathcal{N}} (-w_C) ([\langle C \rangle] - [C]).$$

Since $C \subset \langle C \rangle$, the weighted polyhedral subspace $[\langle C \rangle] - [C]$ is effective. Consequently, S + S' is effective; it is also balanced. Then S = (S + S') - S' is the difference of two effective Minkowski weights, as was to be shown.

6.2. Stable intersection

6.2.1. — Let L, L' be free finitely generated abelian groups, let $V = L_R$, $V' = L'_R$ and let $f : V \to V'$ be a linear map such that $f(L) \subset L'$.

There exists a unique linear map $f_* \colon F_p(V) \to F_p(V')$ satisfying the following properties, for every p-dimensional polyhedron C of V:

(i) If $\dim(f(C)) < p$, then $f_*([C]) = 0$;

(ii) If $\dim(f(C)) = p$, then $f(L_C)$ is subgroup of rank p of $L_{f(C)}$, so that the index $[L_{f(C)}: f(L_C)]$ is finite, and $f_*([C]) = [L_{f(C)}: f(L_C)]$ [C]. For every $S \in F_p(V)$, one has $|f_*(S)| \subset f(|S|)$.

Proposition **(6.2.2)**. — If S is balanced, then $f_*(S)$ is balanced. In other words, one has $f_*(MW_p(V)) \subset MW_p(V')$.

Proof. — Replacing V' be its image, we may assume that f is surjective. There is a polyhedral decomposition \mathscr{C} of V such that the polyhedra f(C), for $C \in \mathscr{C}$, form a polyhedral decomposition \mathscr{C}' of V' (corollary 1.8.5).

Let D' be polyhedron of dimension p-1 in \mathscr{C}' . Let $\mathscr{C}_{D'}$ be the set of all polyhedra C' in \mathscr{C}' such that $\dim(C')=p$ and D' \subset C'. For C' $\in \mathscr{C}_{D'}$, define $v_{C'/D'}\in L'_{C'}$ which generates $L'_{C'}/L'_{D'}$ and is such that $x+tv_{C'}\in C'$ for every $x\in \mathring{D}'$ and every small enough positive real number t.

Let $\mathcal{D}_{D'}$ be the set of all polyhedra D of dimension p-1 of \mathscr{C} such that f(D)=D'. For every $D\in \mathcal{D}_{D'}$, let \mathscr{C}_D be the set of all polyhedra $C\in \mathscr{C}$ such that $\dim(C)=p$ and $D\subset C$. For every $D\in \mathcal{D}_{D'}$ and every $C\in \mathscr{C}_D$, let $v_{C/D}\in L_C$ be a vector that maps to a generator of L_C/L_D and is such that $x+tv_C\in C$ for every $x\in \mathring{D}$ and every small enough positive real number t. The balancing condition at D for S writes

$$\sum_{\mathsf{D}\in\mathscr{C}_{\mathsf{D}}} w_{\mathsf{C}} v_{\mathsf{C}/\mathsf{D}} \in \mathsf{L}_{\mathsf{D}}.$$

Since f(C) contains f(D) = D', the image f(C) of C is either equal to D', or it belongs to $\mathscr{C}_{D'}$. In the latter case, set C' = f(C). There exists $k_C \in \mathbb{N}^*$ such that $f(v_{C/D}) = k_C v_{C'}$; one has

$$k_{\rm C} = [{\rm L}'_{\rm C'}: ({\rm L}'_{\rm D'} + {\bf Z}f(v_{\rm C/D}))].$$

Then

$$\begin{aligned} [\mathsf{L}'_{\mathsf{C}'}:f(\mathsf{L}_{\mathsf{C}})] &= [\mathsf{L}'_{\mathsf{C}'}:f(\mathsf{L}_{\mathsf{D}}+\mathbf{Z}v_{\mathsf{C}/\mathsf{D}})] \\ &= [\mathsf{L}'_{\mathsf{C}'}:(f(\mathsf{L}_{\mathsf{D}})+\mathbf{Z}f(v_{\mathsf{C}/\mathsf{D}}))] \\ &= [\mathsf{L}'_{\mathsf{C}'}:(\mathsf{L}'_{\mathsf{D}'}+\mathbf{Z}f(v_{\mathsf{C}/\mathsf{D}}))][\mathsf{L}'_{\mathsf{D}'}:f(\mathsf{L}_{\mathsf{D}})] \\ &= k_{\mathsf{C}}[\mathsf{L}'_{\mathsf{D}'}:f(\mathsf{L}_{\mathsf{D}})], \end{aligned}$$

so that

$$k_{\rm C} = [{\rm L}'_{\rm C'}: f({\rm L}_{\rm C})]/[{\rm L}'_{\rm D'}: f({\rm L}_{\rm D})].$$

Modulo $L'_{D'}$, the vector of L' responsible for the balancing condition along D' is equal to

$$\sum_{C' \in \mathcal{C}_{D'}} \left(\sum_{D \in \mathcal{D}_{D'}} \sum_{\substack{C \in \mathcal{C}_{D} \\ f(C) = C'}} w_{C}[L'_{C'} : f(L_{C})] \right) v_{C'}$$

$$= \sum_{C' \in \mathcal{C}_{D'}} \left(\sum_{D \in \mathcal{D}_{D'}} \sum_{\substack{C \in \mathcal{C}_{D} \\ f(C) = C'}} w_{C}[L'_{D'} : f(L_{D})] f(v_{C/D}) \right)$$

$$= \sum_{D \in \mathcal{D}_{D'}} [L'_{D'} : L_{D}] \sum_{\substack{C \in \mathcal{C}_{D} \\ \text{dim}(f(C)) = p}} w_{C} f(v_{C/D}),$$

hence it belongs to $L'_{D'}$. Indeed, for every $D \in \mathcal{D}_{D'}$, the balancing condition of S along D asserts that $\sum_{C \in \mathscr{C}_D} w_C v_{C/D} \in L_D$; applying f, we get $\sum_{C \in \mathscr{C}_D} w_C f(v_{C/D}) \in L'_{D'}$; on the other hand, if $\dim(f(C)) < p$, then $f(C) \subset D'$ and $f(v_{C/D}) \in L'_{D'}$.

Consequently, $f_*(S)$ is balanced along D', as was to be shown.

6.2.3. — Let p, q be two integers, let $S \in MW_p(V)$ and $S' \in MW_q(V)$. Choose polyhedral decompositions \mathscr{C} and \mathscr{C}' of V which are respectively adapted to S and S'; write $S = \sum_{C \in \mathscr{C}_p} w_C[C]$ and $S' = \sum_{C \in \mathscr{C}_q'} w'_C[C]$.

Let $C \in \mathcal{C}_p$ and $C' \in \mathcal{C}_q'$ be such that $\dim(C \cap C') = p + q - n$ (in particular, $C \cap C' \neq \emptyset$). This implies $\dim(C + C') = n.^3$

One says that S and S' intersect transversally along $C \cap C'$ if, moreover, $\mathring{C} \cap \mathring{C}' \neq \emptyset$. For $v \in V$, define

$$\mu(C, C', v) = \sum_{D,D'} w_D w'_{D'} [L : L_D + L'_{D'}],$$

where the sum is over all pairs (D, D') of polyhedra such that $D \in \mathscr{C}_p$, $D' \in \mathscr{C}'_q$, $C \cap C' \subset D \cap D'$, $\dim(D + D') = n$ and $D \cap (v + D') \neq \emptyset$.

This formula implies that for every $x \in (C \cap C')^\circ$, one has $\mu(\operatorname{Star}_x(C), \operatorname{Star}_x(C'), v) = \mu(C, C', v)$. Indeed, the pairs of polyhedra that appear in the formula for $\mu(\operatorname{Star}_x(C), \operatorname{Star}_x(C'), v)$ are precisely of the form $(\operatorname{Star}_x(D), \operatorname{Star}_x(D'))$ where (D, D') appear in the formula for $\mu(C, C', v)$, and the weights are the same.

Lemma (6.2.4). — a) If S and S' intersect transversally along $C \cap C'$, then $v \mapsto \mu(C, C', v)$ is constant in a neighborhood of 0 in V.

³Does it?

 $^{^4}$ I'd guess one can/could/should write $C \cap C' = D \cap D'$ here...

b) There exists a strictly positive real number δ and a polyhedral subspace B of V of dimension $< \dim(V)$, and an integer $\mu(C, C')$ such that $\mu(C, C', v) = \mu(C, C')$ for all $v \in V$ — B such that $||v|| < \delta$.

Proof. — We may assume that $0 \in (C \cap C')^\circ$ and replace S, S' by the associated conic Minkowski weights with apex at 0. In particular, all polyhedra in $\mathscr C$ are cones. Moreover, $C \cap C'$ is a vector subspace, and is contained in the lineality spaces of all cones involved. To check the lemma, we also may mod out by $C \cap C'$, which reduces us to the case where $C \cap C' = \{0\}$.

a) Assume that S and S' intersect transversally along $C \cap C'$. Since $\mathring{C} \cap \mathring{C}'$ is non-empty, by assumption, it is equal to $(C \cap C')^{\circ}$, hence it contains 0, so that both C and C' are linear subspaces.

Let $v \in V$ and (D, D') be a pair of polyhedra that appear in the definition of $\mu(C, C', v)$. Since $0 \in \mathring{C}$, and $0 \in C \cap C' \subset D$, one has $C \subset D$; since $\dim(D) = p$, this implies D = C. Similarly, D' = C'. Then the sum defining $\mu(C, C', v)$ reduces to $w_C w'_{C'}[L : L_C + L'_{C'}]$; in particular, it is constant.

b) Let $S \times S'$ be the (p + q)-dimensional weighted polyhedral subspace of $V \times V$ defined by

$$S \times S' = \sum_{C \in \mathcal{C}_p} \sum_{C' \in \mathcal{C}'_q} w_C w'_{C'}[C \times C'].$$

It is balanced (example 6.1.11).

Let $f: V \times V \to V$ be the linear map given by f(x,y) = x - y. Let us consider polyhedral decompositions \mathscr{C}_1 of V and \mathscr{C}_2 of V × V that respectively refine \mathscr{C} and \mathscr{C}' , and $\mathscr{C} \times \mathscr{C}'$, and such that $f(C \times C')$

is a union of cones in $\mathscr C$ for every $C, C' \in \mathscr C$ (corollary 1.8.5). The expression $\mu(C, C', v)$ is the coefficient of the cone $[C - C'] = f(C \times C')$ in the Minkowski weight $f_*(S \times S')$. Since this is a Minkowski weight of dimension n, there exists $a \in \mathbb Z$ such that $f_*(S \times S') = a[V]$. It follows that $\mu(C, C', v) = a$ for every vector v which does not belong to a polyhedron of $\mathscr C$ of dimension < n.

6.2.5. — Let $S \in MW_p(V)$ and $S' \in MW_q(W)$ be Minkowski weights. If $C, C' \in \mathscr{C}$ satisfy $\dim(C) = p$, $\dim(C') = q$ and $\dim(C + C') = n$, let us denote by $\mu(C, C')$ the common value $\mu(C, C', v)$ where $v \in V$ is a generic vector; in this case, one has $\dim(C \cap C') = p + q - n$. Otherwise, let us set $\mu(C, C') = 0$. We thus define an element of $F_{p+q-n}(V)$ by

$$S \cap_{\operatorname{st}} S' = \sum_{C,C'} \mu(C,C')[C \cap C'].$$

In particular, it is 0 if p + q < n. Moreover, one has $|S \cap_{st} S'| \subset |S| \cap |S'|$.

This element is called the *stable intersection* of S and S'. It does not depend on the chosen polyhedral decomposition \mathscr{C} and is bilinear in S and S'.

Since multiplicities $\mu(C, C')$ can be computed after passing to links, one also has $Star_x(S \cap_{st} S') = Star_x(S) \cap_{st} Star_x(S')$ for every $x \in V$.

At this point, it is not so clear that $S \cap_{st} S'$ belongs to $F_{p+q-n}(V)$, because we have not yet proved that the polyhedra $[C \cap C']$ involved in its definition have dimension p+q-n, if $\mu(C,C') \neq 0$. (Does it even belong to $F_*(V)$?)

6.2.6. — Let $S \in MW_p(V)$ and $S' \in MW_q(V)$. According to Mikhalkin & Rau (2018), one says that |S| and |S'| intersect transversally if $\dim(|S| \cap |S'|) = p + q - n$ and if there exist polyhedral decompositions $\mathscr C$ of |S|, and $\mathscr C'$ of |S'|, such that for every polyhedron D satisfying $\dim(D) = p + q - n$ and $D \subset |S| \cap |S'|$, there exists a unique pair (C, C') of polyhedron in $\mathscr C$ such that $\dim(C) = p$ and $C \subset |S|$, $\dim(C') = q$ and $C' \subset |S'|$, and $D \subset C \cap C'$.

Proposition **(6.2.7)**. — If S and S' intersect transversally, then $S \cap_{st} S' \in MW_{p+q-n}(V)$ and $|S \cap_{st} S'| = |S| \cap |S'|$.

Proof. — Fix polyhedral decompositions \mathscr{C} and \mathscr{C}' adapted to S and S' that attest of their transversal intersection; let (w_C) , resp. $(w'_{C'})$ be the weights of S, resp. of S'. For every pair (C, C'), where $C \in \mathscr{C}_p$ and $C' \in \mathscr{C}_q$ are such that $w_C \neq 0$, $w'_{C'} \neq 0$ and $C \cap C' \neq \emptyset$, one has dim $(C \cap C') = p + q - n$, and the definition of $\mu(C, C')$ shows that $\mu(C, C') = w_C w'_{C'}$. In fact, the sum defining $\mu(C, C', v)$ is reduced to (C, C'), for every small enough $v \in V$. This already proves that $S \cap_{st} S'$ belongs to $F_{v+q-n}(V)$ and that $|S \cap_{st} S'| = |S| \cap |S'|$.

Let us prove the balancing condition. By construction, $|S \cap_{st} S'|$ is a union of polyhedra of dimension p+q-n of the form $C \cap C'$, for $C \in \mathscr{C}$ and $C' \in \mathscr{C}'$, and they only meet along faces which are of the form $D \times C'$, or $C \times D'$, where D is a codimension 1 face of C, or D' is a codimension 1 face of C'. Consequently, the balancing condition needs only be checked along such faces. We thus assume that $E = D \cap C'$, where $D \in \mathscr{C}_{p-1}$ and $C' \in \mathscr{C}_q$, the other case being similar by symmetry. The polyhedra of $S \cap_{st} S'$ that border E are of the form $C \cap C'$, where $C \in \mathscr{C}_p$ contains D.

For every such C, fix a vector $v_{C/D} \in L_C$ which generates L_C/L_D and which is such that $x + tv_{C/D} \in C$ for every $x \in \mathring{D}$ and every small enough positive real number t. The balancing condition for S along D writes $\sum_C w_C v_{C/D} \in L_D$.

Let us fix a normal vector $v'_{C \cap C'/D \cap C'} \in L_{C \cap C'}$ associated with the face $D \times C'$ of $C \times C'$. There exists a unique integer $p_C \in \mathbf{N}^*$ such that $v'_{C \cap C'/D \cap C'} = p_C v_{C/D} \pmod{L}_D$, so that the balancing condition for $S \cap_{st} S'$ along $D \times C'$ writes $\sum_C \mu(C, C') p_C v_{C/D} \in L_D$. To conclude the proof, since $\mu(C, C') = w_C w'_{C'}[L : L_C + L_{C'}]$, it now suffices to prove that $p_C[L_C + L_{C'}]$ is independent of C.

One has

$$L_C \cap L_{C'} = L_{C \cap C'} = L_{D \cap C'} + \mathbf{Z} v_{C \cap C'/D \cap C'}$$

hence

$$[(L_{\mathcal{C}} \cap L_{\mathcal{C}'}) + L_{\mathcal{D}} = L_{\mathcal{D}} + \mathbf{Z}v_{\mathcal{C} \cap \mathcal{C}'/\mathcal{D} \cap \mathcal{C}'} = L_{\mathcal{D}} + \mathbf{Z}p_{\mathcal{C}}v_{\mathcal{C}/\mathcal{D}}.$$

Since $L_C = L_D + \mathbf{Z}v_{C/D}$, it follows that

$$p_{C} = [L_{C} : (L_{C} \cap L_{C'}) + L_{D}] = [L_{C} + L_{C'} : L_{C'} + L_{D}]$$

and

$$p_{C}[L:L_{C}+L_{C'}]=[L:L_{C'}+L_{D}].$$

Proposition **(6.2.8)**. — a) *There exists a polyhedral subspace* B *of* V *such that* dim(B) < n *and such that for every* $v \in V - B$, the Minkowski weights S and S' + v intersect transversally.

b) If n = p + q, then $deg(S \cap_{st} (S' + v))$ is independent of $v \in V - B$.

Proof. — We fix polyhedral decompositions \mathscr{C} and \mathscr{C}' of V respectively adapted to S and S'.

Let \mathcal{F} be the set of all pairs (C, C') such that $C \in \mathcal{C}_p$, $C' \in \mathcal{C}'_q$, $w_C \neq 0$, $w'_{C'} \neq 0$. Let $(C, C') \in \mathcal{F}$. For $v \in V$, one has $C \cap (v + C') \neq \emptyset$ if and only if $v \in C - C'$. Let B_1 be the union of all $\partial(C - C')$, for $(C, C') \in \mathcal{F}$ such that $\dim(C - C') < n$. Let $(C, C') \in \mathcal{F}$ be such that $\dim(C - C') = n$ and let $\partial(C - C') = (C - C') - (C - C')^\circ$; it is a polyhedron of dimension < n. If $v \notin (C - C')$, then $C \cap (v + C') = \emptyset$; if $v \in (C - C')^\circ$, then $v \in \mathring{C} - \mathring{C}'$, hence $\mathring{C} \cap (v + \mathring{C}') \neq \emptyset$. Let B_2 be the union of all $\partial(C - C')$, for $(C, C') \in \mathcal{F}$ such that $\dim(C - C') = n$. Let $B = B_1 \cup B_2$. This is a polyhedral subspace of V of dimension < n.

Let $v \in V - B$. By construction, S and S' + v intersect transversally along $C \cap (C' + v)$, for every pair (C, C') such that $C \cap (C' + v) \neq \emptyset$. This proves that S and S' + v intersect transversally.

Assume that p+q=n. Let U be a connected component of V - B such that $0 \in \overline{U}$. Fix $(C,C') \in \mathcal{F}$. When $v \in U$, the pairs $(D,D') \in \mathcal{F}$ such that $v \in \mathring{D} \cap (v+\mathring{D}')$ remain the same, and in fact, $v \in U$ is their unique point

of intersection. This gives

$$\begin{split} \deg(S \cap_{\text{st}} (v + S')) &= \sum_{(D,D')} w_D w'_{D'} [L : L_D + L_{D'}] \\ &= \sum_{(C,C')} \sum_{\substack{(D,D') \\ D \cap D' = C \cap C'}} w_D w'_{D'} [L : L_D + L_{D'}] \\ &= \sum_{(C,C')} \mu(C,C') \\ &= \deg(S \cap_{\text{st}} S'). \end{split}$$

This implies the claim.

Theorem **(6.2.9)**. — Let p, q be integers such that $p + q \ge n$. For any $S \in MW_p(V)$ and $S' \in MW_q(V)$, one has $S \cap_{\operatorname{st}} S' \in MW_{p+q-n}(V)$.

Proof. — Let E be a polyhedron of dimension p + q - n - 1 along which we wish to check the balancing condition for S \cap_{st} S'. Choosing an origin in É and replacing S and S' by the fan-like Minkowski weights, we can assume that there are polyhedral decompositions of V adapted to S and S', all polyhedra of which are cones. We may also quotient by E and reduce to the case where E = {0}; then p + q = n + 1.

We will first prove that $S \cap_{st} S' = \operatorname{recc}(S \cap_{st} (v + S'))$ for all $v \in V$. It suffices to prove this when S and v + S' intersect transversally. If C and C' are cones such that $C \cap (C' + v) \neq \emptyset$, then one has $\operatorname{recc}(C \cap (C' + v)) = C \cap C'$. (Let $x \in C \cap (C' + v)$; then for every $u \in C \cap C'$, one has $x + u \in C \cap (C' + v)$. On the other hand, if $x + tu \in C \cap (C' + v)$ for every $t \in \mathbb{R}_+$, then $u \in C \cap C'$, as one sees letting $t \to \infty$.) By transversality, $\dim(C \cap C') = \dim(C \cap (C' + v)) = 1$. Multiplicities add up as well. This implies the equality $\operatorname{recc}(S \cap_{st} (S' + v)) = S \cap_{st} S'$. Since S and v + S' intersect transversally, one has $S \cap_{st} (S' + v) \in MW_1(V)$. To conclude the proof of the theorem, it thus follows to establish the following lemma.

Lemma **(6.2.10)**. — *Let* $S \in MW_1(V)$. *Then* $recc(S) \in MW_1(V)$.

Proof. — Let \mathscr{C} be a polyhedral decomposition of V which is adapted to S; for C ∈ \mathscr{C}_1 , let w_C be the weight of C in S.

Let $C \in \mathcal{C}_1$, so that $L_C \simeq \mathbf{Z}$; we fix arbitrarily one generator v_C of L_C . There are three possibilities.

- Either there exist x_C , $y_C \in C$ such that $C = [x_C; y_C]$, chosen such that $y_C \in x_C + \mathbf{R}_+ v_C$. Then its recession cone is 0;
- Or there exists $x \in V$ such that $C = x_C + \mathbf{R}_+ v_C$ or $C = x_C \mathbf{R}_+ v_C$. Up to changing v_C into $-v_C$, we assume that we are in the former case. Then $\operatorname{recc}(C) = \mathbf{R}_+ v_C$;
 - Or there exists x_C ∈ V such that $C = x_C + \mathbf{R}v_C$; then $\operatorname{recc}(C) = \mathbf{R}v_C$.

Let \mathscr{C}_1^2 , \mathscr{C}_1^1 , \mathscr{C}_1^0 be the corresponding subsets of \mathscr{C}_1 . The recession fan of S is given by the sum

$$\operatorname{recc}(S) = \sum_{C \in \mathcal{C}_1^1} w_C[\mathbf{R}_+ v_C] + \sum_{C \in \mathcal{C}_1^0} w_C[\mathbf{R} v_C].$$

The balancing condition at the origin for recc(S) is thus the relation

$$\sum_{\mathsf{C}\in\mathscr{C}_1^1} w_{\mathsf{C}} v_{\mathsf{C}} = 0.$$

We now write the balancing condition for S at a point $p \in \mathcal{C}_0$. Let \mathcal{C}_p be the set of $C \in \mathcal{C}_1$ such that $p \in C$. If $C \in \mathcal{C}_1^1$, then $p = x_C$; moreover, v_C is an admissible normal vector for (p, C). Otherwise, $C \in \mathcal{C}_1^2$ and there are two possibilities:

- Either $p = x_C$; then v_C is an admissible normal vector for (p, C);
- Or $p = y_C$ and then $-v_C$ is an admissible normal vector for (p, C).

The balancing condition at *p* thus writes

$$\sum_{\substack{C \in \mathscr{C}_{1}^{1} \\ x_{C} = p}} w_{C} v_{C} + \sum_{\substack{C \in \mathscr{C}_{1}^{2} \\ x_{C} = p}} w_{C} v_{C} - \sum_{\substack{C \in \mathscr{C}_{1}^{2} \\ y_{C} = p}} w_{C} v_{C} = 0.$$

Adding all of these relations, for all $p \in \mathcal{C}_0$, we obtain

$$0 = \sum_{\mathsf{C} \in \mathscr{C}_1^1} w_{\mathsf{C}} v_{\mathsf{C}} + \sum_{\mathsf{C} \in \mathscr{C}_1^2} w_{\mathsf{C}} v_{\mathsf{C}} - \sum_{\mathsf{C} \in \mathscr{C}_1^2} w_{\mathsf{C}} v_{\mathsf{C}} = \sum_{\mathsf{C} \in \mathscr{C}_1^1} w_{\mathsf{C}} v_{\mathsf{C}},$$

as was to be shown.

Proposition **(6.2.11)**. — The stable intersection product endowes the abelian group $MW(V) = \bigoplus_p MW_p(V)$ with a ring structure. The neutral element is [V].

Proof. — It follows from the definitions that the stable intersection product is commutative and bilinear. It also follows from the definitions that $S \cap [V] = S$.

Let us check associativity. Let S, S', S'' be three Minkowski weights of dimensions p, q, r and let us prove that $(S \cap_{st} S') \cap_{st} S'' = S \cap_{st} (S' \cap_{st} S'')$. Let us first treat the case where these Minkowski weights intersect transversally, in the sense that $\mathring{\mathbb{C}} \cap \mathring{\mathbb{C}}'\mathring{\mathbb{C}}'' \neq \emptyset$ for every $\mathbb{C} \in \mathscr{C}_p$, $\mathbb{C}' \in \mathscr{C}'_q$, $\mathbb{C}'' \in \mathscr{C}''_r$ such that $w_{\mathbb{C}}, w'_{\mathbb{C}'}, w''_{\mathbb{C}''} \neq \emptyset$ and $C \cap C' \cap C'' \neq \emptyset$. If this holds, then S' and S'' intersect transversally and

$$S' \cap_{\mathrm{st}} S'' = \sum_{C',C''} w''_{C''} [L : L_{C'} + L_{C''}] [C' \cap C''].$$

Mus xmy > Mwp. 9-n

Not. Mv= Mwn> Mwp. 9-n

Moreover, S and S' \cap_{st} S" intersect transversally and

$$S \cap_{st} (S' \cap_{st} S'')$$

$$= \sum_{C,C',C''} w_C w'_{C'} w''_{C''} [L:L_{C'} + L_{C''}] [L:L_C + (L_{C'} \cap L_{C''})] [C \cap C' \cap C''].$$

By symmetry, one also has

$$(S \cap_{st} S') \cap_{st} S'')$$

$$= \sum_{C,C',C''} w_C w'_{C'} w''_{C''} [L:L_C+L_{C'}] [L:(L_C\cap L_{C'})+L_{C''}] [C\cap C'\cap C''].$$

It thus suffices to prove the following equality of indices:

$$[L:L_{C'}+L_{C''}][L:L_C+(L_{C'}\cap L_{C''})]=[L:L_C+L_{C'}][L:(L_C\cap L_{C'})+L_{C''}].$$

On the other hand, one has

$$\begin{split} [L:L_C + (L_{C'} \cap L_{C''})] &= [L:L_C + L_{C'}][L_C + L_{C'}:L_C + (L_{C'} \cap L_{C''})] \\ &= [L:L_C + L_{C'}][L_{C'}:(L_C \cap L_{C'}) + (L_{C'} \cap L_{C''})], \end{split}$$

so that

$$[L:L_{C'}+L_{C''}][L:L_C+(L_{C'}\cap L_{C''})]$$

$$=[L:L_{C'}+L_C][L:L_{C'}+L_{C''}][L_{C'}:(L_C\cap L_{C'})+(L_{C'}\cap L_{C''})],$$

an expression which is invariant when one exchanges the roles of C and C". Therefore,

$$[L: L_{C'} + L_{C''}][L: L_C + (L_{C'} \cap L_{C''})] = [L: L_{C'} + L_C][L: L_{C''} + (L_{C'} \cap L_C)],$$

as was to be shown.

In the general case, we consider arbitrarily small vectors $v \in V$, $w \in V$ such that S, S' + v and S'' + w intersect transversally. If C, C', C'' are polyhedra of dimensions p, q, r, the multiplicity $\mu(C, C', C'')$ of $[C \cap C' \cap C'']$ in $(S \cap_{st} S') \cap_{st} S''$ is a sum of multiplicities $\mu(D, D', D''; v, w)$, where $C \cap C' \cap C'' = D \cap D' \cap D''$ and D, D' + v, D'' + w intersect transversally, associated with $(S \cap_{st} (S' + v)) \cap_{st} (S'' + w)$. By the case of transverse intersections, they coincide with the multiplicity of $[C \cap C' \cap C'']$ in $S \cap_{st} (S' + v) \cap_{st} (S'' + w)$.

Example **(6.2.12)** (Unfinished). — Assume that $L = \mathbb{Z}^n$ and let (e_1, \ldots, e_n) be its canonical basis; set also $e_0 = -e_1 - \cdots - e_n$. For $I \subsetneq \{0, \ldots, n\}$, let C_I be the cone generated by the vectors e_i , for $i \in I$; one has $\dim(C_I) = \operatorname{Card}(I)$. Note that $C_I \cap C_J = C_{I \cap J}$ for $I, J \subsetneq \{0, \ldots, n\}$, so that the set of cones $(C_I)_{I \subsetneq \{0, \ldots, n\}}$ is a fan in \mathbb{R}^n .

so that

$$[L:L_{C'}+L_{C''}][L:L_C+(L_{C'}\cap L_{C''})]$$

$$=[L:L_{C'}+L_C][L:L_{C'}+L_{C''}][L_{C'}:(L_C\cap L_{C'})+(L_{C'}\cap L_{C''})],$$

an expression which is invariant when one exchanges the roles of C and C". Therefore,

$$[L: L_{C'} + L_{C''}][L: L_C + (L_{C'} \cap L_{C''})] = [L: L_{C'} + L_C][L: L_{C''} + (L_{C'} \cap L_C)],$$

as was to be shown.

In the general case, we consider arbitrarily small vectors $v \in V$, $w \in V$ such that S, S' + v and S'' + w intersect transversally. If C, C', C'' are polyhedra of dimensions p, q, r, the multiplicity $\mu(C, C', C'')$ of $[C \cap C' \cap C'']$ in $(S \cap_{st} S') \cap_{st} S''$ is a sum of multiplicities $\mu(D, D', D''; v, w)$, where $C \cap C' \cap C'' = D \cap D' \cap D''$ and D, D' + v, D'' + w intersect transversally, associated with $(S \cap_{st} (S' + v)) \cap_{st} (S'' + w)$. By the case of transverse intersections, they coincide with the multiplicity of $[C \cap C' \cap C'']$ in $S \cap_{st} (S' + v) \cap_{st} (S'' + w)$.

Example **(6.2.12)** (Unfinished). — Assume that $L = \mathbb{Z}^n$ and let (e_1, \ldots, e_n) be its canonical basis; set also $e_0 = -e_1 - \cdots - e_n$. For $I \subseteq \{0, \ldots, n\}$, let C_I be the cone generated by the vectors e_i , for $i \in I$; one has $\dim(C_I) = \operatorname{Card}(I)$. Note that $C_I \cap C_J = C_{I \cap J}$ for $I, J \subseteq \{0, \ldots, n\}$, so that the set of cones $(C_I)_{I \subseteq \{0, \ldots, n\}}$ is a fan in \mathbb{R}^n .

For $p \in \{0, ..., n\}$, we define an effective weighted polyhedral subspace of dimension p by

$$S_p = \sum_{Card(I)=p} [C_I].$$

(This is a tropical linear space of dimension p.) One has $L_{C_I} = \sum_{i \in I} \mathbf{Z} e_i$. It is balanced. The only polyhedra along which the balancing condition is not obvious are of the form C_J , where Card(J) = p - 1, and its adjacent polyhedra are of the form $C_{I \cup \{i\}}$, for $i \in \{0, ..., n\}$ – J; one may take e_i as a normal vector. The Since $\sum_{i=0}^{n} e_i = 0$.

Let us prove that $S_p \cap_{\text{st}} S_q = S_{p+q-n}$. $S_i \in \{0,...,n\} = 0$ $S_i \in \{$

$$\sum_{i \in \{0,\dots,n\}-J} e_i = \sum_{i \in \{0,\dots,n\}} e_i - \sum_{j \in J} e_j \in L_{C_J}$$

since $\sum_{i=0}^{n} e_i = 0$.

$$S_{1} n_{st} S_{1} = S_{0}$$

Proposition (6.2.13). — Let $S \in MW_p(V)$ and let $S' \in MW_q(V)$. If $\Delta \in MW_n(V \times V)$ is the diagonal, then one has

$$\Delta \cap_{\mathrm{st}} (S \boxtimes S') = S \cap_{\mathrm{st}} S'.$$

6.3. The tropical hypersurface associated with a piecewise linear function

6.3.1. — Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous piecewise affine function and let \mathscr{C} be a polyhedral decomposition of \mathbb{R}^n which is adapted to f. We assume that f has integral slopes, in the sense that for every $C \in \mathscr{C}$, there exists an linear function $\varphi_C \in \mathbb{L}^\vee$ such that $f(y) - f(x) = \varphi_C(y - x)$ for every $x, y \in C$.

Let $x \in \mathbb{R}^n$ and let D be the unique polyhedron of \mathscr{C} such that $x \in \mathring{D}$. If $\dim(D) \neq n-1$, set $w_f(D) = 0$. Otherwise, if $\dim(D) = n-1$, then D is a face of exactly two n-dimensional polyhedra C^+ , C^- in \mathscr{C} ; one has $D = C^+ \cap C^-$.

Fix a point $x \in \mathring{D}$.

The quotient group \mathbf{Z}^n/L_D is isomorphic to \mathbf{Z} , and it admits a unique generator which is the image of an element v^+ such that $x + tv^+ \in C^+$ for every small enough $t \in \mathbf{R}_+$.

Define v^- similarly. In fact, one has $v^- = -v^+$.

By assumption, f is affine with integral slopes on C^+ ; let $\varphi^+ : V \to \mathbf{R}$ be the unique linear map such that $f(y) - f(x) = \varphi^+(y - x)$ if $x, y \in C^+$. We define similarly φ^- .

We then set

$$w_{\rm D} = \varphi^+(v^+) + \varphi^-(v^-).$$

and define

$$\partial(f) = \sum_{D \in \mathcal{C}_{n-1}} w_D[D].$$

Proposition (6.3.2). — Let f be a piecewise linear function f with integral slopes on V.

- a) The weighted polyhedral subspace $\partial(f)$ is a Minkowski weight of dimension n-1 adapted to the polyhedral decomposition \mathscr{C} .
 - b) Its support $|\partial(f)|$ is the non-linearity locus of f.
 - c) If f is convex, then $\partial(f)$ is effective.

Proof. — We have to prove that $\partial(f)$ statisfies the balancing condition.

Let $E \in \mathscr{C}$ be a polyhedron of dimension n-2. Fix a point $x \in \mathring{E}$ and consider a 2-dimensional plane through x which is transverse to E. We get a fan in \mathbb{R}^2 which reduces the verification of the balancing condition to the case n=2, for $E=\{0\}$.

The 1-dimensional polyhedra that contain the origin are (chunks of) rays $D_1 = \mathbf{R}_+ u_1, \dots, D_n = \mathbf{R}_+ u_n$, where $u_1, \dots, u_n \in \mathbf{Z}^2$ are primitive vectors.⁵ The balancing condition at 0 is the equation

$$\sum_{j=1}^n w_{\mathrm{D}_j} u_j = 0.$$

Up to a reordering of the u_j , unique modulo cyclic permutations, the 2-dimensional polyhedra that contain the origin are (chunks) of sectors $C_1 = \text{cone}(u_1, u_2), \dots, C_{n-1} = \text{cone}(u_n, u_n), C_n = \text{cone}(u_n, u_1)$.

⁵Picture?

Set $\varphi(x) = f(x) - f(0)$; for every j, let φ_j be the linear function on \mathbf{R}^2 such that $f(x) = f(0) + \varphi_j(x)$ for every point $x \in C_j$ which is close to 0.

If ρ is the rotation of angle $\pi/2$, we then may take $D_{j}^{+} = C_{j}$ and $D_{j}^{-} = C_{j-1}$, $v_{j}^{+} = \rho(u_{j})$ and $v_{j}^{-} = \rho^{-1}(u_{j}) = -v_{j}^{+}$. Then $w_{D_{j}} = \varphi_{j}(\rho(u_{j})) - \varphi_{j-1}(\rho(u_{j}))$ for all $j \in \{1, ..., n\}$.

We thus have

$$\sum_{j=1}^{n} w_{D_{j}} u_{j} = \sum_{j=1}^{n} \varphi_{j}(\rho(u_{j})) u_{j} - \sum_{j=1}^{n} \varphi_{j-1}(\rho(u_{j})) u_{j}$$
$$= \sum_{j=1}^{n} \varphi_{j}(\rho(u_{j})) u_{j} - \sum_{j=1}^{n} \varphi_{j}(\rho(u_{j+1})) u_{j+1}.$$

The continuity of f along the ray u_j writes $\varphi_j(u_j) = \varphi(u_j) = \varphi_{j-1}(u_j)$. Let $a_j, b_j \in \mathbf{R}$ be such that $\rho(u_j) = a_j u_j + b_j u_{j+1}$. Then

$$\varphi_j(\rho(u_j)) = a_j \varphi_j(u_j) + b_j \varphi_j(u_{j+1}) = a_j \varphi(u_j) + b_j \varphi(u_{j+1}).$$

Similarly, $\rho(u_{j+1}) = a_{j-1}u_{j-1} + b_{j-1}u_{j}$, hence

$$\varphi_j(\rho(uj+1) = a_{j-1}\varphi_j(u_{j-1}) + b_{j-1}\varphi_j(u_j) = a_{j-1}\varphi(u_{j-1}) + b_{j-1}\varphi(u_j).$$

Finally,

$$\sum_{j=1}^{n} w_{D_{j}} u_{j} = \sum_{j=1}^{n} \left(a_{j} \varphi(u_{j}) + b_{j} \varphi(u_{j+1}) \right) - \left(a_{j-1} \varphi(u_{j-1}) + b_{j-1} \varphi(u_{j}) \right) = 0.$$

This proves that ∂f belongs to $MW_{n-1}(V)$.

By construction, f is locally differentiable on $V - \bigcup_{D \in \mathscr{C}_{n-1}} D$. For $D \in \mathscr{C}_{n-1}$ and $x \in \mathring{D}$, observe that f is differentiable on a neighborhood of x if and only if $w_D = 0$. Consequently, the open non-differentiability locus of f is equal to $|\partial(f)|$.

6

a) b) With the previously introduced notation, it suffices to prove that $w_D \ge 0$ for every $D \in \mathcal{C}_{n-1}$. For every positive real number t, one has

$$tw_{D} = \varphi^{+}(tv^{+}) + \varphi^{-}(tv^{-}) = (f(x + tv^{+}) - f(x)) + (f(x - tv^{+}) - f(x))$$

if *t* is small enough. By convexity, one has

$$f(x) = \frac{1}{2} \left(f(x + tv^{+}) + f(x - tv^{+}) \right),$$

so that $tw_D \ge 0$; if t > 0, this implies $w_D \ge 0$.

⁶Some points to check...

Mikhalkin - Ray
6.3. THE TROPICAL HYPERSURFACE ASSOCIATED WITH A PIECEWISE LINEAR FUNCTION
Allerman - Ray
...

Proposition (6.3.3). — The map $f \mapsto \partial(f)$ from the abelian group PL(V) of piecewise linear functions on V with integral slopes to the group $MW_{n-1}(V)$ of (n-1)-dimensional Minkowski weights is a surjective morphism of groups. Its kernel is the subgroup of affine functions with integral slopes on V.

Proof. —

Theorem (6.3.4). — Let f be a piecewise linear function with integer slopes and let $S \in MW_p(V)$. The Minkowski weight $\partial(f) \cap_{st} S$ can be computed explicitly as follows. Let \mathscr{C} be a polyhedral decomposition of V which is adapted to S and such that $f|_{C}$ is affine, for every $C \in \mathscr{C}$. For every $D \in \mathscr{C}_{v-1}$, let \mathscr{C}_{D} be the set of $C \in \mathscr{C}_{v}$ such that $D \subset C$. For $C \in \mathscr{C}_D$, let $v_{C/D} \in L_C$ be a vector that generates L_C/L_D and such that $x + tv_{C/D} \in C$ for every $x \in \mathring{D}$ and every small enough positive real number t. Set

$$w'_{\mathrm{D}} = \sum_{\mathrm{C} \in \mathscr{C}_{\mathrm{D}}} w_{\mathrm{C}} \left(\lim_{t \to 0^{+}} \frac{f(x + tv_{\mathrm{C/D}}) - f(x)}{t} \right).$$

Then $\partial(f) \cap_{\operatorname{st}} S = \sum w'_{D}[D]$.

Theorem (6.3.5) (Projection formula). — Let $u: L \to L'$ be a morphism of free finitely generated abelian groups, let $V = L_R$ and $V' = L'_R$. Still write u for $u_R : V \to V'$. Let S be a Minkowski weight on V and let f be a piecewise linear function on V'. One has

$$u_*(u^*(f) \cap_{\operatorname{st}} S) = f \cap_{\operatorname{st}} u_*(S).$$

$$u_*(u^*(f) \cap_{st} S) = f \cap_{st} u_*(S).$$

$$u_*(\mathcal{F}) \cap_{st} S = f \cap_{st} u_*(S).$$

$$u_*(\mathcal{F}) \cap_{st} S = g(f) \cap_{st} u_*(S).$$

u* f= fou

Remark (6.3.6). — There should be a projection formula of the form

$$u_*(S \cap_{\operatorname{st}} u^*(S')) = u_*(S) \cap_{\operatorname{st}} S'$$

if $u: L \to L'$ is a morphism of free finitely generated abelian groups.

If *u* is surjective, then $L \simeq L' \times L''$, and $u^*(S') = S' \boxtimes L''$.

Otherwise, one can/needs to define u^* by stable intersection, say $u^*(S') = p_*(\Gamma_u \cap_{st} (V \boxtimes S'))$, where $\Gamma_u = (id \times u)_*(V)$ is the graph of u and $p : V \times V' \to V$ is the first projection.

6.4. Comparing algebraic and tropical intersections

(corps (value) **6.4.1.** — Let X and Y be subvarieties of G_m^n , respectively defined by ideals I and J of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$. Their intersection $X \cap Y$ is the subvariety of \mathbb{G}_m^n with ideal I + J.

Note that in general, $X \cap Y$ might not be integral. It may have multiple component. It also may be non-reduced, for example if Y is a hyperplane tangent to X at some point a: the tangency will then be reflected by the fact that the local ring $\mathcal{O}_{X \cap Y,a}$ contains non-trivial nilpotent elements.

By a general inequality in algebraic geometry, one has

Houptilealsatz (Krull) $\Rightarrow \dim_a(X \cap Y) \geqslant \dim_a(X) + \dim_a(Y) - n$, $\operatorname{codim}_a(X, Y) \leq \operatorname{codim}_a(X) + \operatorname{codim}_a(Y)$

alors, $T_{a}(\chi \cap \gamma) = T_{a}\chi \cap T_{a}\gamma$ 6.4. COMPARING ALGEBRAIC AND TROPICAL INTERSECT

for every $a \in X \cap Y$. This inequality is an equality in certain cases, for example when X and Y are smooth at a, and $T_aX + T_aY = T_a\mathbf{G}_m^n$ (then, we say that the intersection is *transverse* around a). But the strict inequality may hold, for example in the trivial case where X = Y, but also in less obvious cases.

We are interested in computing the tropicalization of $X \cap Y$. How does it compare to the intersection $\mathcal{T}_X \cap \mathcal{T}_Y$, beyond the obvious inclusion? This guess is however often too large, for example if $\mathcal{T}_X = \mathcal{T}_Y$? Then how does it compare to the stable intersection $\mathcal{T}_X \cap_{st} \mathcal{T}_Y$? While that second guess is often too small, it is indubitably better, since we will show that it suffices to translate "generically" Y in \mathbf{G}_m ", without changing its tropicalization, to make it correct.

We start with the case of transversal tropical intersections, where the picture is particularly nice.

Lemma (6.4.2). — Let X, Y be subvarieties of G_m^n .

a) Let $x \in \mathbb{R}^n$. If \mathcal{T}_X and \mathcal{T}_Y meet transversally at x, then

$$\operatorname{Star}_{x}(\mathcal{T}_{X\cap Y}) = \operatorname{Star}_{x}(\mathcal{T}_{X} \cap_{\operatorname{st}} \mathcal{T}_{Y}).$$

b) If \mathcal{T}_X and \mathcal{T}_Y intersect transversally everywhere, then

$$\mathcal{T}_{\mathsf{X}\cap\mathsf{Y}}=\mathcal{T}_{\mathsf{X}}\cap_{\mathsf{st}}\mathcal{T}_{\mathsf{Y}}.$$

Proof. — Let I, J be the ideals of X, Y in K[$T_1^{\pm 1}, \ldots, T_n^{\pm 1}$]. By assumption, there exists polyhedra C and C' of the Gröbner polyhedral decompositions of \mathcal{T}_X and \mathcal{T}_Y respectively such that $x \in \mathring{\mathbb{C}} \cap \mathring{\mathbb{C}}'$; moreover,

for every $a \in X \cap Y$. This inequality is an equality in certain cases, for example when X and Y are smooth at a, and $T_aX + T_aY = T_aG_m^n$ (then, we say that the intersection is *transverse* around a). But the strict inequality may hold, for example in the trivial case where X = Y, but also in less obvious cases.

We are interested in computing the tropicalization of $X \cap Y$. How does it compare to the intersection $\mathcal{T}_X \cap \mathcal{T}_Y$, beyond the obvious inclusion? This guess is however often too large, for example if $\mathcal{T}_X = \mathcal{T}_Y$? Then how does it compare to the stable intersection $\mathcal{T}_X \cap_{st} \mathcal{T}_Y$? While that second guess is often too small, it is indubitably better, since we will show that it suffices to translate "generically" Y in \mathbf{G}_m ", without changing its tropicalization, to make it correct.

We start with the case of transversal tropical intersections, where the picture is particularly nice.

Lemma (6.4.2). — Let X, Y be subvarieties of G_m^n .

a) Let $x \in \mathbb{R}^n$. If \mathcal{T}_X and \mathcal{T}_Y meet transversally at x, then

$$\operatorname{Star}_{x}(\mathscr{T}_{\mathsf{X}\cap\mathsf{Y}}) = \operatorname{Star}_{x}(\mathscr{T}_{\mathsf{X}}\cap_{\mathsf{st}}\mathscr{T}_{\mathsf{Y}}).$$

b) If \mathcal{T}_X and \mathcal{T}_Y intersect transversally everywhere, then

$$\mathcal{T}_{X\cap Y} = \mathcal{T}_X \cap_{\operatorname{st}} \mathcal{T}_Y.$$

Proof. — Let I, J be the ideals of X, Y in K[$T_1^{\pm 1}$,..., $T_n^{\pm 1}$]. By assumption, there exists polyhedra C and C' of the Gröbner polyhedral decompositions of \mathcal{T}_X and \mathcal{T}_Y respectively such that $x \in \mathring{\mathbb{C}} \cap \mathring{\mathbb{C}}'$; moreover,

Aparté Afévre de l'intersection en géométrie algébrique.

× var. lisse de dim n (X=Pn par ex.) Eydes de dimp: gr. ab libre engendie par les sovar médochbler $Z_p(X)$ de dim p. Pas de bonne H. de l'inters au niveau de Zp(X) à couvre des composants exceptionnelles [V] n [V]? Solution relation d'équivalence sur Zp(X) équivalence rationalle (il y on a d'autres: homologique (nu n'inque) $W \subset X$ dum V = p+1 $f \in K(W)^{X}$ and $div_{X}(f) \in Z_{p}(W)$ c Zp(X) Zordvif) [V] ordvif) [V]

den (V)=p

les div(f)

engendrent

Rate(X)

Rate(X) (Ap(X) = Zp(X) / Ratp(X))

Il existe me str. d'anneau son AIX) = DAp(X) (Chevalley, Chow,) $Ap(x) \times Aq(x) \longrightarrow Aprq-n(x)$ [Ayond'hui: Fulton. Intersection theory]. (mtero propre) et dem (InW) = p+9 m S. [V] E Zolx)
(W) E Zolx) abors

[V] n [W] = [multipliate multipliate comp melductile comp melductile commutative commutative (ou l'alg homologique) En général déplacement on prome 3 3 EZp(T) z- I mi [vi] CAD CAD SE END CAD CAD CAD Intersected programment

Double hispialté: - prouver que le déplacement est possible prouver que la joi mule est indépendanté du choix de z - dans A 7+9-n (X)

l'intersection tropicale découte dans le début du chapitée et conque me ce modèle mais n'a pas besoin de relation d'équivalence / de déplacement.

 $A_{\sigma}(P_{n}) = \mathbb{Z}$ "nb.de proints"

Comparaison entre les deux bléonies d'intersection et un peu baniale tropical algébrique int. stable (cycles) deplacement
générique naive

Zo (Pn)= I (pn (k))
(si vost algos)

 $A_{o}(P_{n})z\mathcal{I}$ $A_{\circ}(A_{\circ}) = A_{\circ}(C_{\circ}) = b$ $A_6(\mathbb{R}^n) = \mathbb{Z}^{(\mathbb{R}^n)}$

 $\dim(C + C') = n$. In particular, $W = \operatorname{Star}_{\chi}(\mathcal{T}_{X})$ and $W' = \operatorname{Star}_{\psi}(\mathcal{T}_{Y})$ are vector spaces, with a constant multiplicity is constant, and W + W' = \mathbb{R}^n . Let $p = \dim(W)$, $q = \dim(W')$; let W" = W \cap W', so that $r = \dim(W'') = p + q - n$. Choose a rational basis of \mathbb{R}^n as follows, starting from a basis of W'', and extending it to rational bases of W and W'. This shows that there exists a rational isomorphism $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ such that $\varphi(W'') = \mathbb{R}^r \times \{0\} \times \{0\}, \ \varphi(W) = \mathbb{R}^r \times \mathbb{R}^{p-r} \times \{0\} \text{ and } \varphi(W') = \mathbb{R}^r \times \{0\} \times \mathbb{R}^{q-r}.$ We may also assume that $\varphi(\mathbf{Z}^n) \subset \mathbf{Z}^n$. Let then $f: \mathbf{G_m}^n \to \mathbf{G_m}^n$ be the morphism of tori whose action on cocharacters is given by φ . It is finite and surjective.

Let X' = f(X) and Y' = f(Y); by proposition 3.7.1, one has $\mathcal{T}_{X'} = \varphi_*(\mathcal{T}_X)$, $\mathcal{T}_{Y'} = \varphi_*(\mathcal{T}_Y)$ and $\mathcal{T}_{X' \cap Y'} = \mathcal{T}_{X' \cap Y'} = \mathcal{T$ $\varphi_*(\mathcal{T}_{X\cap Y})$. Since φ_* is a linear isomorphism, we may assume, for proving the lemma, that φ is the identity.

Let $I_x = \widehat{I} \cap k[T_{p+1}^{\pm 1}, \dots, T_n^{\pm 1}]$ and $J_x = J \cap k[T_{r+1}^{\pm 1}, \dots, T_p^{\pm 1}]$. By lemma 3.8.4, one has $\widehat{I} = I_{\mathcal{K}} \setminus k[T_1^{\pm 1}, \dots]$ and mult $\mathcal{F}_{Y}(C') = \operatorname{codim}(J_x)$; similarly $\widehat{J} \neq J_x \cdot k[T_1^{\pm 1}, \dots]$ and mult $\mathcal{F}_{Y}(C') = \operatorname{codim}(J_x)$.

We now observe that

 $\operatorname{in}_{r}(I+I) = \operatorname{in}_{r}(I) + \operatorname{in}_{r}(I)$

and that

$$\operatorname{in}_{x}(I+J) \cap k[T_{r+1}^{\pm 1}, \dots, T_{n}^{\pm 1}] = I_{x} + J_{x},$$

⁷Oops! That proposition says nothing about multiplicities. .

Frincle le projection de sturmfels-leveler (osserman-Payne, ni Kn'et pastrir, value)

so that

$$k[T_{r+1}^{\pm 1}, \ldots, T_n^{\pm 1}]/(I_x + J_x) \simeq (k[T_{p+1}^{\pm 1}, \ldots, T_n^{\pm 1}]/I_x) \otimes_k (k[T_{r+1}^{\pm 1}, \ldots, T_p^{\pm 1}]/J_x)$$

has dimension $\operatorname{mult}_{\mathcal{T}_X}(C)\operatorname{mult}_{\mathcal{T}_Y}(C')$. The same result holds for every other point in $\mathring{C}\cap\mathring{C}'$. This shows that $C\cap C'\subset \mathcal{T}_{X\cap Y}$ contains a polyhedron of the Gröbner decomposition of $X\cap Y$, and that its multiplicity is the product of the multiplicities of C and C'. This concludes the proof of the first assertion of the lemma, and the second follows directly from it.

6.4.3. — Let K be a valued field. Let L = K(s) be the field of rational functions in one indeterminate s with coefficients in K, endowed with the Gauss absolute value. Let $I \subset L[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ be an ideal and let $\mathcal{L} X = V(I)$.

Consider K(s) as the field of functions of the affine line A^1 . The Zariski closure \mathcal{X} of X in $G_{\mathbf{M}A^1}^n$ is defined by the ideal $\mathcal{I} = K[s][T^{\pm 1}] \cap I$. For every point $a \in K$, or rather in a valued extension K' of K, we can then Lonsider the ideal \mathcal{I}_a of $K'[T^{\pm 1}]$ deduced from I by setting s = a and the subscheme $\mathcal{X}_a = V(\mathcal{I}_a)$ of $G_{\mathbf{M}K'}^n$.

The relations between X and the schemes \mathcal{X}_a , its specializations, are well-studied in algebraic geometry. In fact, \mathcal{X} is a flat \mathbf{A}^1 -scheme, and \mathcal{X}_a is its fiber. In particular, the schemes \mathcal{X}_a are equidimensional if \mathcal{X} is, with the same dimension.

We first prove that, up to finitely many obstructions, the schemes \mathcal{X}_a have the same tropicalization as X provided $v(a) = \underbrace{v(s)}_{A} = 0$.

provided
$$v(a)$$
 $\mathcal{I}_{\alpha} \subset \mathcal{H} \subset \mathcal{H}^{\uparrow} \downarrow \mathcal{G}_{m}$

Pour le cas général, non transverse, il va falloir par apport à l'autre - Faule! On est dans bough X on Y lim le groupe En The done on peut regardon X et ty $t \in G_m^n(\mathcal{H})$ $t \in G_m^$ On peut choiser v pour que l'atersect ent tronsverse (valuation de K non triviale) on vert permettre v=0 (nin, à quoi bon développer l'int- (-ropicale!) Deux

Voies

pour formaliste

Al New du déveluement

genorique

b-lla, to) tom (L)

2 (te (Kx)) / v(t)=0, 2x nty= 2x ns+ by 5 est « gns ?? :] BC fix n ouvert g (El-) $L = 1 \mid t_1, \dots, t_n \rangle$ + norme de Fours $l = k (t_1, -t_n)$ $|| \sum_{c_m} t_m || = sup_1 || c_m ||$ $v(\sum_{c_m} t_m) = inf \quad \sigma(c_m)$ $(||t_i|| = 1)$ C KURALJ = BX St GA

Pour dénontrer ① et ②, le passage par ② est nécessaire, explicité dans Anders-Yu (2016) implicite dans Maclagan Stumfels (2015) te proprie de passer pour un évencé internédiaire, d'intérêt plus large: comparer des tropicalisations

CHAPTER 6. TROPICAL INTERSECTIONS

M. (I) $(k)(f^{\pm i})$ All this should be rewritten replacing \mathbf{A}^1 with \mathbf{A}^n , possibly even any integral variety.

Proposition (6.4.4). — There exists a finite subset B of \bar{k} such that for every a in a valued extension K' of K (with residue field k') such that v(a) = 0 and $\bar{a} \notin B$, one has the equality of initial ideals in...(I) $(k'(a) - in)(\bar{a})$ for every $x \in \mathbb{R}^n$. In particular, for all such a, one has an equality of tropicalizations $\mathcal{T}_X = \mathcal{T}_{\mathcal{X}_a}$.

Proof. — We start with a few remarks.

Let (f_1, \ldots, f_m) be a finite family of elements of $K(s)[T^{\pm 1}]$ generating I. Let $h_1 \in K[s]$ be a non-zero polynomial such that $h_1 f_i \in K[s][T^{\pm 1}]$ for every $i \in \{1, ..., n\}$. Replacing f_i with $h_1 f_i$ for every i, we assume that $f_i \in K[s][T^{\pm 1}]$ for every i. Then the ideal (f_1, \ldots, f_m) of $K[s][T^{\pm 1}]$ is contained in \mathcal{I} . Let also (g_1, \ldots, g_p) be a generating family of \mathcal{F} in $K[s][T^{\pm 1}]$. For every $j \in \{1, \ldots, p\}$, there exist Laurent polynomials $k_{j,1}, \ldots, k_{j,m} \in K(s)[T^{\pm 1}]$ such that $g_j = \sum_{i=1}^m k_{j,i} f_i$. Let $h \in K[s]$ be a non-zero polynomial such that $hk_{j,i} \in K[s][T^{\pm 1}]$ for all i, j. We then obtain inclusions $h\mathcal{I} \subset (f_1, \ldots, f_m) \subset \mathcal{I}$ of ideals of $K[s][T^{\pm 1}]$. In particular, for every a in a valued extension K' of K such that $h(a) \neq 0$, the ideal \mathcal{I}_a of $K'[T^{\pm 1}]$ coincides with the ideal generated by $f_1(a; T), \ldots, f_m(a; T)$.

Let $f \in K[s][T^{\pm 1}]$; write $f = \sum_{m \in S(f)} f_m(s) c_m T^m$, where $c_m \in K^{\times}$ and $f_m \in K[s]$ is a polynomial of Gauss-norm 1. The reductions \overline{f}_m of the polynomials f_m are non-zero polynomials in k[s]. Let h be their product. By construction, for every a in a valued extension K' of k such that v(a) = 0 and $h(\overline{a}) \neq 0$,

one has $v(f_m(a)) = 0$ for all $m \in S(f)$. It follows that for every such a, one has $\tau_x(f) = \tau_x(f(a;T))$ and $\operatorname{in}_x(f)(a;T) = \operatorname{in}_x(f(a;T))$ for all $x \in \mathbb{R}^n$.

Assume that (f_1, \ldots, f_m) contains a basis, a uniform Gröbner basis of I, and a tropical basis. Assume also that the coordinates of x belong to the value group of K. Then the initial ideal $\operatorname{in}_x(I)$ is generated by the initial forms $\operatorname{in}_x(f_i)$, for $i \in \{1, \ldots, m\}$. Up to the exceptions described above, the initial ideal $\operatorname{in}_x(I)_{\overline{a}}$ is generated by the initial forms $\operatorname{in}_x(f_i(a;T))$, hence is contained in the initial ideal $\operatorname{in}_x(\mathcal{F}_a)$. Conversely,...