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Abstract

The theorem that the alternating group in at least 5 letters is a
simple group is a cornerstone of many group theory courses,
sometimes in connection with Abel’s theorem that the general
equation of degree at least 5 is not solvable by radicals.

The first part of this talk is an introduction to the field of proof
assistants.

In a second part, I describe the mathematics underlying my
formalization of the above mentioned theorem that relies on a
classic criterion of Iwasawa.

More details are given in my paper “Formalizing the proof of an
intermediate-level algebra theorem – An experiment”,
https://arxiv.org/abs/2303.12404.
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Mathematical formulas and formal mathematics

End of 19th c., beginning of 20th c. :

• Need for more precise definitions (Dedekind, Heine,
Cantor, Zermelo…)

• Several enterprises of formal, purely symbolic, writings of
mathematics, starting from first axioms.
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Giuseppe Peano

G. Peano (1890), Introduction au tome II du « Formulaire de
mathématiques »

Gottfried Wilhelm Leibniz, pendant toute sa vie (1646-1716) s’est
occupé d’« une manière de Spécieuse Générale, où toutes les
vérités de raison seroient réduites à une façon de calcul. Ce
pourit être en même tems une manière de Langue ou
d’Écriture universelle, mais infiniment différente de toutes
celles qu’on a projetées jusqu’ici ; car les caractères, et les
paroles mêmes, y dirigeroient la Raison ; et les erreurs (excepté
celles de fait) n’y seroient que des erreurs de calcul. Il seroit
très difficile de former ou d’invonter cette langue ou
caractéristique ; mais très aisé de l’apprendre sns aucuns
dictionnaires » (Opera philosophica, a. 1840, p. 701).
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Giuseppe Peano

G. Peano (1890), Introduction au tome II du « Formulaire de
mathématiques »

Gottfried Wilhelm Leibniz, during all his life (1646-1716)
handled about “a sort of Universal Characteristic, in which all
truths of reason would be reduced to some sort of calculus. It
could be a kind of Language or universal Script, but infinitely
different from all of those which have been imagined until
now ; because the characters, and even the words, would
conduct Reason ; and the mistakes (but for mistakes of facts)
would only be calculation mistakes. It would be very difficult to
form or to invent this language or characterisic, but very easy
to learn it without any dictionary” (Opera philosophica, a. 1840,
p. 701).
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Alfred N. Whitehead & Bertrand Russell

A. N. Whitehead & B. Russell (1927), Principia mathematica

We have found it necessary to give very full proofs, because
otherwise it is scarcely possible to see what hypotheses are
really required, or whether our results follow from our explicit
premisses. (It must be remembered that we are not affirming
merely that such and such propositions are true, but also that
the axioms stated by us are sufficient to prove them.)
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N. Bourbaki

N. Bourbaki (1935), Éléments de mathématique, Théorie des
ensembles (Introduction)

(...) l’analyse du mécanisme des démonstrations dans des
textes mathématiques bien choisis a permis d’en dégager la
structure, du double point de vue du vocabulaire et de la
syntaxe. On arrive ainsi à la conclusion qu’un texte
mathématique suffisamment explicite pourrait être exprimé
dans une langue conventionnelle ne comportant qu’un petit
nombre de « mots » invariables assemblés suivant une
syntaxe qui consisterait en un petit nombre de règles
inviolables : un tel texte est dit formalisé.
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N. Bourbaki

N. Bourbaki (1935), Éléments de mathématique, Théorie des
ensembles (Introduction)

By analysis of the mechanism of proof in suitably chosen
mathematical texts, it has been possible to discern the
structure underlying both vocabulary and syntax. This analysis
has led to the conclusion that a sufficiently explicit
mathematical text could be expressed in a conventional
language containing only a small number of fixed “words”,
assembled according to a syntax consisting of a small number
of unbreakable rules : such a text is said to be formalized.
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N. Bourbaki, again

N. Bourbaki (1935), Éléments de mathématique, Théorie des
ensembles (Introduction)

Si la mathématique formalisée était aussi simple que le jeu
d’échecs, une fois décrit le langage formalisé que nous avons
choisi, il n’y aurait plus qu’à rédiger nos démonstrations dans
ce langage, comme l’auteur d’un traité d’échecs écrit dans sa
notation les parties qu’il se propose d’enseigner, en les
accompagnant au besoin de commentaires. Mais les choses
sont loin d’être aussi faciles, et point n’est besoin d’une
longue pratique pour s’apercevoir qu’un tel projet est
absolument irréalisable ; la moindre démonstration du début
de la Théorie des Ensembles exigerait déjà des centaines de
signes pour être complètement formalisée.
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N. Bourbaki, again

N. Bourbaki (1935), Éléments de mathématique, Théorie des
ensembles (Introduction)

If formalized mathematics were as simple as the game of
chess, then once our chosen formalized language had been
described there would remain only the task of writing out our
proofs in this language, just as the author of a chess manual
writes down in his notation the games he proposes to teach,
accompanied by commentaries as necessary. But the matter is
far from being as simple as that, and no great experience is
necessary to perceive that such a project is absolutely
unrealizable : the tiniest proof at the beginning of the Theory
of Sets would already require several hundreds of signs for its
complete formalization.
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N. Bourbaki, yet again

N. Bourbaki (1935), Éléments de mathématique, Théorie des
ensembles (Chapitre III)

Une estimation grossière montre que le terme désigné [par “1”]
est un assemblage de plusieurs dizaines de milliers de signes
(chacun de ces signes étant l’un des signes τ , �, ∨, ¬, =, ∈).
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N. Bourbaki, yet again

N. Bourbaki (1935), Éléments de mathématique, Théorie des
ensembles (Chapitre III)

As a rough estimate, the term so denoted [by “1”] is an
assembly of several tens of thousands ofsigns (each of which
is one of τ , �, ∨, ¬, =, ∈, ⊃).
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A. R. D. Mathias

A. R. D. Mathias (2002), “A term of length 4 523 659 424 929”.
Synthese, 133, 75-86.

Bourbaki suggest that their definition of the number 1 runs to
some tens of thousand of symbols. We show that that is a
considerable under-estimate, the true number of symbols
being that in the title not counting 1 179 618 517 981 links
between symbols that are needed to disambiguate the whole
expression.
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Proof assistants

The rise of computers since the 1950s led to seek to mechanize
these verifications. Several softwares were built, notably :

• N.G. De Bruijn, Automath (1967)
• A. Trybulec, Mizar (1973)
• G. Huet et al., Coq (1989)
• C. Coquand, Agda (1999)
• L. de Mourra, Lean (2013)…

Each of them corresponds to (techno)logical decisions. For
example, Mizar is built on set theory, Coq and Lean on
dependent type theory, and Agda on homotopy type theory.
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“Was sind und sollen die Beweisassistenten?”

Proof assistants are kind of program compilers that “read”
theorem statements accompanied by purported proofs, written
in an adequate language, and guarantee that these proofs
reach indeed their goals.

With varying ability, they also can do themselves
simplifications, up to devising small chunks of proofs, roughly
at the level of a bachelor exercise.
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Proof assistants : landmarks

• G. Gonthier et al. (2008), the 4-color theorem of Appell and
Haken

• G. Gonthier et al. (2013), the Feit–Thompson theorem
• T. Hales (2017), the Kepler conjecture (proved by him)
• J. Commelin et al. (2022), a theorem of Scholze in the
commutative algebra of condensed mathematics (“Large
tensor experiment”)

• P. Massot et al. (2022), Gromov’s h-principle and sphere
eversion
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Proof assistants : a tool for teaching?

For some years, colleagues teaching in math or computer
science have been using these proof assistants as a tool to
proof teaching, at the bachelor level.

D. J. Velleman, How to prove it : A structured approach,
Cambridge Univ. Press

How to prove it with Lean,
https://djvelleman.github.io/HTPIwL/
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Proof assistants : an everyday tool for mathematicians?

Could we imagine that in a near future, our theorems would be
directly implemented in such tools ?

Interest :

• Guarantees that proofs are correct ;
• Switches the communication task towards understanding

Difficulties :

• Needs a sort of “mathematical Babel library”
• Software obsolescence
• Bridges between various softwares
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Mathlib

The mathematical library mathlib is a companion to the
software lean, more than a million code lines covering a large
part of the mathematical spectrum :

• measure theory, ergodic theory
• general algebra, field theory
• complex analysis
• functional analysis
• differential manifolds…

To me, the existence of mathlib was an important motivation
to participate the lean project.
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Simplicity of the alternating group

Theorem
For n > 5, the alternating group An is simple : its only normal
subgroups are {e} and itself.

Those groups are one of the bricks of the classification of finite
simple groups, the other ones being

• cyclic groups of prime order,
• families of groups defined by geometry, such as PSL(n, F)
if F is a finite field of cardinality > 4,

• 26 “sporadic” groups defined by combinatorial geometries.
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Pourquoi faire simple quand on peut faire compliqué?
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Pourquoi faire simple quand on peut faire compliqué?

The simplicity theorem can be — and is often — explained in
an undergraduate course. All standard proofs are slightly ad
hoc, and often require computations which are typically
avoided at the blackboard, and not so easy to communicate in
detail, either to a student or to a computer.

I wished to prove that theorem in a more geometric manner
using the general simplicity criterion introduced by Iwasawa
(1941) to prove the simplicity of geometric groups.

This criterion is also used to prove the simplicity of sporadic
groups, such as the Mathieu groups.
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Iwasawa’s criterion

Proposition (Iwasawa, 1941)
Let G be a group acting on a set X. One assumes that the
action is 2-transitive and that, for every x ∈ X, one is given a
subgroup Ax of G such that

• For g ∈ G and x ∈ X, one has Ag·x = gAxg−1 ;
• The groups Ax are commutative and their union
generates G.

Then every normal subgroup of G that acts nontrivially on X
contains the derived subgroup G′ of G.
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Derived subgroup

Reminder : it is the subgroup generated by commutators
g−1h−1gh.

(Smallest kernel of a morphism to a commutative group.)

Examples :

• A′
n = An for n > 5. This implies that An is not solvable

(hence applications to Galois theory) but is much easier
than simplicity.

• SL(n, F)′ = SL(n, F) for n > 3 or Card(F) > 4.
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“Simplicity” of SL(n, F)

Let V be a vector space of finite dimension > 2 on a field F.
For dim(V) > 3 or Card(F) > 4, the group PSL(V) is simple.

We let SL(V) act on the projective space P(V), the space of
lines in V .

The action is 2-transitive.

For a line D ⊆ V , let AD be the set of all transvections u of the
form x 7→ x + ϕ(x)e, where ϕ ∈ V∗, e ∈ D and D ⊆ ker(ϕ). It is a
commutative subgroup of SL(V).

One has Ag·D = gADg−1. These groups generate SL(V).

Iwasawa : Every normal subgroup N of SL(V) that acts
nontrivially on P(V) contains the derived subgroup SL(V)′.

Condition : N is not contained in the center of SL(V).
21



Simplicity of A5

We apply Iwasawa’s criterion to the action of A5 on
X = {1, 2, 3, 4, 5}.

For x ∈ X, define Ax as the subgroup of double transpositions
that fix x : it is a Klein group.

• This action is 2-transitive.
• Conjugation relation Ag·x = gAxg−1

• These groups generate A5.

Conclusion : Every nontrivial normal subgroup of A5 contains
the derived subgroup, hence is equal to A5.
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Simplicity of An

We will apply a variant of Iwasawa’s criterion to the action
of An on the set of k-element subsets of X = {1, . . . ,n} for
k = 3 or k = 4.

If S is such a subset, define AS as

• the alternating group AS of this subset for k = 3
(isomorphic to Z/3Z),

• the group of double transpositions supported by this
subset for k = 4 (isomorphic to (Z/2Z)2).

One has Ag·S = gASg−1, and these groups generate An.

Problem : the action is not 2-transitive.
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Primitive actions

Let a group G act on a set X. A block of X is a subset B ⊆ X such
that for every g ∈ G, either B = g · B, or B ∩ g · B = ∅.

B = ∅, singletons, B = X are blocks, called trivial.

Definition
The action of G on X is primitive if the only blocks are trivial.

Variant : the only equivalence relations on X which are
compatible with the action of G are trivial (coarse or discrete).

Introduced by Galois in his letter to Auguste Chevalier : then X
is the set of roots of a polynomial, acted on by the Galois
group G.
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Transitivity and primitivity

An orbit is a block, hence a primitive action is transitive.

A 2-transitive action is primitive.

Let B be a nontrivial block.
Let x 6= y ∈ B, and let z ∈ X \ B.
By 2-transitivity, there is g ∈ G such that g · x = x et g · y = z.
Then x ∈ B ∩ g · B, hence B = g · B.
Since y ∈ B and z = g · y, we get z ∈ B ; contradiction.
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Transitivity and primitivity

An orbit is a block, hence a primitive action is transitive.
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The Iwasawa criterion for primitive actions

Let N be a normal subgroup of G that acts nontrivially on X.

• N acts transitively on X : since N is normal, the orbit of N
is a block.

• For any x, y ∈ X, we have Ay 6 〈N,Ax〉. Write y = n · x, for
n ∈ N. Then Ay = n · Ax · n−1 6 〈N,Ax〉.

• Fix x ∈ X. Since the Ay generate G, we have G = 〈N,Ax〉.
• The morphism Ax → G→ G/N is surjective, hence G/N is
abelian, hence N contains the derived subgroup of G.
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Primitive actions : geometry

The action of SO(3,R) on P3(R) is primitive.

• It is transitive : if u, v are unit vectors, there is g ∈ SO(3,R)
such that g · u = v.

• It is not 2-transitive : rotations preserve angles
• It is primitive : if a block contains (the lines through) the
north pole and another point, it contains the whole
parallel, then the sphere.

This implies that SO(3,R) is simple.

General case — For “non compact” orthogonal groups,
Tamagawa (1958)
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Primitive actions : combinatorics

For n > 3 and k 6= 0,n/2,n, the action of An on the k-element
subsets of {1, . . . ,n} is primitive.

Subtle (see later).

• It is transitive :
• It is not 2-transitive : because
Card(g · A ∩ g · B) = Card(A ∩ B).
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Simplicity of An

We get a slightly complicated, geometric, proof of the
simplicity of An, for n > 5 :

• If n 6= 8, take k = 4, and AS to be the Klein group with
support in S.

• If n 6= 6, take k = 3, and AS to be the alternating group
with support in S.
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Primitivity and maximality

Proposition
Let G be a group acting transitively and nontrivially on a set X.

The action of G on X is primitive

⇔ For every x ∈ X, the fixator Gx of x is a maximal
subgroup of G.

More generally, the maps

B 7→ GB, H 7→ H · x

are increasing bijections between the set of block of X
containing x and the set of subgroups of G containing Gx .
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Maximal subgroups

In view of Iwasawa’s criterion, this justifies to study
systematically the maximal subgroups of a given group G.

For finite simple groups, this study appears as a step in the
description of the classification of finite simple groups. They
are made explicit :

• by a theorem of O’Nan–Scott (1980–81) for the
symmetric/alternating groups ;

• by a theorem of Aschbacher (1984) for classical groups on
a finite field.
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The O’Nan–Scott theorem

Let G be a maximal subgroup of An. Then G is the trace on An

of one of the following groups :

• G = Sk ×Sn−k for 0 < k < n− k < n (intransitive case)
• G = Sk oSm, where n = mk and m, k > 1 (imprimitive case)
• n = pk and G is the affine group of Fpk

and three other cases.

Note these subgroups appear as stabilizers of natural
structures — in the first two cases, a partition.
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The converse : Liebeck, Praeger, Saxl (1987)

All of the subgroups in the list of O’Nan–Scott are maximal, up
to some exceptions.

In particular, if 1 6 k < n/2 (and n > 5), then the stabilizer
in An of a k-element subset of {1, . . . ,n} is a maximal
subgroup of An.

In other words, the action of An on the k-element subsets
of {1, . . . ,n} is primitive.

This is exactly what was needed to conclude our not-so-simple
proof of the simplicity of An.
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Proof of the primitivity result

Proposition
Let k,n ∈ N be such that n > 5 and 1 6 k < n− k. Then the
subgroup G = (Sk ×Sn−k) ∩ An of An is maximal.

Assume k = 1. Then G is the fixator of {1}. For n > 3, the action
of An on {1, . . . ,n} is 2-transitive, hence primitive, hence G is
maximal.

Assume k > 2. Let H be a group such that G < H 6 An ; we want
to prove that H = An. This is done in two steps :

• We prove that H acts primitively on {1, . . . ,n} ; here that
requires k 6= n− k.

• We conclude by a theorem of Jordan (1870) : A primitive
subgroup of Sn that contains a 3-cycle contains An.
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