Sorbonne Université

Année universitaire 2025-2026, licence 3, Algèbre (UE 3M270).

Examen partiel, le 3 novembre 2025.

Durée : 1h30. Les appareils électroniques et documents sont interdits. Même si certaines questions ont été vues à l'occasion d'exercices en TD, elles doivent être intégralement retraitées.

Exercice 1. Question de cours. Soient G et G' deux groupes. Donnez la définition d'un morphisme de groupes de G vers G'.

Exercice 2. Groupes abéliens finis.

- (a) Donnez la liste de tous les groupes abéliens de cardinal 42 à isomorphisme près.
- (b) Donnez la liste de tous les groupes abéliens de cardinal 60 à isomorphisme près.

Exercice 3. Dans cet exercice $(\mathbb{Z}/7\mathbb{Z})^{\times}$ est vu comme un groupe pour la multiplication, et $\mathbb{Z}/3\mathbb{Z}$ pour l'addition.

- (a) Donnez la liste de tous les éléments de $(\mathbb{Z}/7\mathbb{Z})^{\times}$ et donnez l'ordre de chacun d'eux.
- (b) Montrez que $(\mathbb{Z}/7\mathbb{Z})^{\times}$ a deux générateurs que l'on donnera explicitement. En déduire que tout automorphisme de $(\mathbb{Z}/7\mathbb{Z})^{\times}$ est ou bien l'identité, ou bien $z\mapsto z^{-1}$.
- (c) Décrire tous les morphismes de groupes de $\mathbb{Z}/3\mathbb{Z}$ vers $(\mathbb{Z}/7\mathbb{Z})^{\times}$; pour chaque morphisme on donnera explicitement la liste des images de chaque élément de $\mathbb{Z}/3\mathbb{Z}$.

Exercice 4. Comparaison des groupes \mathbb{C} et \mathbb{C}^{\times} . Dans cet exercice \mathbb{C} est vu comme groupe pour l'addition, et \mathbb{C}^{\times} pour la multiplication.

- (a) Soit n un entier $\geqslant 1$. Décrire le sous-groupe de $\mathbb C$ formé des éléments de n-torsion. Décrire le sous-groupe de $\mathbb C^{\times}$ formé des éléments de n-torsion.
- (b) Montrez que les groupes \mathbb{C} et \mathbb{C}^{\times} ne sont pas isomorphes.
- (c) Construire un isomorphisme de groupes entre \mathbb{C}/\mathbb{Z} et \mathbb{C}^{\times} .

Exercice 5. Soit G un groupe et soient H et K deux sous-groupes de G.

- (a) Soit h un élément de H et soit k un élément de K.
 - (a1) On suppose que K est distingué. Montrez que $hkh^{-1}k^{-1}$ appartient à K
 - (a2) On suppose que H est distingué (mais on ne fait plus d'hypothèse sur K). Montrez que $hkh^{-1}k^{-1}$ appartient à H.
- (b) On suppose que H et K sont distingués dans G et que $H \cap K = \{e\}$. Montrez que tout élément de H commute avec tout élément de K. Montrez que l'application $(h,k) \mapsto hk$ de $H \times K$ dans G est un morphisme de groupes injectif.
- (c) On suppose que G est fini, que H et K sont distingués dans G, que les cardinaux |H| et |K| sont premiers entre eux et que $|G| = |H| \cdot |K|$. Montrez que G est isomorphe à $H \times K$.