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2 ANTOINE DUCROS

1. Catégories, foncteurs, morphismes de foncteurs

1.1. Catégories. — Nous allons commencer par présenter la notion fondamentale
de ce cours, celle de catégorie, puis nous allons l’illustrer par de nombreux exemples.

Définition 1.1.1. — Une catégorie C consiste en les données suivantes :
˛ une classe Ob C d’objets mathématiques, les objets de C ;
˛ pour tout couple pX,Y q d’objets de C, un ensemble HomCpX,Y q, ou HompX,Y q
s’il n’y a pas d’ambiguïté sur C, dont les éléments sont appelés morphismes ou
flèches de X vers Y ;

˛ pour tout objet X de C, un élément IdX de HomCpX,Xq, appelé identité de X ;
˛ pour tout triplet pX,Y, Zq d’objets de C, une application pg, fq ÞÑ g ˝ f de

HomCpY,Zq ˆHomCpX,Y q vers HomCpX,Zq, appelée la composition,
ces données étant sujettes à un certain nombre de conditions :
(1) pour tout quadruplet pX,Y,X 1, Y 1q d’objets de C tels que pX,Y q ‰ pX 1, Y 1q

l’intersection HomCpX,Y q XHomCpX
1, Y 1q est vide ;

(2) pour tout couple pX,Y q d’objets de C et tout f P HomCpX,Y q on a f ˝ IdX “ f
et IdY ˝f “ f (autrement dit, les identités sont neutres à gauche et à droite)

(3) pour tout quadruplet pX,Y, Z, T q d’objets de C, tout h P HomCpZ, T q, tout
g P HomCpY, Zq et tout f P HomCpX,Y q on a h ˝ pg ˝ fq “ ph ˝ gqf ˝ f
(autrement dit, la composition des morphismes est associative).

1.1.2. — Nous attirons l’attention sur le fait que nous ne demandons pas que Ob C
soit un ensemble mais simplement une «classe», terme que nous utilisons de manière
informelle en nous gardant bien de chercher à lui donner un sens précis, et nous
verrons que dans de nombreux exemples ci-dessous, Ob C n’est effectivement pas un
ensemble.

En toute rigueur, le développement de la théorie des catégories pose donc quelques
problèmes de fondements. On peut les résoudre ou bien en travaillant dans un système
d’axiomes qui inclue la notion de classe (et plus seulement d’ensemble), ou bien en
demandant que Ob C soit un ensemble – mais dans ce dernier cas il est nécessaire de
fixer un premier ensemble absolument énorme, qu’on appelle un univers, et qui joue
en quelque sorte le rôle d’ensemble de tous les ensembles : il doit contenir tous les
objets mathématiques qu’on aura envie de considérer (les catégories elles-mêmes, leurs
objets, leurs morphismes et ensembles de morphismes...) et être stable sous toute une
série d’opérations (comme la formation des ensembles de parties...) ; l’existence d’un
tel univers n’est pas garantie par les axiomes standard de la théorie des ensembles et
doit être rajoutée à ces derniers.

Mais on peut se permettre d’ignorer complètement ce type de questions dans une
première approche du sujet, et c’est ce que nous ferons ici. Nous manipulerons donc
sans scrupules des «classes» Ob C qui ne sont pas des ensembles ; par contre comme
souligné dans la définition les HomCpX,Y q seront quant à eux toujours des ensembles.
La condition (1) peut sembler un peu étrange ; elle signifie simplement que la donnée
d’une flèche f inclut les deux objetsX et Y de C tels que f appartienne à HomCpX,Y q ;
on dit que X est la source de f et Y son but.
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1.1.3. Premiers exemples. — Nous allons commencer par quelques exemples
classiques mettant en jeu de «vrais» objets et de «vrais» morphismes.

˛ La catégorie Ens, dont les objets sont les ensembles et les flèches les applications.

˛ La catégorie Gp dont les objets sont les groupes et les flèches les morphismes de
groupes.

˛ La catégorie Top dont les objets sont les espaces topologiques et les flèches les
applications continues.

˛ La catégorie Ann dont les objets sont les anneaux commutatifs unitaires, et les
flèches les morphismes d’anneaux unitaires.

˛ Un corps k étant donné, la catégorie k-Vect dont les objets sont les k-espaces
vectoriels et les flèches les applications k-linéaires.

˛ Un objet A de Ann étant donné, la catégorie A-Mod dont les objets sont les A-
modules et les flèches les applications A-linéaires (un A-module est un groupe
abélien pM,`q muni d’une loi externe A ˆ M Ñ M qui satisfait les mêmes
axiomes que la loi externe des espaces vectoriels ; une application ϕ : M Ñ N
entre deux A-modules est A-linéaire si c’est un morphisme de groupes et si
ϕpamq “ aϕpmq pour tout pa,mq P AˆM).

˛ La catégorie GpTop. Un objet de GpTop est un groupe topologique, c’est-à-dire
un groupe G muni d’une topologie pour laquelle le produit et l’inversion sont
continus ; une flèche de GpTop est un morphisme de groupes continu.

1.1.4. Sous-catégories. — Une catégorie C étant donnée, une sous-catégorie de C
est une catégorie D telle que Ob D Ă Ob C et HomCpX,Y q Ă HomCpX,Y q pour
tout couple pX,Y q d’objets de D (la composition des flèches de D se déduisant par
restriction de celle des flèches de C). Une sous-catégorie D de C est dite pleine si
HomDpX,Y q “ HomCpX,Y q pour tout couple pX,Y q d’objets de D. Donnons quelques
exemples.

˛ La catégorie Ab, dont les objets sont les groupes abéliens et les flèches les
morphismes de groupes, est une sous-catégorie pleine de Gp.

˛ La catégorie des corps, dont les objets sont les corps et les flèches les
morphismes d’anneaux, est une sous-catégorie pleine de Ann. On peut
également en considérer la sous-catégorie (encore pleine) constituée des corps
de caractéristique fixée.

˛ La sous-catégorie pleine k-Vectfin de k-Vect, constituée des espaces vectoriels de
dimension finie.

˛ La sous-catégorie de Gp ayant les mêmes objets, mais dont les flèches sont
les morphismes de groupes injectifs. On pourrait tout aussi bien remplacer
«injectif» par «surjectif» ou «bijectif», l’important (pour avoir une sous-
catégorie) étant simplement de choisir une classe de morphismes stable par
composition et contenant les identités.



4 ANTOINE DUCROS

1.1.5. Objets au-dessus et en-dessous d’un objet donné. — Soit C une catégorie et
soit S un objet de C. On définit la catégorie des objets de C au-dessus de S, et l’on
note C{S, la catégorie définie comme suit : ses objets sont les couples pX, fq où X est
un objet de C et f un morphisme de X vers S ; un morphisme depX, fqvers pY, gq est
une flèche h : X Ñ Y telle que g ˝ h “ f , soit encore telle que le diagramme

X Y

S

h

f g

commute.
On définit de manière duale la catégorie des la catégorie des objets de C en dessous

de S, et l’on note SzC, la catégorie définie comme suit : ses objets sont les couples
pX, fq où X est un objet de C et f un morphisme de S vers X ; un morphisme de
pX, fq vers Y, g est une flèche h : X Ñ Y telle que h ˝ f “ g, soit encore telle que le
diagramme

X Y

S

h

f g

commute.
Donnons deux exemples importants en pratique de ce type de construction.
˛ Soit A un objet de Ann. La catégorie des anneaux en dessous de A est ce qu’on
appelle la catégorie A-Alg des A-algèbres.

˛ Soit t˚u un singleton. Choisir une application continue de t˚u vers un espace
topologique X, c’est choisir un point de X (l’image de l’application en question).
La catégorie des espaces topologiques en dessous de t˚u peut donc également
se décrire comme suit : ses objets sont les couples pX,xq où X est un espace
topologique et x un point de X ; un morphisme de pX,xq vers pY, yq est une
application continue f de X vers Y telle que fpxq “ y. C’est la catégorie TopPt
des espaces topologiques pointés.

1.1.6. Classes d’équivalences de morphismes. — Nous allons maintenant donner
deux exemples (importants) de catégories qui mettent encore en jeu de «vrais» objets,
mais seulement des classes d’équivalence de «vrais» morphismes.
˛ La catégorie OutGp des groupes à automorphismes intérieurs près. Les objets
de OutGp sont les groupes. Un élément de HomOutGppG,Hq est une classe
d’équivalence de morphismes de groupes de G vers H pour la relation suivante :
f „ f 1 si et seulement s’il existe un automorphisme intérieur u de H tel que
f 1 “ u ˝ f .

˛ La catégorie hTop des espaces topologiques à homotopie près. Ses objets sont les
espaces topologiques. Un élément de HomhToppX,Y q est une classe d’équivalence
d’applications continues deX vers Y pour la relation d’homotopie définie comme
suit : f „ f 1 si et seulement s’il existe une application continue h de r0, 1s ˆX
vers Y telle que hp0, ¨q “ f et hp1, ¨q “ f 1.
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˛ La catégorie hTopPt des espaces topologiques pointés à homotopie
près. Ses objets sont les espaces topologiques pointés. Un élément de
HomhTopPtppX,xq, pY, yqq est une classe d’équivalence de morphismes d’espaces
topologiques pointés de pX,x vers pY, yq pour la relation d’homotopie définie
comme suit : f „ f 1 si et seulement s’il existe une application continue h de
r0, 1s ˆX vers Y telle que hp0, ¨q “ f , hp1, ¨q “ f 1 et hpx, tq “ y pour tout t.

Précisons que dans ces deux exemples la composition est induite par la composition
usuelle, qui passe à chaque fois au quotient par la relation considérée ; et l’identité
d’un objet est la classe de son identité usuelle.
1.1.7. Exemples abstraits. — On peut également définir des catégories «abstraites»
qui ne mettent en jeu ni vrais objets ni vrais morphismes. Donnons trois exemples.

˛ Soit G un groupe. On lui associe deux catégories (qui jouent un rôle important
en topologie algébrique).

La catégorie BG est la catégorie ayant un seul objet ˚ et telle que
HomBGp˚, ˚q “ G, la composition étant la loi interne de G et l’identité son
élément neutre.

La catégorie EG est la catégorie dont la classe d’objets est l’ensemble G, et
telle que pour tout px, yq de G2, l’ensemble HomEGpx, yq soit un singleton ; la
composition est la seule loi possible, et l’identité de x est l’unique élément de
HomEGpx, xq.

˛ Soit k un corps. La catégorie Vk est la catégorie telle que Ob V “ N et telle que
pour tout pm,nq P N2 on ait HomVk

pm,nq “ Mnmpkq, la composition étant le
produit des matrices, et Idn étant la matrice In.

1.1.8. Petites catégories. — Une catégorie C est dite petite si Ob C est un ensemble.
Par exemple les catégories décrites au 1.1.7 ci-dessus sont petites. Citons deux autres
exemples de petites catégories : si E est un ensemble, la catégorie PpEq dont les objets
sont les parties de E et les flèches les inclusions ; et si X est un espace topologique,
la catégorie OuvpXq dont les objets sont les ouverts de X et les flèches les inclusions.
1.1.9. Catégorie opposée. — Soit C une catégorie. On définit la catégorie opposée
Cop comme suit : Ob Cop “ Ob C, et HomCoppX,Y q “ HomCpY,Xq pour tout couple
pX,Y q d’objets de C. Les identités de Cop sont celles de C, et la composition est
renversée.
1.1.10. Endomorphismes, isomorphismes, automorphismes. — Soit C une catégorie.
Un endomorphisme d’un objet X de C est un élément de HomCpX,Xq. Si X et Y
sont deux objets de C, un morphisme de X vers Y est appelé un isomorphisme s’il
existe g P HomCpY,Xq tel que g ˝ f “ IdX et f ˝ g “ IdY . Un tel g est alors
unique, est appelé la réciproque de f et est noté f´1. Remarquons que f´1 est lui-
même un isomorphisme, et que pf´1q´1 “ f . Pour tout X P Ob C, l’identité de X
est un isomorphisme. Si f et g sont deux isomorphismes composables, g ˝ f est un
isomorphisme et pg ˝ fq´1 “ f´1 ˝ g´1. On dit que X et Y sont isomorphes s’il existe
un isomorphisme de X vers Y .
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Dans les catégories algébriques comme Ens,Gp,Ann, k-Vect, A-Mod, A-Alg . . . les
isomorphismes sont simplement les morphismes bijectifs. Mais ce n’est plus le cas dans
la catégorie Top : les isomorphismes de cette catégorie sont les bijections continues dont
la réciproque est continue, condition qui n’a rien d’automatique, comme en attestent
l’identité de R muni de la topologie discrète vers R muni de sa topologie usuelle ou
l’application θ ÞÑ eiθ de r0, 2πr sur l’ensemble des nombres complexes de module 1.

Un automorphisme d’un objet X de C est un isomorphisme de X sur lui-même (ou
encore, c’est un endomorphisme de X qui est un isomorphisme). Les automorphismes
de X forment un groupe pour la composition, de neutre IdX .

Un groupoïde est une catégorie dont toutes les flèches sont des isomorphismes. Les
catégories BG et EG de 1.1.7 sont des exemples de groupoïdes. On peut fabriquer
de manière naturelle en partant d’une catégorie C quelconque une sous-catégorie de
C qui est un groupoïde : on garde les mêmes objets, et on prend uniquement pour
flèches les isomorphismes de C.

Exercice 1.1.11. — Soit n un entier et soit B la boule unité de Rn. Montrez que
(la classe de) l’inclusion t0u ãÑ B est un isomorphisme de hTop.

1.2. Foncteurs. — Nous allons maintenant présenter la seconde notion fondamen-
tale de ce cours, celle de foncteur. Les foncteurs sont essentiellement aux catégories
ce que les applications sont aux ensembles.

Définition 1.2.1. — Soient C et D deux catégories. Un foncteur F de C vers D
consiste en les données suivantes :
˛ pour tout objet X de C, un objet F pXq de D ;
˛ pour toute flèche f : X Ñ Y de C, une flèche F pfq : F pXq Ñ F pY q de D,

telles que F pIdXq “ IdF pXq pour tout X et F pg ˝ fq “ F pgq ˝ F pfq dès que g et f
sont composables.

Remarque 1.2.2. — Ce que nous venons de définir est ce qu’on appelle plus
précisément un foncteur covariant. Il y a aussi une notion de foncteur contravariant,
qui, est la même à ceci près qu’elle renverse le sens des flèches : si F est contravariant
et si f est une flèche de X vers Y alors F pfq appartient à HomDpF pY q, F pXqq et on
a la formule F pg ˝ fq “ F pfq ˝ F pgq.

Pour éviter de fastidieuses répétitions, nous nous contenterons souvent de ne donner
des définitions et énoncés que pour des foncteurs covariants, en laissant au lecteur
le soin de formuler et/ou prouver leurs déclinaisons contravariantes. Qu’on peut en
fait la plupart du temps déduire formellement du cas covariant, grâce à la remarque
suivante : un foncteur contravariant de C vers D peut alternativement être défini
comme un foncteur covariant de C vers Dop ou de Cop vers D. (Ces deux points de
vue sont en théorie équivalents, mais ils ne le sont pas en pratique : pour des raisons
psychologiques on préfère le plus souvent conserver le sens normal de travail dans
la catégorie d’arrivée, et donc voir un foncteur contravariant de C vers D comme un
foncteur de Cop vers D.)

Dans ce qui suit les foncteurs seront donc par défaut covariants.
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1.2.3. Identité, composition de foncteurs. — Si C est une catégorie, on définit
l’identité de C, notée IdC , comme le foncteur tel que IdCpXq “ X pour tout objet X
et IdCpfq “ f pour toute flèche f .

Si F : C Ñ D et G : D Ñ E sont deux foncteurs, on définit le foncteur G˝F de C vers
E par les formules pG˝F qpXq “ GpF pXqq (pour tout objetX) et pG˝F qpfq “ GpF pfqq
(pour toute flèche f). C’est plus précisément un foncteur covariant si F et G sont tous
deux covariants ou bien tous deux contravariants, et un foncteur contravariant si F
et G sont de variances opposées.

La composition des foncteurs est une opération associative, pour laquelle les
foncteurs identité sont neutres.
1.2.4. Exemples. — Nous allons donner quelques exemples élémentaires de foncteurs
entre certaines des catégories décrites plus haut.

˛ On peut définir dans différents contextes des foncteurs d’oubli qui comme leur
nom l’indiquent «oublient» une partie de la structure. On dispose ainsi d’un
foncteur d’oubli de Gp dans Ens qui associe à un groupe l’ensemble sous-jacent
et à un morphisme de groupes l’application ensembliste sous-jacente ou d’autres
de Ann dans Ens, de k-Vect dans Ens, de Top dans Ens, mais aussi de k-Vect
dans Ab, de Ann dans Ab, de A-Alg dans A-Mod...

˛ Si D est une sous-catégorie de C on dispose d’un foncteur d’inclusion de D dans
C qui envoie un objet X de D sur le même X vu comme objet de C et une flèche
f de D sur la même f vue comme flèche de C.

˛ Le foncteur d’abélianisation de Gp vers Ab qui envoie un groupeG sur le quotient
G{rG,Gs où rG,Gs désigne le sous-groupe de G engendré par les commutateurs.
(Nous commettons ici un abus très fréquent : nous nous contentons pour définir
un foncteur de donner son effet sur les objets, en considérant que son effet sur
les flèches est évident ; vérifiez tout de même à chaque fois que cela se produit,
et donc ici par exemple, que vous arrivez effectivement à deviner son effet sur
les flèches).

˛ On construit en topologie le foncteur groupe fondamental pX,xq ÞÑ π1pX,xq de
TopPt vers Gp.

˛ Si C est une catégorie et S un objet de C on dispose d’un foncteur d’oubli de
C{S vers C, qui envoie un couple pX, fq sur X ; on dispose d’un foncteur d’oubli
analogue de SzC vers C.

˛ Les constructions de catégories par passage au quotient au niveau des
morphismes (1.1.6) donnent naturellement lieu à des «foncteurs quotient».
On définit ainsi un foncteur Gp vers OutGp (1.1.6) qui est l’identité sur les
objets, et qui au niveau des morphismes est donné par les applications quotient
HomGppG,G

1q Ñ HomOutGppG,G
1q. On définit de même des foncteurs quotient

de Top vers hTop et de TopPt vers hTopPt.
˛ Si deux morphismes d’espaces pointés f et f 1 de pX,xq vers pY, yq sont
homotopes, ils induisent le même morphisme de groupes de π1pX,xq vers
π1pY, yq. Il existe donc un unique foncteur π1 : hTopPt Ñ Gp tel que le
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diagramme de foncteurs

TopPt Gp

hTopPt

Q

π1

π1
,

où Q est le foncteur quotient, commute.
˛ Soit G un groupe. On dispose d’un foncteur naturel F de EG vers BG (ces
catégories ont été définies en 1.1.7), défini comme suit : on demande que F pgq
soit égal à ˚ pour tout g P G (on n’a de toutes façons pas le choix) et que pour
tout pg1, g2q P G

2 le foncteur F envoie l’unique flèche de E de source g1 et de
but g2 vers l’automorphisme g2g

´1
1 de ˚.

˛ Soit k un corps. On dispose d’un foncteur naturel F de la catégorie Vk définie
en 1.1.7 vers la catégorie k-Vectfin définie en 1.1.4, construit comme suit : pour
tout n P N on pose F pnq “ kn, et si M est un élément de Mnmpkq on définit
F pMq comme l’application linéaire de km vers kn de matrice M dans les bases
canoniques.

1.2.5. Foncteurs et isomorphismes. — Soient C et D deux catégories et soit F un
foncteur de C vers D. Soit f : X Ñ Y une flèche de C. Supposons que f soit un
isomorphisme. On a alors les égalités F pfq ˝F pf´1q “ F pf ˝f´1q “ F pIdY q “ IdF pY q
et de même F pf´1 ˝ fq “ IdF pXq. Il s’ensuit que F pfq est un isomorphisme et que
F pfq´1 “ F pf´1q.

On dit que F est conservatif si l’implication réciproque est vraie, c’est-à-dire si
pour toute flèche f de C, on a équivalence entre «f est un isomorphisme» et «F pfq
est un isomorphisme».

Ainsi la phrase «Un morphisme de groupes est un isomorphisme si et seulement si il
est ensemblistement bijectif» peut se reformuler de manière conceptuelle (ou pédante,
c’est une question de point de vue) en disant que le foncteur d’oubli de Gp vers Ens est
conservatif ; les foncteurs d’oubli de Ann ou k-Vect vers Ens le sont aussi. Par contre,
l’existence de bijections continues qui ne sont pas des homéomorphismes signifie que
le foncteur d’oubli de Top vers Ens n’est pas conservatif.
1.2.6. Plénitude et fidélité. — Soient Cet D deux catégories et soit F un foncteur
de C vers D. Le foncteur F est dit plein, resp. fidèle, resp. pleinement fidèle si
pour tout couple pX,Y q d’objets de C l’application f ÞÑ F pfq de HomCpX,Y q vers
HomDpF pXq, F pY qq est surjective (resp. injective, resp. bijective).

Par exemple si C est une sous-catégorie de D le foncteur d’inclusion de C dans D est
toujours fidèle, et pleinement fidèle si et seulement si C est une sous-catégorie pleine
de D.

Les foncteurs d’oubli de Gp,Ann, A-Mod, A-Alg ou Top vers Ens ainsi que ceux de
A-Alg vers A-Mod ou de A-Mod vers Ab sont fidèles, mais pas pleinement fidèles.

Les foncteurs quotient de Gp vers OutGp ou de Top vers hTop sont pleins mais pas
fidèles.

La composée de deux foncteurs pleins, resp. fidèles, resp. pleinement fidèles est
pleine, resp. fidèle, resp. pleinement fidèle.
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1.2.7. Les deux foncteurs associés à un objet. — Soit C une catégorie et soit X un
objet de C. On lui associe un foncteur covariant hX et un foncteur contravariant hX
de C dans Ens comme suit (les notations hX et hX ne sont pas standard) :

˛ hXpY q est égal à HompX,Y q pour tout objet Y de C, et hXpgq est l’application
f ÞÑ g ˝ f de HompX,Y q vers HompY, Zq pour toute flèche g P HompY, Zq.

˛ hXpY q est égal à HompY,Xq pour tout objet Y de C, et hXpgq est l’application
f ÞÑ f ˝ g de HompZ,Xq vers HompY,Xq pour toute flèche g P HompY, Zq.

Vous avez certainement déjà rencontré ce type de foncteurs (sans que ce soit
présenté ainsi). Par exemple, soit k un corps. Le foncteur contravariant hk de k-Vect
dans Ens envoie un espace V sur HompV, kq. Ce dernier est en fait un peu plus qu’un
ensemble : il a une structure naturelle de k-espace vectoriel, et est appelé le dual de
V et souvent noté V _ ; si f est une application k-linéaire de V vers W l’application
hkpfq : W_ Ñ V _ est k-linéaire et est appelée la transposée de f . Ainsi V ÞÑ V _

apparaît comme un foncteur contravariant de k-Vect dans lui-même, et hk est sa
composée avec le foncteur d’oubli de k-Vect vers Ens (qui est covariant).

Exercice 1.2.8. — Montrez que tout foncteur pleinement fidèle est conservatif.

Exercice 1.2.9. — Soient X et Y deux objets isomorphes d’une catégorie C.
Montrez que les groupes AutX et AutY sont isomorphes.

Exercice 1.2.10. — Montrez que le foncteur quotient Q : Gp Ñ OutGp est
conservatif.

Exercice 1.2.11. — Soit k un corps. Soient n et m deux entiers. Quels sont les
isomorphismes entre n et m dans la catégorie Vk définie en 1.1.7 ? Le foncteur F de
Vk vers k-Vectfin défini en loc. cit. est-il plein ? Fidèle ? Pleinement fidèle ?

1.3. Morphismes de foncteurs. — On a dit plus haut que les foncteurs sont aux
catégories ce que les applications sont aux ensembles. Mais nous allons maintenant
introduire une notion spécifiquement catégorique, qu’on ne peut plus inscrire dans
cette analogie avec la théorie des ensembles : c’est la notion de morphisme de
foncteurs. Elle témoigne que le monde catégorique permet, en quelque sorte, d’aller
«un cran plus loin» que le monde ensembliste – c’est une des difficultés du sujet p1q.

Définition 1.3.1. — Soient C et D deux catégories et soient F : C Ñ D et G : C Ñ D
deux foncteurs. Un morphisme de foncteurs u de F dans G consiste en la donnée
pour tout X P Ob C d’un morphisme upXq P HomDpF pXq, GpXqq, avec les conditions

1. On peut poursuivre cette montée en complexité avec la notion de 2-catégorie, puis celle de 3-
catégorie, etc. jusqu’à celle de 8-catégorie, qui joue un rôle majeur dans les développements récents
de la topologie et de la géométrie algébriques. Mais tous ces thèmes sont très largement au-delà du
niveau de ce cours introductif.
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de compatiblité suivantes : on demande que pour toute flèche f : Y Ñ X de C, le
diagramme

F pY q GpY q

F pXq GpXq

F pfq

upY q

Gpfq

upXq

(qui vit dans la catégorie D) commute.
On dit parfois aussi d’un tel u que c’est une transformation naturelle de F vers G.

1.3.2. Identité, composition de morphismes de foncteurs. — Soient C et D deux
catégories et soit F : C Ñ D. On appelle identité de F et l’on note IdF le morphisme
de foncteurs de F dans lui-même tel que IdF pXq “ IdF pXq pour tout X P Ob C.

Soient G et H deux autres foncteurs de C vers D, soit u est un morphisme de F
vers G et soit v un morphisme de G vers H. On définit la composée v ˝ u comme le
morphisme de foncteurs de F vers H tel que pv ˝ uqpXq “ vpXq ˝ upXq pour tout
X P Ob C.

La composition des morphismes de foncteurs est associative, et les identités de
foncteurs sont neutres pour cette composition.

Un endomorphisme de F est un morphisme de foncteurs de F dans lui-même. On
dit que u : F Ñ G est un isomorphisme de foncteurs s’il existe un morphisme de
foncteurs w : GÑ F tel que w ˝ u “ IdF et u ˝ w “ IdG. C’est le cas si et seulement
si upXq est un isomorphisme de D pour tout X P ObC, et sous cette hypothèse
w est alors unique, et l’on a wpXq “ upXq´1 pour tout X P ObpCq ; on l’appelle
l’isomorphisme réciproque de u et on le note u´1.

L’identité de F est un isomorphisme de foncteurs. Si u et v sont des isomorphismes
de foncteurs, v ˝ u est un isomorphisme de foncteurs et pv ˝ uq´1 “ u´1 ˝ v´1.

Un automorphisme de foncteur de F est un isomorphisme de foncteurs de F dans
lui-même.

Remarque 1.3.3. — Nous attirons votre attention sur le fait que les morphismes de
foncteurs de F vers G n’ont a priori aucune raison de constituer un ensemble (et pour
cette même raison, on ne peut pas affirmer que les automorphismes d’un foncteur F
constituent un groupe pour la composition).

Notons toutefois que si C est une petite catégorie les morphismes de F vers G
forment effectivement un ensemble (et les automorphismes de F forment un groupe).

Quoi qu’il en soit, nous noterons HompF,Gq la classe des morphismes de foncteurs
de F vers G, qu’elle soit ou non un ensemble.

1.3.4. Exemple : les sous-foncteurs. — Soit C une catégorie et soient F et G deux
foncteurs de C dans Ens. On dit que F est un sous-foncteur de G si F pXq Ă GpXq
pour tout objet X de C et si F pfqpξq “ Gpfqpξq pour toute flèche f : X Ñ Y de C et
tout ξ P F pXq.

Si c’est le cas, la donnée pour tout X P Ob C de l’inclusion F pXq Ă GpXq définit
un morphisme de foncteurs de F dans G, qu’on appelle le morphisme d’inclusion.
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1.3.5. Exemple : équations polynomiales, applications polynomiales. — Soit A un
anneau et soient P1, . . . , Pm des polynômes en n variables X1, . . . , Xn à coefficients
dans A.

Soit F (resp. G) le foncteur de A-Alg dans Ens qui associe à une A-algèbre B
l’ensemble Bn (resp. Bm). Pour toute A-algèbre B, notons upBq l’application

pb1, . . . , bnq ÞÑ pP1pb1, . . . , bnq, . . . , Pmpb1, . . . , bnqq

de Bn dans Bm. Alors u est un morphisme de foncteurs de F dans G.
Soit E le foncteur de A-Alg dans Ens qui envoie B sur l’ensemble des éléments

pb1, . . . , bnq de Bn tels que Pipb1, . . . , bnq “ 0 pour tout i entre 1 et n. Alors E est un
sous-foncteur de F . Si i désigne l’inclusion de E dans F alors u˝i est est le morphisme
de foncteurs constant pb1, . . . , bnq ÞÑ p0, . . . , 0q de E dans G.
1.3.6. Exemple : la bidualité. — Soit k un corps. En composant avec lui-même le
foncteur contravariant V ÞÑ V _ de k-Vect dans elle-même on obtient un foncteur
covariant V : V __ de k-Vect dans elle-même (on parlera aussi d’endofoncteur de
k-Vect). Notons Θ ce foncteur (ce n’est pas une notation standard ; nous l’introduisons
simplement ici par commodité).

Soit V un k-espace vectoriel. Notons ιpV q l’application k-linéaire v ÞÑ rϕ ÞÑ ϕpvqs
de V dans V __. On vérifie aussitôt que la collection des ιpV q définit un morphisme
d’endofoncteurs de k-Vect de Idk-Vect vers Θ. On démontre que ιpV q est injectif pour
tout V .

Si V est de dimension finie il en va de même que ΘpV q, qui aura alors même
dimension que V , et Θ induit ainsi un endofoncteur Θ|k-Vectfin de k-Vectfin ; la
formule du rang assure que ιpV q est un isomorphisme. En conséquence, ι induit un
isomorphisme de foncteurs de Idk-Vectfin vers Θ|k-Vectfin .

Le langage des catégories permet ainsi de donner un sens rigoureux au fait qu’un
espace vectoriel de dimension finie est canoniquement ou naturellement isomorphe
à son bidual alors que jusqu’à présent on ne vous avait probablement pas défini
précisément ces adverbes, se contenant de vous dire que l’isomorphisme construit
«ne dépend d’aucun choix» (en particulier, pas du choix d’une base).
1.3.7. Le cas des foncteurs hX et hX . — Soit C une catégorie, soient X et Y deux
objets de C et soit f une flèche de X vers Y . Rappelons que nous avons défini en 1.2.7
un foncteur covariant hX “ HompX, ¨q et un foncteur contravariant hX “ Homp¨, Xq
de C vers Ens.
1.3.7.1. — Pour tout P Ob C, notons f˚pZq l’application de hY pZq “ HompY, Zq
vers hXpZq “ HompX,Zq qui envoie ϕ sur ϕ ˝ f . On vérifie immédiatement que
f˚ est un morphisme de foncteurs de hY vers hX , que Id˚X “ IdhX

, et qu’on a la
formule pg ˝ fq˚ “ f˚ ˝ g˚. Il en résulte que si f est un isomorphisme alors f˚ est un
isomorphisme de foncteurs et pf˚q´1 “ pf´1q˚.
1.3.7.2. — Pour tout Z P Ob C, notons f˚pZq l’application de hXpZq “ HompZ,Xq
vers hY pZq “ HompZ, Y q qui envoie ϕ sur f ˝ ϕ. On vérifie immédiatement que f˚
est un morphisme de foncteurs de hX vers hY , que pIdXq˚ “ IdhX

, et qu’on a la
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formule pg ˝ fq˚ “ g˚ ˝ f˚. Il en résulte que si f est un isomorphisme alors f˚ est un
isomorphisme de foncteurs et pf˚q´1 “ pf´1q˚.
1.3.7.3. Commentaires sur les variances. — Notons que hX et hY sont covariants,
donc préservent le sens des flèches ; mais qu’une flèche f de X vers Y induit une
flèche f˚ «dans le mauvais sens» entre ces foncteurs, c’est-à-dire de hY vers hX .
Inversement, hX et hY sont contravariants, donc changent le sens des flèches ; mais
une flèche f de X vers Y induit une flèche f˚ «dans le bon sens» entre ces foncteurs,
c’est-à-dire de hX vers hY .

En résumé : la formation du foncteur covariant hX est contravariante en X ; et la
formation du foncteur contravariant hX est covariante en X.
1.3.8. Exemples de morphismes de hX ou hX vers un foncteur quelconque. — Soit
C une catégorie, soit X un objet de C et soit F : C Ñ Ens un foncteur. Soit ξ un
élément de l’ensemble F pXq. Pour tout objet Y de C, notons uF,ξpY q l’application de
hXpY q “ HompX,Y q vers F pY q qui envoie ϕ sur F pϕqpξq. Notons que ceci a bien un
sens : ϕ est un morphisme de X vers Y , donc F pϕq est une application de F pXq vers
F pY q, et F pϕqpξq est donc bien un élément de F pY q. On vérifie aussitôt que uF,ξ est
un morphisme de foncteurs de hX dans F .

De même si G est foncteur contravariant de C vers Ens et η un élément de GpXq on
définit un morphisme de foncteurs (contravariants) vG,η de hX vers G par la formule
vG,ηpY qpψq “ Gpψqpηq ; ici ψ est un élément de hXpY q, c’est-à-dire un morphisme de
Y vers X ; comme G est contravariant Gpψq est une application de GpXq vers GpY q,
et Gpψqpηq appartient donc bien à GpY q.

Précisons que les notations uF,ξ et vG,η ne sont pas standard ; nous les avons
introduites par commodité en vue du lemme de Yoneda (1.3.10 ci-dessous).
1.3.9. — En général décrire tous les morphismes entre deux foncteurs donnés peut
sembler hors de portée, un tel morphisme consistant en une gigantesque collection de
données (paramétrée par les objets de la catégorie source, donc ne formant même
pas un ensemble a priori) sujette à une gigantesque collection de conditions de
compatibilité.

Mais nous allons voir que concernant les morphismes de hX (resp. hX) vers un
foncteur covariant (resp. contravariant) à valeurs dans Ens, une telle description est
possible, et très simple.

Lemme 1.3.10 (Lemme de Yoneda). — Soit C une catégorie et soit X un objet
de C.
(1) Soit F un foncteur covariant de C vers Ens. Soit u un morphisme de foncteurs

de hX vers F . Il existe un unique objet ξ de F pXq tel que que u “ uF,ξ (1.3.8) ;
cet objet ξ est plus précisément égal à upXqpIdXq.

(2) Soit G un foncteur contravariant de C vers Ens. Soit v un morphisme de
foncteurs de hX vers G. Il existe un unique objet η de GpXq tel que que v “ vG,η
(1.3.8) ; cet objet η est plus précisément égal à vpXqpIdXq.

1.3.11. Commentaires. — Notons que par définition, upXq est un morphisme de
hXpXq “ HompX,Xq vers F pXq, et upXqpIdXq est donc un élément bien défini de



CATÉGORIES 13

F pXq. De même, vpXq est un morphisme de hXpXq “ HompX,Xq vers GpXq, et
vpXqpIdXq est donc un élément bien défini de GpXq.

Démonstration du lemme de Yoneda. — Nous allons nous contenter de démontrer
(1). La preuve de (2) est mutatis mutandis la même, et l’on peut aussi remarquer
que (2) s’obtient en appliquant (1) à Cop.

Supposons donné ξ P F pXq tel que u “ uF,ξ. Alors

upXq “ uF,ξpXq “ ϕ ÞÑ F pϕqpξq,

où ϕ parcourt HompX,Xq. En particulier upXqpIdXq “ F pIdXqpξq “ IdF pXqpξq “ ξ.
Ainsi ξ est nécessairement égal à upXqpIdXq.

Réciproquement, posons ξ “ upXqpIdXq, et montrons que uF,ξ “ u. Soit Y un
objet de C. Il s’agit de montrer que upY q “ uF,ξpY q, c’est-à-dire que pour tout ϕ
appartenant à hY pXq “ HompX,Y q on a upY qpϕq “ uF,ξpϕq “ F pϕqpξq.

Soit donc ϕ P HompX,Y q. Par définition d’un morphisme de foncteurs, le
diagramme

hXpXq F pXq

hXpY q F pY q

hXpϕq

upXq

F pϕq

upY q

est commutatif ; rappelons que hXpXq “ HompX,Xq, que hXpY q “ HompX,Y q, et
que hXpϕq “ ψ ÞÑ ϕ ˝ ψ. La commutativité de ce diagramme entraîne que

F pϕqpupXqpIdXqq “ upY qphXpϕqpIdXqq,

c’est-à-dire que F pϕqpξq “ upY qpϕ ˝ IdXq “ upY qpϕq, ce qu’il fallait démontrer.

1.3.12. Commentaires. — L’énoncé même du lemme de Yoneda et sa preuve peuvent
être un peu déstabilisants en raison de leur caractère très abstrait. Et la complexité
syntaxique des objets en jeu met le cerveau à rude épreuve, par exemple lorsqu’il
essaie de comprendre qui habite où dans une égalité comme

F pϕqpupXqpIdXqq “ upY qphXpϕqpIdXqq.

Mais il faut prendre conscience que ce sont des difficultés essentiellement
psychologiques : sur le fond, le lemme de Yoneda est une tautologie ; une tautologie
qui fait mal au crâne, mais une tautologie tout de même.

Il ne se passe en effet essentiellement rien dans sa preuve. Les hypothèses sont de
toutes façons tellement faibles (une catégorie C quelconque, un objetX quelconque, un
foncteur F quelconque) qu’il ne peut pas se passer grand-chose, faute de suffisamment
d’informations disponibles ; et donc ce qu’on peut faire, c’est utiliserX et IdX , qui sont
respectivement le seul objet et le seul morphisme de C qu’on ait à notre disposition.
1.3.13. Une première conséquence. — Soient X,F et G comme dans l’énoncé
du lemme de Yoneda. Ce dernier fournit une bijection explicite entre F pXq
et HomphX , F q, et entre GpXq et HomphX , Gq. En particulier HomphX , F q et
HomphX , Gq sont des ensembles.
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1.3.14. Morphismes de hX vers hY et de hX vers hY . — Soit C une catégorie et
soient X et Y deux objets de C.
1.3.14.1. — Soit ξ un élément de hY pXq “ HompY,Xq. Le morphisme ξ induit un
morphisme de foncteurs uhY ,ξ de hX vers hY , défini par la formule suivante : pour
tout objet Z de C l’application uhY ,ξpZq de HompX,Zq vers HompY, Zq envoie ϕ sur
hY pϕqpξq “ ϕ ˝ ξ.On reconnaît alors le morphisme de foncteurs ξ˚ défini en 1.3.7.1.

De même on vérifie que si η est un élément de hY pXq “ HompX,Y q le morphisme
de foncteurs vhY ,η de hX vers hY coïncide avec le morphisme de foncteurs η˚ défini
en 1.3.7.2.
1.3.14.2. — Il découle de ce qui précède et du lemme de Yoneda que f ÞÑ f˚ met en
bijection HompY,Xq et HomphX , hY q, et que f ÞÑ f˚ met en bijection HompX,Y q et
HomphY , hXq.
1.3.14.3. — Soit f un morphisme de Y vers X. Les assertions suivantes sont
équivalentes :
(i) f est un isomorphisme
(ii) f˚ : hX Ñ hY est un isomorphisme de foncteurs ;
(iii) f˚ : hY Ñ hX est un isomorphisme de foncteurs.
Pour le voir il suffit de montrer que (i) ðñ (ii), l’équivalence (i) ðñ (iii) se

démontrant de manière analogue, ou s’en déduisant par passage à Cop. On a déjà
vu en 1.3.7.1 que (i)ñ(ii). Supposons maintenant que f˚ est un isomorphisme. Sa
réciproque est un morphisme de foncteurs de hY vers hX donc en vertu de 1.3.14.2
est de la forme g˚ pour un (unique) morphisme g de X vers Y . On a alors les égalités
pg ˝ fq˚ “ f˚ ˝ g˚ “ IdhX

“ Id˚X , si bien que g ˝ f “ IdX par 1.3.14.2 ; on montre de
même que f ˝ g “ IdY .

Exercice 1.3.15. — On travaille dans la catégorie des ensembles. On note F (resp.
G) le foncteur covariant (resp. contravariant) de Ens dans Ens tel que F pXq “ t˚u

pour tout X (resp. GpXq “ t˚u pour tout X) où t˚u est un singleton choisi une fois
pour toutes.

Montrez que hH est isomorphe à F et ht˚u à G. Montrez que hH est isomorphe à
un sous-foncteur de G que l’on décrira. Montrez que h˚ est isomorphe à IdEns.

Exercice 1.3.16. — On travaille dans la catégorie des ensembles. Soit F le foncteur
contravariant de Ens dans elle-même donné par les formules

F pXq “PpXq et F pfq “ pPpY q ÑPpXq, Z ÞÑ f´1pZqq

pour tout X P Ens et toute application f : X Ñ Y . Construire un isomorphisme
u : ht0,1u Ñ F . Soit τ la bijection 0 ÞÑ 1, 1 ÞÑ 0 de t0, 1u dans lui-même. Décrire
l’automorphisme u ˝ τ˚ ˝ u´1 de F .

Exercice 1.3.17. — On travaille dans la catégorie des groupes. Soit n un entier
positif ou nul. Soit F le foncteur d’oubli de Gp vers Ens. Construire un isomorphisme
de hZ{nZ vers un sous-foncteur de F . Pour quelle valeur de n ce sous-foncteur est-il
égal à F tout entier ?
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2. Équivalences de catégories

La notion d’isomorphisme est fondamentale en mathématiques. Pour la raison
suivante : les propriétés auxquelles on s’intéresse lorsqu’on travaille dans une catégorie
C fixée sont le plus souvent invariantes par isomorphisme. Par exemple si E et F sont
deux ensembles en bijection alors E est fini si et seulement si F est fini ; si G et G1
sont deux groupes isomorphes, G est abélien si et seulement si G1 est abélien ; si X
et Y sont deux espaces topologiques homéomorphes, Xest compact si et seulement si
Y est compact, etc.

Le but de ce chapitre va être de dégager la notion analogue au niveau des catégories.

2.1. Isomorphismes de catégories. — Nous allons faire une première tentative
consistant à simplement décalquer la notion d’isomorphisme en remplaçant les
morphismes entre objets par les foncteurs entre catégories.

Définition 2.1.1. — Soient C et D deux catégories. Un isomorphisme de catégories
de C vers D est un foncteur F : C Ñ D tel qu’il existe un foncteur G de D vers C
vérifiant les égalités F ˝G “ IdD et G ˝ F “ IdC .

2.1.2. Unicité de l’inverse. — Si F : C Ñ D est un isomorphisme de catégories, le
foncteur G de la définition ci-dessus est unique : pour tout objet Y de D, l’objet GpY q
de C est l’unique objet X de C tel que F pXq “ Y ; pour toute flèche f : Y1 Ñ Y2
entre objets de D la flèche Gpfq est l’unique flèche g P HomCpGpY1q, GpY2qq telle que
F pgq “ f . On dit alors que G est l’inverse de F et on le note F´1.
2.1.3. Premiers exemples. — L’identité IdC est un isomorphisme de catégories qui
est son propre inverse. Si F et G sont deux isomorphismes de catégories composables,
G ˝ F est un isomorphisme de catégories et pG ˝ F q´1 “ F´1 ˝G´1.
2.1.4. Un exemple plus intéressant. — Soit k un corps. Soit C la catégorie définie
comme suit : ses objets sont les couples pE, uq où E est un k-espace vectoriel et u un
endomorphisme de E ; une flèche de pE, uq vers pF, vq est une application k-linéaire f
telle que le diagramme le diagramme

E E

F F

u

f f

v

commute. Soit D la catégorie des krT s-modules.
On définit comme suit un foncteur F de C vers D. Au niveau des objets, F envoie

pE, uq sur le krT s-module de groupe abélien sous-jacent pE,`q et de loi externe
pP, xq ÞÑ P ¨ x :“ P puqpxq. Au niveau des flèches il envoie f : pE, uq Ñ pE, vq sur
f vue comme application du krT s-module E vers le krT s-module F . C’est bien une
application krT s-linéaire : on a en effet pour tout P P krT s et tout x P E les égalités
fpP ¨ xq “ fpP puqpxqq “ P pvqpfpxqq “ P ¨ fpxq où la deuxième égalité est due au fait
que f ˝u “ v˝f par définition des flèches de C, d’où on déduit que f ˝P puq “ P pvq˝f
pour tout P P krT s.
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On définit comme suit un foncteur G de D vers C. Au niveau des objets, il associe
à un krT s-module E le k-espace vectoriel obtenu en restreignant la loi externe de
krT s ˆ E vers E à k ˆ E (on oublie qu’on sait aussi multiplier les éléments de E
par les puissances de T ), muni de l’endomorphisme x ÞÑ T ¨ x. Au niveau des flèches,
il associe à une application krT s-linéaire f : E Ñ F l’application k-linéaire f du k-
espace vectoriel E vers le k-espace vectoriel F ; on a par définition fpT ¨ xq “ T ¨ fpxq
pour tout x P E, si bien que f appartient à HomCppE, x, ÞÑ T ¨ xq, pF, y ÞÑ pT ¨ yqq.

On vérifie aussitôt que F est un isomorphisme de catégories d’inverse G.
Cette construction est très utile en pratique pour l’étude de la réduction des

endomorphismes sur un corps quelconque (non nécessairement algébriquement clos)
en algèbre linéaire. Elle ne fait bien sûr pas disparaître les difficultés du problème
mais elle permet de les voir sous un autre angle : on remplace un couple formé d’un
module sur un anneau très gentil (un corps !) et d’un endomorphisme de ce module
par un simple module, mais sur un anneau un peu plus compliqué (krT s) ; l’expérience
a montré la fécondité de cette approche.

Exercice 2.1.5. — Nous avons dit plus haut que les propriétés auxquelles
on s’intéresse (dans une catégorie donnée) sont le plus souvent invariantes par
isomorphisme. Pouvez-vous donner un exemple (dans la catégorie des ensemble,
disons) d’une propriété qui n’est pas invariante par isomorphisme ?

Exercice 2.1.6. — Construire un isomorphisme entre la catégorie des Fp-espaces
vectoriels et celle des groupes abéliens G dont tous les éléments sont de p-torsion.

Exercice 2.1.7. — Contruire un isomorphisme entre la catégorie des Q-espaces
vectoriels et celle des groupes abéliens G uniquement divisibles, c’est-à-dire tels que
pour tout pg, nq P Gˆ pNzt0uq il existe un unique h P G tel que nh “ g.
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