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Abstract

Building on the example of a classic theorem in the group theory corpus, the simplicity
of the alternating group on at least 5 letters, I would like to discuss the following
question : what do we expect of a proof ? In particular, according to when we learn
it, teach it, or write it. And when we write it, in what respect does the material that
hosts that proof makes a difference, from a draft, a lectures syllabus, a reference
monograph, a digital library of formal proofs.

More mathematical content can be found in my paper “Formalizing the proof of an
intermediate-level algebra theorem – An experiment”,
https://arxiv.org/abs/2303.12404.
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Simplicity of the alternating group

Theorem
Let n be an integer, n ⩾ 5. The alternating group An is a simple group.

Reminder on definitions :

• The alternating group An is the group of permutations
σ : {1, . . . , n} → {1, . . . , n} which have signature +1 — equivalently : products of
an even number of transpositions (i , j).

• A group is simple if it is nontrivial and if its only normal subgroups are {1} and
itself. Morally : cannot be build out of two simpler groups.
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Normal subgroups and simple groups

Another reminder :

• A subgroup H of a group G is normal if ghg−1 ∈ H for all g ∈ G and h ∈ H —
equivalently, there is an equivalence relation on G which is compatible with the
group structure and such that H is the class of 1.

“Obvious” normal subgroups of a group G :

• The trivial subgroup {1} and the group G itself ;

• If the group G is commutative, all of its subgroups are normal ;

• The center Z (G ) of G : elements h such that gh = hg for all g ∈ G ;

• The derived subgroup G ′, generated by all commutators ghg−1h−1.
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Galois’s theory of polynomial equations

The notion of “normal” subgroup is due to Galois (1830), in relation with the question
of solvability by radicals and his own solution to that problem, solved by Abel (1824)
after a partial solution by Ruffini (1799/1813).

Galois talks of « décomposition propre » and is interested in cases where the group
of a polynomial equation is ultimately built of commutative groups (we now call such a
group solvable), because then the solutions of the equation can be expressed using
radicals only.

Noncommutative simple groups are not solvable, so that the solutions of an equation of
degree n with group An, with n ⩾ 5, can’t be expressed by radicals.
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Jordan’s treaty on permutation groups

The simplicity theorem is attributed to Galois, at least for n = 5.

Cayley (1854). Definition of an abstract group

Jordan (1870), Traité des substitutions et des équations algébriques. General
systematic study (« développer les méthodes de Galois et les constituer en corps de
doctrine ») of groups acting on sets.

The simplicity theorem appears early (§85) as a consequence of more general results
that a subgroup of the symmetric group Sn that acts “a lot” automatically contains the
alternating group.
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The Classification of Finite Simple Groups

In the second half of the 20th century, mathematicians managed to establish a
complete classification of the finite simple groups. They come up in 4 sorts :

• Finite cyclic groups of prime orders ;

• The alternating groups An, for n ⩾ 5 ;

• Groups of geometric origin, defined using linear algebra — such as PSL(n,F ) for a
finite field F (of cardinality ⩾ 4 if n = 2) ;

• “Sporadic groups”, a list of 26 groups with a mostly combinatorial definition,
starting with M11,M12 defined by Mathieu (1861) to J4 defined by Janko (1974)
and the Griess–Fischer Monster, whose existence and uniqueness was proved
around 1980.
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The Classification of Finite Simple Groups

The proof of the classification of the finite simple groups is tantalizingly huge : tens of
thousands of pages, several hundreds of papers, more than 100 authors ; with a revision
(1994) and a recent update (2008) fixing a mistake discovered in 1979.

It had (sometimes immediate) applications to some conjectures that are easily reducible
to the case of finite simple groups and amenable to a case by case study. (For example,
Zelmanov’s proof of the “restricted Burnside problem” uses the classification.)

It is likely that its proof contains some incorrections, and some mathematicians are
reluctant to use it. However, it is unlikely that these incorrections could lead to a 27th
sporadic group.
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Why am I discussing this with you today ?

End 2020, I decided to spend some months working on the computer proof-assistant
Lean and formalize a proof the simplicity theorem.

• Proof-assistants : computer programs that read code whose syntax allows to state
both mathematical theorems and their proofs, and whose compilation certifies that
the proof is legit. They may, or not, allow some automatization of the process,
such as automatic simplifications, up to discovery of (mostly elementary) proofs

10



Why am I discussing this with you today ?

End 2020, I decided to spend some months working on the computer proof-assistant
Lean and formalize a proof the simplicity theorem.

• Proof assistants. . .

• Lean is the last born of a long list of such programs, that first appeared in the
1960s. Against it leans mathlib, a huge, collaboratory-written, library of
mathematical proofs that encompasses many fields of mathematics.
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Why am I discussing this with you today ?

End 2020, I decided to spend some months working on the computer proof-assistant
Lean and formalize a proof the simplicity theorem.

• Proof assistants. . .

• Lean and mathlib. . .

• Only the case n = 5 was present in the library. The question posed itself naturally :
what proof could/should I try to formalize ?
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What do we expect of a proof ?

It depends on

• who is “we”,

• what you mean by “proof”,

• and what you mean by “expect”.

I will try to explain this in the context of the simplicity theorem.
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What do we expect of a proof ?

We is the mathematician, master or apprentice, but they live in a context :

• (Under)graduate exposition of Galois theory ;
• (Under)graduate exposition of group theory ;
• Research-level exposition of the classification.

Regarding Galois theory, simplicity is not the good objective (non-solvability is much
easier, and enough).

About elementary group theory, it makes the theorem a kind of high peak, without any
connection with the rest of the discourse, nor accessible consequences.

From a higher-level perspective, it suggests developing the theory of permutation
groups, and establishing the simplicity of many groups (notably those appearing in the
classification).
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What do we expect of a proof ?

Consider a normal subgroup G of An, distinct from 1. Here are three sketches of a
proof that G = An.

• Cardinality arguments (for A5). If G contains an element g , it contains its
conjugacy class, hence the sum of the cardinalities of some conjugacy classes
should add up to Card(G ) which divides 60. Look up and conclude.

• (Jordan, essentially) Take an element of g ∈ G , g ̸= 1, that acts minimally on
{1, . . . , n} ; by (clever ?) manipulations, prove that it is a 3-cycle, and conclude.

• Use a criterion invented by Iwasawa (1941) to prove the simplicity of groups of Lie
type. (More about this later).

Which one should one prefer ? When ? why ?
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What do we expect of a proof ?

Many mathematical/philosophical options :

• A proof is a proof, it proves a theorem, and that’s it !

• The shorter a proof, the better. . .

• A proof should not use theorems that are foreign to the context of its statement.

• A proof can make its statement appear as a corollary, or a particular case, of
another, “better” statement.

• A proof can provide some computational content to its statement.
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What did I expect of a proof of the simplicity theorem ?

My work on the simplicity theorem has been driven by many diverging forces :

• It is quite difficult to state explicitly to a proof-assistant the informal arguments
that we sketch on a blackboard. At first, this also ruled out some of the simplest
proofs that rely on case disjunctions.

• Moreover, those proofs have a kind of “magical” character, it is hard to see why
they work.

• I wanted to provide a proof which is “universal”, working for all n ⩾ 5 at once and
was attracted by the Iwasawa criterion.

• In the end, it appeared that using that criterion connected the proof of the
simplicity theorem to more structural results of finite group theory.
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The Iwasawa criterion

Theorem (Iwasawa (1941))
Let G be a group acting primitively on a set X .

For each x ∈ X , assume given a commutative subgroup Ax of G such that
Ag ·x = gAxg

−1 for all g ∈ G and x ∈ X .

Assume that the subgroups Ax generate G .

Then any normal subgroup N of G which acts nontrivially on X contains the derived
subgroup G ′.

Used by Iwasawa to prove the simplicity of PSL(n,F ) for any field F (of cardinality at
least 4 if n = 2).

He indicates in a footnote that his proof applies to symplectic groups as well.
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The Iwasawa criterion — comments

• To conclude to simplicity, one needs to show that G ′ = G .

• Primitive actions were defined by Galois ; it means that there is no decomposition
of X into “blocks” which are either fixed or permuted by the elements of G .

• An equivalent assumption is that stabilizers Gx of points of X are maximal
subgroups of G .

• This assumption is used through a consequence : a normal subgroup of G that
acts nontrivially on X acts transitively.
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Applying the Iwasawa criterion to the alternating group

One lets An act on the set X3 of triples in {1, . . . , n}.

For x = {a1, a2, a3} ∈ X3, one sets Ax as the alternating group of x , fixing all other
elements.

Then Ax = {1; (a1, a2, a3); (a1, a3, a2)} is cyclic of order 3, hence commutative.

The relation Ag ·x = gAxg
−1 is elementary.

The subgroups Ax generate An (because, as is classical, the 3-cycles generate An).

If n > 3, then the action is nontrivial.

If n ⩾ 5, the group An is equal to its derived subgroup.

So if the action of An on X3 is primitive, then An is simple.
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Applying the Iwasawa criterion to the alternating group

Up to know, we have seen that if the action of An on X3 is primitive, then An is
simple.

The primitivity of that action looks as a nontrivial result, but it is a classical one.

It amounts to the fact that the subgroup

(S3 ×Sn−3) ∩ An

is maximal, which holds for n > 3 with the exception n = 6.

It is also one of the easy instances in a theorem due to O’Nan and Scott (around 1970)
classifying all maximal subgroups of An.
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Applying the Iwasawa criterion to the alternating group

However, the papers of O’Nan and Scott give no proof that this subgroup is maximal,
they only prove a result of the form “a maximal subgroup belongs to the following list” !

Liebeck, Praeger, Saxl (1987) give the explicit and unambiguous list of the maximal
subgroups of An.

However, the case of interest is essentially marked as “well-known”.

Sketch : Let G be a subgroup such that (S3 ×Sn−3) ∩ An ⊊ G ⊂ An. To prove that
G = An, prove that G acts primitively on An and apply a theorem of Jordan (1872) : a
primitive subgroup of Sn that contains a 3-cycle contains An.
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Conclusion

The proof I described is certainly not the simplest and, for many mathematicians, would
probably not qualify at relevant.

For me, its interest was 3-fold :

• It relates a basic theorem with on one side the classic concept primitivity, and on
the other side, the modern perspective of the classification of maximal
subgroups ;

• It offers a unifying perspective on the proofs of simplicity, as its scheme seems to
be applicable to similar theorems ;

• Writing it led me to learn unsuspected mathematics, as well as to reflect (at least
to try to) on the idea of a proof.
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