Sorbonne Université

Année universitaire 2024-2025, licence 3, Algèbre (UE 3M270).

Examen terminal, le 8 janvier 2025.

Durée : 2h00. Les appareils électroniques et documents sont interdits.

Exercice 1. Questions de cours. Énoncez les théorèmes de Sylow.

Exercice 2.

- (a) Donnez à isomorphisme près la liste de tous les groupes abéliens de cardinal 99.
- (b) Donnez à isomorphisme près la liste de tous les groupes abéliens de cardinal 32.

Exercice 3. Soit σ la permutation

 $de \{1, \ldots, 10\}.$

- (a) Déterminez la signature de σ , avec le minimum de calculs.
- (b) Donnez la décomposition de σ comme produit de cycles à supports deux à deux disjoints.
- (c) Donnez l'ordre de σ .

Exercice 4. Soit G un groupe de cardinal 12 et soit $\mathscr S$ l'ensemble des 3-sousgroupes de Sylow de G.

- (a) Si S est un élément de \mathscr{S} , à quel groupe connu est-il isomorphe?
- (b) Montrez que \mathscr{S} est de cardinal 1 ou 4. À partir de maintenant, on suppose \mathscr{S} de cardinal 4.
- (c) Soit S un élément de \mathscr{S} . Montrez que le groupe $\{g \in G, gSg^{-1} = S\}$ est égal à S (on pourra commencer par calculer son cardinal).
- (d) Si S et T sont deux éléments distincts de \mathscr{S} , montrez par un argument de cardinal que $S \cap T = \{e\}$.
- (e) À l'aide de ce qui précède, construire un morphisme injectif $i: G \to S_4$.
- (f) Montrez que i(G) contient 8 éléments d'ordre 3. Quels sont les éléments d'ordre 3 de S_4 ? En déduire par un argument de cardinal que i(G) contient A_4 , puis que G est isomorphe à A_4 .

Exercice 5. Soit G un groupe possédant un ensemble P d'éléments ayant les propriétés suivantes :

- (i) la partie P engendre G;
- (ii) les éléments de P sont d'ordre 3;
- (iii) pour tout $g \in P$, l'inverse g^{-1} appartient aussi à P;
- (iv) les éléments de P sont deux à deux conjugués (dans G).

- (a) Donnez un exemple de groupe non trivial G possédant une telle partie P. Cette question ne sera pas utilisée dans la suite de l'exercice; vous pouvez vous contenter de citer sans justification un exemple que vous avez rencontré en TD.
- (b) Soit H un groupe abélien et soit $\varphi\colon G\to H$ un morphisme de groupes. On se propose de montrer que φ est trivial, c'est-à-dire que $\varphi(g)=e$ pour tout $g\in G$.
 - (b1) Montrez que $\varphi(g)^3 = e$ pour tout $g \in P$.
 - (b2) Montrez que $\varphi(g) = \varphi(g')$ pour tout $(g, g') \in P^2$.
 - (b3) Déduire des deux questions précédentes que $\varphi(g)=e$ pour tout $g\in P.$
 - (b4) Conclure.