Sorbonne Université

Année universitaire 2024-2025, licence 3, Algèbre (UE 3M270). Corrigé de l'examen terminal du 8 janvier 2025.

Exercice 1. Questions de cours. Voir le poly, théorème 7.2.1.

Exercice 2.

- (a) On a $99 = 3^2 \cdot 11$. On sait d'après le cours que se donner un groupe abélien de cardinal 99 (à isomorphisme près) c'est se donner une suite d'entiers d_1, \ldots, d_n strictement supérieurs à 1, tels que $d_1 | d_2 \ldots | d_r$ et tels que le produit des d_i soit égal à 99 (à une telle suite d'entiers correspondra le groupe $\mathbb{Z}/d_1\mathbb{Z}\times \times \mathbb{Z}/d_n\mathbb{Z}$). Une telle suite étant donnée, tout diviseur de l'un des d_i divise encore d_n , ce qui entraı̂ne que les diviseurs premiers de $d_1 \dots, d_n$, c'est-à-dire ici 3 et 11, sont les mêmes que les diviseurs premiers de d_n (bien sûr, les exposants peuvent changer). Par conséquent d_n est un diviseur de 99 multiple de 3 et 11, ce qui laisse deux possibilités :
 - $\diamond d_n = 99$; on a alors nécessairement n = 1.
 - $\diamond d_n = 33$; dans ce cas $d_1 \dots d_{n-1} = 3$, ce qui veut dire que n = 2 et $d_1 = 3$, ce qui est possible puisque 3 divise 33.

Les deux suites d'entiers possibles sont dont la suite singleton 99 ou la suite 3,33. Il y a en conséquence à isomorphisme près deux groupes abéliens de cardinal 99, à savoir $\mathbb{Z}/99\mathbb{Z}$ et $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/33\mathbb{Z}$.

- (b) Il s'agit de trouver toutes les suites d_1, \ldots, d_n d'entiers strictement supérieurs à 1, tels que $_1|d_2|\dots d_n$ et tels que $d_1\dots d_n=32$. Puisque $32 = 2^5$, dans une telle suite chaque d_i est forcément de la forme 2^{e_i} avec $e_i > 0$. La condition $d_i | d_{i+1}$ signifie que $e_{i+1} \ge e_i$, et dire que le produit des d_i vaut 32 signifie que la somme des e_i vaut 5. Il s'agit dès lors de trouver toutes les suites croissantes e_1, \ldots, e_n d'entiers strictement positifs dont la somme fait 5.
 - \diamond Si $e_n = 5$ alors nécessairement n = 1;

 - \diamond Si $e_n=2$ alors $\sum_{i\leqslant n-1}e_i=3$, ce qui laisse (sachant que tous les e_i sont alors forcément inférieurs ou égaux à 2) deux possibilités : $n = 3, e_1 = 1$ et $e_2 = 2$, ou n = 4 et $e_1 = e_2 = e_3 = 1$;
 - \diamond Si $e_n=1$ alors $\sum_{i\leqslant n-1}e_i=4$, ce qui laisse (sachant que tous les e_i sont alors forcément égaux à 1) une seule possibilité : n=5 et $e_1 = e_2 = e_3 = e_4 = 1.$

Les suites possibles d'exposants sont donc

$$(1,1,1,1,1), (1,1,1,2), (1,2,2), (1,1,3), (2,3), (1,4), (5),$$

si bien que les suites d'entiers possibles sont finalement

$$(2, 2, 2, 2, 2), (2, 2, 2, 4), (2, 4, 4), (2, 2, 8), (4, 8), (2, 16), (32).$$

Il y a donc à isomorphisme près sept groupes abéliens de cardinal 32 : $\diamond (\mathbb{Z}/2\mathbb{Z})^5$;

- $\diamond (\mathbb{Z}/2\mathbb{Z})^3 \times \mathbb{Z}/4\mathbb{Z};$
- $\diamond \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/4\mathbb{Z})^2$;
- $\diamond (\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}/8\mathbb{Z};$
- $\diamond \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$;
- $\diamond \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/16\mathbb{Z}$;
- $\diamond \mathbb{Z}/32\mathbb{Z}$.

Exercice 3.

(a) Par définition, σ est égale à $C_1C_2C_3C_4$ où C_1 et C_3 sont des 3-cycles, où C_2 est un 6-cycle et C_4 un 4-cycle.

Il vient

$$\varepsilon(\sigma) = \varepsilon(C_1)\varepsilon(C_2)\varepsilon(C_3)\varepsilon(C_4) = (-1)^2 \cdot (-1)^5 \cdot (-1)^2 \cdot (-1)^3 = 1.$$

(b) On applique l'algorithme de décomposition en produit de cycles à supports eux à eux disjoints, en faisant attention à bien aller de la droite vers la gauche pour le calcul des valeurs de σ . On obtient

$$\sigma = (1875693)(2410).$$

(c) L'ordre de σ est égal au PPCM des longueurs des cycles de sa décomposition, donc au PPCM de 7 et 3, c'est-à-dire à 21.

Exercice 4. Soit G un groupe de cardinal 12 et soit $\mathscr S$ l'ensemble des 3-sousgroupes de Sylow de G.

- (a) Comme $12 = 2^2 \cdot 3$, le groupe S est de cardinal 3; puisque 3 est premier, il est isomorphe à $\mathbb{Z}/3\mathbb{Z}$.
- (b) Soit n le cardinal le \mathscr{S} . Il résulte des théorèmes de Sylow que n divise $2^2 = 4$ et que n est égal à 1 modulo 3. Les diviseurs de 4 étant 1, 2 et 4, les seules valeurs possibles sont n = 1 et n = 4.
- (c) D'après les théorèmes de Sylow, l'action par conjugaison de G sur $\mathscr S$ est transitive. Cela veut dire que $\mathscr S$ est l'orbite de S, et le cardinal de $\mathscr S$ est donc égal à l'indice du stabilisateur de S dans G. Il s'ensuit par la question précédente que cet indice vaut 4, ce qui veut dire que le stabilisateur de S dans G est de cardinal 3. Mais par définition ce stabilisateur est précisément $\{g \in G, gSg^{-1} = S\}$. Comme il est clair que $\{g \in G, gSg^{-1} = S\}$ contient S et comme S est lui-même de cardinal S, il vient S0 est lui-même de cardinal S1.
- (d) L'intersection $S \cap T$ est un sous-groupe de S, donc son cardinal est un diviseur de 3, et vaut dès lors 1 ou 3. S'il valait 3 on aurait $S \cap T = S$, c'est-à-dire $S \subset T$, et donc S = T puisque T est lui aussi de cardinal 3; mais cela contredit l'hypothèse que S et T sont distincts. Par conséquent $S \cap T$ est de cardinal 1, ce qui veut dire que $S \cap T = \{e\}$.
- (e) L'action de G par conjugaison sur $\mathscr S$ induit un morphisme de G vers le groupe des permutations de $\mathscr S$, qui est lui-même isomorphe à S_4 (via le choix d'une numérotation des éléments de $\mathscr S$). On obtient ainsi un morphisme de groupes i de G vers S_4 . Son noyau est le noyau de l'action de G sur $\mathscr S$, c'est-à-dire l'intersection des stabilisateurs des

quatre éléments de \mathscr{S} . Or si S et T sont eux éléments distincts de \mathscr{S} , l'intersection de leurs stabilisateurs est égale à $S \cap T$ d'après (c), et donc à $\{e\}$ d'après (d). L'intersection des stabilisateurs des quatre éléments de \mathscr{S} est a fortiori triviale, ce qui signifie que i est injectif.

(f) Chacun des groupes S appartenant à \mathscr{S} est isomorphe à $\mathbb{Z}/3\mathbb{Z}$, et contient donc deux éléments d'ordre 3 (ses deux éléments non neutres). De plus si S et T sont deux éléments distincts de \mathscr{S} , leur intersection est triviale d'après (d), ce qui implique qu'aucun des éléments d'ordre 3 de S n'appartient à T, et vice-versa. L'ensemble constitué des éléments d'ordre 3 des différents groupes appartenant à \mathscr{S} comprend donc exactement $2 \cdot 4 = 8$ éléments. Puisque i est un morphisme injectif, il préserve l'ordre et i(G) contient donc 8 éléments d'ordre 3.

Les éléments d'ordre 3 de S_4 sont les 3-cycles, qui appartiennent à A_4 . Par conséquent $i(G) \cap A_4$ contient au moins 8 éléments. Mais comme $i(G) \cap A_4$ est un sous-groupe de A_4 , son cardinal divise 12 ; étant supérieur ou égal à 8, ce cardinal vaut forcément 12, ce qui veut dire que $i(G) \cap A_4 = A_4$, soit encore que $A_4 \subset i(G)$. Puisque i(G) est de cardinal 12 on a $i(G) = A_4$, et le morphisme injectif i induit de ce fait un isomorphisme de G sur A_4 .

Exercice 5.

(a) Si n vaut au moins 5, l'ensemble P des 3-cycles est une partie de A_n stable par inversion, par conjugaison (feuille 6, exercice 3) et engendrant A_n (feuille 6, exercice 2; ceci reste vrai même pour n < 5).

(b)

- (b1) Soit $g \in P$. Comme l'élément g de G est d'ordre 3 on a $g^3 = e$, et donc $\varphi(g)^3 = \varphi(g^3) = e$.
- (b2) Soient g et g' appartenant à P. Par hypothèse, g et g' sont conjugués dans G. Il existe donc $h \in G$ tel que $g' = hgh^{-1}$. Il vient

$$\varphi(g') = \varphi(hgh^{-1}) = \varphi(h)\varphi(g)\varphi(h)^{-1} = \varphi(g),$$

où la dernière égalité provient du fait que H est abélien.

- (b3) Soit $g \in P$. Comme g^{-1} appartient aussi à P par hypothèse on a $\varphi(g) = \varphi(g^{-1})$ par la question précédente. Cela signifie que $\varphi(g)$ est égal à $\varphi(g)^{-1}$, soit encore que $\varphi(g)^2 = e$. On a donc à la fois $\varphi(g)^3 = e$ et $\varphi(g)^2 = e$. L'ordre de $\varphi(g)$ divise ainsi à la fois 3 et 2, et de ce fait vaut 1; il en résulte que $\varphi(g) = e$. (On pourrait aussi remarquer que $\varphi(g) = \varphi(g)^3(\varphi(g)^2)^{-1}$) et en conclure que $\varphi(g) = e$).
- (b4) Le noyau de φ contient P par la question précédente. Puisque P engendre G par hypothèse on a $\ker(\varphi) = G$, ce qui veut dire que φ est trivial.