

Master Mathématiques fondamentales, 2^e année, 2^e semestre Année 2022/2023

COHOMOLOGY OF COHERENT SHEAVES ON SCHEMES

Antoine Chambert-Loir

Final Examination — February, 23rd, 2023 (3 h)

The exercises are independent one of another. You may solve them in any order.

EXERCICE 1

Let *C* be an abelian category, let $A = (A^p, d_A^p)_{p \in \mathbb{Z}}$ and $B = (B^p, d_B^p)_{p \in \mathbb{Z}}$ be complexes in *C*.

1 Let $\varphi = (\varphi^p : A^p \to B^p)_{p \in \mathbb{Z}}$ be a family of morphisms in *C*. For every $p \in \mathbb{Z}$, we set $C = C(\varphi)^p = A^p \oplus B^{p-1}$ and we define $d_C^p : C^p \to C^{p+1}$ by

$$d_{\rm C}^{p}(a,b) = (d_{\rm A}^{p}(a), \varphi^{p}(a) - d_{\rm B}^{p-1}(b)),$$

for $a \in A^p$ and $b \in B^{p-1}$.

Prove that $(C^p, d_C^p)_{p \in \mathbb{Z}}$ is a complex if and only if φ defines a morphism of complexes from A to B.

2 We now assume that φ is a morphism of complexes. Define an exact sequence of complexes

$$0 \rightarrow B(-1) \rightarrow C \rightarrow A.$$

Prove that the complex C is exact if and only if φ is a homology (that is, if for every *p*, the morphism φ^p induces an isomorphism between cohomology objects $H^p(A) \rightarrow H^p(B)$).

EXERCICE 2

Let X be a noetherian scheme. In this exercise, we define the cohomological dimension of X to be the smallest integer *d* such that $H^p(X, \mathscr{F}) = 0$ for every quasicohérent sheaf \mathscr{F} on X and any integer p > d.

- 1 Justify the existence of such an integer *d* What does it mean for X that d = 0?
- **2** For every open subset U of X, we write $\mathcal{N}(U)$ for the nilradical of $\mathcal{O}_X(U)$. Prove that \mathcal{N} is a quasi-coherent sheaf of ideals. We denote by X_{red} the closed subscheme $V(\mathcal{N})$ it defines.
- **3** Prove that there exists an integer k such that $\mathcal{N}^k = 0$.
- $\label{eq:constraint} \textbf{4} \quad \text{Prove that X and X}_{\text{red}} \text{ have the same cohomological dimension.}$
- **5** Prove that X_{red} is affine if and only if X is affine.
- **6** Prove that the cohomological dimension of X is the upper bound of the cohomological dimensions of its irreducible components (viewed as reduced subschemes).

EXERCICE 3

Let A be a noetherian ring, let *n* be an integer ≥ 0 , let S be the graded ring A[T₀,...,T_n] and let \mathscr{F} be a coherent sheaf on $\mathbf{P}_{A}^{n} = \operatorname{Proj}(S)$.

- 1 Explain the graded S-module structure on $\bigoplus_{d \in \mathbb{Z}} \Gamma(\mathbb{P}^n_A, \mathscr{F}(d))$.
- 2 Give an example where this graded module is not of finite type.
- **3** For any integer $k \in \mathbb{Z}$, let

$$\Gamma_{\geq k}(\mathscr{F}) = \bigoplus_{d \geq k} \Gamma(\mathbf{P}^n_{\mathrm{A}}, \mathscr{F}(d)).$$

Explain its graded S-module structure.

- 4 We suppose in this question that $\mathscr{F} = \mathscr{O}(e)$. Determine $\Gamma_{\geq k}(\mathscr{O}(e))$ for any integer *k*. Prove that it is an S-module of finite type.
- 5 Explain why there exists a finite sequence (d_1, \ldots, d_m) of integers and an epimorphism

$$\varphi \colon \bigoplus_{i=1}^m \mathscr{O}_{\mathbf{P}^n_{\mathbf{A}}}(d_i) \to \mathscr{F}.$$

- **6** Prove that for any integer *k* large enough, the morphism φ induces a *surjective* homomorphism of S-modules, $\bigoplus_{i=1}^{m} \Gamma_{\geq k}(\mathcal{O}(d_i)) \to \Gamma_{\geq k}(\mathcal{F})$.
- 7 Deduce that for any integer k, $\Gamma_{\geq k}(\mathscr{F})$ is an S-module of finite type.

EXERCICE 4

Let K be a field, we set $S = K[T_0, ..., T_n]$, $\mathbf{P}^n = \text{Proj}(S)$, and we consider a coherent sheaf \mathscr{F} on \mathbf{P}_K^n . For $m \in \mathbf{Z}$, we say that \mathscr{F} is *m*-regular if $H^p(\mathbf{P}_K^n, \mathscr{F}(m-p)) = 0$ for any integer p > 0. The regularity of \mathscr{F} is the greatest lower bound of the integers *m* such that \mathscr{F} is *m*-regular.

- 1 Compute the regularity of $\mathscr{O}_{\mathbf{P}_{v}^{n}}$.
- 2 Let X be a closed subscheme of \mathbf{P}_{K}^{n} . Give a relation between the regularity of the ideal sheaf \mathscr{I}_{X} and that of the sheaf \mathscr{O}_{X} (viewed as a coherent sheaf on \mathbf{P}_{K}^{n}).
- **3** In the rest of this exercise, we assume that the dimension of X is zero. Prove that X is an affine scheme. Recall why $H^0(X, \mathcal{O}_X)$ is a finitely generated K-algebra; we will denote its dimension by *d*.
- 4 In this question, we assume that n = 1. Prove that there is an isomorphism $\mathscr{O}_{\mathbf{P}_{K}^{1}}(-d) \simeq \mathscr{I}_{X}$. Deduce from this the regularity of \mathscr{I}_{X} .
- 5 We now assume that $n \ge 2$. Prove that \mathscr{I}_X is *m*-regular if and only if the morphism $\Gamma(\mathbf{P}_K^n, \mathscr{O}_{\mathbf{P}_K^n}(m-1)) \to \Gamma(X, \mathscr{O}_X(m-1))$ is surjective. Assuming that \mathscr{I}_X is *m*-regular, conclude that $d \le \binom{m-1+n}{n}$.
- 6 We assume that n = 2 and that X is a reduced subscheme consisting of three points a, b, c with residue field K. Compute the regularity of \mathscr{I}_X according to whether the three points a, b, c are aligned or not.