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2 ANTOINE DUCROS

1. Catégories, foncteurs, morphismes de foncteurs

1.1. Catégories. — Nous allons commencer par présenter la notion fondamentale
de ce cours, celle de catégorie, puis nous allons l'illustrer par de nombreux exemples.

Définition 1.1.1. — Une catégorie C consiste en les données suivantes :
¢ une classe Ob C d’objets mathématiques, les objets de C;

o pour tout couple (X,Y") d’objets de C, un ensemble Home (X, YY), ou Hom(X,Y)
s’il n’y a pas d’ambiguité sur C, dont les éléments sont appelés morphismes ou
fleches de X vers Y ;

o pour tout objet X de C, un élément Idx de Homc (X, X), appelé identité de X ;
o pour tout triplet (X,Y,Z) d’objets de C, une application (g, f) — go f de
Homc¢ (Y, Z) x Homc(X,Y') vers Home (X, Z), appelée la composition,
ces données étant sujettes & un certain nombre de conditions :
(1) pour tout quadruplet (X,Y, X’ Y’) d’objets de C tels que (X,Y) # (X', Y)
Iintersection Homc(X,Y) n Homc (X', Y”) est vide;
(2) pour tout couple (X,Y) d’objets de C et tout f € Homc(X,Y)ona foldy = f
et Idy of = f (autrement dit, les identités sont neutres a gauche et a droite)
(3) pour tout quadruplet (X,Y,Z,T) d’objets de C, tout h € Homc(Z,T), tout
g € Home(Y,Z) et tout f € Homc(X,Y) ona ho(go f) = (hog)fof
(autrement dit, la composition des morphismes est associative).

1.1.2. — Nous attirons I'attention sur le fait que nous ne demandons pas que Ob C
soit un ensemble mais simplement une «classe», terme que nous utilisons de maniére
informelle en nous gardant bien de chercher & lui donner un sens précis, et nous
verrons que dans de nombreux exemples ci-dessous, Ob C n’est effectivement pas un
ensemble.

En toute rigueur, le développement de la théorie des catégories pose donc quelques
problemes de fondements. On peut les résoudre ou bien en travaillant dans un systéme
d’axiomes qui inclue la notion de classe (et plus seulement d’ensemble), ou bien en
demandant que Ob C soit un ensemble — mais dans ce dernier cas il est nécessaire de
fixer un premier ensemble absolument énorme, qu’on appelle un univers, et qui joue
en quelque sorte le role d’ensemble de tous les ensembles : il doit contenir tous les
objets mathématiques qu’on aura envie de considérer (les catégories elles-mémes, leurs
objets, leurs morphismes et ensembles de morphismes...) et étre stable sous toute une
série d’opérations (comme la formation des ensembles de parties...) ; Pexistence d’un
tel univers n’est pas garantie par les axiomes standard de la théorie des ensembles et
doit étre rajoutée a ces derniers.

Mais on peut se permettre d’ignorer completement ce type de questions dans une
premieére approche du sujet, et c’est ce que nous ferons ici. Nous manipulerons donc
sans scrupules des «classes» Ob C qui ne sont pas des ensembles; par contre comme
souligné dans la définition les Hom¢ (X, Y') seront quant & eux toujours des ensembles.
La condition (1) peut sembler un peu étrange ; elle signifie simplement que la donnée
d’une fleche f inclut les deux objets X et Y de C tels que f appartienne & Hom¢(X,Y) ;
on dit que X est la source de f et Y son but.
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1.1.3. Premiers exemples. — Nous allons commencer par quelques exemples
classiques mettant en jeu de «vrais» objets et de «vrais» morphismes.

<

<o

La catégorie Ens, dont les objets sont les ensembles et les fleches les applications.

La catégorie Gp dont les objets sont les groupes et les fleches les morphismes de
groupes.

La catégorie Top dont les objets sont les espaces topologiques et les fleches les
applications continues.

La catégorie Ann dont les objets sont les anneaux commutatifs unitaires, et les
fleches les morphismes d’anneaux unitaires.

Un corps k étant donné, la catégorie k-Vect dont les objets sont les k-espaces
vectoriels et les fleches les applications k-linéaires.

Un objet A de Ann étant donné, la catégorie A-Mod dont les objets sont les A-
modules et les fleches les applications A-linéaires (un A-module est un groupe
abélien (M, +) muni d’une loi externe A x M — M qui satisfait les mémes
axiomes que la loi externe des espaces vectoriels; une application ¢: M — N
entre deux A-modules est A-linéaire si c’est un morphisme de groupes et si
p(am) = ap(m) pour tout (a,m) € A x M).

La catégorie GpTop. Un objet de GpTop est un groupe topologique, c’est-a-dire
un groupe GG muni d’une topologie pour laquelle le produit et I'inversion sont
continus ; une fleche de GpTop est un morphisme de groupes continu.

1.1.4. Sous-catégories. — Une catégorie C étant donnée, une sous-catégorie de C
est une catégorie D telle que ObD < ObC et Homc(X,Y) < Homc(X,Y) pour
tout couple (X,Y) d’objets de D (la composition des fleches de D se déduisant par
restriction de celle des fleches de C). Une sous-catégorie D de C est dite pleine si
Homp(X,Y) = Homc (X, Y) pour tout couple (X,Y) d’objets de D. Donnons quelques
exemples.

<

o

La catégorie Ab, dont les objets sont les groupes abéliens et les fleches les
morphismes de groupes, est une sous-catégorie pleine de Gp.

La catégorie des corps, dont les objets sont les corps et les fleches les
morphismes d’anneaux, est une sous-catégorie pleine de Ann. On peut
également en considérer la sous-catégorie (encore pleine) constituée des corps
de caractéristique fixée.

La sous-catégorie pleine k-Vectf
dimension finie.

de k-Vect, constituée des espaces vectoriels de

La sous-catégorie de Gp ayant les mémes objets, mais dont les fleches sont
les morphismes de groupes injectifs. On pourrait tout aussi bien remplacer
«injectify par «surjectify ou «bijectif», l'important (pour avoir une sous-
catégorie) étant simplement de choisir une classe de morphismes stable par
composition et contenant les identités.
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1.1.5. Objets au-dessus et en-dessous d’un objet donné. — Soit C une catégorie et
soit S un objet de C. On définit la catégorie des objets de C au-dessus de S, et I'on
note C/S, la catégorie définie comme suit : ses objets sont les couples (X, f) ot X est
un objet de C et f un morphisme de X vers S'; un morphisme de(X, f)vers (Y, g) est
une fleche h: X — Y telle que g o h = f, soit encore telle que le diagramme

X—" Ly

N
S
commute.

On définit de maniere duale la catégorie des la catégorie des objets de C en dessous
de S, et 'on note S\C, la catégorie définie comme suit : ses objets sont les couples
(X, f) o X est un objet de C et f un morphisme de S vers X ; un morphisme de
(X, f) vers Y, g est une fleche h: X — Y telle que h o f = g, soit encore telle que le
diagramme

commute.
Donnons deux exemples importants en pratique de ce type de construction.

¢ Soit A un objet de Ann. La catégorie des anneaux en dessous de A est ce qu’on
appelle la catégorie A-Alg des A-algébres.

o Soit {*} un singleton. Choisir une application continue de {*} vers un espace
topologique X, c’est choisir un point de X (I'image de l’application en question).
La catégorie des espaces topologiques en dessous de {x} peut donc également
se décrire comme suit : ses objets sont les couples (X, z) ot X est un espace
topologique et z un point de X ; un morphisme de (X,z) vers (Y,y) est une
application continue f de X vers Y telle que f(x) = y. C’est la catégorie TopPt
des espaces topologiques pointés.

1.1.6. Classes d’équivalences de morphismes. — Nous allons maintenant donner
deux exemples (importants) de catégories qui mettent encore en jeu de «vrais» objets,
mais seulement des classes d’équivalence de «vrais» morphismes.

o La catégorie OutGp des groupes d automorphismes intérieurs prés. Les objets
de OutGp sont les groupes. Un élément de Homoucp(G, H) est une classe
d’équivalence de morphismes de groupes de GG vers H pour la relation suivante :
f ~ f' si et seulement 8’il existe un automorphisme intérieur u de H tel que
fr=uof.

o La catégorie hTop des espaces topologiques a homotopie prés. Ses objets sont les
espaces topologiques. Un élément de Homptop (X, Y') est une classe d’équivalence
d’applications continues de X vers Y pour la relation d’homotopie définie comme

suit : f ~ f’ si et seulement s’il existe une application continue h de [0,1] x X
vers Y telle que h(0,-) = f et h(1,) = f.
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o La catégorie hTopPt des espaces topologiques pointés a homotopie
pres. Ses objets sont les espaces topologiques pointés. Un élément de
Homproppt ((X, ), (Y, y)) est une classe d’équivalence de morphismes d’espaces
topologiques pointés de (X, z vers (Y,y) pour la relation d’homotopie définie
comme suit : f ~ f’ si et seulement s’il existe une application continue h de

[0,1] x X vers Y telle que h(0,-) = f, h(1,-) = f’ et h(z,t) = y pour tout ¢.

Précisons que dans ces deux exemples la composition est induite par la composition
usuelle, qui passe & chaque fois au quotient par la relation considérée; et l'identité
d’un objet est la classe de son identité usuelle.

1.1.7. Ezemples abstraits. — On peut également définir des catégories «abstraites»
qui ne mettent en jeu ni vrais objets ni vrais morphismes. Donnons trois exemples.

o Soit G un groupe. On lui associe deux catégories (qui jouent un réle important
en topologie algébrique).
La catégorie BG est la catégorie ayant un seul objet * et telle que
Hompg(*,%) = G, la composition étant la loi interne de G et 'identité son
élément neutre.

La catégorie FG est la catégorie dont la classe d’objets est 'ensemble G, et
telle que pour tout (z,y) de G2, I'ensemble Hompgg(,y) soit un singleton ; la
composition est la seule loi possible, et 'identité de x est I'unique élément de
Hompgg(z, ).

¢ Soit k un corps. La catégorie Vy, est la catégorie telle que ObV = N et telle que
pour tout (m,n) € N2 on ait Homy, (m,n) = M,,,(k), la composition étant le
produit des matrices, et Id,, étant la matrice I,,.

1.1.8. Petites catégories. — Une catégorie C est dite petite si Ob C est un ensemble.
Par exemple les catégories décrites au[L.1.7] ci-dessus sont petites. Citons deux autres
exemples de petites catégories : si F est un ensemble, la catégorie 2 (E) dont les objets
sont les parties de E et les fleches les inclusions; et si X est un espace topologique,
la catégorie Ouv(X) dont les objets sont les ouverts de X et les fleches les inclusions.

1.1.9. Catégorie opposée. — Soit C une catégorie. On définit la catégorie opposée
C°P comme suit : Ob C? = Ob C, et Homcor (X, Y) = Homc (Y, X) pour tout couple
(X,Y) d’objets de C. Les identités de C°P sont celles de C, et la composition est
renversée.

1.1.10. Endomorphismes, isomorphismes, automorphismes. — Soit C une catégorie.
Un endomorphisme d’un objet X de C est un élément de Homc (X, X). Si X et YV
sont deux objets de C, un morphisme de X vers Y est appelé un isomorphisme s’il
existe g € Homc (Y, X) tel que go f = Idx et fog = Idy. Un tel g est alors
unique, est appelé la réciproque de f et est noté f~'. Remarquons que f~! est lui-
méme un isomorphisme, et que (f~1)~! = f. Pour tout X € ObC, l'identité de X
est un isomorphisme. Si f et g sont deux isomorphismes composables, g o f est un
isomorphisme et (go f)~! = f~1og~!. On dit que X et Y sont isomorphes s’il existe
un isomorphisme de X vers Y.
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Dans les catégories algébriques comme Ens, Gp, Ann, k-Vect, A-Mod, A-Alg. .. les
isomorphismes sont simplement les morphismes bijectifs. Mais ce n’est plus le cas dans
la catégorie Top : les isomorphismes de cette catégorie sont les bijections continues dont
la réciproque est continue, condition qui n’a rien d’automatique, comme en attestent
I’identité de R muni de la topologie discréte vers R muni de sa topologie usuelle ou
I'application 6 — ¢ de [0, 27[ sur 'ensemble des nombres complexes de module 1.

Un automorphisme d’un objet X de C est un isomorphisme de X sur lui-méme (ou
encore, ¢’est un endomorphisme de X qui est un isomorphisme). Les automorphismes
de X forment un groupe pour la composition, de neutre Idx.

Un groupoide est une catégorie dont toutes les fleches sont des isomorphismes. Les
catégories BG et EG de [I.I.7 sont des exemples de groupoides. On peut fabriquer
de maniére naturelle en partant d’une catégorie C quelconque une sous-catégorie de
C qui est un groupoide : on garde les mémes objets, et on prend uniquement pour
fleches les isomorphismes de C.

Ezxercice 1.1.11. — Soit n un entier et soit B la boule unité de R™. Montrez que
(la classe de) l'inclusion {0} — B est un isomorphisme de hTop.

1.2. Foncteurs. — Nous allons maintenant présenter la seconde notion fondamen-
tale de ce cours, celle de foncteur. Les foncteurs sont essentiellement aux catégories
ce que les applications sont aux ensembles.

Définition 1.2.1. — Soient C et D deux catégories. Un foncteur F' de C vers D
consiste en les données suivantes :

o pour tout objet X de C, un objet F(X) de D;
o pour toute fleche f: X — Y de C, une fleche F(f): F(X) — F(Y) de D,
O

telles que F(Idx) = Idp(x) pour tout X et F(go f) = F(g) o F(f) dés que g et f
sont composables.

Remarque 1.2.2. — Ce que nous venons de définir est ce qu’on appelle plus
précisément un foncteur covariant. Il y a aussi une notion de foncteur contravariant,
qui, est la méme a ceci pres qu’elle renverse le sens des fleches : si F' est contravariant
et si f est une fleche de X vers Y alors F(f) appartient & Homp (F(Y), F(X)) et on
a la formule F(go f) = F(f) o F(g).

Pour éviter de fastidieuses répétitions, nous nous contenterons souvent de ne donner
des définitions et énoncés que pour des foncteurs covariants, en laissant au lecteur
le soin de formuler et/ou prouver leurs déclinaisons contravariantes. Qu’on peut en
fait la plupart du temps déduire formellement du cas covariant, grace & la remarque
suivante : un foncteur contravariant de C vers D peut alternativement étre défini
comme un foncteur covariant de C vers D°P ou de C°P vers D. (Ces deux points de
vue sont en théorie équivalents, mais ils ne le sont pas en pratique : pour des raisons
psychologiques on préfere le plus souvent conserver le sens normal de travail dans
la catégorie d’arrivée, et donc voir un foncteur contravariant de C vers D comme un
foncteur de C°P vers D.)

Dans ce qui suit les foncteurs seront donc par défaut covariants.
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1.2.3. Identité, composition de foncteurs. — Si C est une catégorie, on définit
I'identité de C, notée Idc, comme le foncteur tel que Idc(X) = X pour tout objet X
et Idc(f) = f pour toute fleche f.

SiF:C— DetG: D — Esont deux foncteurs, on définit le foncteur GoF' de C vers
E par les formules (GoF')(X) = G(F(X)) (pour tout objet X) et (GoF)(f) = G(F(f))
(pour toute fleche f). C’est plus précisément un foncteur covariant si F' et G sont tous
deux covariants ou bien tous deux contravariants, et un foncteur contravariant si F'
et GG sont de variances opposées.

La composition des foncteurs est une opération associative, pour laquelle les
foncteurs identité sont neutres.

1.2.4. Ezemples. — Nous allons donner quelques exemples élémentaires de foncteurs
entre certaines des catégories décrites plus haut.

¢ On peut définir dans différents contextes des foncteurs d’oubli qui comme leur
nom l’indiquent «oublient» une partie de la structure. On dispose ainsi d’un
foncteur d’oubli de Gp dans Ens qui associe & un groupe ’ensemble sous-jacent
et & un morphisme de groupes ’application ensembliste sous-jacente ou d’autres
de Ann dans Ens, de k-Vect dans Ens, de Top dans Ens, mais aussi de k-Vect
dans Ab, de Ann dans Ab, de A-Alg dans A-Mod...

¢ Si D est une sous-catégorie de C on dispose d’un foncteur d’inclusion de D dans
C qui envoie un objet X de D sur le méme X vu comme objet de C et une fleche
f de D sur la méme f vue comme fleche de C.

¢ Le foncteur d’abélianisation de Gp vers Ab qui envoie un groupe G sur le quotient
G/[G,G] ou [G, G] désigne le sous-groupe de G engendré par les commutateurs.
(Nous commettons ici un abus tres fréquent : nous nous contentons pour définir
un foncteur de donner son effet sur les objets, en considérant que son effet sur
les fleches est évident ; vérifiez tout de méme a chaque fois que cela se produit,
et donc ici par exemple, que vous arrivez effectivement & deviner son effet sur
les fleches).

o On construit en topologie le foncteur groupe fondamental (X, x) — m (X, z) de
TopPt vers Gp.

o Si C est une catégorie et S un objet de C on dispose d’un foncteur d’oubli de
C/S vers C, qui envoie un couple (X, f) sur X ; on dispose d’un foncteur d’oubli
analogue de S\C vers C.

o Les constructions de catégories par passage au quotient au niveau des
morphismes donnent naturellement lieu a des «foncteurs quotienty.
On définit ainsi un foncteur Gp vers OutGp qui est l'identité sur les
objets, et qui au niveau des morphismes est donné par les applications quotient
Homg, (G, G") — Homoucp(G, G'). On définit de méme des foncteurs quotient
de Top vers hTop et de TopPt vers hTopPt.

¢ Si deux morphismes d’espaces pointés f et f' de (X,z) vers (Y,y) sont

homotopes, ils induisent le méme morphisme de groupes de m(X,z) vers
m1(Y,y). Il existe donc un unique foncteur 71: hTopPt — Gp tel que le
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diagramme de foncteurs

TopPt —— Gp

of A

hTopPt

ou @ est le foncteur quotient, commute.

o Soit G un groupe. On dispose d’un foncteur naturel F' de EG vers BG (ces
catégories ont été définies en , défini comme suit : on demande que F(g)
soit égal & * pour tout g € G (on n’a de toutes fagons pas le choix) et que pour
tout (g1, 92) € G? le foncteur F envoie I'unique fleche de E de source g; et de
but g, vers I'automorphisme go2g; Lde .

¢ Soit k un corps. On dispose d’un foncteur naturel F' de la catégorie Vj définie
en vers la catégorie k-Vect™ définie en construit comme suit : pour
tout n € N on pose F(n) = k™, et si M est un élément de M, (k) on définit
F(M) comme l'application linéaire de k™ vers k™ de matrice M dans les bases
canoniques.

1.2.5. Foncteurs et isomorphismes. — Soient C et D deux catégories et soit F' un
foncteur de C vers D. Soit f: X — Y une fleche de C. Supposons que [ soit un
isomorphisme. On a alors les égalités F(f)o F(f~') = F(fof™') = F(Idy) = Idp(y)
et de méme F(f~'o f) = Idp(x). Il s’ensuit que F'(f) est un isomorphisme et que
F(f)~L = F(F).

On dit que F est conservatif si I'implication réciproque est vraie, c’est-a-dire si
pour toute fleche f de C, on a équivalence entre « f est un isomorphismey et «F(f)
est un isomorphismey.

Ainsi la phrase «Un morphisme de groupes est un isomorphisme si et seulement si il
est ensemblistement bijectif» peut se reformuler de maniére conceptuelle (ou pédante,
c’est une question de point de vue) en disant que le foncteur d’oubli de Gp vers Ens est
conservatif ; les foncteurs d’oubli de Ann ou k-Vect vers Ens le sont aussi. Par contre,
I’existence de bijections continues qui ne sont pas des homéomorphismes signifie que
le foncteur d’oubli de Top vers Ens n’est pas conservatif.

1.2.6. Plénitude et fidélité. — Soient Cet D deux catégories et soit F' un foncteur
de C vers D. Le foncteur F est dit plein, resp. fidéle, resp. pleinement fidéle si
pour tout couple (X,Y) d’objets de C l'application f — F(f) de Homc(X,Y) vers
Homp (F(X), F(Y)) est surjective (resp. injective, resp. bijective).

Par exemple si C est une sous-catégorie de D le foncteur d’inclusion de C dans D est
toujours fidele, et pleinement fidele si et seulement si C est une sous-catégorie pleine
de D.

Les foncteurs d’oubli de Gp, Ann, A-Mod, A-Alg ou Top vers Ens ainsi que ceux de
A-Alg vers A-Mod ou de A-Mod vers Ab sont fideles, mais pas pleinement fidéles.

Les foncteurs quotient de Gp vers OutGp ou de Top vers hTop sont pleins mais pas
fideles.

La composée de deux foncteurs pleins, resp. fideles, resp. pleinement fideles est
pleine, resp. fidele, resp. pleinement fidele.
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1.2.7. Les deuz foncteurs associés a un objet. — Soit C une catégorie et soit X un
objet de C. On lui associe un foncteur covariant hx et un foncteur contravariant h™
de C dans Ens comme suit (les notations hx et hX ne sont pas standard) :

o hx(Y) est égal & Hom(X,Y') pour tout objet Y de C, et hx(g) est Papplication
fr—gofdeHom(X,Y) vers Hom(Y, Z) pour toute fleche g € Hom(Y, Z).

o hX(Y) est égal & Hom(Y, X) pour tout objet Y de C, et hX(g) est I'application
f— fogdeHom(Z, X) vers Hom(Y, X) pour toute fleche g € Hom(Y, Z).

Vous avez certainement déja rencontré ce type de foncteurs (sans que ce soit
présenté ainsi). Par exemple, soit & un corps. Le foncteur contravariant h* de k-Vect
dans Ens envoie un espace V' sur Hom(V, k). Ce dernier est en fait un peu plus qu’un
ensemble : il a une structure naturelle de k-espace vectoriel, et est appelé le dual de
V' et souvent noté V'V ; si f est une application k-linéaire de V' vers W D’application
RE(f): WY — V'V est k-linéaire et est appelée la transposée de f. Ainsi V — V'V
apparait comme un foncteur contravariant de k-Vect dans lui-méme, et h* est sa
composée avec le foncteur d’oubli de k-Vect vers Ens (qui est covariant).

Ezxercice 1.2.8. — Montrez que tout foncteur pleinement fidele est conservatif.

Ezxercice 1.2.9. — Soient X et Y deux objets isomorphes d’une catégorie C.
Montrez que les groupes Aut X et AutY sont isomorphes.

Ezxercice 1.2.10. — Montrez que le foncteur quotient Q: Gp — OutGp est
conservatif.

Exercice 1.2.11. — Soit k un corps. Soient n et m deux entiers. Quels sont les
isomorphismes entre n et m dans la catégorie Vj, définie en [L.I.7]? Le foncteur F de
Vj, vers k-Vect'™ défini en loc. cit. est-il plein ? Fidele ? Pleinement fidele ?

1.3. Morphismes de foncteurs. — On a dit plus haut que les foncteurs sont aux
catégories ce que les applications sont aux ensembles. Mais nous allons maintenant
introduire une notion spécifiquement catégorique, qu’on ne peut plus inscrire dans
cette analogie avec la théorie des ensembles : c’est la notion de morphisme de
foncteurs. Elle témoigne que le monde catégorique permet, en quelque sorte, d’aller
«un cran plus loin» que le monde ensembliste — c’est une des difficultés du sujet

Définition 1.3.1. — Soient C et D deux catégories et soient F': C > Det G: C - D
deux foncteurs. Un morphisme de foncteurs v de F' dans G consiste en la donnée
pour tout X € Ob C d’un morphisme u(X) € Homp (F(X), G(X)), avec les conditions

1. On peut poursuivre cette montée en complexité avec la notion de 2-catégorie, puis celle de 3-
catégorie, etc. jusqu’a celle de oo-catégorie, qui joue un réle majeur dans les développements récents
de la topologie et de la géométrie algébriques. Mais tous ces themes sont tres largement au-dela du
niveau de ce cours introductif.
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de compatiblité suivantes : on demande que pour toute fleche f: Y — X de C, le
diagramme

FY) 2 qy)

F(f)l lG(f)
FX) Y ax)

(qui vit dans la catégorie D) commute.
On dit parfois aussi d’un tel u que c’est une transformation naturelle de F vers G.

1.3.2. Identité, composition de morphismes de foncteurs. — Soient C et D deux
catégories et soit F': C — D. On appelle identité de F' et 'on note Idp le morphisme
de foncteurs de F' dans lui-méme tel que Idr(X) = Idp(x) pour tout X € ObC.

Soient G et H deux autres foncteurs de C vers D, soit u est un morphisme de F
vers G et soit v un morphisme de G vers H. On définit la composée v o u comme le
morphisme de foncteurs de F' vers H tel que (v ou)(X) = v(X) o u(X) pour tout
X eObC.

La composition des morphismes de foncteurs est associative, et les identités de
foncteurs sont neutres pour cette composition.

Un endomorphisme de F' est un morphisme de foncteurs de F' dans lui-méme. On
dit que u: FF — G est un isomorphisme de foncteurs s’il existe un morphisme de
foncteurs w: G — F tel que wou = Idg et uwow = Idg. C’est le cas si et seulement
si u(X) est un isomorphisme de D pour tout X € ObC, et sous cette hypothese
w est alors unique, et 'on a w(X) = u(X)~! pour tout X € Ob(C); on l'appelle
'isomorphisme réciproque de u et on le note u~'.

L’identité de F' est un isomorphisme de foncteurs. Si u et v sont des isomorphismes
de foncteurs, v o u est un isomorphisme de foncteurs et (vou)™! =u=tov™L

Un automorphisme de foncteur de F' est un isomorphisme de foncteurs de F' dans
lui-méme.

Remarque 1.3.3. — Nous attirons votre attention sur le fait que les morphismes de
foncteurs de F vers G n’ont a priori aucune raison de constituer un ensemble (et pour
cette méme raison, on ne peut pas affirmer que les automorphismes d’un foncteur F'
constituent un groupe pour la composition).

Notons toutefois que si C est une petite catégorie les morphismes de F' vers G
forment effectivement un ensemble (et les automorphismes de F' forment un groupe).

Quoi qu’il en soit, nous noterons Hom(F, G) la classe des morphismes de foncteurs
de F' vers GG, qu’elle soit ou non un ensemble.

1.3.4. Ezemple : les sous-foncteurs. — Soit C une catégorie et soient F et G deux
foncteurs de C dans Ens. On dit que F est un sous-foncteur de G si F(X) ¢ G(X)
pour tout objet X de C et si F'(f)(§) = G(f)(§) pour toute fleche f: X — Y de C et
tout £ € F(X).

Si c’est le cas, la donnée pour tout X € Ob C de I'inclusion F'(X) < G(X) définit
un morphisme de foncteurs de F' dans GG, qu’on appelle le morphisme d’inclusion.



CATEGORIES 11

1.3.5. Ezemple : équations polynomiales, applications polynomiales. — Soit A un
anneau et soient Pj,..., P, des polyndmes en n variables Xi,..., X, a coeflicients
dans A.

Soit F' (resp. G) le foncteur de A-Alg dans Ens qui associe & une A-algébre B
Iensemble B™ (resp. B™). Pour toute A-algebre B, notons u(B) 'application

(bl,...,bn) [ (Pl(bl,...,bn),...7Pm(b1,...7bn))

de B™ dans B™. Alors u est un morphisme de foncteurs de F' dans G.

Soit F le foncteur de A-Alg dans Ens qui envoie B sur l’ensemble des éléments
(b1,...,by) de B™ tels que Pi(by,...,b,) = 0 pour tout i entre 1 et n. Alors E est un
sous-foncteur de F'. Si ¢ désigne 'inclusion de F dans F' alors woi est est le morphisme
de foncteurs constant (by,...,by) — (0,...,0) de E dans G.

1.3.6. Ezemple : la bidualité. — Soit k un corps. En composant avec lui-méme le
foncteur contravariant V' — V'V de k-Vect dans elle-méme on obtient un foncteur
covariant V: VVV de k-Vect dans elle-méme (on parlera aussi d’endofoncteur de
k-Vect). Notons © ce foncteur (ce n’est pas une notation standard ; nous 'introduisons
simplement ici par commodité).

Soit V un k-espace vectoriel. Notons «(V') lapplication k-linéaire v — [ — ¢(v)]
de V dans V'VV. On vérifie aussitot que la collection des (V') définit un morphisme
d’endofoncteurs de k-Vect de Idy vect vers ©. On démontre que ¢(V') est injectif pour
tout V.

Si V est de dimension finie il en va de méme que O(V), qui aura alors méme
dimension que V, et © induit ainsi un endofoncteur Ol yeqm de k-Vect'™; la
formule du rang assure que ¢(V') est un isomorphisme. En conséquence, ¢ induit un
isomorphisme de foncteurs de Id;,_yecfin Vers Ol _yectfin-

Le langage des catégories permet ainsi de donner un sens rigoureux au fait qu’un
espace vectoriel de dimension finie est canoniquement ou naturellement isomorphe
a son bidual alors que jusqu’a présent on ne vous avait probablement pas défini
précisément ces adverbes, se contenant de vous dire que l’isomorphisme construit
«ne dépend d’aucun choix» (en particulier, pas du choix d’une base).

1.3.7. Le cas des foncteurs hx et hX. — Soit C une catégorie, soient X et Y deux
objets de C et soit f une fleche de X vers Y. Rappelons que nous avons défini en [1.2.7]
un foncteur covariant hx = Hom(X,-) et un foncteur contravariant hX = Hom(-, X)
de C vers Ens.

1.3.7.1. — Pour tout € ObC, notons f*(Z) l’application de hy(Z) = Hom(Y, Z)
vers hx(Z) = Hom(X,Z) qui envoie ¢ sur ¢ o f. On vérifie immédiatement que
f* est un morphisme de foncteurs de hy vers hy, que Id% = Id.,, et quon a la
formule (go f)* = f* o g*. Il en résulte que si f est un isomorphisme alors f* est un
isomorphisme de foncteurs et (f*)~! = (f~1)*.

1.3.7.2. — Pour tout Z € Ob C, notons fy(Z) I'application de h*X (Z) = Hom(Z, X)
vers hY (Z) = Hom(Z,Y) qui envoie ¢ sur f o . On vérifie immédiatement que f,
est un morphisme de foncteurs de hX vers hY, que (Idx)s = Idj,, et qu'on a la
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formule (g o f)x = g« o fx. Il en résulte que si f est un isomorphisme alors f, est un
isomorphisme de foncteurs et (fi)~! = (f71)s.

1.3.7.3. Commentaires sur les variances. — Notons que hx et hy sont covariants,
donc préservent le sens des fleches; mais qu’une fleche f de X vers Y induit une
fleche f* «dans le mauvais sens» entre ces foncteurs, c’est-a-dire de hy vers hx.
Inversement, hX et hY sont contravariants, donc changent le sens des fleches; mais
une fleche f de X vers Y induit une fleche f, «dans le bon sens» entre ces foncteurs,
c’est-a-dire de hX vers hY .

En résumé : la formation du foncteur covariant hx est contravariante en X ; et la
formation du foncteur contravariant h~X est covariante en X.

1.3.8. Ezemples de morphismes de hx ou h vers un foncteur quelconque. — Soit
C une catégorie, soit X un objet de C et soit F': C' — Ens un foncteur. Soit £ un
élément de 'ensemble F'(X). Pour tout objet Y de C, notons up¢(Y) I'application de
hx(Y) =Hom(X,Y) vers F(Y) qui envoie ¢ sur F(¢)(£). Notons que ceci a bien un
sens : ¢ est un morphisme de X vers Y, donc F(p) est une application de F(X) vers
F(Y), et F(p)(§) est donc bien un élément de F'(Y'). On vérifie aussitdt que up ¢ est
un morphisme de foncteurs de hx dans F.

De méme si G est foncteur contravariant de C vers Ens et 7 un élément de G(X) on
définit un morphisme de foncteurs (contravariants) ve,, de A vers G par la formule
v, (Y) (%) = G()(n) ; ici ¢ est un élément de h¥ (Y), c’est-a-dire un morphisme de
Y vers X ; comme G est contravariant G(1)) est une application de G(X) vers G(Y),
et G(v)(n) appartient donc bien & G(Y).

Précisons que les notations up¢ et vg, ne sont pas standard; nous les avons
introduites par commodité en vue du lemme de Yoneda ci-dessous).

1.3.9. — En général décrire tous les morphismes entre deux foncteurs donnés peut
sembler hors de portée, un tel morphisme consistant en une gigantesque collection de
données (paramétrée par les objets de la catégorie source, donc ne formant méme
pas un ensemble a priori) sujette & une gigantesque collection de conditions de
compatibilité.

Mais nous allons voir que concernant les morphismes de hy (resp. h*X) vers un
foncteur covariant (resp. contravariant) & valeurs dans Ens, une telle description est
possible, et tres simple.

Lemme 1.3.10 (Lemme de Yoneda). — Soit C une catégorie et soit X un objet
de C.

(1) Soit F' un foncteur covariant de C vers Ens. Soit u un morphisme de foncteurs
de hx vers F. Il existe un unique objet & de F'(X) tel que que u = upg ;
cet objet £ est plus précisément égal a u(X)(Idx).

(2) Soit G un foncteur contravariant de C wers Ens. Soit v un morphisme de
foncteurs de hX vers G. Il existe un unique objet n de G(X) tel que que v = vg.,,

; cet objet n est plus précisément égal a v(X)(Idx).

1.3.11. Commentaires. — Notons que par définition, u(X) est un morphisme de
hx(X) = Hom(X, X) vers F(X), et u(X)(Idx) est donc un élément bien défini de
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F(X). De méme, v(X) est un morphisme de h*(X) = Hom(X, X) vers G(X), et
v(X)(Idx) est donc un élément bien défini de G(X).

Démonstration du lemme de Yoneda. — Nous allons nous contenter de démontrer
(1). La preuve de (2) est mutatis mutandis la méme, et ’'on peut aussi remarquer
que (2) s’obtient en appliquant (1) & COP.

Supposons donné § € F(X) tel que u = upe. Alors

w(X) = upg(X) = ¢ = F(p)(§),

ott ¢ parcourt Hom(X, X). En particulier u(X)(Idx) = F(Idx)(§) = Idpx)(§) = &.
Ainsi € est nécessairement égal a u(X)(Idx).

Réciproquement, posons £ = u(X)(Idx), et montrons que up¢ = w. Soit ¥ un
objet de C. Il s’agit de montrer que u(Y) = upe(Y), c’est-a-dire que pour tout ¢
appartenant & hy (X) = Hom(X,Y) on a w(Y)(p) = ure(v) = F(p)(§).

Soit donc ¢ € Hom(X,Y). Par définition d’'un morphisme de foncteurs, le
diagramme

hx(X) Y p(x)

hx wﬂ J{F(w)
hx(Y) ),

est commutatif ; rappelons que hx(X) = Hom(X, X), que hx(Y) = Hom(X,Y), et
que hx (@) = ¢ — @ o1. La commutativité de ce diagramme entraine que

Fle)(w(X)(dx)) = u(Y)(hx (¢)(Idx)),
c’est-a-dire que F'(9)(§) = u(Y)(poldx) = u(Y)(p), ce qu'il fallait démontrer. O

1.3.12. Commentaires. — L’énoncé méme du lemme de Yoneda et sa preuve peuvent
étre un peu déstabilisants en raison de leur caractere tres abstrait. Et la complexité
syntaxique des objets en jeu met le cerveau a rude épreuve, par exemple lorsqu’il
essaie de comprendre qui habite ot dans une égalité comme

Fle)(uw(X)(Idx)) = u(Y)(hx ()(Idx)).

Mais il faut prendre conscience que ce sont des difficultés essentiellement
psychologiques : sur le fond, le lemme de Yoneda est une tautologie; une tautologie
qui fait mal au crane, mais une tautologie tout de méme.

Il ne se passe en effet essentiellement rien dans sa preuve. Les hypotheses sont de
toutes fagons tellement faibles (une catégorie C quelconque, un objet X quelconque, un
foncteur F' quelconque) qu'’il ne peut pas se passer grand-chose, faute de suffisamment
d’informations disponibles ; et donc ce qu’on peut faire, c’est utiliser X et Id x, qui sont
respectivement le seul objet et le seul morphisme de C qu’on ait & notre disposition.

1.3.13. Une premiére conséquence. — Soient X, F et G comme dans |’énoncé
du lemme de Yoneda. Ce dernier fournit une bijection explicite entre F(X)
et Hom(hx, F), et entre G(X) et Hom(hX,G). En particulier Hom(hx,F) et
Hom(hX,G) sont des ensembles.
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1.3.14. Morphismes de hx vers hy et de hX wvers hY. — Soit C une catégorie et
soient X et Y deux objets de C.

1.3.14.1. — Soit £ un élément de hy (X) = Hom(Y, X). Le morphisme ¢ induit un
morphisme de foncteurs up, ¢ de hx vers hy, défini par la formule suivante : pour
tout objet Z de C l'application up, ¢(Z) de Hom(X, Z) vers Hom(Y, Z) envoie ¢ sur
hy (¢)(§) = ¢ 0 £.0n reconnait alors le morphisme de foncteurs £* défini en
De méme on vérifie que si 1 est un élément de hY (X) = Hom(X,Y) le morphisme
de foncteurs v,y ,, de hX vers hY coincide avec le morphisme de foncteurs 7, défini

enfl.o. (.2

1.3.14.2. — Il découle de ce qui précede et du lemme de Yoneda que f +— f* met en
bijection Hom(Y, X) et Hom(hx, hy), et que f — fi met en bijection Hom(X,Y") et
Hom(RY, h¥).

1.3.14.3. — Soit f un morphisme de Y vers X. Les assertions suivantes sont
équivalentes :

(i) f est un isomorphisme
(ii) f*: hx — hy est un isomorphisme de foncteurs;
(iii) fx: hY — %X est un isomorphisme de foncteurs.

Pour le voir il suffit de montrer que (i) <= (ii), ’équivalence (i) < (iii) se
démontrant de maniere analogue, ou s’en déduisant par passage a C°P. On a déja
vu en [1.3.7.1] que (i)=(ii). Supposons maintenant que f* est un isomorphisme. Sa
réciproque est un morphisme de foncteurs de hy vers hx donc en vertu de [1.3.14.2
est de la forme g* pour un (unique) morphisme g de X vers Y. On a alors les égalités

(go f)* = f*og* =1dy, = 1d%, si bien que go f = Idx par[1.3.14.2]; on montre de

méme que fog=Idy.

Ezxercice 1.3.15. — On travaille dans la catégorie des ensembles. On note F' (resp.
@) le foncteur covariant (resp. contravariant) de Ens dans Ens tel que FI(X) = {x}
pour tout X (resp. G(X) = {*} pour tout X) ot {*} est un singleton choisi une fois
pour toutes.

Montrez que hg est isomorphe a F et hi*} & G. Montrez que h? est isomorphe &
un sous-foncteur de G que 'on décrira. Montrez que hy est isomorphe a Idgys.

FEzxercice 1.3.16. — On travaille dans la catégorie des ensembles. Soit F' le foncteur
contravariant de Ens dans elle-méme donné par les formules

F(X)=2(X)et F(f) = (2(Y) > 2(X), Z— [71(2))

pour tout X € Ens et toute application f: X — Y. Construire un isomorphisme
u: h%1 — F. Soit 7 la bijection 0 — 1,1 — 0 de {0,1} dans lui-méme. Décrire
Pautomorphisme v o 7, cu™! de F.

Ezxercice 1.3.17. — On travaille dans la catégorie des groupes. Soit n un entier
positif ou nul. Soit F' le foncteur d’oubli de Gp vers Ens. Construire un isomorphisme
de hz)nz vers un sous-foncteur de F'. Pour quelle valeur de n ce sous-foncteur est-il
égal a F tout entier?
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2. Equivalences de catégories

La notion d’isomorphisme est fondamentale en mathématiques. Pour la raison
suivante : les propriétés auxquelles on s’intéresse lorsqu’on travaille dans une catégorie
C fixée sont le plus souvent invariantes par isomorphisme. Par exemple si F et F' sont
deux ensembles en bijection alors F est fini si et seulement si F' est fini; si G et G
sont deux groupes isomorphes, G est abélien si et seulement si G’ est abélien; si X
et Y sont deux espaces topologiques homéomorphes, Xest compact si et seulement si
Y est compact, etc.

Le but de ce chapitre va étre de dégager la notion analogue au niveau des catégories.

2.1. Isomorphismes de catégories. — Nous allons faire une premiere tentative
consistant a simplement décalquer la notion d’isomorphisme en remplacant les
morphismes entre objets par les foncteurs entre catégories.

Définition 2.1.1. — Soient C et D deux catégories. Un isomorphisme de catégories
de C vers D est un foncteur F': C — D tel qu’il existe un foncteur G de D vers C
vérifiant les égalités F'o G =Idp et Go F = Idc¢.

2.1.2. Unicité de linverse. — Si F': C — D est un isomorphisme de catégories, le
foncteur G de la définition ci-dessus est unique : pour tout objet Y de D, I'objet G(Y)
de C est 'unique objet X de C tel que F(X) = Y'; pour toute fleche f: V] — Y3
entre objets de D la fleche G(f) est 'unique fleche g € Homc (G(Y7), G(Y3)) telle que
F(g) = f. On dit alors que G est I'inverse de F' et on le note F~1.

2.1.3. Premiers exemples. — L’identité Idc est un isomorphisme de catégories qui
est son propre inverse. Si F' et G sont deux isomorphismes de catégories composables,
G o F est un isomorphisme de catégories et (Go F)~! = F~1 oG~

2.1.4. Un exemple plus intéressant. — Soit k un corps. Soit C la catégorie définie
comme suit : ses objets sont les couples (F,u) ou E est un k-espace vectoriel et u un
endomorphisme de E ; une fleche de (E, ) vers (F,v) est une application k-linéaire f
telle que le diagramme le diagramme

E—2>FE

| Is

F—=F

commute. Soit D la catégorie des k[T]-modules.

On définit comme suit un foncteur F' de C vers D. Au niveau des objets, F' envoie
(E,u) sur le k[T]-module de groupe abélien sous-jacent (F,+) et de loi externe
(P,x) — P -z := P(u)(x). Au niveau des fleches il envoie f: (E,u) — (F,v) sur
f vue comme application du k[T]-module E vers le k[T]-module F. C’est bien une
application k[T]-linéaire : on a en effet pour tout P € k[T] et tout = € E les égalités
f(P-z) = f(P(u)(z)) = P(v)(f(z)) = P f(z) ou la deuxiéme égalité est due au fait
que fou = vo f par définition des fleches de C, d’ot on déduit que foP(u) = P(v)o f
pour tout P € k[T].
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On définit comme suit un foncteur G de D vers C. Au niveau des objets, il associe
a un k[T]-module E le k-espace vectoriel obtenu en restreignant la loi externe de
kE[T] x E vers E & k x E (on oublie qu'on sait aussi multiplier les éléments de E
par les puissances de T'), muni de 'endomorphisme x — T - . Au niveau des fleches,
il associe a une application k[T]-linéaire f: E — F lapplication k-linéaire f du k-
espace vectoriel E vers le k-espace vectoriel F'; on a par définition f(T-z) =T - f(x)
pour tout x € E, si bien que f appartient & Homc((F,z,— T - x), (F,y — (T - y)).

On vérifie aussitot que F' est un isomorphisme de catégories d’inverse G.

Cette construction est tres utile en pratique pour I’étude de la réduction des
endomorphismes sur un corps quelconque (non nécessairement algébriquement clos)
en algebre linéaire. Elle ne fait bien stir pas disparaitre les difficultés du probléme
mais elle permet de les voir sous un autre angle : on remplace un couple formé d’un
module sur un anneau trés gentil (un corps!) et d’'un endomorphisme de ce module
par un simple module, mais sur un anneau un peu plus compliqué (k[T]) ; 'expérience
a montré la fécondité de cette approche.

Ezxercice 2.1.5. — Nous avons dit plus haut que les propriétés auxquelles
on s’intéresse (dans une catégorie donnée) sont le plus souvent invariantes par
isomorphisme. Pouvez-vous donner un exemple (dans la catégorie des ensemble,
disons) d’une propriété qui n’est pas invariante par isomorphisme ?

Exercice 2.1.6. — Construire un isomorphisme entre la catégorie des IF,-espaces

vectoriels et celle des groupes abéliens G dont tous les éléments sont de p-torsion.

FEzxercice 2.1.7. — Contruire un isomorphisme entre la catégorie des Q-espaces
vectoriels et celle des groupes abéliens G uniquement divisibles, c’est-a-dire tels que
pour tout (g,n) € G x (N\{0}) il existe un unique h € G tel que nh = g.
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