Sorbonne Université

Année universitaire 2024-2025, licence 3, Algèbre (UE 3M270).

Correction de l'examen partiel du 21 octobre 2024.

Durée : 1h30. Les appareils électroniques et documents sont interdits.

Dans ce sujet, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ et \mathbb{R} seront implicitement vus comme des groupes pour l'addition, \mathbb{R}^{\times} et \mathbb{C}^{\times} pour la multiplication, et $S_{\mathbb{R}}$ (ensemble des bijections de \mathbb{R} dans lui-même) pour la composition des applications.

Exercice 1. Questions de cours. Soit G un groupe.

- (a) Voir la définition 2.2.1 du poly.
- (b) On attendait l'une des six propriétés équivalentes de l'assertion (A) du théorème 2.10.2.

Exercice 2. On sait d'après le cours (3.5.5) que $\varphi \mapsto \varphi(\overline{1})$ établit une bijection entre l'ensemble des morphismes de $\mathbb{Z}/2\mathbb{Z}$ (resp. $\mathbb{Z}/3\mathbb{Z}$) vers \mathbb{C}^{\times} et l'ensemble $\{z \in \mathbb{C}^{\times}, z^2 = 1\}$ (resp. $\{z \in \mathbb{C}^{\times}, z^3 = 1\}$); la bijection réciproque envoie z sur $\overline{a} \mapsto z^a$.

L'ensemble $\{z \in \mathbb{C}^{\times}, z^2 = 1\}$ est égal à $\{1, -1\}$. On en déduit qu'il y a exactement deux morphismes φ_1 et φ_{-1} de $\mathbb{Z}/2\mathbb{Z}$ vers \mathbb{C}^{\times} , à savoir

$$\varphi_1: \left\{ \begin{array}{ccc} \overline{0} & \mapsto & 1 \\ \overline{1} & \mapsto & 1 \end{array} \right. \text{ et } \varphi_{-1}: \left\{ \begin{array}{ccc} \overline{0} & \mapsto & 1 \\ \overline{1} & \mapsto & -1 \end{array} \right.$$

L'ensemble $\{z \in \mathbb{C}^{\times}, z^3 = 1\}$ est égal à $\{1, j, j^2\}$ (avec $j = e^{2i\pi/3}$). On en déduit qu'il y a exactement trois morphismes ψ_1, ψ_j et ψ_{j^2} de $\mathbb{Z}/3\mathbb{Z}$ vers \mathbb{C}^{\times} , à savoir

$$\psi_1: \left\{ \begin{array}{cccc} \overline{0} & \mapsto & 1 \\ \overline{1} & \mapsto & 1 \end{array} \right., \ \psi_j: \left\{ \begin{array}{cccc} \overline{0} & \mapsto & 1 \\ \overline{1} & \mapsto & j \end{array} \right. \text{ et } \psi_{j^2}: \left\{ \begin{array}{cccc} \overline{0} & \mapsto & 1 \\ \overline{1} & \mapsto & j \end{array} \right..$$

Les morphismes de $\mathbb{Z}/2\mathbb{Z}$ (resp. $\mathbb{Z}/3\mathbb{Z}$) vers \mathbb{R}^{\times} sont simplement les morphismes de $\mathbb{Z}/2\mathbb{Z}$ (resp. $\mathbb{Z}/3\mathbb{Z}$) vers \mathbb{C}^{\times} qui sont à valeurs réelles.

Or parmi $\varphi_1, \varphi_{-1}, \psi_1, \psi_j$ et ψ_{j^2} , seuls φ_1, φ_{-1} et ψ_1 sont à valeurs réelles. Il s'ensuit qu'il y a exactement deux morphismes de $\mathbb{Z}/2\mathbb{Z}$ vers \mathbb{R}^{\times} , à savoir φ_1 et φ_{-1} (vus comme à valeurs dans \mathbb{R}^{\times}) et un morphisme de $\mathbb{Z}/3\mathbb{Z}$ vers \mathbb{R}^{\times} , à savoir ψ_1 (vu comme à valeurs dans \mathbb{R}^{\times}).

Exercice 3.

- (a) Le cardinal d'un sous-groupe de $\langle g \rangle$ divise le cardinal de $\langle g \rangle$, qui vaut p. Un tel sous-groupe est donc de cardinal 1 ou p, ce qui veut dire qu'il est ou bien égal à $\{e\}$, ou bien à $\langle g \rangle$ tout entier. Si h est un élément de $\langle g \rangle$ autre que e, son ordre divise le cardinal p de $\langle g \rangle$ et 'est pas égal à 1 (car seul l'élément neutre est d'ordre 1 dans un groupe), c'est donc p.
- (b) L'intersection $\langle g \rangle \cap \langle h \rangle$ est à la fois un sous-groupe de $\langle g \rangle$ et un sous-groupe de $\langle h \rangle$. Si cette intersection n'est pas triviale il résulte de (a) qu'elle est égale à $\langle g \rangle$ aussi bien qu'à $\langle h \rangle$, et donc que $\langle g \rangle = \langle h \rangle$.

(c) Soient G_1, \ldots, G_r les sous-groupes de G de la forme $\langle g \rangle$ avec g d'ordre p (ce sont aussi les sous-groupes de G de cardinal p, puisqu'un groupe de cardinal p est toujours cyclique). Pour tout i, posons $G'_i = G_i \setminus \{e\}$. Il résulte de la question (a) que pour tout i, tout élément de G'_i est d'ordre p. Réciproquement si g est un élément d'ordre p de G le groupe qu'il engendre est l'un des G_i , et comme $g \neq e$ (car e est d'ordre 1) l'élément g appartient à G'_i . Ainsi l'ensemble des éléments d'ordre p de G est la réunion des G'_i . Par ailleurs on déduit de (b) que $G_i \cap G_j = \{e\}$ dès que $i \neq j$, ce qui implique que $G'_i \cap G'_j = \emptyset$. Par conséquent, les G'_i sont deux à deux disjoints et l'ensemble des éléments d'ordre p de G est donc la réunion disjointe des G'_i . Puisque chaque G'_i est de cardinal p-1, il y a r(p-1) éléments d'ordre p dans G.

Exercice 4. Soit G un groupe et soient K et H deux sous-groupes de G. On suppose que hk = kh pour tout couple (h,k) appartenant à $H \times K$.

- (a) Le sous-ensemble HK de G:
 - contient e puisque e est bien de la forme hk avec $h \in H$ et $k \in K$: il suffit de prendre h = e et k = e (comme H et Ksont des sous-groupes de G ils contiennent tous les deux e);
 - est stable par la loi de groupe : si $(h,h',k,k') \in H^2 \times K^2$ alors (hk)(h'k') = h(kh')k' = h(h'k)k' = (hh')(kk') (la seconde égalité provient de l'hypothèse de commutation entre éléments de H et de K), et (hh')(kk') est bien un élément de HK car $hh' \in H$ et $kk' \in K$ puisque H et K sont des sous-groupes de G, donc sont stables par la loi interne;
 - est stable par inversion : si $(h,k) \in H \times K$ on peut alors écrire $(hk)^{-1} = k^{-1}h^{-1} = h^{-1}k^{-1}$ (la seconde égalité provient de l'hypothèse de commutation entre éléments de H et de K), et $h^{-1}k^{-1}$ est bien un élément de HK car $h^{-1} \in H$ et $k^{-1} \in K$ puisque H et K sont des sous-groupes de G, donc sont stables par inversion.

Par conséquent, HK est un sous-groupe de G.

(b) L'ensemble D contient $(e,e)=(e,e^{-1})$ (qui est l'élément neutre de $H\times K$) car $e\in H$ et $e\in K$. Soient g_1 et g_2 deux éléments de $H\cap K$. On a alors $(g_1,g_1^{-1})(g_2,g_2^{-1})=(g_1g_2,g_1^{-1}g_2^{-1})$. Comme $H\cap K$ est un sousgroupe de G le produit g_1g_2 appartient à $H\cap K$, et l'on a par ailleurs $g_1^{-1}g_2^{-1}=(g_2g_1)^{-1}=(g_1g_2)^{-1}$ car $g_1g_2=g_2g_1$ puisque g_1 appartient à H (en tant qu'élément de $K\cap H$) et que g_2 appartient à K (en tant qu'élément de $K\cap H$). Ainsi, D est stable sous la loi interne de $H\times K$. Soit enfin g un élément de $H\times K$. On a $(g,g^{-1})^{-1}=(g^{-1},g)=(g^{-1})^{-1}$ et g^{-1} appartient à $H\cap K$ car ce dernier est un sous-groupe de G. Par conséquent $(g,g^{-1})^{-1}$ appartient à D et D est stable par inversion. Il s'ensuit que D est un sous-groupe de $H\times K$. Vérifions qu'il est distingué. Soit g un élément de $H\cap K$ et soit $(h,k)\in H\times K$. On a alors

$$(h,k)(g,g^{-1})(h,k)^{-1} = (h,k)(g,g^{-1})(h^{-1},k^{-1})$$
$$= (hgh^{-1},kg^{-1}k^{-1}) = (g,g^{-1}) \in D$$

où la dernière égalité provient du fait que hg=gh puisque h appartient à H et g à K (en tant qu'élément de $H\cap K$) et que $g^{-1}k=kg^{-1}$ puisque

 g^{-1} appartient à H (en tant qu'élément de $H\cap K$) et k à K. Le sous-groupe D de $H\times K$ est donc bien distingué.

(c) Soit φ l'application de $H \times K$ dans HK qui envoie (h,k) sur hk. Pour tout $(h,h',k,k') \in H^2 \times K^2$ on a

$$\varphi((h,k)(h',k')) = \varphi(hh',kk') = hh'kk' = hkh'k' = \varphi(h,k)\varphi(h',k'),$$

où la troisième égalité provient du fait que h'k = kh' car $h' \in H$ et $k \in K$. Par conséquent, φ est un morphisme de groupes. Il est surjectif par définition de HK. Son noyau est l'ensemble des couples $(h,k) \in H \times K$ tels que hk = e, c'est-à-dire tels que $h = k^{-1}$. Mais si $h = k^{-1}$ alors h appartient à K et donc à $H \cap K$, et $(h,k) = (h,h^{-1})$ appartient à D; ainsi $\ker(\varphi) \subset D$, et l'inclusion réciproque est évidente. On a donc $\ker(\varphi) = D$. Puisque φ est surjective, il en résulte que φ induit par passage au quotient un isomorphisme de $(H \times K)/D$ sur HK.

Exercice 5. Pour tout couple $(a,b) \in \mathbb{R}^{\times} \times \mathbb{R}$, on note $u_{a,b}$ l'application de \mathbb{R} dans \mathbb{R} qui envoie x sur ax + b, et l'on pose $G = \{u_{a,b}\}_{a \in \mathbb{R}^{\times}, b \in \mathbb{R}}$.

- (a) Si $u_{a,b} = u_{a',b'}$ on a alors $u_{a,b}(0) = u_{a',b'}(0)$ et $u_{a,b}(1) = u_{a',b'}(1)$, c'està-dire b = b' et a + b = a' + b'. Il en résulte aussitôt que b = b' et a = a'; par conséquent, $(a,b) \mapsto u_{a,b}$ est injective.
- (b) Soit $(a,b) \in \mathbb{R}^{\times} \times \mathbb{R}$. Soit $y \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$ on a alors les équivalences

$$u_{a,b}(x) = y \iff ax + b = y$$

 $\iff x = \frac{y - b}{a},$

ce qui montre que y a un et un seul antécédent par $u_{a,b}$, à savoir (y-b)/a. Par conséquent $u_{a,b}$ est bijective de réciproque $y\mapsto (y-b)/a$, c'est-à-dire encore $u_{1/a,-b/a}$.

(c) On vient de voir que G est constitué de bijections, et est stable par inversion. Par ailleurs G contient $\mathrm{Id}_{\mathbb{R}}$ qui est égale à $u_{1,0}$. Il reste à s'assurer que G est stable par composition. Soient a et c deux réels non nuls et soient b et d deux réels. On a pour tout $x \in \mathbb{R}$ les égalités

$$u_{a,b}(u_{c,d}(x)) = u_{a,b}(cx+d)$$

= $a(cx+d) + b$
= $acx + ad + b$
= $u_{ac,ad+b}(x)$,

si bien que $u_{a,b}u_{c,d} = u_{ac,ad+b}$ (nous nous permettons de noter la composition par une simple juxtaposition des termes, pour éviter une profusion de symboles \circ ; notez que $ac \neq 0$ car a et c sont non nuls, donc on a bien le droit d'écrire $u_{ac,ad+b}$). Ainsi G est stable par composition, et est donc bien un sous-groupe de $S_{\mathbb{R}}$.

(d) On déduit de la formule donnée à la question précédente que

$$u_{1,1}u_{2,0} = u_{1\cdot 2,1\cdot 0+1} = u_{2,1}$$
 et $u_{2,0}u_{1,1} = u_{2\cdot 1,2\cdot 1+0} = u_{2,2}$.

Comme $u_{2,1} \neq u_{2,2}$ par (a), on voit que G n'est pas abélien.

(e) Soit $(a,b) \in \mathbb{R}^{\times} \times \mathbb{R}$. On a d'après (c) l'égalité $u_{a,b}^2 = u_{a^2,(a+1)b}$. L'élément $u_{a,b}$ de G est de 2-torsion si et seulement si $u_{a,b}^2 = \mathrm{Id}_{\mathbb{R}}$, c'est-à-dire si et seulement si $u_{a^2,(a+1)b} = u_{1,0}$. En vertu de (a) c'est le cas si et seulement si $u_{a^2,(a+1)b} = u_{1,0}$. En vertu de (a) c'est le cas si et seulement si $u_{a^2,(a+1)b} = u_{1,0}$, ce qui équivaut à

$$(a = 1 \text{ et } b = 0) \text{ ou } (a = -1).$$

L'ensemble des éléments de 2-torsion de G est donc

$$\{u_{1,0} = \mathrm{Id}_{\mathbb{R}} \cup \{u_{-1,b}\}_{b \in \mathbb{R}}.$$

- (f) On a $i(b)i(b') = u_{1,b}u_{1,b'} = u_{1\cdot 1+1\cdot b'+b} = u_{1,b+b'} = i(b+b')$, ce qui montre que iest un morphisme de groupes. Un réel b appartient à $\ker(i)$ si et seulement si $u_{1,b} = \operatorname{Id}_{\mathbb{R}} = u_{1,0}$; d'après (a), c'est le cas si et seulementsi b = 0. Ainsi, i est injectif.
- (g) L'application φ est bien définie car en vertu de (a) l'écriture $u_{a,b}$ d'un élément de G est unique. La formule $u_{a,b}u_{c,d}=u_{ac,ad+b}$ entraı̂ne que $\varphi(u_{a,b}u_{c,d})=ac=\varphi(u_{a,b})\varphi(u_{c,d})$. Par conséquent φ est un morphisme de groupes.
- (h) Il résulte immédiatement des définitions que $\ker(\varphi)$ est $\{u_{1,b}\}_{b\in\mathbb{R}}$. Autrement dit $\ker(\varphi) = T$, ce qui montre que ce dernier est un sous-groupe distingué de G. Par ailleurs φ est surjective : si a est un réel non nul il est par exemple égal à $\varphi(u_{a,0})$. Il s'ensuit que φ induit un isomorphisme entre G/T et \mathbb{R}^{\times} .
- (i) Soient $(a, b, c) \in \mathbb{R}^{\times} \times \mathbb{R}^2$. On a alors

$$\begin{array}{rcl} u_{a,b}u_{1,c}u_{a,b}^{-1} & = & u_{a,ac+b}u_{a,b}^{-1} \\ & = & u_{a,ac+b}u_{1/a,-b/a} \\ & = & u_{1,-b+ac+b} \\ & = & u_{1,ac}. \end{array}$$

(La première et la troisième égalité proviennent de la formule donnée en (c), et la seconde de la formule donnée en (b)). L'élément $u_{1,ac}$ de G appartient à T. On voit ainsi que $gtg^{-1} \in T$ pour tout $g \in G$ et tout $t \in T$. Par conséquent, T est distingué dans G.