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Exercice 1. Question de cours. Voir le théorème 2.11.2 du poly.

Exercice 2. Soit σ l’élément
(1 6 7 8 9 2 5 4 3)(3 4 1 5)(1 3 2)

de S9.

(a) On nous a donné σ sous la forme c1c2c3 où c1 est un 9-cycle, c2 et 4-cycle et c3
un 3-cycle. Il vient

ε(σ) = ε(c1)ε(c2)ε(c3) = (−1)8(−1)3(−1)2 = −1.

(b) Pour calculer l’ordre de σ, on la décompose en produit de cycles à supports deux
à deux disjoints, à l’aide de l’algorithme vu en cours, en se rappelant que pour
calculer chacune des valeurs de σ à l’aide de son écriture donnée plus haut on
doit procéder ≪de droite à gauche≫. On trouve

σ = (1 3 5)(2 4 6 7 8 9).
L’ordre de σ est alors égal au PPCM de 3 et 6, c’est-à-dire à 6.

Exercice 3.

(a) On a 84 = 7 ·12 = 22 ·3 ·7. Si p /∈ {2, 3, 7} alors p ne divise pas |G|, si bien que G
a un uniquep-sous-groupe de Sylow (le groupe trivial) ; par conséquent,np = 1.

(b) Les théorèmes de Sylow assurent que n2 vaut 1 modulo 2 et divise (84/22) = 21 ;
que n3 vaut 1 modulo 3et divise (84/3) = 28 ; et que n7 vaut 1 modulo 7 et
divise (84/7) = 12.

(c) L’entier n7 vaut 1 modulo 7 et divise 12. Il est en particulier majoré par 12, si
bien qu’il vaut 1 ou 8 (puisque 2 · 7 + 1 = 15 est déjà trop grand) ; comme 8 ne
divise pas 12 on voit que n7 = 1. Ainsi G a un unique 7-sous-groupe de Sylow
S. En tant qu’unique sous-groupe de G de cardinal 7 le sous-groupe S de G est
distingué (et même caractéristique) ; son cardinal étant 7 il est différent de {e}
et de G.

Exercice 4. On a 260 = 26 · 10 = 2 · 13 · 2 · 5 = 22 · 5 · 13. D’après le théorème de
structure des groupes abéliens finis, on a une bijection entre l’ensemble des classes
d’isomorphe de groupes abéliens de cardinal 260 et l’ensemble des familles finies
(d1, . . . , dr) d’entiers > 1 tels que d1|d2| . . . |dr et d1d2 · dr = 260 ; à une telle famille
(d1, . . . , dr) correspond le groupe Z/d1Z × · × Z/drZ.

Si p est un facteur premier divisant d1 . . . dr = 260 il divise l’un des di et donc dr

puisque di divise dr. Par conséquent 2, 5 et 13 divisent dr, si bien que 2 · 5 · 13 divise
dr. Il y a alors deux possibilités :
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⋄ ou bien dr = 22 · 5 · 13 = 260, auquel cas r = 1 ;
⋄ dr = 2 · 5 · 13 = 130 ; dans ce cas on a nécessairement r = 2 et d1 = 2 (notez

que c’est une solution licite car 2|130).
Il y a donc à isomorphisme près deux groupes abéliens de cardinal 260 : Z/260Z et
Z/2Z × Z/130Z.

Exercice 5.

(a) Si n = 0 le seul entier m à considérer est égal à 0 aussi, et l’assertion est alors
triviale (G lui-même convient).

(b) Comme n > 0 le groupe G est un p-groupe non trivial, et un théorème du
cours assure alors que Z(G) est non trivial. Il possède donc un élément y ̸= e.
Puisque Z(G) est un p-groupe, y est d’ordre pℓ pour un certain ℓ > 0. Mais alors
x := ypℓ−1 appartient à Z(G) et est d’ordre p : en effet pour tout a ∈ Z on a
xa = e si et seulement si ypℓ−1a = e, ce qui est le cas si et seulement si pℓ divise
pℓ−1a, donc si et seulement si p divise a.

(c) Soit z ∈ ⟨x⟩ et soit g ∈ G. Comme x ∈ Z(G) le groupe ⟨x⟩ est contenu dans
Z(G), si bien que gz = zg ; par conséquent gzg−1 est égal à z qui appartient à
⟨x⟩, et ⟨x⟩ est dès lors un sous-groupe distingué dans G.

(d) Comme x est d’ordre p le groupe ⟨x⟩ est de cardinal p, et G/⟨x⟩ est donc de
cardinal pn−1. On distingue deux cas. Si m = 0 alors {e} est un sous-groupe de G
de cardinal pm. Si m > 0 alors m−1 ⩾ 0, et l’hypothèse de récurrence appliquée
à G/⟨x⟩ assure que ce dernier possède un sous-groupe H de cardinal pm−1. En
tant que sous-groupe du quotient G/⟨x⟩ le groupe H est de la forme K/⟨x⟩ pour
un unique sous-groupe K de G contenant ⟨x⟩. On a alors |H| = |K|/p, si bien
que |K| = pm.

Exercice 6.

(a) Supposons G/Z(G) cyclique. Il existe alors g ∈ G tel que g engendre G/Z(G).
Soient x et y deux éléments de G. Puisque g engendre G/Z(G) il existe deux
entiers relatifs n et m tels que x = gn et y = gm. Cela signifie qu’il existe h et
k dans Z(G) tels que x = gnh et y = gmk. On a alors

xy = gnhgmk = gn+mhk = gmkgnh = yx,

où la deuxième et la troisième égalités proviennent du fait que h et k
appartiennent à Z(G), donc commutent avec g et entre eux. Ainsi, G est abélien
(et a posteriori G/Z(G) est le groupe trivial).

(b) Si G est abélien alors xy = yx pour tout couple (x, y) d’éléments de G si bien
que p = 1.

(c) Si n/m était inférieur ou égal à 3 le quotient G/Z(G) (qui est de cardinal n/m)
serait de cardinal 1, 2 ou 3, et donc serait cyclique puisque 2 et 3 sont premiers.
Par la question (a) G serait alors abélien, ce qui est exclu par hypothèse. Il
s’ensuit que n/m ⩾ 4, c’est-à-dire que m ⩽ n/4.
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(d) On remarque que Cx est l’ensemble des éléments y de G tels que yxy−1 soit
égal à x. C’est donc le stabilisateur de x pour l’action de G sur lui-même par
conjugaison.

(e) On a

p = |{(x, y) ∈ G2, xy = yx}|
n2

= 1
n2

∑
x∈G

|{y ∈ G, xy = yx}|

= 1
n2

∑
x∈G

|Cx|.

(f) Si x ∈ Z(G) alors tout élément de G commute avec x, si bien que Cx = G.
(g) Soit d l’indice de Cx dans G. On a alors |Cx| = n/d. Si d était égal à 1 on aurait

Cx = G, ce qui voudrait dire que tout élément de G commute avec x et donc
que x ∈ Z(G), ce qui est exclu. Ainsi d ⩾ 2 et |Cx| = n/d ⩽ n/2.

(h) On a ∑
x∈G

|Cx| =
∑

x∈Z(G)

|Cx| +
∑

x∈G\Z(G)

|Cx|.

Lorsque x appartient à Z(G) on a vu plus haut que Cx = G, ce qui entrâıne
que |Cx| = n. Comme Z(G) est de cardinal m, la somme

∑
x∈Z(G) |Cx| vaut

nm. Par ailleurs Cx| est majoré par n/2 lorsque x n’appartient pas à Z(G).
La somme

∑
x∈G\Z(G) |Cx| est donc majorée par

∑
x∈G\Z(G) n/2, qui est égal à

(n − m)(n/2). On a donc bien
∑

x∈G |Cx| ⩽ nm + (n − m)(n/2).
(i) On a

p = 1
n2

∑
x∈G

|Cx|

⩽
nm + (n − m)(n/2)

n2

= (nm)/2 + n2/2
n2

⩽
n2/8 + n2/2

n2

= 5n2/8
n2

= 5
8 ,

où l’inégalité de la seconde ligne provient de la question précédente, et celle de
la quatrième ligne de la majoration m ⩽ n/4 vue en (c).

(j) Supposons que p = 5/8. Toutes les inégalités utilisées dans les calculs de (i)
sont alors des égalités. En particulier l’inégalité (nm)/2 ⩽ n2/8 est une égalité
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(nm)/2 = n2/8 ce qui, n étant non nul (c’est le cardinal d’un groupe !) revient
à dire que m = n/4.

Réciproquement supposons que m = n/4. L’inégalité (nm)/2 ⩽ n2/8 est
alors une égalité. Pour montrer que p = 5/8 il reste à s’assurer que la première
inégalité du calcul de (i) est une égalité, c’est-à-dire que

∑
x∈G |Cx| est égal à

nm + (n − m)(n/2). On a vu en (h) que
∑

x∈G |Cx| est somme de
∑

x∈Z(G) |Cx|,
qui est égale à nm, et de

∑
x∈G\Z(G) |Cx|. Il suffit donc de montrer que cette

dernière somme est égale à (m − n)n/2 ; comme elle comprend (m − n) termes,
il suffit de vérifier que |Cx| = n/2 pour tout x /∈ Z(G). Fixons donc un tel x.
Comme tout élément de Z(G) commute en particulier avec x, le centre Z(G) est
contenu dans Cx. Il vient

4 = [G : Z(G)] = [G : Cx][Cx : Z(G)]
(la première égalité traduit le fait que m = n/4). Or puisque x n’appartient
pas à Z(G) l’indice [Cx : Z(G)] est strictement supérieur à 1, et on sait que
[G : Cx] vaut au moins 2 puisque |Cx| ⩽ n/2 d’après (g). On en déduit que
[G : Cx] = [Cx : Z(G)] = 2, et partant que |Cx| = n/2.

Exercice 7.
(a) Soit z ∈ C. Pour tout t ∈ C on a ru(t) = z si et seulement si ut = z, soit

encore si et seulement si t = u−1z = uz. Et l’on a su(t) = z si et seulement si
ut = z, soit encore si et seulement si t = u−1z = uz, soit encore si et seulement
si t = uz.

Il s’ensuit que su est bijective de réciproque ru, et que su est bijective et est
sa propre réciproque (c’est une involution).

(b) Soit z ∈ C.
⋄ On a ru ◦ rv(z) = u(vz) = (uv)z ; ainsi, ru ◦ rv = ruv.
⋄ On a ru ◦ sv(z) = u(vz) = uvz ; ainsi, ru ◦ sv = suv.
⋄ On a sv ◦ ru(z) = vuz = vuz ; ainsi, sv ◦ ru = svu.
⋄ On a su ◦ sv(z) = uvz = uvz ; ainsi, su ◦ sv = ruv.

(c) L’ensemble G contient l’identité, qui est égale à r1. La question (a) montre sa
stabilité par inversion, et la question (b) sa stabilité par produit. C’est donc un
sous-groupe de SC.

(d) Notons E l’ensemble {1, i, −i, −1} qui peut aussi se décrire comme l’ensemble
des racines quatrièmes de l’unité. Soit u un nombre complexe de module 1. Si ru

appartient à H alors ru(1) = u appartient à E. Réciproquement si u appartient
à E alors pour tout z ∈ E le nombre complexe ru(z) = uz est une racine
quatrième de l’unité, et appartient donc à H. Ainsi ru appartient à H si et
seulement si u appartient à E.

Soit v un nombre complexe de module 1. Si sv appartient à H alors sv(1) = v
appartient à E. Réciproquement si v appartient à E alors pour tout z ∈ E le
nombre complexe sv(z) = vz est une racine quatrième de l’unité, et appartient
donc à H. Ainsi sv appartient à H si et seulement si v appartient à E.
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Le groupe H est donc l’ensemble {ru}u∈E ∪ {sv}v∈E . Remarquons qu’il est
de cardinal exactement 8 : en effet si ru = ru′ alors u = u′ (considérer l’image
de 1), et si sv = sv′ alors v = v′ (considérer là encore l’image de 1). Et ru ne
peut jamais être égal à sv car on aurait alors u = v (considérer l’image de 1)
puis ru(i) = ui = su(i) = −ui, ce qui est absurde. Les éléments fournis par la
description {ru}u∈E ∪ {sv}v∈E sont donc bien deux à deux distincts.

(e) Les relations vues en (b) montrent que ri ◦ si = s−1 et que si ◦ ri = s1. Comme
s1 ̸= s−1 (voir la discussion qui précède) H est non abélien.

Par ailleurs les formules de (b) montrent aussi que r−1 (qui est différent de
r1 = IdC) commute avec tous les éléments de H. Le centre Z(H) est donc non
trivial.

Comme H est non abélien, Z(H) est différent de H. La question (c) de
l’exercice précédent assure alors que |Z(H)| ⩽ (8/4) = 2. Comme Z(H) contient
l’élément non trivial r−1 il est de cardinal exactement 2 et est égal à {Id, r−1}.

(f) Puisque [H : Z(H)] est exactement égal à 4, la question (j) de l’exercice
précédent assure que la probabilité que deux éléments de H commutent est
égale à 5/8.


