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Fermat’s method of inûnite descent studies the solutions to diophantine equations by
constructing, from a given solution of a diophantine equation, a smaller solution, and
ultimately deriving a contradiction. In order to formalize the intuitive notion of ‘‘size’’ of
an algebraic solution of a diophantine equation, Northcott (1950) andWeil (1951) have
introduced the notion of height of an algebraic point of an algebraic variety deûned over
a number ûeld and established their basic functorial properties, using the decomposition
theoremofWeil (1929). _e heightmachine isnow an important tool inmodern diophantine
geometry.

_e advent of arithmetic intersection theory with Arakelov (1974) and, above all, its
extension in any dimension by Gillet & Soulé (1990) (‘‘Arakelov geometry’’) has led
Faltings (1991) to extend the concept further by introducing the height of a subvariety, de-
ûned in pure analogy with its degree, replacing classical intersection theory with arithmetic
intersection theory. _is point of view has been developed in great depth by Bost et al
(1994) and Zhang (1995a).
Although I shall not use it in these notes, I also mention the alternative viewpoint

of Philippon (1991) who deûnes the height of a subvariety as the height of the coeõcients-
vector of its ‘‘Chow form’’.

_e viewpoint of adelic metrics introduced in Zhang (1995b) is strengthened by the
introduction of Berkovich spaces in this context, based on Gubler (1998), and leading to
the deûnition by Chambert-Loir (2006) ofmeasures at all places analogous to product of
Chern forms at the archimedean place.
We then present the equidistribution theorem of Szpiro et al (1997) and its extension

by Yuan (2008).
Finally, we use these ideas to explain the proof of Bogomolov’s conjecture, follow-

ing Ullmo (1998); Zhang (1998).
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1. Arithmetic intersection numbers

1.1. — Let X be a proper �at scheme over Z. For every integer d ⩾ 0, let Zd(X ) be the
group of d-cycles on X : it is the free abelian group generated by integral closed subschemes
of dimension d.

Remark (1.2). — Let f ∶ X → Spec(Z) be the structural morphism. By assumption, f is
proper so that the image of an integral closed subscheme Z ofX is again an integral closed
subscheme of Spec(Z). _ere are thus two cases:

(1) Either f (Z) = Spec(Z), in which case we say that Z is horizontal;
(2) Or f (Z) = {(p)} for some prime number p, in which case we say that Z is vertical.

1.3. — _e set X (C) of complex points ofX has a natural structure of a complex analytic
space, smooth if and only ifXQ is regular. _is gives rise to the notions of continuous, resp.
smooth, resp. holomorphic function on X (C): by deûnition, this is a function which, for
every local embedding of an open subset U ofX (C) into Cn, extends to a continuous, resp.
smooth, resp. holomorphic, function around the image of U.

Let L be a line bundle on X . A hermitian metric on L is the datum, for every open
subset U ofX (C) and every section s ∈ Γ(U,L ) of a continuous function ∥s∥ ∶ U→ R+,
subject to the following conditions:

(1) For every subset V of U, one has ∥s∣V∥ = ∥s∥ ∣V;
(2) For every holomorphic function f ∈ OX (U), one has ∥ f s∥ = ∣ f ∣ ∥s∥;
(3) If s does not vanish on U, then the function ∥s∥ is strictly positive and smooth.

A hermitian line bundleL on X is a line bundleL endowed with a hermitian metric.
With respect to the tensor product of underlying line bundles and the tensor product

of hermitian metrics, the set of isomorphism classes of hermitian line bundles on X is
an abelian group, denoted by P̂ic(X ). _is group ûts within an exact sequence of abelian
groups:

(1.3.1) Γ(X ,O×
X )→ C∞(X (C),R)→ P̂ic(X )→ Pic(X )→ 0,
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where the ûrst map is f ↦ log∣ f ∣, the second associates with φ ∈ C∞(X (C),R) the trivial
line bundle OX endowed with the hermitian metric for which log ∥1∥−1 = φ, and the last
one forgets themetric.

1.4. — _e starting point of our lectureswill be the following theorem that asserts existence
and uniqueness of ‘‘arithmetic intersection degrees’’ of cycles associated with hermitian
line bundles. It ûts naturally within the arithmetic intersection theory of Gillet & Soulé
(1990), we refer to the foundational article by Bost et al (1994) for such an approach; see
also Faltings (1992) for a direct construction.

_eorem (1.5). — Let n = dim(X ) and let L1, . . . ,Ln be hermitian line bundles on X .
_ere exists a unique family of linear maps:

d̂eg (ĉ1(L1) . . . ĉ1(Ld) ∣ ⋅) ∶ Zd(X )→ R,
for d ∈ {0, . . . , n} satisfying the following properties:

(1) For every integer d ∈ {1, . . . , n}, every integral closed subscheme Z of X such that
dim(Z) = d, every integer m ≠ 0 and every regular meromorphic(1) section s ofL m

d ∣Z, one
has

(1.5.1) m d̂eg (ĉ1(L1) . . . ĉ1(Ld) ∣ Z)
= d̂eg (ĉ1(L1) . . . ĉ1(Ld−1) ∣ div(s))

+ ∫
Z(C)

log ∥s∥−1 c1(L1) . . . c1(Ld−1).

(2) For every closed point z ofX , viewed as a integral closed subscheme of dimension d = 0,
one has

(1.5.2) d̂eg (Z) = log(Card(κ(z))).
Moreover, thesemaps aremultilinear and symmetric in the hermitian line bundles L1, . . . ,Ln

and only depend on their isomorphism classes in P̂ic(X ).
Remark (1.6). — _is theorem should be put in correspondence with the analogous ge-
ometric result for classical intersection numbers. Let F be a ûeld and let X be a proper
scheme over F, let n = dim(X) and let L1, . . . , Ln be line bundles over X. _e degree
deg(c1(L1) . . . c1(Ld) ∣ Z) of a d-cycle Z in X is characterized by the relations:

(1) It is linear in Z;
(2) If d = 0 and Z is a closed point z whose residue ûeld κ(Z) is a ûnite extension of F,

then deg(Z) = [κ(Z) ∶ F];
(3) If d ⩾ 1 and Z is an integral closed subscheme of X of dimension d, m a non-zero

integer, s a regular meromorphic section of Lm
d , then

(1.6.1) m deg(c1(L1) . . . c1(Ld) ∣ Z) = deg(c1(L1) . . . c1(Ld−1) ∣ div(s)).
_e additional integral that appears in the arithmetic degree takes into account the fact that
Spec(Z) does not behave as a proper variety.
(1)that is, deûned over a dense open subscheme of Z
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Example (1.7). — Assume that Z is vertical and lies over amaximal ideal (p) of Spec(Z).
_en Z is a proper scheme over Fp and it follows from the inductive deûnition and the
analogous formula in classical intersection theory that

d̂eg (ĉ1(L1) . . . ĉ1(Ld) ∣ Z)

= deg (c1(L1∣XFp
) . . . c1(Ld ∣XFp

) ∣ Z) log(p).

Example (1.8). — Assume that d = 1 and that Z is horizontal, so that Z is the Zariski-
closure in X of a closed point z ∈ XQ. Let F = κ(z) and let oF be its ring of integers;
by properness of X , the canonical morphism Spec(F) → X with image z extends to a
morphism εz ∶ Spec(oF)→X , whose image is Z. _en

(ĉ1(L ) ∣ Z) = d̂eg(ε∗zL ).

Proposition (1.9). — Let f ∶ X ′ →X be a generically ûnitemorphism of proper �at schemes
over Z, let Z be an integral closed subscheme ofX ′ and let d = dim(Z).

(1) If dim( f (Z)) < d, then

(ĉ1( f ∗L1) . . . ĉ1( f ∗Ld) ∣ Z) = 0;

(2) Otherwise, dim( f (Z)) = d and

(ĉ1( f ∗L1) . . . ĉ1( f ∗Ld) ∣ Z) = (ĉ1(L1) . . . ĉ1(Ld) ∣ f∗(Z)) ,

where f∗(Z) = [κ(Z) ∶ κ( f (Z))] f (Z) is a d-cycle on X .

Remark (1.10). — Let n = dim(X ) and assume that X is regular. As the notation sug-
gest rightly, the arithmetic intersection theory of Gillet & Soulé (1990) allows another
deûnition of the real number d̂eg (ĉ1(L1) . . . ĉ1(Ln) ∣ X ) as the arithmetic degree of the
0-dimensional arithmetic cycle ĉ1(L1) . . . ĉ1(Ln) ∈ ĈH0(X ).

In fact, while the theory of Gillet & Soulé (1990) imposes regularity conditions on X ,
the deûnition of arithmetic product of classes of the form ĉ1(L ) requires less stringent
conditions ; in particular, the regularity of the generic ûber XQ is enough. See Faltings
(1992) for such an approach. More generally, for every birational morphism f ∶ Z′ → Z such
that Z′Q is regular, one has

d̂eg (ĉ1(L1) . . . ĉ1(Ln) ∣ Z) = d̂eg (ĉ1( f ∗L1) . . . ĉ1( f ∗Ln) ∣ Z′) .

2. _e height of a variety

2.1. — Let X be a proper Q-scheme and let L be a line bundle on X. _e important case is
when the line bundle L is ample, an assumption which will o�en be implicit below; in that
case, the pair (X, L) is called a polarized variety.
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2.2. — Let X be a proper �at scheme over Z and let L be a hermitian line bundle
on X such that XQ = X and LQ = L. Let Z be a closed integral subscheme of X and let
d = dim(Z). Let Z be the Zariski-closure of Z in X ; it is an integral closed subscheme
ofX and dim(Z ) = d + 1.

Deûnition (2.3). — _e degree and the height of Z relative to L are deûned by the formulas
(provided degL (Z) ≠ 0).

degL (Z) = deg(c1(L)d ∣ Z)(2.3.1)

hL (Z) = d̂eg (ĉ1(L
d+1) ∣ Z ) /(d + 1)degL (Z).(2.3.2)

Note that the degree degL (Z) is computed on X, hence only depends on L. Moreover,
the condition that degL (Z) ≠ 0 is satisûed (for every Z) when L is ample on X.

Proposition (2.4). — Let f ∶ X ′ →X be a generically ûnitemorphism of proper �at schemes
over Z, let Z be a closed integral subscheme of X ′

Q and let d = dim(Z). Assume that L is
ample on X and that dim( f (Z)) = d. _en degL (Z) > 0 and

h f ∗L (Z) = hL ( f (Z)).

Proof. — _is follows readily from proposition 1.9 and its analogue for geometric degrees.
Indeed, when one compares formula (2.3.2) for Z and for f (Z), both the numerator and
the denominator get multiplied by [κ(Z) ∶ κ( f (Z))].

Example (2.5). — For every x ∈ X(Q), let [x] denote its Zariski closure in X. _e function
X(Q)→ R given by x ↦ hL ([x]) is a height function relative to the line bundleLQ on X.

Example (2.6). — Let us assume that X is an abelian variety over a number ûeld F, with
everywhere good reduction, and let X be an oF-abelian scheme such that XQ = X. Let o
be the origin of X and let εo ∶ Spec(oF)→X be the corresponding section. Let L be a line
bundle on X with a trivialisation ℓ of L∣o. _ere exists a unique line bundleL on X such
that LQ = L and such that the given trivialisation of L∣o extends to a trivialisation of ε∗oL .
Moreover, for every embedding σ ∶ F↪ C the theory of Riemann forms on complex tori
endows Lσ with a canonical metric ∥⋅∥σ whose curvature form c1(Lσ , ∥⋅∥σ) is invariant by
translation and such that ∥ℓ∥σ = 1; this is in fact the uniquemetric possessing these two
properties. We let L be the hermitian line bundle on X so deûned.

_e associated height function will be denoted by ĥL: it extends the Néron–Tate height
from X(Q) to all integral closed subschemes.
Assume that L is even, that is [−1]∗L ≃ L. _en [n]∗ ≃ Ln2 for every integer n ⩾ 1, and

this isomorphism extends to an isomorphism of hermitian line bundles [n]∗L ≃ L
n2

.
Consequently, for every integral closed subscheme Z of X, one has the following relation

(2.6.1) ĥL([n](Z)) = n2ĥL(Z).
Assume otherwise that L is odd, that is [−1]∗L ≃ L−1. _en [n]∗ ≃ Ln for every integer n ⩾

1; similarly, this isomorphism extends to an isomorphismof hermitian line bundles [n]∗L ≃
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L
n
. Consequently, for every integral closed subschemeZ ofX, one has the following relation

(2.6.2) ĥL([n](Z)) = nĥL(Z).

Proposition (2.7). — Let X ′ be a proper �at scheme over Z such that X ′
Q = X; let L ′ be a

hermitian line bundle on X ′ such that L ′
Q = L. Assume that L is ample. _en there exists a

real number c such that
∣hL (Z) − hL ′(Z)∣ ⩽ c

for every integral closed subscheme Z of X.

Proof. — One proves in fact the existence of a real number c such that

∣d̂eg(ĉ1(L )d+1 ∣ Z ) − d̂eg(ĉ1(L ′)d+1 ∣ Z ′)∣ ⩽ c deg(c1(L)d ∣ Z)
for every integral d-dimensional subvariety Z ofX,whereZ andZ ′ are the Zariski closures
of Z in X andX ′ respectively. Considering amodel X ′′ that dominates X andX ′ (for
example, the Zariski closure in X ×Z X ′ of the diagonal), wemay assume that X = X ′,
henceZ = Z ′. A further reduction, that we omit here, allows us to assume that L is a nef
line bundle, and that its hermitian metric is semipositive, and similarly for L ′.
By multilinearity, the le� hand side that we wish to bound from above is the absolute

value of
d

∑
i=0
d̂eg(ĉ1(L

′ ⊗L
−1)ĉ1(L

′)i ĉ1(L )d−i ∣ Z ).

_en we view the section 1 ofL ′
Q ⊗L −1

Q as ameromorphic section s ofL ′ ⊗L −1. Note
that its divisor is purely vertical, and its hermitian norm ∥s∥ is a non-vanishing continuous
function on X(C). _e deûnition of the arithmetic intersection numbers then leads us to
estimate algebraic intersection numbers

deg(c1(L ′)ic1(L )d−i ∣ div(s))
and an integral

∫
Z(C)

log(∥s∥−1)c1(L
′)ic1(L )d−i .

By positivity of the curvatures forms c1(L ) and c1(L ′), the latter integral is bounded
from above by

∥log(∥s∥)−1∥
∞∫Z(C) c1(L

′)ic1(L )d−i

= ∥log(∥s∥)−1∥
∞
deg(c1(L)d ∣ Z).

_e algebraic terms can be bounded as well. Observe that there exists an integer n ⩾ 1
such that ns extends to a global section ofL ′⊗L −1, and ns−1 extends to a global section of
its inverse (L ′)−1 ⊗L ). (_is is the ultrametric counterpart to the fact that the section s
has non-vanishing norm on X(C).) Consequently, div(ns∣Z ) and div(ns−1∣Z ) are both
eòective, so that

−∑
p
vp(n)[ZFp] ⩽ div(s∣Z ) ⩽∑

p
vp(n)[ZFp].
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_is inequality of cycles is preserved a�er taking intersections, so that

deg(c1(L ′)ic1(L )d−i ∣ div(s∣Z )p)
⩽ vp(n)deg(c1(L ′)ic1(L )d−i ∣ [ZFp])
= vp(n)deg(c1(L)d ∣ Z),

where div(s∣Z )p is the part of div(s∣Z ) that lies above themaximal ideal (p) of Spec(Z).
_ere is a similar lower bound.
Adding all these contributions, this proves the proposition. We refer to Bost et al (1994),

§3.2.2, for more details.

Proposition (2.8). — Let us assume that L is ample. For every real number B, the set of
integral closed subschemes Z of X such that degL(Z) ⩽ B and hL (Z) ⩽ B is ûnite.

_e case of closed points is Northcott’s theorem, and the general case is _eorem 3.2.5
of Bost et al (1994). _e principle of its proof goes by reducing to the case where X = PN

andL = O(1), and comparing the height hL (Z) of a closed integral subscheme Z with the
height of its Chow form. (_at paper also provides amore elementary proof, relying on the
fact that a ûnite set of sections of powers of O(1) are suõcient to compute by induction the
height of any closed integral subscheme of PN of given degree.)

3. Adelicmetrics

3.1. — Let S = {2, 3, . . . ,∞} be the set of places ofQ.
Each prime number p is identiûed with the p-adic absolute value on Q, normalized

by ∣p∣p = 1/p; these places are said to be ûnite. We denote by Qp the completion of Q
for this p-adic absolute value and ûx an algebraic closure Qp of Qp. _e p-adic absolute
value extends uniquely to Qp; the corresponding completion is denoted by Cp: this is an
algebraically closed complete valued ûeld.

_e archimedean place is represented by the symbol∞, and is identiûed with the usual
absolute value on Q; it is also called the inûnite place. For symmetry of notation, wemay
writeQ∞ = R and C∞ = C, the usual ûelds of real and complex numbers.

3.2. — Let X be a proper scheme over Q. Let v ∈ S be a place ofQ.
Assume v =∞. _en we set Xan

∞ = X(C∞)/F∞, the set of complex points of X modulo
the action of complex conjugation F∞.
Assume now that v = p is a ûnite place. _enwe setXan

p to be the analytic space associated
by Berkovich (1990) to theQp-scheme Xp = XQp . It is a compact metrizable topological
space, locally contractible (in particular locally arcwise connected). _ere is a canonical
continuous map X(Cp) → Xan

p ; it identiûes the (totally discontinuous) topological space
X(Cp)/Gal(Cp/Qp)with a dense subset ofXan

p . It is endowedwith a sheaf in local ringsOXanp ;
for every open subset U of Xan

p , every holomorphic function f ∈ OXanp (U) admits an absolute
value ∣ f ∣ ∶ U→ R+.
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We gather all places together and consider the topological spaceXad =∐v∈S Xan
v , coproduct

of the family (Xan
v )v∈S. By construction, a function φ on Xad consists in a family (φv)v∈S,

where φv is a function on Xan
v , for every v ∈ S.

3.3. — Let L be a line bundle on X; it induces a line bundle Lanv on Xan
v for every place v.

A continuous v-adicmetric on Lanv is the datum, for every open subset U of Xan
v and every

section s on Lanv on U, of a continuous function ∥s∥ ∶ U→ R+, subject to the requirements:
(1) For every subset V of U, one has ∥s∣V∥ = ∥s∥ ∣V;
(2) For every holomorphic function f ∈ OXanv (U), one has ∥ f s∥ = ∣ f ∣ ∥s∥.
(3) If s does not vanish, then ∥s∥ does not vanish as well.
If L andM are line bundles on X equipped with v-adicmetrics, then L−1 and L⊗M admit

natural v-adicmetrics, and the canonical isomorphism L−1 ⊗ L ≃ OX is an isometry.
_e trivial line bundle OX admits a canonical v-adicmetric for which ∥ f ∥ = ∣ f ∣ for every

local section of OX. More generally, for every v-adic metric ∥⋅∥ on OX, φ = log ∥1∥−1 is a
continuous function on Xan

v , and any v-adicmetric on OX is of this form. _e v-adically
metrized line bundle associated with φ is denoted by OX(φ).

If L is a line bundle endowed with an v-adic metric and φ ∈ C (Xan
v ,R), we denote by

L(φ) the v-adicallymetrized line bundle L⊗OX(φ). Explicitly, its v-adicmetric is that of L
multiplied by e−φ.

Example (3.4). — Let X be a proper �at scheme over Z such that XQ = X, let d be a
positive integer and let L be a line bundle on X such that LQ = Ld . Let us show that this
datum endows L with an p-adicmetric, for every ûnite place p ∈ S.

Let thus ûx a prime number p. _ere exists a canonical specialization map, Xan
p →

X ⊗Z Fp; it is anticontinuous (the inverse image of an open subset is closed). For every
open subset U ⊂ X ⊗Z Fp, let ]U [ be the preimage ofU .

_ere exists a unique continuous metric on Lanp such that for every open subschemeU
of X ⊗Z Zp and every basis ℓ of L on U , one has ∥ℓ∥ ≡ 1 on ]U ⊗ Fp[. Explicitly, if s
is a section of Lanp on an open subset U of ]U ⊗ Fp[, there exists a holomorphic function
f ∈ OXanp (U) such that sd = f ℓ and ∥s∥ = ∣ f ∣1/d on U.

Such p-adicmetrics are called algebraic.

3.5. — An adelic metric on L is the datum, for every place v ∈ S, of a v-adic metric on
the line bundle Lanv on Xan

v , subject to the additional requirement that there exists amodel
(X ,L ) of (X, L) inducing the given p-adicmetric for all but ûnitely many prime p.

If L andM are line bundles on X equipped with adelicmetrics, then L−1 and L⊗M admit
natural adelicmetrics, and the canonical isomorphism L−1 ⊗ L ≃ OX is an isometry.

_e trivial line bundle OX admits a canonical adelicmetric for which ∥ f ∥ = ∣ f ∣ for every
local section of OX. More generally, for every adelicmetric ∥⋅∥ on OX, and every place v ∈ S,
then φv = log ∥1∥−1v is a continuous function on Xan

v , and is identically zero for all but ûnitely
many places v; in other words, the function φ = (φv) ∈ C (Xad,R) has compact support.
Conversely, any adelic metric on OX is of this form; _e adelically metrized line bundle
associated with φ is denoted by OX(φ).
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If L is a line bundle endowed with an adelic metric and φ ∈ Cc(Xan
v ,R), we denote by

L(φ) the adelically metrized line bundle L⊗OX(φ). Explicitly, for every place v, its v-adic
metric is that of L multiplied by e−φv .

Remark (3.6). — Let (X ,L ) and (X ′,L ′) be twomodels of the polarized variety (X, L).
SinceX is ûnitely presented, there exists a dense open subschemeU of Spec(Z) such that the
isomorphismXQ = X = X ′

Q extends to an isomorphismXU ≃ X ′
U. _en, up to shrinkingU,

wemay assume that the isomorphism LQ = L = L ′
Q extends to an isomorphism LU ≃ L ′

U.
In particular, for every prime number p such that (p) ∈ U, the p-adic norms on L induced
by L andL ′ coincide.

3.7. — Let Pic(Xad) be the abelian group of isometry classes of line bundles on X endowed
with adelicmetrics. It ûts within an exact sequence

(3.7.1) Γ(X,O×
X)→ Cc(Xad,R)→ Pic(Xad)→ Pic(X)→ 0.

_e morphism on the le� is given by u ↦ (log∣u∣−1v )v∈S. It is injective up to torsion, as a
consequence of Kronecker’s theorem: if ∣u∣v = 1 for every place v, then there exists m ⩾ 1
such that um = 1. Its image is the kernel of themorphism C (Xad,R)→ Pic(X); indeed, an
isometry OX(φ)→ OX(ψ) is given by an element u ∈ Γ(X,O×

X) such that ψv + log∣u∣−1v = φv ,
for every place v ∈ S.
We denote by ĉ1(L) the isometry class in Pic(X) of an adelically metrized line bundle

on X.

Remark (3.8). — Let D be an eòective Cartier divisor on X and let OX(D) be the corre-
sponding line bundle; let sD be its canonical section. Assume that OX(D) is endowed with
an adelicmetric.

Let v ∈ S be a place of Q. _e function gD = log ∥sD∥−1v is a continuous function on
Xan
v ∣D∣, and is called a v-adicGreen function forD. For every open subschemeU of X and
any equation f of D on U, gD + log∣ f ∣v extends to a continuous function on Uan

v . Conversely,
this property characterizes v-adic Green functions for D.

_e family gD = (gD,v) is called an adelic Green function for D.

Lemma (3.9) (Chambert-Loir & Thuillier (2009), prop. 2.2)
Let X be a proper �at integral scheme over Z, let L be a hermitian line bundle on X . Let

X = XQ and let L = LQ, endowed with the algebraic adelicmetric associated with (X ,L ).
Assume that X is integrally closed in its generic ûber ( for example, that it is normal).

_en the canonical map Γ(X ,L )→ Γ(X, L) is injective and its image is the set of sections s
such that ∥s∥v ⩽ 1 for every ûnite place v ∈ S.

Equivalently, eòective Cartier divisors onX correspond to v-adicGreen functionswhich
are nonnegative at all ûnite places v.
Proof. — Injectivity follows from the fact that X is �at, so that X is schematically dense
in X . Surjectivity is a generalization of the fact that an integrally closed domain is the
intersection of its prime ideals of height 1.
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3.10. — Let ∥⋅∥ and ∥⋅∥′ be two adelicmetrics on L. For every place v, the ratio of these
metrics is a continuous function on Xan

v , and we let

δv(∥⋅∥ , ∥⋅∥′) = sup
x∈Xanv

∣log ∥⋅∥′

∥⋅∥ (x)∣ .

Since Xan
v is compact, this is a nonnegative real number. Moreover, for all but ûnitely many

places v, it is equal to 0.
We then deûne the distance between the two given adelicmetrics by

δ(∥⋅∥ , ∥⋅∥′) =∑
v∈S
δv(∥⋅∥′ , ∥⋅∥).

_e set of adelic metrics on a given line bundle L is a real aõne space, its underlying
vector space is the subspace Cc(Xad,R) of C (Xad,R) =∏v C (Xan

v ,R) consisting of families
(φv) such that φv ≡ 0 for all but ûnitely many places v ∈ S.

_e space Cc(Xad,R) is the union of the subspaces CU(Xad,R) of functions with (com-
pact) support above a given ûnite set U of places of S. We thus endow it with its natural
inductive limit topology.

Example (3.11) (Algebraic dynamics, Zhang (1995b)). — Let X be a proper Q-scheme,
let f ∶ X → X be a morphism, let L be a line bundle on X such that f ∗L ≃ Lq, for some
integer q ⩾ 2. We ûx such an isomorphism ε. _e claim is that there exists a unique adelic
metric on L for which the isomorphism ε is an isometry.

Let us ûrst ûx a place v and prove that there is a unique v-adicmetric on L for which
ε is an isometry. To that aim, let us consider, for any v-adicmetric ∥⋅∥ on L, the induced
v-adicmetric on f ∗L and transfer it to Lq via ε. _is furnishes a v-adicmetric ∥⋅∥ f on L such
that ε is an isometry from (L, f ∗ ∥⋅∥) to (L, ∥⋅∥ f )q, and it is the unique v-adicmetric on L
satisfying this property. Within the real aõne space of v-adicmetrics on L, normed by the
distance δv , and complete, the self-map ∥⋅∥↦ ∥⋅∥ f is contractingwith Lipschitz constant 1/q.
Consequently, the claim follows from Picard’s theorem.

We also note that there exists a dense open subschemeU of Spec(Z), amodel (X ,L ) of
(X, L) over U such that f ∶ X→ X extends to amorphism φ ∶ X →X and the isomorphism
ε ∶ f ∗L ≃ Lq extends to an isomorphism φ∗L ≃ L q, still denoted by ε. _is implies that for
every ûnite place p above U, the canonical v-adicmetric is induced by themodel (X ,L ).
Consequently, the family (∥⋅∥v) of v-adicmetrics on L for which ε is an isometry is an

adelicmetric.

4. Arithmetic ampleness

Deûnition (4.1). — Let X be a proper scheme over Z and let L be a hermitian line bundle
on X . One says that L is relatively semipositive if:

(1) For every vertical integral curve C on X , one has degL (C) ⩾ 0;
(2) For every holomorphicmap f ∶ D→X (C), the curvature of f ∗L is semipositive.

IfL is relatively semipositive, then LQ is nef.
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Example (4.2). — Let us consider the tautological line bundle O(1) on the projective
space PN

Z . Its local sections correspond to homogeneous rational functions of degree 1 in
indeterminates T0, . . . ,TN. If f is such a rational function, giving rise to the section s f , and
if x = [x0 ∶ . . . ∶ xN] ∈ PN(C), the formula

∥s f ∥ (x) =
∣ f (x0, . . . , xN)∣

(∣x0∣2 + ⋅ ⋅ ⋅ + ∣xN∣2)1/2
.

By homogeneity of f , the right hand side does not depend on the choice of the system of
homogeneous coordinates for x. _e corresponding hermitian line bundleO(1) is relatively
semipositive. It is in fact themain source of relatively semipositive hermitian line bundles,
in the following way.

Let X be a proper scheme over Z and let L be a hermitian line bundle on X . One says
that L is relatively ample if there exists an embedding φ ∶ X ↪ PN

Z , ametric with positive
curvature on OPN(1) and an integer d ⩾ 1 such that L

d ≃ φ∗OPN(1).

Proposition (4.3). — Let X be a proper scheme over Q; let L0, . . . , Ld be line bundles on X.
Let X ,X ′ be proper �at schemes over Z such that X = XQ = X ′

Q, let L0, . . . ,Ld (resp.
L ′

0 , . . . ,L ′
d ) be semipositive hermitian line bundles on X (resp. X ′) such that L j,Q =

L ′
j,Q = L j; We write L0, . . . , Ld (resp. L′0, . . . , L′d) for the corresponding adelically metrized

line bundles on X. _en for every closed subscheme Z ofX , one has

∣ d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

d) ∣ Z) − d̂eg (ĉ1(L0) . . . ĉ1(Ld) ∣ Z) ∣

⩽
d

∑
j=0
δ(L j, L′j)deg (c1(L0) . . . ĉ1(L j) . . . c1(Ld) ∣ Z) ,

where the factor c1(L j) is omitted in the jth term.

Proof. — We ûrst reduce to the case whereX = X ′ is normal. We then write

d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

d) ∣ Z) − d̂eg (ĉ1(L0) . . . ĉ1(Ld) ∣ Z)

=
d
∑
j=0
d̂eg (ĉ1(L ′

0) . . . ĉ1(L ′
j−1)(ĉ1(L ′

j ) − ĉ1(L j))ĉ1(L j+1) . . . ĉ1(Ld) ∣ Z)

and bound the jth term as follows. Let s j be the regular meromorphic section of OX =
L ′

j ⊗ (L j)−1 corresponding to 1. By deûnition, one has

d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)(ĉ1(L ′
j ) − ĉ1(L j))ĉ1(L j+1) . . . ĉ1(Ld) ∣ Z)

= d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)ĉ1(L j+1) . . . ĉ1(Ld)(ĉ1(L ′
j ) − ĉ1(L j)) ∣ Z)

= d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)ĉ1(L j+1) . . . ĉ1(Ld) ∣ div(s j∣Z))

+ ∫
Z(C)

log ∥s j∥
−1 c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld).
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Moreover, all components of div(s j∣Z) are vertical. For every j ∈ {0, . . . , d} and every
v ∈ S, let δ j,v = δv(L j, L′j) (this is zero for all but ûnitely many places v). Using the fact that
∣log ∥s j∥v ∣ ⩽ δv(L j, L′j) for every place v ∈ S, the normality assumption on X implies that

div(s j∣Z) ⩽ ∑
p∈S {∞}

δ j,p(log p)−1[Z ⊗ Fp].

Since the line bundles Lk andL ′
k are semipositive, this implies the bound

d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)ĉ1(L j+1) . . . ĉ1(Ld) ∣ div(s j∣Z))

=∑
p
deg (c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld) ∣ div(s j∣Z)p) log p

⩽∑
p
δ j,p deg (c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld) ∣ [Z ⊗ Fp])

⩽
⎛
⎝∑p

δ j,p
⎞
⎠
deg (c1(L0) . . . c1(L j−1)c1(L j+1) . . . c1(Ld) ∣ Z) .

Similarly, the curvature forms c1(Lk) and c1(L′k) are semipositive, so that the upper bound
log ∥s j∥

−1 ⩽ δ j,∞ implies

∫
Z(C)

log ∥s j∥
−1
c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld)

⩽ δ j,∞∫
Z(C)

c1(L ′
0) . . . c1(L ′

j−1)c1(L j+1) . . . c1(Ld)

⩽ δ j,∞ deg (c1(L0) . . . c1(L j−1)c1(L j+1) . . . c1(Ld) ∣ Z) .

Adding these contributions, we get one of the desired upper bound, and the other follows
by symmetry.

Deûnition (4.4). — An adelicmetric on a line bundle L on X is said to be semipositive if it is
a limit of a sequence of semipositive algebraic adelicmetrics on L.

Let Pic+(X) be the set of all isometry classes of line bundles endowed with a semipositive
metric. It is submonoid of Pic(X); moreover, its image in Pic(X) consists of (isomorphism
classes of) nef line bundles on X. I thank the referee for pointing out an example (Demailly
et al, 1994, 1.7) of a nef line bundle on a complex projective variety admitting no smooth
semipositivemetric

Corollary (4.5). — Let Z be an integral closed subscheme ofX, let d = dim(Z). _e arithmetic
degree maps extends uniquely to a continuous function Pic+(X)d+1 → R. _is extension is
multilinear and symmetric.

Proof. — _is follows from proposition 4.3 and from the classical extension theorem of
uniformly continuous maps.
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Deûnition (4.6). — Let X be a projectiveQ-scheme and let L be a line bundle on X. An adelic
metric on L is said to be admissible if there exists two line bundles endowed with semipositive
adelicmetrics,M1 andM2, such that L ≃ M1 ⊗M2

−1.

More generally,we say that a v-adicmetric on L is admissible if it is the v-adic component
of an adelicmetric on L _e set of all admissible adelicallymetrized line bundles on X is
denoted by Picadm(X); it is the subgroup generated by Pic+(X).
By construction, the arithmetic intersection product extends by linearity to Picadm(X).

We use the notation d̂eg(ĉ1(L0) . . . ĉ1(Ld) ∣ Z) for the arithmetic degree of a d-dimensional
integral closed subscheme Z of X with respect to admissible adelicallymetrized line bundles
L0, . . . , Ld .

_is gives rise to a natural notion of height parallel to that given in deûnition 2.3.

Example (4.7). — Let us retain the context and notation of example 3.11. Let us moreover
assume that L is ample and let us prove that the canonical adelicmetric on L is semipositive.
We make the observation that if ∥⋅∥ is an algebraic adelic metric on L induced by a

relatively semipositive hermitian line bundleL on a proper �at model X of X, then the
metric ∥⋅∥ f is again relatively semipositive. Indeed, the normalization ofX in themorphism
f ∶ X → X furnishes a proper �at scheme X ′ over Z such that X ′

Q = X and amorphism
φ ∶ X ′ →X that extends f . _en φ∗L is a relatively semipositive hermitian line bundle
on X ′,model of Ld , which induces the algebraic adelicmetric ∥⋅∥ f on L.

Starting from a given algebraic adelicmetric induced by a relatively semipositivemodel
(for example, a relatively ample one), the proof of Picard’s theorem invoked in example 3.11
proves that the sequence of adelicmetrics obtained by the iteration of the operator ∥⋅∥↦ ∥⋅∥ f
converges to the unique ûxed point. Since this iteration preserves algebraic adelicmetrics
induced by a relatively semipositivemodel, the canonical adelicmetric on L is semipositive,
as claimed.
For a generalization of this construction, see theorem 4.9 of Yuan & Zhang (2017).

5. Measures

Deûnition (5.1). — Let X be a projective Q-scheme. A function φ ∈ C (Xad,R) is said to be
admissible if the adelically metrized line bundle OX(φ) is admissible.

_e set Cadm(Xad,R) of admissible functions (φv) is a real vector subspace of Cc(Xad,R).
One has an exact sequence
(5.1.1) Γ(X,O×

X)→ Cadm(Xad,R)→ Picadm(X)→ Pic(X)→ 0
analogous to (3.7.1)

More generally, we say that a function φv ∈ C (Xan
v ,R) is admissible if it is the v-adic com-

ponent of an admissible function φ = (φv). _is deûnes a real vector subspaceCadm(Xan
v ,R)

of C (Xan
v ,R).

Proposition (5.2) (Gubler, 1998, theorem 7.12). — For every place v ∈ S, the subspace
Cadm(Xan

v ,R) is dense in C (Xan
v ,R).
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_e space Cadm(Xad,R) of admissible functions is dense in Cc(Xad,R).
Proof. — Observe that Xan

v is a compact topological space. By corollary 7.7 and lemma 7.8
of Gubler (1998), the subspace of Cadm(Xan

v ,R) corresponding to algebraic v-adicmetrics
on L separates points and is stable under sup and inf . _e ûrst part of the proposition thus
follows from Stone’s density theorem.

_e second part follows from the ûrst one and a straightforward argument.

_eorem (5.3). — Let v be a place of S. Let Z be an integral closed subscheme of X, let
d = dim(Z), let L1, . . . , Ld be admissible adelically metrized line bundles on X.

(1) _ere exists a uniquemeasure c1(L1) . . . c1(Ld)δZ on Xad such that

∫
Xanv

φ0c1(L1) . . . c1(Ld)δZ = (ĉ1(OX(φ0))ĉ1(L1) . . . ĉ1(Ld) ∣ Z)

for every compactly supported admissible function φ0 on Xad.
(2) _is measure is supported on Zad; its total mass is equal to

∫
Xanv
c1(L1) . . . c1(Ld)δZ = deg(c1(L1) . . . c1(Ld) ∣ Z).

If L1, . . . , Ld are semipositive, then this measure is nonnegative.
(3) _e inducedmap Picadm(X)d →M (Xad) is d-linear and symmetric.
(4) Every admissible function is integrable for this measure.

Proof. — Let us ûrst assume that L1, . . . , Ld are semipositive. It then follows from the
deûnition of the arithmetic intersection degrees that themap

φ0 ↦ (ĉ1(OX(φ0))ĉ1(L1) . . . ĉ1(Ld) ∣ Z)
is a positive linear form on Cadm(Xad,R). By the density theorem, it extends uniquely to
a positive linear form on Cc(Xad,R), which then corresponds to an inner regular, locally
ûnite, positive Borel measure on Xad.

_e rest of the theorem follows from this.

Remark (5.4). — (1) At archimedean places, the construction of the measure
c1(L1) . . . c1(Ld)δZ shows that it coincides with the measure deûned by Bedford &
Taylor (1982) and Demailly (1985).

(2) At ûnite places, it has been ûrst given in Chambert-Loir (2006). By approxima-
tion, the deûnition of the measure in the case of a general semipositive p-adic metric is
then deduced from the case of algebraic metrics, given by a model (X ,L ), the mea-
sure c1(L1) . . . c1(Ld)δZ on Xan

p has ûnite support. Let us describe it when Z = X and the
model X (the general case follows). For each component Y of X ⊗ Fp, there exists a
unique point y ∈ Xan

p whose specialization is the generic point of Y . _e contribution of
the point y to themeasure is then equal to

mY deg(c1(L1) . . . c1(Ld) ∣ Y ),
where mY is themultiplicity of Y in the special ûber, that is, the length of the ideal (p) at
the generic point of Y .
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Example (5.5). — Let X be an abelian variety of dimension d over a number ûeld F. Let L
be an ample line bundle equipped with a canonical adelicmetric; let us then describe the
measure c1(L)d on Xan

v , for every place v ∈ S. For simplicity, we assume that F = Q.
(1) First assume v = ∞. _en Xan

∞ is the quotient, under complex conjugation, of the
complex torus X(C), and the canonical measure on Xan

∞ is the direct image of the unique
Haar measure on X(C) with total mass deg(c1(L)d ∣ X).

(2) _e situation is more interesting in the case of a ûnite place p.
If X has good reduction at p, that is, if it extends to an abelian schemeX over Zp, then

the canonical measure is supported at the unique point of Xan
p whose specialization is the

generic point ofX ⊗ Fp.
Let us assume, on the contrary, that X has (split) totally degenerate reduction. In this

case, the uniformization theory of abelian varieties shows that Xan
p is the quotient of a

torus (Gm
d)an by a lattice Λ. _e deûnition of (Gm

d)an shows that this analytic space
contains a canonical d-dimensional real vector space V, and V/Λ is a real d-dimensional
torus S(Xan

p ) contained in Xan
p , sometimes called its skeleton. Gubler (2007) has shown

that themeasure c1(L)d on Xan
p coincides with theHaar measure on S(Xan

p ) with total mass
deg(c1(L)d ∣ X).

_e general case is a combination of these two cases.

Remark (5.6). — At ûnite places, the theory described in this section deûnes measures
c1(L1) . . . c1(Ld)δZ without deûning the individual components c1(L1), . . . , c1(Ld), δZ.

In Chambert-Loir & Ducros (2012), we propose a theory of real diòerential forms
and currents on Berkovich analytic spaces that allows amore satisfactory analogy with the
theory at complex spaces. In particular, we provide an analogue of the Poincaré–Lelong
equation, and a semipositivemetrized line bundle possesses a curvature current (curvature
form in the ‘‘smooth’’ case) whose product can be deûned and coincides with themeasure.

6. Volumes

6.1. — Let X be a proper Q-scheme and let L be a line bundle endowed with an adelic
metric.

_e Riemann-Roch space H0(X, L) is a ûnite dimensional Q-vector space. For every
place v ∈ S, we endow it with a v-adic semi-norm:

∥s∥v = sup
x∈Xanv

∥s(x)∥

for s ∈ H0(X, L). If X is reduced, then this is a norm; let then Bv be its unit ball.
Let A be the ring of adeles of Q and let µ be a Haar measure on H0(X, L) ⊗ A. _en

∏v∈S Bv has ûnite positive volume in H0(X, L)A, and one deûnes

(6.1.1) χ(X, L) = − log(µ(H0(X, L)⊗A/H0(X, L))
µ(∏v Bv)

) .

_is does not depend on the choice of theHaar measure µ.
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One also deûnes

(6.1.2) Ĥ0(X, L) = {s ∈ H0(X, L) ; ∥s∥v ⩽ 1 for all v ∈ S}.
_is is a ûnite set. We then let

(6.1.3) ĥ0(X, L) = log (Card(Ĥ0(X, L))) .

Lemma (6.2). — One has

χ(X, L) ⩽ ĥ0(X, L) + h0(X, L) log(2).

Proof. — _is follows from the adelic version ofMinkowski’s ûrst theorem of Bombieri &
Vaaler (1983).

6.3. — _e volume and the χ-volume of L are deûned by the formulas:

v̂ol(X, L) = lim sup
n→∞

ĥ0(X, Ln)
nd+1/(d + 1)!(6.3.1)

v̂olχ(X, L) = lim sup
n→∞

χ(X, Ln)
nd+1/(d + 1)! .(6.3.2)

One thus has the inequality

(6.3.3) v̂olχ(X, L) ⩽ v̂ol(X, L).
In fact, it has been independently shown by Yuan (2009) and Chen (2010) that the

volume is in fact a limit.
_e relation between volumes and heights follows from the following result.

Lemma (6.4). — Assume that L is ample. _en, for every real number t such that

t <
v̂olχ(X, L)

(d + 1) vol(X, L) ,

the set of closed points x ∈ X such that hL(x) ⩽ t is not dense for the Zariski topology.

Proof. — Consider the adelically metrized line bundle L(−t), whose metric at the
archimedean place has been multiplied by e t . It follows from the deûnition of the χ-volume
that

v̂olχ(X, L(−t)) = v̂olχ(X, L) − (d + 1)t vol(X, L).
Indeed, for every ûnite place p, changing L to L(−t) does not modify the balls Bp in
H0(X, Ln)⊗Q Qp, while it dilates it by the ratio e−nt at the archimedean place, so that its
volume is multiplied by e−nt dim(H0(X,Ln)).
Consequently,

v̂ol(X, L(−t)) ⩾ v̂olχ(X, L(−t)) ⩾ v̂olχ(X, L) − (d + 1)t vol(X, L) > 0.



HEIGHTS, EQUIDISTRIBUTION, AND THE BOGOMOLOV CONJECTURE 17

In particular, there exists an integer n ⩾ 1 and a nonzero section s ∈ H0(X, Ln) such that
∥s∥p ⩽ 1 for all ûnite places p, and ∥s∥

∞
⩽ e−nt. Let now x ∈ X be a closed point that is not

contained in ∣div(s)∣; one then has

hL(x) =∑
v∈S
∫
Xanv

log ∥s∥−1/nv δv(x) ⩾ t,

whence the lemma.

_eorem (6.5). — Assume that L is semipositive. _en one has

(6.5.1) v̂ol(X, L) = v̂olχ(X, L) = d̂eg (ĉ1(L)d+1 ∣ X) .

_is is the arithmeticHilbert–Samuel formula, due to Gillet & Soulé (1988); Bismut
& Vasserot (1989) when XQ is smooth and the adelic metric of L is algebraic. Abbes &
Bouche (1995) later gave an alternative proof. In the given generality, the formula is a
theorem of Zhang (1995a,b).

_eorem (6.6). — (1) _e function L↦ v̂ol(X, L) extends uniquely to a continuous func-
tion on the real vector space Pic(X)⊗Q R.

(2) If v̂ol(X, L) > 0, then v̂ol is diòerentiable at L.
(3) If L is semipositive, then v̂ol and v̂olχ are diòerentiable at L, with diòerential

M↦ (d + 1) d̂eg(ĉ1(L)d ĉ1(M) ∣ X).

_is theorem is proved by Chen (2011) as a consequence of results of Yuan (2008, 2009).
It essentially reduces from the preceding one in the case L is deûned by an ample line bundle
on amodel of X, and its metric has strictly positive curvature. Reaching the ‘‘boundary’’
of the cone of semipositive admissiblemetrized line bundles was themain result of Yuan
(2008)who proved that for every admissiblemetrized line bundleM and every large enough
integer t, one has

t−(d+1) v̂olχ(X, L
t ⊗M)

⩾ v̂olχ(X, L) +
1
t
(d + 1) d̂eg(ĉ1(L)d ĉ1(M) ∣ X) + o(1/t).

It is this inequality, an arithmetic analogue of an inequality of Siu, will be crucial for the
applications to equidistribution in the next section.

7. Equidistribution

_emain result of this section is the equidistribution theorem 7.4. It has been ûrst proved
in the case v = C by Szpiro et al (1997), under the assumption that the given archimedean
metric is smooth and has a strictly positive curvature form, and the general case is due
to Yuan (2008). However, our presentation derives it from a seemingly more general result,
lemma7.2, whose proof, anyway, closely follows their methods. Note that for the application
to Bogomolov’s conjecture in §8, the initial theorem of Szpiro et al (1997) is suõcient.
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Deûnition (7.1). — Let X be a proper Q-scheme, let L be a big line bundle on X endowed with
an admissible adelically metric. Let (xn) be a sequence of closed points of X.

(1) One says that (xn) is generic if for every strict closed subscheme Z of X, the set of all
n ∈ N such that xn ∈ Z is ûnite; in other words, this sequence converges to the generic point
of X.

(2) One says that (xn) is small if

hL(xn)→ hL(X).

Lemma (7.2). — LetX be a properQ-scheme, let d = dim(X), let L be a semipositive adelically
metrized line bundle on X such that L is ample. Let (xn) be a generic sequence of closed points
of X which is small relative to L. For every line bundleM on X endowed with an admissible
adelicmetric, one has

lim
n→∞

hM(xn) =
d̂eg(ĉ1(L)d ĉ1(M) ∣ X)

degL(X)

− d
d + 1

hL(X)deg(c1(L)
d−1c1(M) ∣ X)

degL(X)2 .

Proof. — Since L is ample, Lt⊗M is ample for every large enough integer t, and the classical
Hilbert-Samuel formula implies that

1
td

vol(X, Lt ⊗M) = deg(c1(L)d ∣ X)

+ dt−1 deg(c1(L)d−1c1(M) ∣ X) +O(t−2)

when t →∞. Since L is semipositive and L is ample, themain inequality of Yuan (2008)
implies that

1
td+1

v̂olχ(X, L
t ⊗M) ⩾ d̂eg(ĉ1(L)d+1 ∣ X)

+ (d + 1)t−1 d̂eg(ĉ1(L)d ĉ1(M) ∣ X) + o(t−1).
Consequently, when t →∞, one has

v̂olχ(X, L
t ⊗M)

vol(X, Lt ⊗M) ⩾ d̂eg(ĉ1(L)
d+1 ∣ X)

deg(c1(L)d ∣ X)

+ (d + 1) d̂eg(ĉ1(L)
d ĉ1(M) ∣ X)

deg(c1(L)d ∣ X)

− d d̂eg(ĉ1(L)
d+1 ∣ X)

deg(c1(L)d ∣ X)
deg(c1(L)d−1c1(M) ∣ X)

deg(c1(L)d ∣ X) +O(1/t).

_e sequence (xn) is generic, hence lemma 6.4 furnishes the inequality:

lim inf
n

hLt
⊗M(xn) ⩾

v̂olχ(X, L
t ⊗M)

(d + 1) vol(X, Lt ⊗M) .
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We observe that
lim inf

n
hLt

⊗M = t lim hL(xn) + lim inf
n

hM(xn),
so that, when t →∞, we have

lim inf
n

hM(xn) ⩾
d̂eg(ĉ1(L)d ĉ1(M) ∣ X)
deg(c1(L)d ∣ X)

− d
d + 1

d̂eg(ĉ1(L)d+1 ∣ X)
deg(c1(L)d ∣ X)

deg(c1(L)d−1c1(M) ∣ X)
deg(c1(L)d ∣ X) .

Applying this inequality for M−1 shows that lim supn hM(xn) is bounded above by its
right hand side. _e lemma follows.

7.3. — Let X be a proper Q-scheme. Let v ∈ S be a place ofQ.
Let x ∈ X be a closed point. Let F = κ(x); this is a ûnite extension of Q, and there are

exactly [F ∶ Q] geometric points on X(Cv) whose image is x, permuted by the Galois group
Gal(Cv/Qv). We consider the corresponding ‘‘probability measure’’ in X(Cv), giving mass
1/[F ∶ Q] to each of these geometric points, and let δv(x) be its image under the natural
map X(Cp)→ Xan

v .
By construction, δv(x) is a probability measure on Xan

v with ûnite support, a (rigid)
point of Xan

v being counted proportionaly to the number of its li�ings to a geometric point
supported by x.

_eorem (7.4). — Let X be a proper Q-scheme, let d = dim(X), let L be a semipositive
adelically metrized line bundle on X such that L is ample. Let (xn) be a generic sequence
of closed points of X which is small relative to L. _en for each place v ∈ S, the sequence of
measures (δv(xn)) on Xan

v converges to themeasure c1(L)d/deg(c1(L)d ∣ X).

Proof. — Let µL denote the probability measure c1(L)d/degL(X) on Xan
v and let

f ∈ C (Xan
v ,R) be an admissible function, extended by zero to an element of Cadm(Xad,R).

We apply lemma 7.2 to themetrized line bundleM = OX( f ) whose underlying line bundle
on X is trivial. For every closed point x ∈ X, one has

hM(x) = ∫
Xanv
f δv(x).

Moreover,
d̂eg(ĉ1(L)d ĉ1(M) ∣ X) = ∫

Xanv
f c1(L)d .

It thus follows from lemma 7.2 that

lim
n→∞∫Xanv

f δv(xn) =
d̂eg(ĉ1(L)d ĉ1(M) ∣ X)
deg(c1(L)d ∣ X)

= 1
deg(c1(L)d ∣ X) ∫Xanv

f c1(L)d .

_e case of an arbitrary continuous function on Xan
v follows by density.
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8. _e Bogomolov conjecture

8.1. — Let X be an abelian variety over a number ûeld F and let L be a line bundle on X
trivialized at the origin. Let us ûrst explain how the theory of canonical adelicmetrics allows
to extend theNéron–Tate height to arbitrary integral closed subschemes. For alternative
and independent presentations, see Philippon (1991), Gubler (1994), Bost et al (1994).

If L is even ([−1]∗L ≃ L), then it admits a unique adelicmetric for which the canonical
isomorphism [n]∗L ≃ Ln2 is an isometry, for every integer n. Similarly, if L is odd ([−1]∗L ≃
L−1), then it admits a unique adelicmetric for which the canonical isomorphism [n]∗L ≃ Ln

is an isometry, for every integer n. In general, one canwriteL2 ≃ (L⊗[−1]∗L)⊗(L⊗[−1]∗L−1),
as the sum of an even and an odd line bundle, and this endows L with an adelic metric.
_is adelic metric is called the canonical adelic metric on L (compatible with the given
trivialization at the origin).

If L is ample and even, then the canonical adelicmetric on L is semipositive. _is implies
that the canonical adelicmetric of an arbitrary even line bundle is admissible.
Assume that L is odd. Fix an even ample line bundleM. Up to extending the scalars,

there exists a point a ∈ X(F) such that L ≃ τ∗aM ⊗M−1, where τa is the translation by a
on X. _en there exists a unique isomorphism L ≃ τ∗aM⊗M−1 ⊗M−1

a which is compatible
with the trivialization at the origin, and this gives rise to an isometry L ≃ τ∗aM⊗M−1 ⊗M−1

a .
In particular, the adelicmetric ofM is admissible. In fact, it follows from a construction
of Künnemann that it is even semipositive, see Chambert-Loir (1999).

8.2. — In particular, let us consider an ample even line bundle L on X endowed with a
canonical adelicmetric. _is furnishes a height

hL(Z) =
d̂eg(ĉ1(L)d+1 ∣ Z)

(d + 1)deg(c1(L)d ∣ Z) ,

for every integral closed subscheme Z of X, where d = dim(Z).
In fact, if (X ,L ) is any model of (X, L), one has

hL(Z) = lim
n→+∞

n−2hL ([n](Z)),

which shows the relation of the point of view of adelicmetrics with Tate’s deûnition of the
Néron–Tate height, initially deûned on closed points. _is formula also implies that hL is
nonnegative.

More generally, if Z is an integral closed subscheme of XF, we let hL(Z) = hL([Z]), where
[Z] is its Zariski-closure in X (more precisely, the smallest closed subscheme of X such that
[Z]F contains Z).

Lemma (8.3). — _e induced height function hL ∶ X(F)→ R is a positive quadratic form. It
induces a positive deûnite quadratic form on X(F)⊗R. In particular, a point ∈ X(F) satisûes
hL(x) = 0 if and only if x is a torsion point.
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Proof. — For I ⊂ {1, 2, 3}, let pI ∶ X3 → X be themorphism given by pI(x1, x2, x3) = ∑i∈I xi .
_e cube theorem asserts that the line bundle

D3(L) = ⊗
∅≠I⊂{1,2,3}

(p∗I L)(−1)
Card(I)−1

on X3 is trivial, and admits a canonical trivialisation. _e adelicmetric of L endows it with
an adelicmetricwhich satisûes [2]∗D3(L) ≃ D3(L)4, hence is the trivial metric. _is implies
the following relation on heights:

hL(x + y + z) − hL(y + z) − hL(x + z) − hL(x + y) + hL(x) + hL(y) + hL(z) ≡ 0
on X(F)3. Consequently,

(x , y)↦ hL(x + y) − hL(x) − hL(y)
is a symmetric bilinear form on X(F). Since it is even, hL is a quadratic form on X(F).

Since L is ample, hL is bounded from below. _e formula hL(x) = hL(2x)/4 then implies
that hL is nonnegative. By what precedes, it induces a positive quadratic form on X(F)R.

Let us prove that it is in fact positive deûnite. By deûnition, it suõces that its restriction
to the subspace generated by ûnitely many points x1, . . . , xm ∈ X(F) is positive deûnite. Let
E be a ûnite extension of F such that x1, . . . , xm ∈ X(E). On the other hand, Northcott’s
theorem implies that for every real number t, the set of (a1, . . . , am) ∈ Zm such that hL(a1x1+
⋅ ⋅ ⋅ + amxm) ⩽ t is ûnite. One deduces from that the asserted positive deûniteness.

Deûnition (8.4). — A torsion subvariety of XF is a subvariety of the form a + Y, where
a ∈ X(F) is a torsion point and Y is an abelian subvariety of XF.

_eorem (8.5). — a) Let Z be an integral closed subscheme of XF. One has hL(Z) = 0 if
and only if Z is a torsion subvariety of XF.
b) Let Z be an integral closed subscheme of XF which is not a torsion subvariety. _ere

exists a positive real number δ such that the set

{x ∈ Z(F) ; hL(x) ⩽ δ}
is not Zariski-dense in ZF.

Assertion a) has been independently conjectured by Philippon (1991, 1995) and Zhang
(1995b). Assertion b) has been conjectured by Bogomolov (1980) in the particular case
where Z is a curve of genus g ⩾ 2 embedded in its jacobian variety; for this reason, it is
called the ‘‘generalized Bogomolov conjecture’’. _e equivalence of a) and b) is a theorem
of Zhang (1995b). In fact, the implication b)⇒a) follows from theorem 6.5 and lemma 6.4.

_eorem 8.5 has been proved by Zhang (1998), following a breakthrough of Ullmo
(1998) who treated the case of a curve embedded in its jacobian; their proofmakes use of
the equidistribution theorem. Soon a�er, David & Philippon (1998) gave an alternative
proof; when Z is not a translate of an abelian subvariety, their proof provides a positive lower
bound for hL(Z) (in a)) as well as an explicit real number δ (in b)) which only depends on
the dimension and the degree of Z with respect to L.
As a corollary of theorem 8.5, one obtains a new proof of theManin–Mumford conjecture

in characteristic zero, initially proved by Raynaud (1983).
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Corollary (8.6). — Let X be an abelian variety over an algebraically closed ûeld of character-
istic zero, let Z be an integral closed subscheme of X which is not a torsion subvariety. _en
the set of torsion points of X which are contained in Z is not Zariski-dense in Z.

Proof. — A specialization argument reduces to the case where X is deûned over a number
ûeld F. In this case, the torsion points of X are deûned over F and are characterized by the
vanishing of their Néron–Tate height relative to an(y) ample line bundle L on X. It is thus
clear that the corollary follows from theorem 8.5, b).

8.7. — _e proof of theorem 8.5, b), begins with the observation that the statement does
not depend on the choice of the ample line L onX. More precisely, ifM is another symmetric
ample line bundle on X endowed with a canonical metric, then there exists an integer a ⩾ 1
such that La ⊗M−1 is ample, as well as Ma ⊗ L−1. Consequently, hL ⩾ a−1hM and hM ⩾ a−1hL.
From these two inequalities, one deduces readily that the statement holds for L if and only
if it holds for M.
For a similar reason, if f ∶ X′ → X is an isogeny of abelian varieties, then the statements

for X and X′ are equivalent. Let indeed Z be an integral closed subvariety of XF and let Z′
be an irreducible component of f −1(Z). _en Z is a torsion subvariety of XF if and only if
Z′ is a torsion subvariety of X′F. On the other hand, the relation h f ∗L(x) = hL( f (x)) shows
that h f ∗L has a strictly positive lower bound on Z′ outside of a strict closed subset E′ if and
only if hL has a strictly positive lower bound on Z outside of the strict closed subset f (E′).

8.8. — Building on that observation, one reduces the proof of the theorem to the case
where the stabilizer of Z is trivial.

Let indeed X′′ be the neutral component of this stabilizer and let X′ = X/X′′; this is
an abelian variety. By Poincaré’s complete reducibility theorem, there exists an isogeny
f ∶ X′ ×X′′ → X. _is reduces us to the case where X = X′ ×X′′ and Z = Z′ ×X′′, for some
integral closed subscheme Z′ of X′

F. Wemay also assume that L = L′ ⊠ L′′. It it then clear
that the statement for (X′,Z′) implies the desired statement for (X,Z).
Lemma (8.9). — Assume that dim(Z) > 0 and that its stabilizer is trivial. _en, for every
large enough integer m ⩾ 1, themorphism

f ∶ Zm → Xm−1
F , (x1, . . . , xm)↦ (x2 − x1, . . . , xm − xm−1)

is birational onto its image but not ûnite.

Proof. — For x ∈ Z(F), write Zx = Z − x. Let m be an integer and let x = (x1, . . . , xm) be
an F-point of Zm. _en a point y = (y1, . . . , ym) ∈ Z(F)m belongs to the ûber of x if and
only if y2 − y1 = x2 − x1, . . . , that is, if and only if, y1 − x1 = y2 − x2 = ⋅ ⋅ ⋅ = ym − xm. _is
identiûes f −1( f (x)) with the intersection (Z − x1) ∩ . . . ⋅ ⋅ ⋅ ∩ (Z − xm) of translates of Z. If
m is large enough and x1, . . . , xm are well chosen in Z. this intersection is equal to stabilizer
of Z in XF, hence is reduced to a point. In that case, themorphism f has a ûber reduced to
a point, hence it is generically injective.

On the other hand, the preimage of the origin (o, . . . , o) contains the diagonal of Zm,
which has strictly positive dimension by hypothesis.
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8.10. — For the proof of theorem 8.5, b), we now argue by contradiction and assume the
existence of a generic sequence (xn) in Z(F) such that hL(xn)→ 0.

Having reduced, as explained above, to the case where the stabilizer of Z is trivial, we
consider an integer m ⩾ 1 such that themorphism f ∶ Zm → Xm−1

F is birational onto its image,
but not ûnite.

Since the set of strict closed subschemes of Z is countable, one can construct a generic
sequence (yn) in Zm where yn is of the form (xi1 , . . . , xim). One has hL(yn)→ 0, where, by
abuse of language, we write hL for the height on Xm induced by the adelically metrized line
bundle L ⊠ . . . L on Xm. _is implies that hL(Z) = 0, hence the sequence (yn) is small.
For every integer n, let zn = f (yn). By continuity of amorphismof schemes, the sequence

(zn) is generic in f (Zm). Moreover, we deduce from the quadratic character of the Néron–
Tate height hL that hL(zn) → 0. In particular, hL( f (Zm)) = 0, and the sequence (zn) is
small.
Fix an archimedean place σ of F. Applied to the sequences (yn) and (zn), the equidistri-

bution theorem 7.4 implies the following convergences:
lim
n→∞

δσ(yn)∝ c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z)δZm

lim
n→∞

δσ(zn)∝ c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)dim( f (Zm))δ f (Zm),

where, by ∝, I mean that both sides are proportional. (_e proportionality ratio is the
degree of Zm, resp. of f (Zm), with respect to the indicatedmeasure.) Since f (yn) = zn, we
conclude that themeasures

f∗c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z)δZm and c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)dim( f (Zm))δ f (Zm)

on f (Zm) are proportional.
Recall that the archimedean metric of L has the property that it is smooth and that its

curvature form c1(L) is a smooth positive (1, 1)-form on Xσ(C). Consequently, on a dense
smooth open subscheme of f (Zm) above which f is an isomorphism, both measures are
given by diòerential forms, which thus coincide there. We can pull back them to Zm by f
and obtain a proportionality of diòerential forms

c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z) ∝ f ∗c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z)

on Zσ(C)m. At this point, the contradiction appears: the diòerential form on the le� is
strictly positive at every point, while the one on the right vanishes at every point of Zm

σ (C)
at which f is not smooth.

_is concludes the proof of theorem 8.5.

Remark (8.11). — _e statement of 8.5 can be asked in more general contexts that allow
for canonical heights. _e case of toric varieties has been proved by Zhang (1995a), while
in that case the equidistribution result is ûrst due to Bilu (1997). _e case of semiabelian
varieties is due to David & Philippon (2002), by generalization of their proof for abelian
varieties; I had proved inChambert-Loir (1999) the equidistribution result for almost-split
semi-abelian varieties, and the general case has just been annoucend by Kühne (2018).

_e general setting of algebraic dynamics (X, f ) is unclear. For a polarized dynamical
system as in 3.11, the obvious and natural generalization proposed in Zhang (1995b) asserts
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that subvarieties of height zero are exactly those whose forward orbit is ûnite. However,
Ghioca and Tucker have shown that it does not hold; see Ghioca et al (2011) for a
possible rectiûcation. _e case of dominant endomorphisms of (P1)n is a recent theorem
of Ghioca et al (2017).
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