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2 ANTOINE DUCROS

1. Anneaux principaux : généralités

L’objectif de ce cours est d’étudier, par des méthodes en grande partie analytiques,
la façon dont les nombres premiers se répartissent parmi les entiers. Les résultats
que nous obtiendrons et les outils que nous emploierons seront le plus souvent très
spécifiques à l’anneau Z ; cela dit un certain nombre d’énoncés et propriétés de base
que nous utiliserons valent dans tout anneau principal, et c’est par ces derniers que
nous allons commencer avant d’entrer dans le vif du sujet.

1.1. Divisibilité dans un anneau intègre, PGCD, PPCM. — Soit A un
anneau (commutatif, unitaire) intègre ; cela signifie par définition que A est non nul
et que le produit de deux éléments non nuls de A est toujours non nul.
1.1.1. — On dit qu’un élément a de A est inversible s’il existe b dans A tel que
ab “ 1 ; un tel b est alors unique et est noté a´1. L’ensemble des éléments inversibles
de A est noté Aˆ ; il contient 1, ne contient pas 0 et est stable par multiplications ;
cette dernière en fait un groupe abélien. On a par exemple Zˆ “ t´1, 1u. On dit que
A est un corps si Aˆ “ Azt0u.

Si a et b sont deux éléments de A on dit que a divise b, et l’on écrit a|b, s’il existe
u dans A tel que b “ au. Supposons que ce soit le cas. Un tel u est alors unique si
a ‰ 0, par intégrité de A, et on le note b{a ; et si a “ 0 alors b “ 0 et n’importe quel
u convient.

Supposons que a|b et b|a. Écrivons alors b “ au et a “ bv. Il vient a “ auv,
donc ap1 ´ uvq “ 0. Si a “ 0 l’égalité b “ au entraîne que b “ 0. Si a ‰ 0 l’égalité
ap1 ´ uvq “ 0 entraîne que uv “ 1, par intégrité de A. Par conséquent u et v sont
inversibles. Ainsi si a|b et b|a il existe u P Aˆ tel que b “ au. Réciproquement si un
tel u existe alors b “ au et a “ bu´1, donc a|b et b|a.

On dit qu’un élément a de A est irréductible s’il est non nul, non inversible, et si
pour tout couple pb, cq d’éléments de A tels que a “ bc alors b ou c est inversible.
Si u est un élément inversible de A alors a est irréductible si et seulement si au est
irréductible.
1.1.2. — Un idéal de A est un sous-groupe de pA,`q stable par multiplication externe
par les éléments de A. Si a P A on note aA ou paq l’ensemble des multiples de a. C’est
le plus petit idéal de A contenant a ; on dit aussi que c’est l’idéal engendré par a. Un
idéal de A de la forme paq avec a P A est dit principal ; on dit que A lui-même est
principal si tout idéal de A est principal.

Si a et b sont deux éléments de A on a a divise b si et seulement si b appartient
à paq, c’est-à-dire si et seulement si pbq Ă paq ; attention au renversement de l’ordre !
En particulier paq “ pbq si et seulement si a divise b et b divise a c’est-à-dire, par le
paragraphe différent, si et seulement si il existe u P Aˆ tel que a “ bu. Le générateur
d’un idéal principal est donc unique à multiplication par un inversible près.

Remarque 1.1.3. — Supposons donné un système de représentants S du quotient
de A par l’action (multiplicative) de Aˆ, c’est-à-dire un sous-ensemble de A dont
l’intersection avec chaque orbite sous Aˆ est un singleton. Alors tout idéal principal
de A a par ce qui précède un unique générateur appartenant à S . Il y a deux exemples
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importants d’anneaux dans lesquels on dispose d’un tel système S naturel, très utilisé
en pratique : l’anneau Z, avec S “ N ; et l’anneau krT s lorsque k est un corps, avec
S égal à l’ensemble constitué des polynômes unitaires et du polynôme nul.

1.1.4. — Soit paiq une famille d’éléments de A. Un PGCD (plus grand commun
diviseur) de la famille paiq est un élément d de A tel que pour tout élément a de A,
on ait équivalence entre «a divise d» et «a divise ai pour tout i».

Si d est un PGCD de la famille des paiq, il divise lui-même chacun des ai (puisque
d divise d). Si la famille des paiq possède un PGCD, ce dernier est unique modulo la
multiplication par un inversible : en effet si d et e sont deux PGCD de la famille paiq

alors d divise chacun des ai comme on vient de voir, donc d divise e ; et par symétrie,
e divise d, d’où l’assertion. En raison de cette unicité, on se permet de parler, lorsqu’il
existe, du PGCD des ai ; mais il faut garder en tête qu’il n’est défini qu’à un inversible
près, à moins qu’on ait un système S comme dans la remarque 1.1.3, auquel cas on
peut choisir ce PGCD dans S et ainsi le définir sans ambiguïté aucune.
1.1.5. — Soit paiq une famille d’éléments de A. Un PPCM (plus petit commun
multiple) de la famille paiq est un élément m de A tel que pour tout élément a de A,
on ait équivalence entre «m divise a» et «ai divise a pour tout i».

Si m est un PPCM de la famille des paiq, il est lui-même multiple de chacun des ai

(puisque m divise m). Si la famille des paiq possède un PPCM, ce dernier est unique
modulo la multiplication par un inversible : en effet si m et n sont deux PPCM de
la famille paiq alors m est multiple de chacun des ai comme on vient de voir, donc n
divise m ; et par symétrie, m divise n, d’où l’assertion. En raison de cette unicité, on
se permet de parler, lorsqu’il existe, du PPCM des ai ; mais il faut garder en tête qu’il
n’est défini qu’à un inversible près, à moins qu’on ait un système S comme dans la
remarque 1.1.3, auquel cas on peut choisir ce PPCM dans S et ainsi le définir sans
ambiguïté aucune.
1.1.6. Un critère pour être le PGCD. — Soit paiq une famille d’éléments de A. Le
plus petit idéal de A contenant les ai, qu’on appelle aussi l’idéal engendré par les ai,
est l’ensemble des sommes

ř

λiai où les λi sont presque tous nuls, c’est-à-dire tous
nuls sauf un nombre fini (en algèbre, on ne sait faire que des sommes finies ! !) ; cet
idéal est aussi noté

ř

aiA. Soit d un diviseur commun à tous les ai appartenant à
ř

aiA. Alors d est un PGCD des ai. En effet, soit a P A. Si a divise d alors a divise
chacun des ai puisque d divise chacun des ai ; et si a divise chacun des ai alors a
divise d puisque d est par hypothèse de la forme

ř

λiai. Donc d est un (ou le) PGCD
des ai.

Définition 1.1.7. — On dit que A est euclidien s’il existe une application
φ : Azt0utoN telle que pour tout couple pa, bq d’éléments de A avec b non nul il existe
deux éléments q et r de A vérifiant les conditions suivantes :

˛ r “ 0 ou φprq ă φpbq ;
˛ a “ bq ` r.

1.1.8. Commentaires. — Un tel φ comme dans la définition ci-dessus est appelé un
stathme euclidien. On dit que l’écriture a “ bq ` r est une division euclidienne de a
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par b, dont q est le quotient et r le reste. Remarquez qu’on ne demande pas l’unicité
du couple pq, rq.
1.1.9. Exemples. — L’anneau Z est euclidien, la valeur absolue étant un stathme.
On a unicité du quotient et du reste si on travaille dans N, mais pas dans Z en général :
ainsi, 7 “ 3 ¨ 2 ` 1 “ 4 ¨ 2 ´ 1.

L’anneau krT s est euclidien, le degré est un stathme, et on a ici unicité du quotient
et du reste, sans restrictions.

Lemme 1.1.10. — Supposons A euclidien. Il est alors principal.

Démonstration. — Choisissons un stathme euclidien φ : Azt0u Ñ N ; il en existe un
par hypothèse. Soit I un idéal de A. Nous allons montrer que I est principal. Si
I “ t0u alors I “ p0q et I est principal. Supposons I non nul. L’ensemble φpIzt0uq est
alors une partie non vide de N, qui a donc un plus petit élément e ; soit a un élément
non nul de I tel que φpaq “ e ; nous allons montrer que I “ paq, ce qui permettra de
conclure. Comme a P I on a l’inclusion paq Ă I. Montrons l’inclusion réciproque. Soit
b P I. Comme a est non nul on peut écrire b “ aq ` r avec r “ 0 ou φprq ă φpaq “ e.
Mais puisque r “ b ´ aq et que a et b appartiennent à I, l’élément r appartient à
I ; si r était non nul on aurait donc φprq ě e par choix de e, ce qui est exclu ; par
conséquent r “ 0 et b “ aq.

1.2. Propriétés des anneaux principaux. — On fixe pour ce qui suit un anneau
principal A.
1.2.1. Existence des PGCD. — Soit paiq une famille d’éléments de A. Puisque A est
principal, l’idéal

ř

i aiA est égal à pdq pour un certain d appartenant à A (unique à
multiplication près par un inversible). Chacun des ai appartient à

ř

i aiA, donc est
multiple de d. Il résulte alors de 1.1.6 que d est le PGCD des ai.

Notons que par sa construction d s’écrit
ř

λiai pour une certaine famille pλiq

d’éléments presque tous nuls de A. Une telle écriture d “
ř

λiai est appelée une
relation de Bézout entre les ai.
1.2.2. Existence des PPCM. — Soit paiq une famille d’éléments de A. Puisque A est
principal, l’idéal

Ş

i aiA est égal à pmq pour un certain m appartenant à A (unique à
multiplication près par un inversible). Par définition un élément a de A est multiple
de m si et seulement si il est multiple de tous les ai. Autrement dit, m est le PPCM
des ai.
1.2.3. — Si paiq est une famille d’éléments de A on dit que les ai sont premiers
entre eux dans leur ensemble si le PGCD des ai est égal à 1 (attention : en disant ça
on commet un petit abus, puisque le PGCD n’est défini qu’à multiplication par un
inversible près). Cela revient à demander que tout diviseur commun à tous les ai soit
un diviseur de 1, c’est-à-dire un inversible.

Comme 1 est toujours un diviseur commun à tous les ai, il résulte de 1.1.6 que les
ai sont premiers entre eux si et seulement s’il existe une famille pλiq d’éléments de A
presque tous nuls tels que

ř

λiai “ 1.
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Le cas le plus fréquent sera celui d’une famille à deux éléments a et b ; on dit alors
simplement que a et b sont premiers entre eux, sans rajouter l’expression «dans leur
ensemble» ; celle-ci est utile à partir de trois éléments, pour éviter toute confusion
avec le cas des familles d’éléments deux à deux premiers entre eux.

Lemme 1.2.4 (Lemme de Gauss). — Soient a, b et c trois éléments de A.
Supposons que a divise bc et que a est premier avec b. Alors a divise c.

Démonstration. — Comme a divise bc on peut écrire bc “ ad pour un certain d dans
A. Comme a est premier avec b il existe une relation de Bézout au ` bv “ 1 entre a
et b. On a alors

c “ cpau` bvq “ acu` bcv “ acu` adv “ apcu` dvq.

Corollaire 1.2.5. — Soit r un entier ě 0 et soient a1, . . . , ar des éléments de A.
Soit a un élément de A premier à chacun des ai. Il est alors premier à leur produit.

Démonstration. — Par une récurrence immédiate il suffit de traiter le cas où r “ 2.
Soit d un diviseur commun à a et a1a2. Comme d divise a, tout diviseur commun de
d et a1 est un diviseur commun de a et a1, donc est inversible puisque a est premier
avec a1. Ainsi d est premier avec a1. Puisqu’il divise a1a2, le lemme de Gauss assure
que d divise a2. C’est donc un diviseur commun de a et a2 ; comme a est premier avec
a2, il en résulte que d est inversible.

Corollaire 1.2.6. — Soient a et b deux éléments premiers entre eux de A. Le PPCM
de a et b est égal à ab.

Démonstration. — Le PPCM m de a et b est multiple de a, donc s’écrit au pour un
certain u. Il est multiple de b, si bien que b divise au. Puisque b est premier avec a,
le lemme de Gauss assure que b divise u ; Par conséquent ab divise au “ m. Ainsi ab
divise m ; mais comme ab est un multiple commun de a et b, il est multiple de m. Il
s’ensuit que ab “ m (à un inversible près, ce qui suffit ici).

Lemme 1.2.7. — Soit panq une suite d’éléments de A tels que an`1 divise an pour
tout n. Il existe alors N tel que an soit égal à aN à multiplication par un inversible
près pour tout n ě N .

Démonstration. — Pour tout n notons In l’idéal engendré par an. Comme an`1 divise
an pour tout n, la suite des In est une suite croissante d’idéaux de A. Leur réunion
I est donc un idéal de A, et est en conséquence de la forme aA pour un certain
a P A. Puisque a P I l’élément a appartient à IN pour un certain N . On a alors pour
tout n ě N les inclusions I “ aA Ă IN Ă In Ă I, si bien que In “ I “ aA. Ainsi
aA “ anA, et a s’écrit donc anun pour un certain élément inversible un de A. On peut
dès lors écrire an “ au´1

n “ aNuNu
´1
n pour tout n, ce qui permet de conclure.

Corollaire 1.2.8. — Soit a un élément non nul et non inversible de A. L’élément
a possède un diviseur irréductible.
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Démonstration. — On construit récursivement une suite panq de diviseurs non
inversibles de a par le procédé suivant. On pose a0 “ a. Supposons an construit.
S’il est irréductible on pose an`1 “ an. Sinon on choisit pour an`1 un diviseur de an

tel que an{an`1 soit non inversible (un tel diviseur existe par hypothèse). L’élément
an`1 de A divise alors an pour tout n, et le lemme 1.2.7 assure de ce fait que pour tout
n suffisamment grand, an{an`1 est inversible. Mais cela entraîne par construction que
an est irréductible pour n assez grand, ce qui achève la démonstration.

Nous allons maintenant énoncer le théorème fondamental sur la décomposition des
éléments de A en produits d’irréductibles. Pour ce faire nous aurons besoin de la
notion suivante : deux irréductibles p et q de A seront dit associés s’ils sont égaux à
multiplication près par un inversible.

Théorème 1.2.9 (Décomposition en irréductibles). — Soit a un élément non
nul de A. Il existe un élément inversible ε de A et une famille pp1, . . . prq d’éléments
irréductibles de A (avec redondance possible) tels que a “ εp1 . . . , pr. De plus cette
décomposition est unique «à permutation et inversibles près» : si a possède une autre
écriture ηq1 . . . , qs de cette forme alors s “ r et il existe une permutation σ de
t1, . . . , ru telle que qσpiq et pi soient associés pour tout i.

Démonstration. — Commençons par l’existence. Si a est inversible il n’y a rien à
faire. Sinon a possède par le corollaire précédent un diviseur irréductible p1. Posons
a1 “ a{p1 ; on a a “ a1p1. Si a1 est inversible, on a terminé. Sinon a1 possède par
le corollaire précédent un diviseur irréductible p2. Posons a2 “ a1{p2 ; on a alors
a “ a1p1 “ a2p1p2. Si a2 est inversible, on a terminé. Sinon a2 possède par le
corollaire précédent un diviseur irréductible p3. Posons a3 “ a2{p3. . .Le processus
s’arrête nécessairement à un moment, sinon on aurait une suite panq d’éléments non
nuls de A telle que an`1 divise an et tels que an{an`1 soit non inversible pour tout
n, contredisant le lemme 1.2.7. Autrement dit il existe r tel que ar soit inversible, et
l’on a a “ arp1 . . . pr.

Montrons maintenant l’unicité. On raisonne par récurrence sur r. Si r “ 0 alors
a “ ε est inversible, donc ηq1 . . . qs est inversible, donc chacun des termes de ce produit
est inversible. Un irréductible n’étant jamais inversible, s “ 0 et le théorème est
démontré. Supposons r ą 1 et le résultat vrai pour r´1. L’irréductible p1 divise alors
ηq1 . . . qs. Puisque p1 est irréductible, un diviseur de p1 est (à un inversible près) ou
bien p1 ou bien 1 ; par conséquent le PGCD de p1 avec chacun des qj est ou bien p1, ou
bien 1. Si ce PGCD valait 1 pour chacun des qj alors p1 serait premier avec ηq1 . . . qs

par le corollaire 1.2.5 (notez que comme η est inversible, p1 est automatiquement
premier avec η), ce qui est absurde puisque p1 divise ηq1 . . . qs. Il existe donc j tel
que p1 divise qj , et comme qj est irréductible le quotient α :“ qj{p1 est inversible :
p1 et qj sont associés. Quitte à permuter les qi on peut supposer que j “ 1. On a
alors εp1 . . . , pr “ ηαp1q2 . . . qs. Il vient εp2 . . . pr “ ηαq2 . . . qs (rappelons que A est
intègre). L’hypothèse de récurrence permet alors de conclure que s “ r et qu’on peut
permuter les qi pour i ě 2 de sorte que qi soit associé à pi pour tout i ě 2, ce qui
achève la démonstration.
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1.2.10. Commentaires. — Supposons donné un système complet d’irréductibles P
de A, c’est-à-dire un ensemble d’irréductibles de A tel que tout irréductible de A soit
associé à un et un seul élément de P. Le théorème ci-dessus peut alors se récrire
comme suit : tout élément non nul a de A s’écrit de manière unique à permutation
près comme produit d’un inversible et d’éléments de P . Une autre façon de le dire est
que pour un tel a, il existe une unique écriture a “ ε

ś

pPP pvp où ε est inversible et
où les vp sont des entiers presque tous nuls. On dit que vp est la valuation p-adique
de a.

Il peut être commode de remarquer que ce résultat s’étend au corps des fraction
K de A : tout élément λ de Kˆ a une unique écriture sous la forme ε

ś

pPP pvp

où ε appartient à Aˆ et où les vp sont des entiers relatifs presque tous nuls ; on dit
encore que vp est la valuation p-adique de λ. Un élément de Kˆ appartient à A si et
seulement si sa valuation p-adique est positive ou nulle pour tout p.

Lemme 1.2.11 (Lemme chinois). — Soient a1, . . . , ar des éléments de A deux à
deux premiers entre eux. Le morphisme d’anneaux naturel A Ñ A{pa1q ˆ ¨ ¨ ¨ ˆA{parq

(donné sur chaque composante par le morphisme quotient) induit un isomorphisme
A{pa1 . . . arq » A{pa1q ˆ ¨ ¨ ¨ ˆA{parq.

Démonstration. — Remarquons tout d’abord que si r ě 2 alors a1 est premier à
pa2 . . . arq par le corollaire 1.2.5. Cette remarque couplée à un raisonnement par
récurrence sur r permet de se ramener au cas où r “ 2. Soit φ le morphisme d’anneaux
naturel de A vers A{pa1q ˆA{pa2q. Il induit un isomorphisme d’anneaux de A{ Kerφ
vers Imφ ; il suffit donc pour conclure de montrer que Kerφ “ pa1a2q et que φ est
surjectif.

Étudions tout d’abord Kerφ. Un élément a de A appartient au noyau de φ si et
seulement si a est nul modulo a1 et modulo a2, c’est-à-dire encore si et seulement si
a est multiple de a1 et de a2. Cela revient à demander que a soit multiple du PPCM
de a1 et a2, qui est égal à a1a2 puisque a1 et a2 sont premiers entre eux (1.2.6). Ainsi
kerφ “ pa1a2q.

Montrons maintenant que φ est surjective. Choisissons une relation de Bézout
a1u1 ` a2u2 “ 1. Soit x un élément de A{pa1q ˆA{pa2q. Choisissons α1 et α2 dans A
tels que x “ pα1, α2q. Posons y “ α1a2u2 `α2a1u1. On a alors modulo a1 les égalités
y “ α1a2u2 “ α1 puisque a2u2 “ 1 ´ a1u1 “ 1 modulo a1 ; et par symétrie des
arguments y “ α2 modulo a2. On a en conséquence φpyq “ x et φ est surjective.

Nous allons terminer cette section consacrée aux anneaux principaux généraux par
une brève étude des quotients A{paq.

Lemme 1.2.12. — Soit a un élément de A.
1. Pour tout b dans A, la classe b est inversible dans A{paq si et seulement si b est

premier avec a.
2. Supposons a non nul. Alors les assertions suivantes sont équivalentes :

(i) A{paq est intègre ;
(ii) a est irréductible ;
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(iii) A{paq est un corps.

Démonstration. — Commençons par (1). L’élément b de A{paq est inversible si et
seulement s’il existe v P A tel que vb “ 1, c’est-à-dire encore tel que bv ´ 1 soit
multiple de a. Autrement dit b est inversible dans A{paq si et seulement si il existe u
et v dans A tels que bv ` au “ 1, c’est-à-dire si et seulement si a et b sont premiers
entre eux.

Montrons maintenant (2). Supposons A{paq intègre. L’anneau A{paq est alors non
nul par définition, donc a n’est pas inversible. Soient maintenant b et c deux éléments
de A tels que bc “ a. Alors bc “ 0, donc par intégrité de A{paq ou bien b “ 0, ou bien
c “ 0 ; autrement dit ou bien b est multiple de a, ou bien c est multiple de a. Mais
comme a est lui-même multiple de b et c, cela revient à dire qu’ou bien b, ou bien c,
est égal à a à multiplication par un inversible près. Par conséquent ou bien c ou bien
b est inversible, et a est irréductible.

Supposons maintenant que a est irréductible. Il est alors non inversible, donc A{paq

est non nul. Nous allons monter que c’est un corps, c’est-à-dire que tout élément non
nul de A{paq est inversible. Soit donc b P A tel que b soit non nul, c’est-à-dire tel que
a ne divise pas b. Comme a est irréductible, le PGCD de a et b vaut ou bien a ou
bien 1 (à inversible près). Puisque a ne divise pas b, ce PGCD vaut 1. Il résulte alors
de (1) que b est inversible.

Il est enfin immédiat que si A{paq est un corps, il est intègre.
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2. Premières propriétés spécifiques de Z

À partir de maintenant nous travaillerons essentiellement sur Z. C’est un anneau
euclidien donc principal, et il vérifie par conséquent les propriétés générales établies
du chapitre précédent.

2.1. Généralités. — L’anneau Z présente d’emblée quelques spécificités (au sein
des anneaux principaux) faciles à mettre en évidence et que nous allons décrire.
2.1.1. — La multiplication de Z présente la particularité d’être essentiellement
une notation abrégée pour la répétition de l’addition, alors que dans les anneaux
généraux les deux lois sont totalement découplées. Il en résulte qu’un sous-groupe de
Z est automatiquement stable par multiplication par n’importe quel élément de Z.
Autrement dit, les sous-groupes de Z sont exactement les idéaux de Z. Cette propriété
est héritée par les anneaux quotients Z{nZ.
2.1.2. — Le groupe Zˆ est t´1, 1u. L’orbite d’un élément de Z sous l’action
multiplicative de Zˆ contient donc au plus deux éléments (et t0u est la seule qui
n’en contienne qu’un), et exactement un élément positif ou nul. Tout idéal de Z (ou
tout sous-groupe de Z) est donc de la forme nZ pour un unique n P N.

De même, tout irréductible de Z est associé à un unique irréductible strictement
positif. Les irréductibles strictement positifs de Z sont traditionnellement appelés les
nombres premiers. Nous noterons désormais P l’ensemble des nombres premiers. Un
irréductible de Z est donc de la forme ˘p avec p P P. Tout élément de Nzt0u s’écrit
de manière unique à permutation près comme produit d’éléments de P.
2.1.3. — Soit n P N. Si n “ 0 l’anneau Z{nZ est naturellement isomorphe à Z et est
donc infini. Supposons n ą 0. Par division euclidienne tout élément de Z possède une
unique écriture sous la forme an ` b avec a dans Z et b P t0, . . . , n ´ 1u ; il s’ensuit
que Z{nZ est l’ensemble tau0ďaďn´1, et que les a pour a P t0, . . . , n´ 1u sont deux à
deux distincts. Par conséquent, Z{nZ est de cardinal n.
2.1.4. Indicateur d’Euler. — Pour tout entier n ě 1, on note Φpnq le nombre
d’entiers entre 0 et n ´ 1 qui sont premiers à n. Par ce qui précède et en vertu
du lemme 1.2.12, c’est aussi le cardinal du groupe pZ{nZqˆ. On dit que Φpnq est
l’indicateur d’Euler de n, ou que Φ est la fonction indicatrice d’Euler.
2.1.4.1. — Soient a et b deux entiers supérieurs ou égaux à 1 et premiers entre eux.
Le lemme chinois fournit un isomorphisme d’anneaux Z{pabZq » Z{aZ ˆ Z{bZ, qui
induit un isomorphisme de groupes de pZ{abZqˆ vers pZ{aZqˆ ˆpZ{bZqˆ. Il en résulte
que Φpabq “ ΦpaqΦpbq ; on dit que la fonction Φ est multiplicative. Attention à cette
acception de «multiplicative» en arithmétique : cela signifie que Φp1q “ 1 et que Φ
commute à la multiplication des entiers premiers entre eux.
2.1.4.2. — Soit m un entier strictement positif et soit p un nombre premier. Le seul
facteur premier de pm étant p, un entier d est premier à pm si et seulement si il n’est
pas multiple de p. Or il y a pm´1 multiples de p entre 0 et pm ´ 1, à savoir les pk
pour 0 ď k ď pm´1 ´ 1. Par conséquent il y a pm ´ pm´1 entiers premiers à p entre 0
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et pm ´ 1. Autrement dit Φppmq “ pm ´ pm´1 “ pm´1pp´ 1q. Notez qu’en particulier
Φppq “ p´ 1.

2.1.4.3. — Soit n un entier ě 1. Écrivons n “
ś

pni
i où les pi sont premiers et deux

à deux distincts, et où les ni sont non nuls. En vertu de ce qui précède on a

Φpnq “
ź

Φppni
i q “

ź

pni´1
i ppi ´ 1q.

2.2. Quelques faits à propos des nombres premiers. — Nous allons
maintenant énoncer quelques résultats spécifiques à Z portant sur les nombres
premiers.

Lemme 2.2.1. — Il existe une infinité de nombres premiers.

Démonstration. — Il suffit de démontrer que pour tout ensemble fini E de nombres
premiers il existe un nombre premier q qui n’appartient pas à E. Soit donc E un
sous-ensemble fini de P. Si E est vide on peut prendre q “ 2. Si E est non vide,
posons x “ 1 `

ś

pPE p. L’élément x est ą 1 car E est non vide. Il est donc non
inversible et admet dès lors un facteur irréductible q. Ainsi x est nul modulo q, mais
il est égal à 1 modulo p pour tout p P E. Par conséquent, q R E.

2.2.2. Commentaires. — Pour bien percevoir l’intérêt du lemme ci-dessus, il faut
avoir conscience qu’il existe des anneaux principaux n’admettant qu’un nombre fini
d’éléments irréductibles (à multiplication près par un inversible, toujours). Le cas le
plus trivial est celui d’un corps : un corps est principal (ses deux idéaux sont p0q et
p1q) et il n’admet aucun élément irréductible.

Mais donnons un exemple moins idiot, et très utile en arithmétique. Soit p un
nombre premier. On note Zppq l’ensemble des rationnels qui peuvent s’écrire a{b avec
b premier à p. C’est un sous-anneau de Q, et on peut démontrer (exercice !) qu’il est
principal et a (à inversible près) un seul irréductible, à savoir p.

Il a donc fallu utiliser des propriétés spécifiques de Z pour montrer qu’il y a une
infinité de nombres premiers. Lesquelles ? Si vous lisez attentivement la preuve vous
verrez que ce qui a servi c’est l’existence d’une relation d’ordre compatible avec la
structure d’anneau pour laquelle tout nombre premier est ą 0 et pour laquelle un
élément ą 1 n’est jamais inversible. Remarquez que l’ordre usuel sur Q induit une
relation d’ordre sur Zppq compatible avec sa structure d’anneau, pour laquelle p ą 0
et 1 ` p ą 1. Mais comme 1 ` p est premier à p dans Z il est inversible dans Zppq,
d’inverse 1{p1 ` pq. La preuve utilisée pour Z ne marche donc absolument pas pour
Zppq.

Lemme 2.2.3. — Soit n un entier ą 1. Si n n’est pas premier, il possède un diviseur
premier inférieur ou égal à

?
n.

Démonstration. — Supposons que n n’est pas premier. Il s’écrit alors comme un
produit p1 . . . pr de nombres premiers (non nécessairement deux à deux distincts)
avec r ě 2. Si pi était strictement supérieur à

?
n pour tout indice i on aurait alors

n ą
?
n

r
ě

?
n

2
“ n, ce qui est absurde. Il existe donc i tel que pi ď

?
n, ce qui

achève la démonstration.
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2.2.4. — Le lemme précédent fournit ainsi une méthode théorique pour construire
tous les nombres premiers. Plus précisément, supposons avoir construit tous les
nombres premiers inférieurs ou égaux à un certain entier n. Alors pour savoir si n`1 est
premier il suffit de tester sa divisibilité par tous les nombres premiers déjà construits
et inférieurs ou égaux à

?
n` 1. Mais même si la borne

?
n` 1 est bien meilleure que

la borne grossière n ` 1 (qui est celle qui se présente si on applique directement les
définitions sans disposer de l’estimation fournie par le lemme ci-dessus), elle reste bien
trop grande pour que cet algorithme (le crible d’Ératosthène) soit vraiment efficace.
2.2.5. Le but de ce cours. — Pour tout entier (ou même tout réel positif) x, notons
πpxq le cardinal de l’ensemble des nombres premiers majorés par x. Le premier objectif
de ce cours sera de démontrer le Théorème des nombres premiers, qui assure que
πpxq » x

log x quand x tend vers l’infini (ici log désignera toujours le logarithme
népérien, de base e).

Nous verrons ensuite le Théorème de la progression arithmétique. Il s’énonce comme
suit : soient a et N deux entiers strictement positifs premiers entre eux ; il existe une
infinité de nombres premiers égaux à a modulo N(notez qu’il est indispensable que a
et N soient premiers entre eux : s’ils ont un facteur commun d ą 1 alors tout nombre
égal à a modulo N est multiple de d). Nous en verrons même une version raffinée : si
l’on note θpx,N, aq l’ensemble des nombres premiers ď x qui sont égaux à a modulo
N alors θpx,N, aq » x

ΦpNq log x quand x tend vers l’infini.

2.2.6. Quelques commentaires sur la répartition des nombres premiers. — On voit
ainsi que la probabilité qu’un entier inférieur ou égal à x soit premier est (quand x est
grand) de l’ordre de 1{ log x ; elle diminue donc avec x, mais très lentement (elle est
divisée par deux quand x est élevé au carré). Donnons quelques valeurs numériques
arrondies (tirées de Wikipedia) :

x πpxq log x x{πpxq

10 4 2.303 2.5
102 25 4.605 4
103 168 6.908 5.952
106 78 498 13.816 12.74
109 50 847 534 20.723 19.67

On peut trouver en ligne des listes impressionnantes de nombres premiers. Ainsi à
l’adresse

http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.php
figurent tous les nombres premiers inférieurs ou égaux à 1018.
On dispose par ailleurs de méthodes permettant d’exhiber des nombres premiers

absolument gigantesques (mais «isolés» : quand ces méthodes fournissent un nombre
premier p, elles ne donnent en aucun cas la liste de tous ceux qui le précèdent) ; le plus
grand nombre premier qu’elles ont permis d’obtenir à la date où je rédige ce passage
(le 20 janvier 2026) est 2146 279 841 ´ 1 (l’exposant 146 279 841 est lui-même premier)
qui possède 41 024 320 chiffres en base 10, et a été découvert le 11 octobre 2024.
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2.2.7. Quelques commentaires sur le théorème de la progression arithmétique. — Si
N est un entier strictement positif, il y a ΦpNq classes d’entiers inversibles modulo
N , ou encore premiers à N . Et la version raffinée du théorème de la progression
arithmétique que j’ai évoquée ci-dessus, couplée au théorème des nombres premiers,
assure précisément que la probabilité qu’un nombre premier donné (disons non
diviseur de N) appartienne à une classe fixée d’entiers inversibles modulo N est
précisément 1{ΦpNq. Les nombres premiers se répartissent donc de manière uniforme,
sans préférence, entre toutes les classes d’entiers inversibles modulo N : par exemple
si vous prenez un nombre premier «au hasard» il a autant de chances de valoir 1, 5, 7
ou 11 modulo 12 (une sur quatre à chaque fois).

2.3. Compléments d’algèbre. — La recherche de grands nombres premiers
demande évidemment en pratique de disposer de tests de primalité aussi efficaces
que possibles. Nous allons en présenter certains ; mais pour les décrire nous allons
avoir besoin de quelques lemmes de théorie des groupes.

Lemme 2.3.1. — Soit G un groupe abélien et soient a et b deux éléments de G dont
les ordres respectifs m et n sont finis et premiers entre eux. Le produit ab est alors
d’ordre mn.

Démonstration. — On a pabqmn “ amnbmn “ e puisque mn est multiple de l’ordre
de a et de l’ordre de b (la première égalité utilise le caractère abélien de G de manière
essentielle). L’ordre d de ab est donc fini et divise mn. Il suffit pour conclure de
montrer que mn divise d.

On a pabqd “ e donc adbd “ e, là encore parce que G est abélien. Ainsi ad “ b´d

est un élément du sous-groupe H :“ xay X xby de G. Or comme H Ă xay son cardinal
divise celui de xay, qui est égal à m ; et il divise celui de xby, qui est égal à n. Les
entiers n et m étant premiers entre eux, |H| “ 1 et H est trivial. Par conséquent
ad “ b´d “ e, et bd vaut également e. Il s’ensuit que d est multiple de l’ordre de a, à
savoir m, et de l’ordre de b, à savoir n ; il est donc multiple du PPCM de m et n, qui
vaut mn puisque m et n sont premiers entre eux.

Lemme 2.3.2. — Soit G un groupe abélien fini et soit S un sous-ensemble de G. Il
existe un élément de G dont l’ordre est exactement le PPCM des ordres des éléments
de S.

Démonstration. — Soit m le PPCM des ordres des éléments de S. Écrivons m sous
la forme

ś

pni
i où les pi sont des nombres premiers deux à deux distincts et les ni des

entiers strictement positifs. Fixons i. La valuation pi-adique de m est le supremum des
valuations pi-adiques des ordres des éléments de S. Il existe donc si P S dont l’ordre
est de la forme pni

i mi avec mi premier à pi. L’élément smi
i de G est alors d’ordre

pni
i . En vertu du lemme précédent (et par une récurrence immédiate sur le nombre

de facteurs) l’ordre de
ś

i s
mi
i est égal à

ś

pni
i , c’est-à-dire à m.

Indiquons tout de suite un premier corollaire fondamental de ce résultat.
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Corollaire 2.3.3. — Soit K un corps (commutatif) et soit G un sous-groupe fini
de Kˆ. Le groupe G est cyclique.

Démonstration. — Soit d l’ordre de G, et soit m le PPCM des ordres de tous les
éléments de G. Comme gd “ 1 pour tout g P G l’entier m divise d ; en particulier
m ď d.

Pour tout g P G on a gm “ 1 puisque m est multiple de l’ordre de G. Le polynôme
Xm ´ 1 a donc au moins d racines dans K ; puisqu’il est de degré m il vient d ď m ;
comme on avait déjà m ď d on a finalement m “ d.

Or le lemme précédent assure que G possède un élément d’ordre m, donc d’ordre
d. En conséquence, G est cyclique.

2.3.4. Le cas de Fˆ
p . — Soit p un nombre premier. L’anneau quotient Z{pZ est un

corps, que l’on note également Fp – précisons que cette notation n’est utilisée que
lorsqu’on veut penser à Z{pZ comme à un corps. Le corps Fp est fini, de cardinal
p. Le corollaire précédent assure alors que Fˆ

p est cyclique. Mais nous attirons votre
attention sur un point : si vous dévissez la preuve de ce corollaire vous verrez qu’elle
n’est in fine pas du tout effective, et qu’elle se contente de montrer abstraitement
l’existence d’un élément d’ordre pp´ 1q dans Fˆ

p sans dire comment le construire.
On dispose cela dit d’un algorithme brutal pour exhiber un générateur de Fˆ

p . Il
est fondé sur la remarque suivante : si x est un élément de Fˆ

p qui n’est pas d’ordre
p ´ 1, il existe un diviseur strict d de p ´ 1 différent de p ´ 1 tel que xd “ 1 ; en
choisissant un diviseur premier q de pp´ 1q{d et en écrivant pp´ 1q{d “ qm on a alors
xmd “ xpp´1q{q “ 1. Ainsi trouver un générateur de Fˆ

p revient à trouver un élément
x de Fˆ

p tel que xpp´1q{q soit différent de 1 pour tout diviseur premier q de p ´ 1. Il
suffit donc de tester cette propriété lorsque x parcourt toutes les classes d’entiers de
2 à p´ 1 en s’arrêtant dès qu’on trouve un x qui la satisfait.

Mais cet algorithme est en général lent. Nous allons montrer sur des exemples
comment procéder de manière plus efficace.

Exemple 2.3.5. — Nous allons exhiber générateur de Fˆ
23, donc un élément d’ordre

22 (multiplicativement !). Soit x un élément de Fˆ
23. On a x22 “ 1 et donc px2q11 “ 1.

Il en résulte, 11 étant premier, que si x2 ‰ 1 alors x2 est d’ordre 11. Supposons que
ce soit le cas ; comme p´1q est d’ordre 2 il découle alors du lemme 2.3.1 que p´x2q

est d’ordre 22.
Il suffit donc d’exhiber un élément x de Fˆ

23 tel que x2 ‰ 1. On travaille modulo
23. Tentons notre chance avec 2. On a 22 “ 4 ‰ 1 ; par conséquent 4 est d’ordre 11 et
p´4q est d’ordre 22 ; c’est donc un générateur de Fˆ

23.

Exemple 2.3.6. — Nous allons maintenant exhiber un générateur de Fˆ
29. Ce groupe

est de cardinal 28, il s’agit donc d’exhiber un élément d’ordre 28. Si x appartient à
Fˆ

29 alors x28 “ 1. Par conséquent px4q7 “ 1 ; comme 7 est premier, on en déduit que
x4 est d’ordre 7 dès qu’il est différent de 1. On a aussi px7q4 “ 1 ; il s’ensuit que x7 est
d’ordre 4 dès que px7q2 est différent de 1, c’est-à-dire dès que x7 R t1,´1u (puisque
X2 ´ 1 “ pX ´ 1qpX ` 1q a pour racines 1 et ´1 dans le corps F29).
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Utilisons ces remarques pour fabriquer un élément y d’ordre 7 et un élément z
d’ordre 4 dans Fˆ

29 ; leur produit sera alors d’ordre 28 par le lemme 2.3.1.
Pour fabriquer un élément d’ordre 7, tentons notre chance avec 2. On travaille

modulo 29. On a 24 “ 16 ‰ 1, si bien que 24 “ 16 “ p´13q est d’ordre 7.
Pour fabriquer un élément d’ordre 4, tentons encore notre chance avec 2. On a

25 “ 32 “ 3, si bien que 27 “ 4 ¨ 3 “ 12 R t1,´1u. Ainsi 27 “ 12 est d’ordre 4.
On en déduit que 211 est d’ordre 28. On peut le calculer rapidement :

211 “ 2 ¨ 210 “ 2 ¨ p25q2 “ 2 ¨ p32q2 “ 2 ¨ 32 “ 18.

Ainsi, 18 “ p´11q est un générateur de Fˆ
29.

Mais on aurait pu procéder autrement en exploitant le fait que le même entier (à
savoir 2) nous a permis de fabriquer un élément d’ordre 4 et un élément d’ordre 7.
On a en effet vu au cours de nos calculs que 24 ‰ 1, et que 27 R t1,´1u, si bien
que 214 ‰ 1. Les deux diviseurs premiers de 28 sont 2 et 7, et l’on a p28{2q “ 14 et
p28{7q “ 4. Il s’ensuit (voir l’algorithme brutal décrit en 2.3.4) que 2 est d’ordre 28,
donc est un générateur de Fˆ

29.

2.4. Critères de primalité. — Nous nous proposons maintenant d’énoncer
différents critères de primalité ou non-primalité.
2.4.1. Utilisation du petit théorème de Fermat. — Soit p un nombre premier. Puisque
Fˆ

p est de cardinal p ´ 1 on a xp´1 “ 1 pour tout x P Fˆ
p (notons que le caractère

cyclique de Fˆ
p n’intervient pas ici). Autrement si x est un entier compris entre 1 et

p´ 1 alors xp´1 est égal à 1 modulo p : c’est le petit théorème de Fermat.
Par contraposition si n est un entier tel qu’il existe a entre 1 et n ´ 1 pour lequel

an´1 est différent de 1 modulo n alors n n’est pas premier.
Mais attention : il existe des entiers n qui ne sont pas premiers mais sont tels que

an´1 “ 1 modulo n pour tout a compris entre 1 et n´1 et premier à n ; c’est ce qu’on
appelle les nombres de Carmichael, le plut petit d’entre eux est 561 “ 3 ¨ 11 ¨ 17 (voir
les TD).

2.4.2. Le critère de Miller-Rabin. — Soit p un nombre premier impair. Écrivons
pp´ 1q “ 2rm avec m impair et r ě 1. Soit a un entier premier à p. On a a2rm “ 1 ; il
existe donc un entier s ě 0 tel que a2sm “ 1 et qui est minimal pour cette propriété
(notons qu’on a pour tout t l’égalité a2t`1m “ pa2tmq2 ; par conséquent a2tm “ 1 pour
tout t ě s).

Supposons que s ą 0. Dans ce cas (la classe de) x :“ a2s´1m est un élément de
Fˆ

p différent de 1 qui vérifie x2 “ 1. Ainsi x est une des deux racines du polynôme
X2 ´ 1 “ pX ´ 1qpX ` 1q, et il est donc égal à ´1.

On en déduit le critère de non-primalité de Miller-Rabin : soit n un entier impair,
écrivons pn´1q “ 2rm avec m impair. S’il existe a premier à n tel que am ‰ 1 modulo
n et a2dm ‰ ´1 pour tout d entre 1 et m´ 1 alors n n’est pas premier – on dit qu’un
tel a est un témoin de non-primalité de Miller-Rabin pour n.

Théorème 2.4.3 (Critère de primalité de Lucas). — Soit n un entier ě 2. Les
assertions suivantes sont équivalentes :
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(i) l’entier n est premier ;

(ii) pour tout diviseur premier q de n ´ 1 de n ´ 1 il existe un entier aq tel que
an´1

q “ 1 et apn´1q{q
q ‰ 1 modulo n.

Démonstration. — Supposons n premier. On sait que pZ{nZqˆ est alors cyclique, de
cardinal n´ 1. Soit a un entier premier à n dont la classe modulo n est un générateur
de pZ{nZqˆ. Cette classe est alors d’ordre n´1 modulo n, si bien que an´1 “ 1 modulo
n et que anpn´1q{q ‰ 1 modulo n pour tout diviseur premier q de n ´ 1 différent de
n´ 1 ; l’assertion (ii) est alors valable avec aq “ a pour tout q.

Réciproquement supposons que (ii) est vraie. Pour tout q, notons eq l’ordre de aq

dans pZ{nZqˆ (notons que aq est bien inversible dans Z{nZ puisque an´1
q “ 1 modulo

n). Le lemme 2.3.2 assure l’existence d’un élément a de pZ{nZqˆ dont l’ordre d est le
PPCM des eq. Les égalités an´1

q “ 1 (dans Z{nZ) assurent que chacun des eq divise
n ´ 1, si bien que d divise n ´ 1. Et on ne peut avoir d différent de n ´ 1. En effet
sinon il existerait un diviseur premier q de n ´ 1 divisant aussi pn ´ 1{dq ; écrivons
pn´ 1q “ dbq. On aurait alors (modulo n) les égalités

apn´1q{q
q “ adb

q “ pad
qqb “ 1,

ce qui est absurde (la dernière égalité provient du fait que d est multiple de eq). Par
conséquent d “ n´1 ; le sous-groupe de pZ{nZqˆ engendré par a est alors de cardinal
n ´ 1, d’où il résulte que pZ{nZqˆ “ pZ{nZqzt0u, puis que Z{nZ est un corps, puis
que n est premier.

2.5. La loi de réciprocité quadratique. — Nous nous proposons maintenant
d’établir un résultat majeur d’arithmétique, la loi de réciprocité quadratique. Ce
théorème présente la particularité de posséder des centaines de preuves différentes,
souvent extrêmement astucieuses ; elles reposent sur des calculs dont on ne saisit pas
bien le sens a priori, et qui donnent le résultat comme par miracle. Mais avant de
l’énoncer, nous allons commencer par introduire de symbole de Legendre.
2.5.1. — Soit p un nombre premier impair. L’application x ÞÑ x2 de Fˆ

p dans lui-
même est un morphisme de groupes, dont l’image est l’ensemble pFˆ

p q2 des carrés de
Fˆ

p . Son noyau est tx P Fˆ
p , x

2 “ 1u, c’est-à-dire l’ensemble des racines dans Fp du
polynôme X2 ´ 1 “ pX ´ 1qpX ` 1q, qui n’est autre que t´1, 1u. Puisque p est impair
1 et p´1q sont deux éléments différents de Fˆ

p et t´1, 1u est donc de cardinal 2. Il
s’ensuit que pFˆ

p q2 est de cardinal |Fˆ
p |{2 “

p´1
2 (notez que cela a bien un sens puisque

p est impair).

2.5.2. — L’application x ÞÑ x
p´1

2 est un endomorphisme de groupes de Fˆ
p . Puisque

Fˆ
p est de cardinal pp´ 1q on a pour tout x P Fˆ

p les égalités

px
p´1

2 q2 “ xp´1 “ 1,
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si bien que x ÞÑ x
p´1

2 peut être vu (en vertu de 2.5.1) comme un morphisme de Fˆ
p

dans t´1, 1u, que l’on note traditionnellement x ÞÑ

ˆ

x

p

˙

et qu’on appelle le symbole

de Legendre.

Lemme 2.5.3. — Le symbole de Legendre Fˆ
p Ñ t´1, 1u, x ÞÑ

ˆ

x

p

˙

est surjectif de

noyau pFˆ
p q2.

Démonstration. — Soit H le noyau du symbole de Legendre. C’est l’ensemble des
x P Fˆ

p tels que x
p´1

2 “ 1, c’est-dire encore l’ensemble des racines dans Fp du polynôme
X

p´1
2 . Par conséquent |H| ď

p´1
2 ; pour montrer que H “ pFˆ

p q2 il suffit donc de
démontrer que H contient pFˆ

p q2, puisque ce dernier est déjà de cardinal p´1
2 . Soit

donc x P Fˆ
p . On a alors px2q

p´1
2 “ xp´1 “ 1, ce qui montre l’inclusion souhaitée ;

ainsi H “ pFˆ
p q2.

L’image de x ÞÑ

ˆ

x

p

˙

a alors pour cardinal |Fˆ
p |{|pFˆ

p q2| “ 2 ; par conséquent le

symbole de Legendre est surjectif.

Remarque 2.5.4. — L’expérience montre qu’il est commode d’étendre le symbole
de Legendre de deux façons. D’une part, on le prolonge à Fp tout entier en posant
ˆ

0
p

˙

“ 0 ; d’autre part on peut le voir comme une fonction définie sur Z en posant
ˆ

n

p

˙

“

ˆ

n

p

˙

pour tout entier n, où n désigne évidemment la réduction modulo p.

Ainsi étendu, le symbole de Legendre reste multiplicatif.
Lorsqu’on a fixé p sans ambiguïté et qu’on travaille avec le symbole de Legendre

sur Fp, on le voit comme à valeurs dans t´1, 0, 1u Ă Fp. Si l’on travaille sur Z et
que p est susceptible de varier, on le voit comme à valeurs dans t´1, 0, 1u Ă Z. Ces
différences de point de vue n’ont guère de conséquences puisque la réduction modulo
p est injective sur t´1, 0, 1u.

Exemple 2.5.5 (Le cas de p´1q). — Pour tout nombre premier impair p le symbole

de Legendre
ˆ

´1
p

˙

est égal à p´1q
p´1

2 et vaut donc 1 si p´1
2 est pair, c’est-à-dire si p

vaut 1 modulo 4 ; et p´1q dans le cas contraire, c’est-à-dire si p vaut p´1q (ou encore
3) modulo 4.

Autrement dit p´1q est un carré modulo p si et seulement si p est égal à 1 modulo
4.

2.5.6. Brefs rappels en théorie des corps. — Pour le calcul du deuxième cas

important de symbole de Legendre, à savoir
ˆ

2
p

˙

, nous aurons besoin du résultat

suivant sur la théorie des extensions de corps, qui nous servira également pour la
preuve de la loi de réciprocité quadratique : si k est un corps et si P est un polynôme
non nul à coefficients dans k il existe une extension finie L de k dans laquelle P est
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scindé. Indiquons simplement qu’on le démontre par récurrence sur le degré de P , et
que le point clef de la démonstration est le suivant : si Q est un polynôme irréductible
de krXs alors krXs{Q est une extension finie de k dans laquelle Q a une racine (à
savoir X).

Rappelons aussi que si p est un nombre premier, l’égalité xp´1 “ 1 pour tout x de
Fˆ

p entraîne que xp “ x pour tout x de Fˆ
p , et même en fait pour tout x de Fp puisque

0p “ 0. Si L est une extension quelconque de Fp le polynôme Xp ´X a donc au moins
p-racines dans L, à savoir les éléments de Fp. Puisqu’il est de degré p il s’ensuit que
ses racines sont exactement les éléments de Fp et que celles-ci sont simples ; autrement
dit Xp ´X “

ś

λPFp
X ´ λ.

Enfin nous utiliserons le fait fondamental que dans un corps de caractéristique p
on a la formule pa ` bqp “ ap ` bp ; elle découle de la formule du binôme et du fait
que

`

n
p

˘

est nul modulo p pour tout n tel que 0 ă n ă p.

2.5.7. Inversibles modulo 8. — Nous allons également avoir besoin de la description
de pZ{8Zqˆ. Il est immédiat que ce groupe est égal à t1,´1, 3,´3u, et tous ses éléments
sont de carré égal à 1. Par conséquent si n est un entier impair alors n2 ´1 est multiple
de 8. Par ailleurs soient a et k deux entiers. On a pa`8kq2 “ a2 `16ak`64k2, si bien
que lorsque a est impair le quotient pa`8kq

2
´1

8 est égal à a2
´1
8 modulo 2. Il s’ensuit

qu’un entier impair n est égal à ˘1 (resp. ˘3) modulo 8 si et seulement si n2
´1
8 est

pair (resp. impair).

Lemme 2.5.8. — Soit p un nombre premier impair. On a alors
ˆ

2
p

˙

“ p´1q
p2´1

8 “

"

1 si p “ ˘1 modulo 8
´1 si p “ ˘3 modulo 8 .

Démonstration. — On commence par choisir une extension finie L de Fp dans laquelle
existe un élément x tel que x4 “ p´1q (2.5.6), ce qui entraîne que x8 “ 1 et donc que
xn ne dépend, pour tout entier n, que de la classe de n modulo 8. Posons y “ x`x´1.
On a

y2 “ px` x´1q2 “ x2 ` x´2 ` 2 “ x´1p1 ` x4q ` 2 “ 2.
Ainsi y est une racine carrée de 2 dans L ; l’autre est alors nécessairement p´yq, et
2 appartient donc à pFˆ

p q2 si et seulement si y P Fp. Remarquons que comme p est
impair, 2 est non nul dans Fp si bien que y ‰ 0.

Supposons que p “ 1 modulo 8. On a alors xp “ x si bien que

yp “ px` x´1qp “ xp ` x´p “ x` x´1 “ y.

Ainsi yp “ y, et y appartient donc à Fp.
Supposons que p “ ´1 modulo 8. On a alors xp “ x´1, si bien que

yp “ px` x´1qp “ xp ` x´p “ x` x´1 “ y.

Ainsi yp “ y, et y appartient donc à Fp.
Supposons que p “ 3 modulo 8. On a alors xp “ x3 “ ´x´1 (puisque x4 “ ´1), si

bien que yp “ px ` x´1qp “ xp ` x´p “ ´x´1 ´ x “ ´y. Or p´yq ‰ y puisque y ‰ 0
et que 1 ‰ p´1q (car p est impair). Ainsi yp ‰ y, et y n’appartient donc pas à Fp.
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Supposons que p “ ´3 modulo 8. On a alors xp “ x´3 “ ´x (puisque x4 “ ´1), si
bien que yp “ px ` x´1qp “ xp ` x´p “ ´x ´ x´1 “ ´y. Il s’ensuit comme ci-dessus
que yp ‰ y, et y n’appartient donc pas à Fp.

Compte-tenu des rappels faits en 2.5.7, ceci achève la démonstration du lemme.

Commentaires 2.5.9. — La fin de la preuve utilise de manière essentielle la
caractéristique p à travers la formule pa ` bqp “ ap ` bp. Mais le premier calcul
qu’on y fait vaudrait dans un corps et même un anneau quelconque : il montre en fait
que si A est un anneau et x un élément de A tel que x4 “ ´1 (ce qui force x à être
inversible) alors px ` x´1q2 “ 2 dans A. Vous aviez d’ailleurs sûrement déjà croisé
cette égalité, sans probablement qu’elle vous soit présentée ainsi : vous savez bien en
effet que dans C on a eiπ{4 ` e´iπ{4 “ 2 cosπ{4 “

?
2.

Théorème 2.5.10 (Loi de réciprocité quadratique). — Soient p et ℓ deux
nombres premiers impairs distincts. On a alors

´p

ℓ

¯

“ p´1q
p´1

2 ¨
ℓ´1

2

ˆ

ℓ

p

˙

.

Démonstration. — Choisissons une extension K de Fp dans laquelle le polynôme
P :“ Xℓ´1 `Xℓ´2 ` . . .`X ` 1 a une racine a (2.5.6). Puisque pX ´ 1qP “ Xℓ ´ 1
on a aℓ “ 1 ; par ailleurs P p1q “ ℓ, et ℓ est non nul dans le corps K qui est de
caractéristique p ; ainsi, a est une racine primitive ℓ-ième de l’unité

Comme aℓ “ 1 le morphisme n ÞÑ an de Z dans Kˆ passe au quotient par ℓZ
et induit donc un morphisme de groupes de Fℓ dans Kˆ que nous noterons encore
x ÞÑ ax. On pose alors

y “
ÿ

xPFℓ

´x

ℓ

¯

ax.

Notons que la somme est indexée par Fℓ, mais vit dans le corps K qui est lui de
caractéristique p ; dans cette somme le symbole de Legendre

´x

ℓ

¯

doit être interprété
comme étant à valeurs dans t0, 1,´1u Ă Fp.

2.5.10.1. Montrons que y2 “ p´1q
ℓ´1

2 ℓ. — On a

y2 “
ÿ

px,tqPF2
ℓ

´x

ℓ

¯

ˆ

t

ℓ

˙

ax`t

“
ÿ

uPFℓ

«

ÿ

xPFℓ

´x

ℓ

¯

ˆ

u´ x

ℓ

˙

ff

au,

le passage à la seconde ligne se faisant en posant u “ x` t. Pour alléger les notations

on pose Su “
ř

xPFℓ

´x

ℓ

¯

ˆ

u´ x

ℓ

˙

; on a donc y2 “
ř

uPFℓ
Sua

u.

Calculons tout d’abord S0. On a

S0 “
ÿ

xPFℓ

´x

ℓ

¯

ˆ

´x

ℓ

˙

“
ÿ

xPFℓ

ˆ

´x2

ℓ

˙

“

ˆ

´1
ℓ

˙

ÿ

xPFℓ

ˆ

x2

ℓ

˙

.
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Or pour tout x P Fℓ la quantité
ˆ

x2

ℓ

˙

est égale à 1 si x est non nul et à 0 sinon. Par

conséquent S0 “

ˆ

´1
ℓ

˙

pℓ´ 1q.

Soit maintenant u un élément de Fˆ
ℓ . On a

Su “
ÿ

xPFℓ

´x

ℓ

¯

ˆ

u´ x

ℓ

˙

“
ÿ

xPFˆ

ℓ

´x

ℓ

¯

ˆ

u´ x

ℓ

˙

“
ÿ

xPFˆ

ℓ

´x

ℓ

¯ ´x

ℓ

¯

ˆ

ux´1 ´ 1
ℓ

˙

“
ÿ

xPFˆ

ℓ

ˆ

ux´1 ´ 1
ℓ

˙

.

Or comme u est non nul, l’application x ÞÑ ux´1 ´ 1 définit une bijection de Fˆ
ℓ sur

Fℓzt´1u ; la somme ci-dessus se récrit donc

ÿ

xPFℓ,x‰´1

´x

ℓ

¯

“

«

ÿ

xPFℓ

´x

ℓ

¯

ff

´

ˆ

´1
ℓ

˙

.

Si x P Fℓ alors
´x

ℓ

¯

est nul si x “ 0, vaut 1 si x appartient à pFˆ
ℓ q2, et p´1q si x

appartient au complémentaire de pFˆ
ℓ q2 dans Fˆ

ℓ . Mais pFˆ
ℓ q2 et son complémentaire

dans Fˆ
ℓ ont le même cardinal, à savoir ℓ´1

2 ; en conséquence
ř

xPFℓ

´x

ℓ

¯

“ 0, ce qui
entraîne que

Su “ ´

ˆ

´1
ℓ

˙

.
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On a dès lors
y2 “

ÿ

uPFℓ

Sua
u

“ S0 `
ÿ

uPFˆ

ℓ

Sua
u

“

ˆ

´1
ℓ

˙

pℓ´ 1q ´

ˆ

´1
ℓ

˙

ÿ

uPFˆ

ℓ

au

“

ˆ

´1
ℓ

˙

pℓ´ 1q ´

ˆ

´1
ℓ

˙ ℓ´1
ÿ

n“1
an

“

ˆ

´1
ℓ

˙

pℓ´ 1q `

ˆ

´1
ℓ

˙

“

ˆ

´1
ℓ

˙

ℓ,

où l’avant-dernière égalité provient du fait que P paq “
řℓ´1

n“0 a
n est nul par choix de

a, si bien que
řℓ´1

n“1 a
n “ ´1.

2.5.10.2. Montrons que yp´1 “

´p

ℓ

¯

. — On a les égalités

yp “

«

ÿ

xPFℓ

´x

ℓ

¯

ax

ffp

“
ÿ

xPFℓ

´x

ℓ

¯p

apx.

Or comme p est impair et comme
´x

ℓ

¯

appartient à t0,´1, 1u pour tout x on a
´x

ℓ

¯p

“

´x

ℓ

¯

quel que soit x appartenant à Fℓ. Il vient

yp “
ÿ

xPFℓ

´x

ℓ

¯

axp

“
ÿ

xPFℓ

ˆ

p´1

ℓ

˙

´xp

ℓ

¯

axp

“
ÿ

xPFℓ

´p

ℓ

¯ ´xp

ℓ

¯

axp

“

´p

ℓ

¯

ÿ

xPFℓ

´xp

ℓ

¯

axp

“

´p

ℓ

¯

ÿ

tPFℓ

ˆ

t

ℓ

˙

at

“

´p

ℓ

¯

y,
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où nous avons utilisé les faits suivants : p est non nul et donc inversible dans Fℓ (et
le p´1 de la seconde ligne désigne l’inverse de p dans Fℓ) ; tout élément de t´1, 1u est
son propre inverse, d’où le passage de la seconde à la troisième ligne ; et x ÞÑ xp est
une bijection de Fℓ sur lui-même, d’où le passage de la quatrième à la cinquième ligne
(on pose t “ px).

On a donc yp “

´p

ℓ

¯

y. Or y est non nul puisque y2 “ p´1q
ℓ´1

2 ℓ (2.5.10.1) et que

ℓ est non nul dans le corps K qui est de caractéristique p ; il vient yp´1 “

´p

ℓ

¯

, ce
qu’on souhaitait établir.

2.5.10.3. Fin de la démonstration. — L’égalité y2 “ p´1q
ℓ´1

2 ℓ vue en 2.5.10.1 assure

que y est un élément de Fp Ă K, et
ˆ

y2

p

˙

a donc un sens – mais attention : on ne

peut pas écrire
ˆ

y2

p

˙

“

ˆ

y

p

˙2
“ 1 pour la bonne raison que y appartient à K, mais

pas a priori à Fp !
On a alors

´p

ℓ

¯

“ yp´1 (2.5.10.2)

“ py2q
p´1

2

“

ˆ

y2

p

˙

“

˜

p´1q
ℓ´1

2 ℓ

p

¸

(2.5.10.1)

“

ˆ

´1
p

˙

ℓ´1
2

ˆ

ℓ

p

˙

“ p´1q
p´1

2 ¨
ℓ´1

2

ˆ

ℓ

p

˙

,

ce qui achève la démonstration.

Remarque 2.5.11. — Le calcul fait en 2.5.10.1 n’utilise absolument pas le fait que
le corps K est de caractéristique p. Par conséquent, dans n’importe quel corps K dans
lequel existe un élément a tel que

řℓ´1
n“0 a

n “ 0, la somme
ř

xPFl

´x

ℓ

¯

aℓ est une racine

carrée de p´1q
ℓ´1

2 ℓ.
Illustrons cette observation par un exemple concret. On a Fˆ

7 “ t´3,´2,´1, 1, 2, 3u

et les carrés de Fˆ
7 sont donc 1, 4 et 9, soit encore 1, 2 et ´3. Le nombre complexe

e2iπ{7 est une racine primitve 7-ème de l’unité, donc il annule X6 `X5 ` . . .`X ` 1.
Par conséquent

´x

7

¯

est égal à 1 si x P t1, 2,´3u et à p´1q si x P t´2,´1, 3u, et

e´6iπ`7 ´ e´4iπ{7 ´ e´2iπ{7 ` e2iπ`7 ` e4iπ{7 ´ e6iπ{7
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est une racine carrée de p´1q
7´1

2 7 “ ´7 (par contre la méthode ne dit pas si c’est i
?

7
ou ´i

?
7).

Exemple 2.5.12. — Montrons comment calculer rapidement
ˆ

37
97

˙

à l’aide de la

loi de réciprocité quadratique (et sans chercher à appliquer la définition directe, qui
requerrait de calculer 3748 modulo 97).

On a
ˆ

37
97

˙

“ p´1q18¨48
ˆ

97
37

˙

“

ˆ

97
37

˙

.

On a 3 ¨ 37 “ 111 si bien que 97 “ p´14q modulo 37. Par conséquent
ˆ

97
37

˙

“

ˆ

´14
37

˙

“

ˆ

´1
37

˙ ˆ

2
37

˙ ˆ

7
37

˙

.

Or
ˆ

´1
37

˙

“ p´1q18 “ 1, et
ˆ

2
37

˙

est égal à p´1q car 37 “ 40 ´ 3 est égal à p´3q

modulo 8. En conséquence on a finalement
ˆ

37
97

˙

“ ´

ˆ

7
37

˙

“ ´p´1q3¨18
ˆ

37
7

˙

“ ´

ˆ

37
7

˙

“ ´

ˆ

2
7

˙

.

Et comme 7 est égal à p´1q modulo 8 le symbole
ˆ

2
7

˙

est égal à 1 (ce qu’on pourrait

voir directement en remarquant que 2 “ 32 modulo 7 !), si bien que
ˆ

37
97

˙

“ ´1 ;

ainsi, 37 n’est pas un carré modulo 97.
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3. Le théorème des nombres premiers

Cette longue section va être consacrée à la preuve du théorème des nombres
premiers. Celle-ci repose sur des méthodes analytiques, mais un certain nombre de
préliminaires algébriques vont être nécessaires.

3.1. Caractères d’un groupe abélien fini. — Nous allons tout d’abord étudier
une construction très générale de théorie des groupes, qui est extrêmement utilisée,
et pas uniquement en arithmétique.
3.1.1. Structures sur les ensembles de morphismes de groupes. — Soient G et H
deux groupes. En général l’ensemble HompG,Hq des morphismes de groupes de G
vers H n’a pas de structure algébrique intéressante : c’est un simple ensemble (avec
tout de même si l’on veut, un élément particulier qui est le morphisme trivial g ÞÑ e,
mais rien de plus).

Supposons maintenant que H est abélien. Soient φ et ψ deux morphismes de
groupes de G vers H. Notons φψ l’application g ÞÑ φψ de G vers H. L’application
φψ est un morphisme de groupes. En effet, soient g et g1 deux éléments de G. On a
alors

φψpgg1q “ φpgg1qψpgg1q

“ φpgqφpg1qψpgqψpg1q

“ φpgqψpgqφpg1qψpg1q

“ φψpgqφψpg1q,

où la troisième égalité provient du caractère abélien de H (la première et la dernière
découlent de la définition de φψ, et la seconde du fait que φ et ψ sont des morphismes).

On vérifie alors sans problème que le produit pφ,ψq ÞÑ φψ fait de HompG,Hq

un groupe abélien ; le neutre est le morphisme trivial g ÞÑ e, et l’inverse de φ est
φ´1 :“ g ÞÑ φpgq´1.

Définition 3.1.2. — Soit G un groupe abélien fini. On appelle caractère de G un
morphisme de groupes de G dans Cˆ ; l’ensemble des caractères de G est noté pG ; en
vertu de 3.1.1, pG a une structure naturelle de groupe abélien ; nous dirons que c’est
le groupe des caractères de G.

Remarque 3.1.3. — Soit G un groupe abélien fini et soit n son cardinal. Si χ est un
caractère de G alors χpgqn “ χpgnq “ χpeq “ 1 pour tout g P G. Ainsi tout caractère
de G est en fait à valeurs dans le groupe µn des racines de l’unité, qui est fini ; il
s’ensuit d’ores et déjà que pG est fini.

Exemple 3.1.4. — Soit n un entier ě 1. La propriété universelle de Z{nZ assure que
pour tout groupe H, la formule φ ÞÑ φp1q établit une bijection entre HompZ{nZ, Hq

et th P H,hn “ eu. Lorsque H est abélien, il résulte de 3.1.1 que HompZ{nZ, Hq a
une structure naturelle de groupe abélien, et th P H,hn “ eu est un sous-groupe de
H ; on vérifie alors sans difficulté que la bijection ci-dessus entre HompZ{nZ, Hq et
th P H,hn “ eu est un isomorphisme de groupes.
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En prenant H “ Cˆ on en déduit que {Z{nZ est isomorphe via χ ÞÑ χp1q au
sous-groupe µn de Cˆ constitué des racines n-ième de l’unité. Ce groupe lui-même
est cyclique de cardinal n, engendré par e2iπ{n. Il s’ensuit que {Z{nZ est isomorphe à
Z{nZ, mais non canoniquement (il faut choisir un générateur de µn).

Lemme 3.1.5. — Soit G un groupe abélien fini, soit H un sous-groupe de G et soit
χ un caractère de H. Il existe exactement rG : Hs caractères de G prolongeant χ.

Démonstration. — On raisonne par récurrence forte sur l’indice rG : Hs. Si celui-ci
vaut 1 alors H “ G et l’assertion à montrer est triviale. Supposons rG : Hs ą 1 et
le résultat vrai pour les indices ă rG : Hs. Puisque rG : Hs ą 1 il existe un élément
g de G qui n’appartient pas à H. Soit H 1 le sous-groupe de G engendré par H et g ;
c’est l’ensemble des éléments de G de la forme gnh avec n P Z et h P H.
3.1.5.1. Les prolongements de χ à H 1. — Le quotient H 1{H est fini et engendré
par g ; son cardinal m est l’ordre de g. Nous nous proposons de montrer qu’il y a
exactement m caractères de H 1 prolongeant χ.

Posons h0 “ gm ; puisque gm “ e, l’élément h0 de G appartient à H ; soit ξ
l’élément χph0q de Cˆ.

Observons tout d’abord que si θ est un caractère de H 1 prolongeant χ alors
nécessairement

θpgqm “ θpgmq “ θph0q “ χph0q “ ξ.

Ainsi, θpgq est une racine m-ième de ξ. Remarquons aussi que si ζ est une racine
m-ième de ξ, il y a au plus un caractère θ de H 1 prolongeant χ tel que θpgq “ ζ :
pour un tel θ on aura en effet nécessairement θpgnhq “ ζnθphq “ ζnχphq pour tout
pn, hq P Z ˆH.

Comme l’élément ξ de Cˆ a exactement m racines m-ièmes dans Cˆ, il suffit en
vertu de ce qui précède, pour établir que χ admet exactement m prolongements à H 1,
de prouver que toute racine m-ième ζ de ξ il existe un caractère θ de H 1 prolongeant
χ et prenant la valeur ζ en g. Fixons donc une telle ζ.

L’application π : Z ˆ H Ñ G, pn, hq ÞÑ gnh est un morphisme de groupes d’image
H 1. Montrons que son noyau est l’ensemble E des couples de la forme pkm, h´k

0 q avec
k P Z. On a pour tout k P Z l’égalité

πpkm, h´k
0 q “ gkmh´k

0 “ hk
0h

´k
0 “ e,

ce qui montre que E Ă Kerπ. Réciproquement, soit pn, hq P Kerπ. On a alors gnh “ e,
et donc gn “ h´1. Ceci entraîne que gn “ e dans le groupe quotient H 1{H, ce qui
signifie que m divise n. Écrivons n “ km. On a alors h “ g´n “ g´km “ h´k

0 , et
pn, hq appartient donc à E. Ainsi E “ Kerπ, et π induit dès lors un isomorphisme
entre pZ ˆHq{E et H 1.

Soit maintenant θ le morphisme de groupes de ZˆH vers Cˆ défini par la formule
θpn, hq “ ζnχphq. Pour tout k P Z on a θpmk, h´k

0 q “ ζmkξ´k “ ξkξ´k “ 1 ; ainsi
E Ă Ker θ, et θ passe donc au quotient par E. Au vu de ce qui précède θ induit donc
un morphisme de groupes θ de H 1 vers Cˆ, et l’on a par construction

θpgnhq “ θpπpn, hqq “ θpn, hq “ ζnχphq
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pour tout pn, hq ; ainsi θ est un caractère de H 1 qui prolonge χ et prend la valeur ζ
en g.
3.1.5.2. Conclusion. — Le caractère χ admet par ce qui précède exactement rH 1 : Hs

prolongements à H 1. Et H 1 contient strictement H, puisque g P H 1 et que g R H. Il
s’ensuit que rG : H 1s ă rG : Hs. L’hypothèse de récurrence assure donc que tout
caractère de H 1 admet exactement rG : H 1s prolongements à G. Par conséquent χ
admet exactement rG : HsrH 1 : Hs “ rG : Hs prolongements à G.

Théorème 3.1.6. — Soit G un groupe abélien fini.
(1) Le groupe pG a même cardinal que G.
(2) Pour tout g ‰ e dans G il existe χ P pG tel que χpgq ‰ e.

Démonstration. — La restriction de tout caractère de G à teu est égal au caractère
trivial e ÞÑ 1. Or il résulte du lemme 3.1.5 que le caractère trivial e ÞÑ 1 admet
rG : teus “ |G| prolongements à G. Ainsi | pG| “ |G|, d’où (1).

Montrons maintenant (2). Soit g ‰ teu dans G. Le sous-groupe xgy possède un
caractère non trivial φ : pour le voir on peut ou bien invoquer (1) qu’on vient de
prouver ou bien plus simplement (et donc plus élégamment) remarquer que xgy est
cyclique, et citer l’exemple 3.1.4 ; comme φ est non trivial et que g engendre xgy, on
a φpgq ‰ 1. En vertu du lemme 3.1.5, φ admet rG : xgys prolongements à G ; il en
admet en particulier au moins un, ce qui achève de prouver (2).

Remarque 3.1.7. — On dispose en fait d’un résultat nettement plus fort que
l’énoncé (1) du théorème ci-dessus : on peut en effet montrer que le groupe pG est
isomorphe (non canoniquement en général) au groupe G. Cela fera l’objet d’un
exercice en TD ; nous l’avons pour le moment simplement constaté lorsque G est
cyclique (exemple 3.1.4).

3.1.8. Morphismes induits entre groupes de caractères. — Soit f : H Ñ G un
morphisme entre groupes abéliens finis. L’application χ ÞÑ χ˝f de pG vers pH (attention
au renversement du sens) est un morphisme de groupes que nous noterons pf . On a
yIdG “ Id

pG et {f1 ˝ f2 “ pf2 ˝ pf1 lorsque ceci a un sens. Si f est un isomorphisme pf l’est
aussi et pf´1 “ yf´1.

Lorsque H est un sous-groupe de G et que f est l’inclusion de H dans G, le
morphisme pf est simplement la restriction des caractères. Le lemme 3.1.5 assure que
dans ce cas pf est surjectif, et plus précisément que pf´1pχq est de cardinal rG : Hs

pour tout χ P pH.

Proposition 3.1.9. — Soit G un groupe abélien fini.

(1) Soit χ un caractère de G. On a
ÿ

gPG

χpgq “

"

0 si χ ‰ 1
|G| si χ “ 1 ,

où l’on note 1 le caractère trivial g ÞÑ 1.
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(2) Soit g un élément de G. On a On a
ÿ

χP pG

χpgq “

"

0 si g ‰ e
|G| si g “ e

.

Démonstration. — Montrons d’abord (1). Si χ “ 1 on a
ř

gPG χpgq “
ř

gPG 1 “ |G|.
Supposons χ ‰ 1. Il existe alors h P G tel que χphq ‰ 1. On a

ÿ

gPG

χpgq “
ÿ

gPG

χphqχph´1gq

“ χphq
ÿ

gPG

χph´1gq

“ χphq
ÿ

gPG

χpgq,

où la troisième égalité provient du fait que g ÞÑ h´1g est une bijection de G sur
lui-même. Puisque χphq ‰ 1, il vient

ř

gPG χpgq “ 0.
Montrons maintenant (2). Si g “ e on a

ř

χP pG χpgq “
ř

χP pG 1 “ | pG| “ |G|, la
dernière égalité provenant du théorème 3.1.6.

Supposons g ‰ e. Par le même théorème il existe alors φ P pG tel que φpgq ‰ 1. On
a

ÿ

χP pG

χpgq “
ÿ

χP pG

φpgqpφ´1χqpgq

“ φpgq
ÿ

χP pG

pφ´1χqpgq

“ φpgq
ÿ

χP pG

χpgq,

où la troisième égalité provient du fait que χ ÞÑ φ´1χ est une bijection de pG sur
lui-même. Puisque φpgq ‰ 1, il vient

ř

χP pG χpgq “ 0.

3.2. Caractères modulaires. — Après ces généralités sur les caractères d’un
groupe abélien fini, nous allons nous intéresser à ces derniers dans un contexte
arithmétique.

Définition 3.2.1. — Soit N un entier ě 1. Un caractère de Dirichlet modulo N est
un caractère du groupe abélien fini pZ{NZqˆ.

Commentaires 3.2.2. — Un caractère de Dirichlet modulo N est donc un
morphisme de groupes χ : pZ{NZqˆ Ñ Cˆ. On peut l’étendre comme on l’avait fait
pour le symbole de Legendre : on le prolonge tout d’abord en une application (notée
encore χ) -de Z{NZ tout entier vers C, en posant χpxq “ 0 si x est non inversible.
Cette application reste multiplicative (si x est non inversible, xy est non inversible
pour tout y P Z{NZ, si bien que χpxyq “ 0 “ χpxqχpyq).

On peut aussi composer χ avec la réduction modulo N et définir ainsi une
application n ÞÑ χpnq de Z dans C, qu’on note encore χ par abus, et qui est
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complètement multiplicative, c’est-à-dire que χp1q “ 1 et que χpabq “ χpaqχpbq quels
que soient a et b (et pas uniquement lorsque a et b sont premiers entre eux). On peut
donc également définir un caractère de Dirichlet modulo N comme une application χ
de Z dans C complètement multiplicative telle que χpnq ne dépende que de la classe
de n modulo N , et soit nul si et seulement si n n’est pas premier avec N . Et bien
entendu il suffit de se donner une telle application sur l’ensemble des entiers premiers
à N (il n’y a plus ensuite qu’à la prolonger en la décrétant nulle sur tout entier non
premier à N).

Exemple 3.2.3. — Pour tout nombre premier impair p, le symbole de Legendre

n ÞÑ

ˆ

n

p

˙

est un caractère de Dirichlet modulo p. C’est l’unique caractère d’ordre 2

de Fˆ
p , c’est-à-dire encore son unique caractère non trivial à valeurs dans t´1, 1u. En

effet si χ est un tel caractère son image est t´1, 1u et son noyau est donc de cardinal
pp ´ 1q{2. Et l’on a par ailleurs χpx2q “ χpxq2 “ 1 pour tout x de Fˆ

p , si bien que
Kerχ contient pFˆ

p q2. Comme ce dernier est de cardinal pp ´ 1q{2, le noyau de χ est
exactement pFˆ

p q2 ; ainsi χpxq vaut 1 si x est un carré et p´1q sinon, ce qui veut dire

que χpxq “

ˆ

x

p

˙

.

3.2.4. — La loi de réciprocité quadratique va permettre de construire un exemple
plus sophistiqué de caractère modulaire d’ordre 2. Il sera commode pour ce faire
d’introduire les deux notations suivantes : pour tout entier impair a on notera εpaq la
classe modulo 2 de a´1

2 et ωpaq celle de a2
´1
8 (cf. 2.5.7).

On remarque que εpaq est égal à 0 si a “ 1 modulo 4 et à 1 si a “ p´1q modulo 4 ; on
a par conséquent pour tout couple pa, bq d’entiers impairs l’égalité εpabq “ εpaq`εpbq.

On sait aussi (2.5.7) que ωpaq est égal à 0 si a “ ˘1 modulo 8 et à 1 si a “ ˘3
modulo 8. Il s’ensuit aisément que l’on a pour tout couple pa, bq d’entiers impairs
l’égalité ωpabq “ ωpaq ` ωpbq.

Comme p´1qn ne dépend pour tout n que de la classe de n modulo 2, les expressions
p´1qεpaq et p´1qωpaq ont un sens pour tout entier impair a. Et l’on a alors pour tout
nombre premier p impair

ˆ

´1
p

˙

“ p´1qεppq et
ˆ

2
p

˙

“ p´1qωppq

(la première égalité est la définition du symbole de Legendre ; la seconde est le lemme
2.5.8).

Lemme 3.2.5. — Soit a un entier relatif non nul et sans facteur carré (c’est-à-dire
que vppaq ď 1 pour tout nombre premier p) ; posons N “ 4|a|. Il existe alors un unique

caractère de Dirichlet modulo N noté χa tel que χappq “

ˆ

a

p

˙

pour tout p ne divisant

pas N . On χ2
a “ 1, et χa est différent de 1 dès que a ‰ 1.

Démonstration. — Commençons par l’unicité. Soit S l’ensemble des entiers relatifs
premiers à N , et soit S ` son intersection avec N. Soit x P S `. Il s’écrit

ś

pi où
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les pi sont des nombres premiers ne divisant pas N (non nécessairement deux à deux

distincts), et l’on a alors nécessairement χapxq “
ś

χappiq “
ś

i

ˆ

a

pi

˙

. Ceci montre

que χa est uniquement déterminé sur S `. Mais il l’est alors sur S tout entier : il
suffit en effet de choisir pour tout entier x de S un entier x1 de S ` égal à x modulo
N , et de remarquer qu’on a nécessairement χapxq “ χapx1q.

Montrons maintenant l’existence, en nous inspirant de la formule exhibée ci-dessus.
Écrivons a “ p´1qu2v

ś

j ℓj où u et v appartiennent à t0, 1u et où les ℓi sont des
nombres premiers impairs deux à deux distincts ; posons b “

ś

j ℓj .

Pour tout entier x P S `, posons χapxq “
ś

i

ˆ

a

pi

˙

, où
ś

pi est l’écriture de

x comme produit de nombres premiers (non nécessairement deux à deux distincts)
ne divisant pas N . Il est immédiat que χa est une application complètement

multiplicative à valeurs dans t´1, 1u, prenant la valeur
ˆ

a

p

˙

pour tout nombre

premier p ne divisant pas N . Nous allons expliquer comment décrire χa par une
autre formule qui permettra de l’étendre naturellement en une fonction complètement
multiplicative de S vers t´1, 1u et montrera que χapxq ne dépend que de la classe
de x modulo N .

Soit donc x “
ś

i pi un élément de S `. On a

χapxq “
ź

i

ˆ

a

pi

˙

“

˜

ź

i

ˆ

p´1qu

pi

˙

¸ ˜

ź

i

ˆ

2v

pi

˙

¸

ź

i,j

ˆ

ℓj

pi

˙

“

˜

ź

i

p´1quεppiq

¸ ˜

ź

i

p´1qvωppiq

¸

ź

i,j

p´1qεppiqεpℓj q

ˆ

pi

ℓj

˙

“ p´1q
u

ř

i εppiq`v
ř

i ωppiq`p
ř

i εppiqp
ř

j εpℓj qq
ź

j

ˆś

i pi

ℓj

˙

“ p´1quεpxq`vωpxq`εpxqεpbq
ź

j

ˆ

x

ℓj

˙

,

où la troisième égalité résulte de la loi de réciprocité quadratique et la dernière du
fait que ε et ω transforment les produits en somme.

On peut dès lors étendre χa en une fonction définie sur S en posant

χapxq “ p´1quεpxq`vωpxq`εpxqεpbq
ź

j

ˆ

x

ℓj

˙

pour tout x P S . C’est une application à valeurs dans t´1, 1u qui est complètement
multiplicative puisque ε et ω transforment les produits en somme.

Soit x P S . L’élément χapxq de t´1, 1u ne dépend visiblement que des données
suivantes :
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˛ pour tout i, la classe de x modulo ℓi (via le terme
ˆ

x

ℓi

˙

) ;

˛ si v “ 0, la classe de x modulo 4 (via le terme εpxq) ;
˛ si v “ 1, la classe de x modulo 8 (via le terme ωpxq ; notez que si la classe de
x modulo 8 est connue, sa classe modulo 4 l’est a fortiori, et εpxq est dès lors
connu).

Le lemme chinois assure alors que χapxq ne dépend que de la classe de x modulo
4ℓ1 . . . ℓn si v “ 0 et modulo 8ℓ1 . . . ℓn si v “ 1 ; autrement χapxq ne dépend dans tous
les cas que de la classe de x modulo 4|a|, c’est-à-dire modulo N . Ains χa est bien un
caractère de Dirichlet modulo N , à valeurs dans t´1, 1u et donc de carré égal à 1,

prenant la valeur
ˆ

a

p

˙

en tout nombre premier p ne divisant pas N .

Supposons maintenant que a ‰ 1 et montrons que χa est non trivial. Supposons

d’abord que r ě 1, et fixons un entier m premier à ℓ1 tel que
ˆ

m

ℓ1

˙

“ ´1. Le lemme

chinois assure qu’il existe un entier x égal à 1 modulo 8 (ce qui implique que ωpxq

et εpxq sont pairs), à m modulo ℓ1, et à 1 modulo ℓj pour tout j ě 2. On a alors
χapxq “ ´1, si bien que χa est non trivial.

Supposons maintenant que r “ 0, c’est-à-dire que a “ p´1qu2v et que b “ 1 (notez
qu’alors εpbq “ 0) ; comme a ‰ 1, les entiers u et v ne sont pas tous les deux nuls. On
a pour tout x premier à N l’égalité χapxq “ p´1quεpxq`vωpxq.

Il n’y a plus qu’à distinguer trois cas :
˛ le cas pu, vq “ p1, 0q, c’est-dire a “ p´1q ; on a χ´1pxq “ p´1qεpxq, si bien que
χ´1p3q “ ´1 ;

˛ le cas pu, vq “ p0, 1q, c’est-dire a “ 2 ; on a χ´1pxq “ p´1qωpxq, si bien que
χ2p3q “ ´1 ;

˛ le cas pu, vq “ p1, 1q, c’est-dire a “ p´2q ; on a χ´1pxq “ p´1qεpxq`ωpxq, si bien
que χ´2p5q “ ´1.

Ainsi χa est là encore non trivial.
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