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Exercice 1. Question de cours. Voir le théoreme 2.11.2 du poly.

Exercice 2. Soit o I’élément

(167892543)(3415)(132)

de Sg.

(a)

(b)

On nous a donné o sous la forme cjcocs3 ou ¢1 est un 9-cycle, ¢y et 4-cycle et cg
un 3-cycle. Il vient

e(o) = e(cr)e(er)e(es) = (,1)8(71)3(71)2 -1

Pour calculer 'ordre de o, on la décompose en produit de cycles d supports deux
a deux disjoints, a ’aide de ’algorithme vu en cours, en se rappelant que pour
calculer chacune des valeurs de ¢ a 'aide de son écriture donnée plus haut on
doit procéder <de droite a gauches. On trouve

oc=(135)(246789).
L’ordre de o est alors égal au PPCM de 3 et 6, c’est-a-dire a 6.

Exercice 3.

(a)
(b)

()

Ona84="7-12=22.3-7.Sip ¢ {2,3,7} alors p ne divise pas |G|, si bien que G
a un uniquep-sous-groupe de Sylow (le groupe trivial) ; par conséquent,n, = 1.

Les théorémes de Sylow assurent que ny vaut 1 modulo 2 et divise (84/2%) = 21;
que ng vaut 1 modulo 3et divise (84/3) = 28; et que n7 vaut 1 modulo 7 et
divise (84/7) = 12.

L’entier n; vaut 1 modulo 7 et divise 12. Il est en particulier majoré par 12, si
bien qu’il vaut 1 ou 8 (puisque 2 -7+ 1 = 15 est déja trop grand) ; comme 8 ne
divise pas 12 on voit que ny = 1. Ainsi G a un unique 7-sous-groupe de Sylow
S. En tant qu’unique sous-groupe de G de cardinal 7 le sous-groupe S de G est
distingué (et méme caractéristique) ; son cardinal étant 7 il est différent de {e}
et de G.

Exercice 4. On a 260 = 26-10 =2-13-2-5 = 22.5.13. D’apres le théoréme de
structure des groupes abéliens finis, on a une bijection entre I’ensemble des classes
d’isomorphe de groupes abéliens de cardinal 260 et I’ensemble des familles finies

(s, ...
(di, ...

,d,) d’entiers > 1 tels que di|ds|...|d, et dids - d. = 260; & une telle famille
,d,.) correspond le groupe Z/d1Z x - x Z/d,Z.

Si p est un facteur premier divisant d ...d, = 260 il divise I'un des d; et donc d,.
puisque d; divise d,.. Par conséquent 2,5 et 13 divisent d,., si bien que 2 -5 - 13 divise

d,. 1l

y a alors deux possibilités :



o ou bien d, = 22 -5 - 13 = 260, auquel cas r = 1;

o d. =2-5-13 = 130; dans ce cas on a nécessairement r = 2 et d; = 2 (notez

que c’est une solution licite car 2|130).

Il y a donc & isomorphisme preés deux groupes abéliens de cardinal 260 : Z/260Z et
Z7)27 x Z./130Z.

Exercice 5.

(a)
(b)

Si n = 0 le seul entier m a considérer est égal a 0 aussi, et ’assertion est alors
triviale (G lui-méme convient).

Comme n > 0 le groupe G est un p-groupe non trivial, et un théoreme du
cours assure alors que Z(G) est non trivial. Il posséde donc un élément y # e.
Puisque Z(G) est un p-groupe, y est d’ordre p* pour un certain ¢ > 0. Mais alors
T = yph1 appartient & Z(G) et est d’ordre p : en effet pour tout a € Z on a

. .1 . . . .
x® = e si et seulement si y? ¢ = e, ce qui est le cas si et seulement si p¢ divise
r—1

p*~'a, donc si et seulement si p divise a.

Soit z € (x) et soit g € G. Comme x € Z(G) le groupe (x) est contenu dans
Z(G), si bien que gz = zg; par conséquent gzg~! est égal & 2z qui appartient a
(x), et (x) est dés lors un sous-groupe distingué dans G.

Comme x est d’ordre p le groupe (z) est de cardinal p, et G/(x) est donc de
cardinal p"~!. On distingue deux cas. Si m = 0 alors {e} est un sous-groupe de G
de cardinal p™. Si m > 0 alors m—1 > 0, et I'hypothese de récurrence appliquée
a G/(z) assure que ce dernier posséde un sous-groupe H de cardinal p™~!. En
tant que sous-groupe du quotient G/(z) le groupe H est de la forme K/(x) pour
un unique sous-groupe K de G contenant (x). On a alors |H| = |K|/p, si bien
que |[K|=p™.

Exercice 6.

(a)

Supposons G/Z(G) cyclique. 1l existe alors g € G tel que g engendre G/Z(G).
Soient x et y deux éléments de G. Puisque g engendre G/Z(G) il existe deux
entiers relatifs n et m tels que T = g" et § = g. Cela signifie qu’il existe h et
k dans Z(G) tels que x = g"h et y = ¢"k. On a alors

ay = g"hg"k = g"""hk = g"kg"h = yz,

ou la deuxiéme et la troisieme égalités proviennent du fait que h et k
appartiennent & Z(G), donc commutent avec g et entre eux. Ainsi, G est abélien
(et a posteriori G/Z(G) est le groupe trivial).

Si G est abélien alors xy = yx pour tout couple (z,y) d’éléments de G si bien
que p = 1.

Si n/m était inférieur ou égal a 3 le quotient G/Z(G) (qui est de cardinal n/m)
serait de cardinal 1,2 ou 3, et donc serait cyclique puisque 2 et 3 sont premiers.

Par la question (a) G serait alors abélien, ce qui est exclu par hypothese. Il
s’ensuit que n/m > 4, c’est-a-dire que m < n/4.



(d)

()

On remarque que C, est 'ensemble des éléments y de G tels que yxy ' soit

égal & x. Cest donc le stabilisateur de z pour 'action de G sur lui-méme par
conjugaison.

On a
o ‘{(.'E,y) € Gany = yl’}|
= —
1
= > Ky € G ay =y}
zeG
1
= n2 Z |Cal.
zeG

Si x € Z(G) alors tout élément de G commute avec x, si bien que C,, = G.

Soit d l'indice de C, dans G. On a alors |Cy| = n/d. Si d était égal & 1 on aurait
C, = G, ce qui voudrait dire que tout élément de G commute avec x et donc
que z € Z(QG), ce qui est exclu. Ainsi d > 2 et |C,| =n/d < n/2.

On a
dCal= D G+ > |Gl

zeG z€Z(G) z€G\Z(G)
Lorsque x appartient & Z(G) on a vu plus haut que C, = G, ce qui entraine
que |Cy| = n. Comme Z(G) est de cardinal m, la somme 3, ;) |Cs| vaut
nm. Par ailleurs C,| est majoré par n/2 lorsque x n’appartient pas a Z(G).
La somme Y, 7 |Cxl est donc majorée par 3, o 7(q) n/2, qui est égal &
(n —m)(n/2). On a donc bien ) . [Cy| < nm + (n —m)(n/2).
On a

reG
o nmt (n—m)(n/2)

S

n2
~ (nm)/2+n?/2
=t
n?/8 +n?/2
n2
~ 5n?/8
-
5
8 )
ou l'inégalité de la seconde ligne provient de la question précédente, et celle de
la quatriéme ligne de la majoration m < n/4 vue en (c).

<

Supposons que p = 5/8. Toutes les inégalités utilisées dans les calculs de (i)
sont alors des égalités. En particulier 'inégalité (nm)/2 < n?/8 est une égalité



(nm)/2 = n?/8 ce qui, n étant non nul (c’est le cardinal d’un groupe!) revient
a dire que m = n/4.

Réciproquement supposons que m = n/4. L’inégalité (nm)/2 < n?/8 est
alors une égalité. Pour montrer que p = 5/8 il reste a s’assurer que la premiere
inégalité du calcul de (i) est une égalité, c’est-a-dire que ) . [C,| est égal a
nm+(n—m)(n/2). Onavuen (h) que }°,  [Cy| est somme de 3°, 7 ) |Cal,
qui est égale & nm, et de }° . z(q) |Cal- 11 suffit donc de montrer que cette
derniére somme est égale & (m — n)n/2; comme elle comprend (m — n) termes,
il suffit de vérifier que |Cy| = n/2 pour tout x ¢ Z(G). Fixons donc un tel z.
Comme tout élément de Z(G) commute en particulier avec z, le centre Z(G) est
contenu dans C. Il vient

1=[G2G)| =[G : CICy : Z(G)
(la premiere égalité traduit le fait que m = n/4). Or puisque = n’appartient
pas & Z(G) lindice [Cy : Z(G)] est strictement supérieur & 1, et on sait que
[G : C;] vaut au moins 2 puisque |C,| < n/2 d’aprés (g). On en déduit que
[G: C,] =[C,: Z(G)] = 2, et partant que |C,| = n/2.

Exercice 7.

(a)

Soit z € C. Pour tout ¢ € C on a r,(t) = z si et seulement si ut = z, soit
encore si et seulement si t = u~1z = uz. Et 'on a s,(t) = z si et seulement si
ut = z, soit encore si et seulement si £ = v~ 'z = Uz, soit encore si et seulement
sit=uz.

Il s’ensuit que s, est bijective de réciproque rz, et que s, est bijective et est
sa propre réciproque (c’est une involution).

Soit z € C.

o On ary ory(2) =u(vz) = (uv)z; ainsi, 7, 0 1y = rye.
u(vZ)

g

VZ; ainsi, 7y 0 8y = Syyp-

VUZ = VUZ; ainsi, S, 0 ry = Syy-

(2) =
o Onar,os,(z) =
o Onas,or,(z) =
o On a s, 0 8,(2) = UVZ = Uz ; ainsi, s, 0 §y = Tyz.

L’ensemble G contient l'identité, qui est égale & r1. La question (a) montre sa
stabilité par inversion, et la question (b) sa stabilité par produit. C’est donc un
sous-groupe de Sc.

Notons E lensemble {1,7,—i,—1} qui peut aussi se décrire comme I'ensemble
des racines quatriémes de 'unité. Soit u un nombre complexe de module 1. Si r,,
appartient & H alors 7, (1) = u appartient a F. Réciproquement si u appartient
a E alors pour tout z € E le nombre complexe r,(z) = uz est une racine
quatrieme de l'unité, et appartient donc a H. Ainsi r, appartient & H si et
seulement si u appartient a E.

Soit v un nombre complexe de module 1. Si s, appartient & H alors s, (1) = v
appartient a E. Réciproquement si v appartient & E alors pour tout z € E le
nombre complexe s,(z) = vZ est une racine quatriéme de l'unité, et appartient
donc a H. Ainsi s, appartient a H si et seulement si v appartient a F.



Le groupe H est donc I'ensemble {r,}uecr U {5, }ver. Remarquons qu’il est
de cardinal exactement 8 : en effet si r, = ry alors u = u’ (considérer 'image
de 1), et si s, = s, alors v = v’ (considérer 14 encore I'image de 1). Et r,, ne
peut jamais étre égal & s, car on aurait alors u = v (considérer I'image de 1)
puis 7, (i) = ui = s,(1) = —ui, ce qui est absurde. Les éléments fournis par la
description {r,}uecr U {sy}ver sont donc bien deux a deux distincts.

Les relations vues en (b) montrent que r; 0 s; = s_1 et que s; or; = s1. Comme
s1 # s—1 (voir la discussion qui précede) H est non abélien.

Par ailleurs les formules de (b) montrent aussi que r_; (qui est différent de
r1 = Idc) commute avec tous les éléments de H. Le centre Z(H) est donc non
trivial.

Comme H est non abélien, Z(H) est différent de H. La question (c) de
Iexercice précédent assure alors que |Z(H)| < (8/4) = 2. Comme Z(H) contient
Pélément non trivial r_; il est de cardinal exactement 2 et est égal a {Id,r_1}.

Puisque [H : Z(H)] est exactement égal & 4, la question (j) de lexercice
précédent assure que la probabilité que deux éléments de H commutent est
égale & 5/8.




