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2 ANTOINE DUCROS

1. Anneaux principaux : généralités

L’objectif de ce cours est d’étudier, par des méthodes en grande partie analytiques,
la fagon dont les nombres premiers se répartissent parmi les entiers. Les résultats
que nous obtiendrons et les outils que nous emploierons seront le plus souvent tres
spécifiques a 'anneau 7Z ; cela dit un certain nombre d’énoncés et propriétés de base
que nous utiliserons valent dans tout anneau principal, et c’est par ces derniers que
nous allons commencer avant d’entrer dans le vif du sujet.

1.1. Divisibilité dans un anneau integre, PGCD, PPCM. — Soit A un
anneau (commutatif, unitaire) intégre; cela signifie par définition que A est non nul
et que le produit de deux éléments non nuls de A est toujours non nul.

1.1.1. — On dit qu’'un élément a de A est inversible s’il existe b dans A tel que
ab = 1; un tel b est alors unique et est noté a~'. L’ensemble des éléments inversibles
de A est noté A* ; il contient 1, ne contient pas 0 et est stable par multiplications;
cette derniére en fait un groupe abélien. On a par exemple Z* = {—1,1}. On dit que
A est un corps si A = A\{0}.

Si a et b sont deux éléments de A on dit que a divise b, et I'on écrit alb, 8'il existe
u dans A tel que b = au. Supposons que ce soit le cas. Un tel u est alors unique si
a # 0, par intégrité de A, et on le note b/a; et si a = 0 alors b = 0 et n’importe quel
u convient.

Supposons que alb et bla. Ecrivons alors b = au et a = bv. Il vient a = auv,
donc a(l —uv) = 0. Si @ = 0 I'égalité b = au entraine que b = 0. Si a # 0 I'égalité
a(l — uv) = 0 entraine que wv = 1, par intégrité de A. Par conséquent u et v sont
inversibles. Ainsi si alb et b|a il existe u € A* tel que b = au. Réciproquement si un
tel u existe alors b = au et a = bu~?, donc alb et b|a.

On dit qu’un élément a de A est irréductible s’il est non nul, non inversible, et si
pour tout couple (b,c¢) d’éléments de A tels que a = be alors b ou ¢ est inversible.
Si u est un élément inversible de A alors a est irréductible si et seulement si au est
irréductible.

1.1.2. — Un idéal de A est un sous-groupe de (A, +) stable par multiplication externe
par les éléments de A. Si a € A on note aA ou (a) 'ensemble des multiples de a. C’est
le plus petit idéal de A contenant a; on dit aussi que c’est 'idéal engendré par a. Un
idéal de A de la forme (a) avec a € A est dit principal; on dit que A lui-méme est
principal si tout idéal de A est principal.

Si a et b sont deux éléments de A on a a divise b si et seulement si b appartient
a (a), c’est-a-dire si et seulement si (b)  (a); attention au renversement de 1’ordre!
En particulier (a) = (b) si et seulement si a divise b et b divise a c’est-a-dire, par le
paragraphe différent, si et seulement si il existe u € A* tel que a = bu. Le générateur
d’un idéal principal est donc unique a multiplication par un inversible preés.

Remarque 1.1.3. — Supposons donné un systéme de représentants . du quotient
de A par Paction (multiplicative) de A*, c’est-a-dire un sous-ensemble de A dont
I’intersection avec chaque orbite sous A* est un singleton. Alors tout idéal principal
de A a par ce qui précede un unique générateur appartenant a .. Il y a deux exemples
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importants d’anneaux dans lesquels on dispose d’un tel systéme .% naturel, tres utilisé
en pratique : Panneau Z, avec . = N; et I'anneau k[T] lorsque k est un corps, avec
& égal a 'ensemble constitué des polynémes unitaires et du polynéme nul.

1.1.4. — Soit (a;) une famille d’éléments de A. Un PGCD (plus grand commun
diviseur) de la famille (a;) est un élément d de A tel que pour tout élément a de A,
on ait équivalence entre «a divise d» et «a divise a; pour tout i».

Si d est un PGCD de la famille des (a;), il divise lui-méme chacun des a; (puisque
d divise d). Si la famille des (a;) posséde un PGCD, ce dernier est unique modulo la
multiplication par un inversible : en effet si d et e sont deux PGCD de la famille (a;)
alors d divise chacun des a; comme on vient de voir, donc d divise e; et par symétrie,
e divise d, d’ou I'assertion. En raison de cette unicité, on se permet de parler, lorsqu’il
existe, du PGCD des a; ; mais il faut garder en téte qu’il n’est défini qu’a un inversible
pres, & moins qu’on ait un systéme . comme dans la remarque [1.1.3] auquel cas on
peut choisir ce PGCD dans . et ainsi le définir sans ambiguité aucune.

1.1.5. — Soit (a;) une famille d’éléments de A. Un PPCM (plus petit commun
multiple) de la famille (a;) est un élément m de A tel que pour tout élément a de A,
on ait équivalence entre «m divise a» et «a; divise a pour tout i».

Si m est un PPCM de la famille des (a;), il est lui-méme multiple de chacun des a;
(puisque m divise m). Si la famille des (a;) posséde un PPCM, ce dernier est unique
modulo la multiplication par un inversible : en effet si m et n sont deux PPCM de
la famille (a;) alors m est multiple de chacun des a; comme on vient de voir, donc n
divise m ; et par symétrie, m divise n, d’ou ’assertion. En raison de cette unicité, on
se permet de parler, lorsqu’il existe, du PPCM des a; ; mais il faut garder en téte qu’il
n’est défini qu’a un inversible prés, & moins qu’on ait un systeme .’ comme dans la
remarque [L.1.3] auquel cas on peut choisir ce PPCM dans . et ainsi le définir sans
ambiguité aucune.

1.1.6. Un critére pour étre le PGCD. — Soit (a;) une famille d’éléments de A. Le
plus petit idéal de A contenant les a;, qu’on appelle aussi I'idéal engendré par les a;,
est Uensemble des sommes > A\;a; ot les \; sont presque tous nuls, ¢’est-d-dire tous
nuls sauf un nombre fini (en algébre, on ne sait faire que des sommes finies!!); cet
idéal est aussi noté > a;A. Soit d un diviseur commun & tous les a; appartenant &
> a;A. Alors d est un PGCD des a,. En effet, soit a € A. Si a divise d alors a divise
chacun des a; puisque d divise chacun des a;; et si a divise chacun des a; alors a
divise d puisque d est par hypothese de la forme >’ A;a;. Donc d est un (ou le) PGCD
des a;.

Définition 1.1.7. — On dit que A est euclidien s’il existe une application
: A\{0}toN telle que pour tout couple (a,b) d’éléments de A avec b non nul il existe
deux éléments g et r de A vérifiant les conditions suivantes :

o r=0o0upr)<eb);
o a=bqg+r.

1.1.8. Commentaires. — Un tel ¢ comme dans la définition ci-dessus est appelé un
stathme euclidien. On dit que l'écriture a = bg + r est une division euclidienne de a
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par b, dont g est le quotient et r le reste. Remarquez qu’on ne demande pas 'unicité
du couple (g,r).

1.1.9. Ezemples. — L’anneau Z est euclidien, la valeur absolue étant un stathme.
On a unicité du quotient et du reste si on travaille dans N, mais pas dans Z en général :
ainsi, 7=3-2+1=4-2—-1.

L’anneau k[T] est euclidien, le degré est un stathme, et on a ici unicité du quotient
et du reste, sans restrictions.

Lemme 1.1.10. — Supposons A euclidien. Il est alors principal.

Démonstration. — Choisissons un stathme euclidien ¢: A\{0} — N; il en existe un
par hypotheése. Soit I un idéal de A. Nous allons montrer que I est principal. Si
I = {0} alors I = (0) et I est principal. Supposons I non nul. L’ensemble ¢(7\{0}) est
alors une partie non vide de N, qui a donc un plus petit élément e ; soit a un élément
non nul de I tel que p(a) = e; nous allons montrer que I = (a), ce qui permettra de
conclure. Comme a € I on a l'inclusion (a) = I. Montrons U'inclusion réciproque. Soit
be I. Comme a est non nul on peut écrire b = ag + r avec r = 0 ou p(r) < p(a) =e.
Mais puisque 7 = b — aq et que a et b appartiennent a I, I’élément r appartient a
I; si r était non nul on aurait donc ¢(r) = e par choix de e, ce qui est exclu; par
conséquent 7 = 0 et b = aq. O

1.2. Propriétés des anneaux principaux. — On fixe pour ce qui suit un anneau
principal A.

1.2.1. Emistence des PGCD. — Soit (a;) une famille d’éléments de A. Puisque A est
principal, I'idéal };, a; A est égal a (d) pour un certain d appartenant & A (unique a
multiplication pres par un inversible). Chacun des a; appartient a ). a; A, donc est
multiple de d. Il résulte alors de que d est le PGCD des a;.

Notons que par sa construction d s’écrit >, A\;a; pour une certaine famille ()\;)
d’éléments presque tous nuls de A. Une telle écriture d = > \;a; est appelée une
relation de Bézout entre les a;.

1.2.2. Ezistence des PPCM. — Soit (a;) une famille d’éléments de A. Puisque A est
principal, I'idéal (), a; A est égal & (m) pour un certain m appartenant 4 A (unique &
multiplication prés par un inversible). Par définition un élément a de A est multiple
de m si et seulement si il est multiple de tous les a;. Autrement dit, m est le PPCM
des a;.

1.2.3. — Si (a;) est une famille d’éléments de A on dit que les a; sont premiers
entre euzr dans leur ensemble si le PGCD des a; est égal a 1 (attention : en disant ¢a
on commet un petit abus, puisque le PGCD n’est défini qu’a multiplication par un
inversible pres). Cela revient & demander que tout diviseur commun a tous les a; soit
un diviseur de 1, c¢’est-a-dire un inversible.

Comme 1 est toujours un diviseur commun a tous les a;, il résulte de [I.1.6] que les
a; sont premiers entre eux si et seulement s’il existe une famille (\;) d’éléments de A
presque tous nuls tels que >’ \;a; = 1.
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Le cas le plus fréquent sera celui d’une famille & deux éléments a et b; on dit alors
simplement que a et b sont premiers entre eux, sans rajouter I’expression «dans leur
ensembley ; celle-ci est utile a partir de trois éléments, pour éviter toute confusion
avec le cas des familles d’éléments deuz ¢ deux premiers entre eux.

Lemme 1.2.4 (Lemme de Gauss). — Soient a,b et c trois éléments de A.
Supposons que a divise be et que a est premier avec b. Alors a divise c.

Démonstration. — Comme a divise bc on peut écrire bc = ad pour un certain d dans
A. Comme a est premier avec b il existe une relation de Bézout au + bv = 1 entre a
et b. On a alors

¢ = c(au + bv) = acu + bev = acu + adv = a(cu + dv). O

Corollaire 1.2.5. — Soit r un entier = 0 et soient aq,...,a, des éléments de A.
Soit a un élément de A premier a chacun des a;. Il est alors premier a leur produit.

Démonstration. — Par une récurrence immédiate il suffit de traiter le cas ou r = 2.
Soit d un diviseur commun a a et ajas. Comme d divise a, tout diviseur commun de
d et a1 est un diviseur commun de a et a1, donc est inversible puisque a est premier
avec a1. Ainsi d est premier avec ai. Puisqu’il divise ajas, le lemme de Gauss assure
que d divise ay. C’est donc un diviseur commun de a et as ; comme a est premier avec
as, il en résulte que d est inversible. O

Corollaire 1.2.6. — Soient a et b deux éléments premiers entre eux de A. Le PPCM
de a et b est égal a ab.

Démonstration. — Le PPCM m de a et b est multiple de a, donc s’écrit au pour un
certain u. Il est multiple de b, si bien que b divise au. Puisque b est premier avec a,
le lemme de Gauss assure que b divise u ; Par conséquent ab divise au = m. Ainsi ab
divise m ; mais comme ab est un multiple commun de a et b, il est multiple de m. Il
s’ensuit que ab = m (& un inversible prés, ce qui suffit ici). O

Lemme 1.2.7. — Soit (a,,) une suite d’éléments de A tels que an+1 divise a, pour
tout n. Il existe alors N tel que a, soit égal a ay a multiplication par un inversible
pres pour tout n = N.

Démonstration. — Pour tout n notons I,, I'idéal engendré par a,,. Comme a,, 1 divise
an pour tout n, la suite des I, est une suite croissante d’idéaux de A. Leur réunion
I est donc un idéal de A, et est en conséquence de la forme aA pour un certain
a € A. Puisque a € I I’élément a appartient & I pour un certain N. On a alors pour
tout n = N les inclusions I = aA < Iy < I, < I, si bien que I,, = I = aA. Ainsi
aA = anA, et a g’écrit donc a,u,, pour un certain élément inversible u,, de A. On peut
des lors écrire a,, = au,! = ayuyu, ! pour tout n, ce qui permet de conclure. O

Corollaire 1.2.8. — Soit a un élément non nul et non inversible de A. L’élément
a posséde un diviseur irréductible.
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Démonstration. — On construit récursivement une suite (a,) de diviseurs non
inversibles de a par le procédé suivant. On pose ag = a. Supposons a, construit.
S’il est irréductible on pose a,+1 = a,. Sinon on choisit pour a,41 un diviseur de a,,
tel que ay/a,+1 soit non inversible (un tel diviseur existe par hypothese). L’élément
an41 de A divise alors a,, pour tout n, et le lemme[I.2.7)assure de ce fait que pour tout
n suffisamment grand, a,,/a,+1 est inversible. Mais cela entraine par construction que
an est irréductible pour n assez grand, ce qui acheve la démonstration. O

Nous allons maintenant énoncer le théoréme fondamental sur la décomposition des
éléments de A en produits d’irréductibles. Pour ce faire nous aurons besoin de la
notion suivante : deux irréductibles p et ¢ de A seront dit associés s’ils sont égaux a
multiplication pres par un inversible.

Théoréme 1.2.9 (Décomposition en irréductibles). — Soit a un élément non
nul de A. 1l existe un élément inversible € de A et une famille (p1,...p,) d’éléments
irréductibles de A (avec redondance possible) tels que a = epy...,p.. De plus cette
décomposition est unique «a permutation et inversibles présy : si a posséde une autre
écriture nqy . ..,qs de cette forme alors s = r et il existe une permutation o de
{1,...,7} telle que q,(;) et p; soient associés pour tout i.

Démonstration. — Commencons par l’existence. Si a est inversible il n’y a rien a
faire. Sinon a possede par le corollaire précédent un diviseur irréductible p;. Posons
ay; = a/py; on a a = a;p;. Si a; est inversible, on a terminé. Sinon a; posséde par
le corollaire précédent un diviseur irréductible ps. Posons as = a1/p2; on a alors
a = a1p1 = asgp1p2. Si ag est inversible, on a terminé. Sinon as possede par le
corollaire précédent un diviseur irréductible ps. Posons as = ag/ps...Le processus
s’arréte nécessairement & un moment, sinon on aurait une suite (a,) d’éléments non
nuls de A telle que a,41 divise a, et tels que a,/a,+1 soit non inversible pour tout
n, contredisant le lemme Autrement dit il existe 7 tel que a, soit inversible, et
'onaa=a.pi...pr.

Montrons maintenant 1'unicité. On raisonne par récurrence sur r. Si v = 0 alors
a = ¢ est inversible, donc ngq; . . . ¢s est inversible, donc chacun des termes de ce produit
est inversible. Un irréductible n’étant jamais inversible, s = 0 et le théoreme est
démontré. Supposons r > 1 et le résultat vrai pour » — 1. L’irréductible p; divise alors
7q1 - - - qs- Puisque p; est irréductible, un diviseur de p; est (& un inversible pres) ou
bien p; ou bien 1; par conséquent le PGCD de p; avec chacun des g; est ou bien p;, ou
bien 1. Si ce PGCD valait 1 pour chacun des g; alors p; serait premier avec ngq; ... gs
par le corollaire m (notez que comme 7 est inversible, p; est automatiquement
premier avec 1), ce qui est absurde puisque p; divise 7¢; .. .qs. Il existe donc j tel
que p; divise g;, et comme g; est irréductible le quotient o := ¢;/p; est inversible :
p1 et g; sont associés. Quitte & permuter les ¢; on peut supposer que j = 1. On a
alors ep1 ...,pr = Nap1qa . ..qs. Il vient epy ... p = Naqgs . . . qs (rappelons que A est
integre). L’hypothese de récurrence permet alors de conclure que s = r et qu’on peut
permuter les ¢; pour ¢ = 2 de sorte que g; soit associé a p; pour tout ¢ = 2, ce qui
acheve la démonstration. O
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1.2.10. Commentaires. — Supposons donné un systéme complet d’irréductibles &
de A, c’est-a-dire un ensemble d’irréductibles de A tel que tout irréductible de A soit
associé & un et un seul élément de 2. Le théoréme ci-dessus peut alors se récrire
comme suit : tout élément non nul a de A s’écrit de maniére unique a permutation
pres comme produit d’un inversible et d’éléments de P. Une autre facon de le dire est
que pour un tel a, il existe une unique écriture a = ¢ ]_[pe 5 P’ ou ¢ est inversible et
ol les v, sont des entiers presque tous nuls. On dit que v, est la valuation p-adique
de a.

Il peut étre commode de remarquer que ce résultat s’étend au corps des fraction
K de A : tout élément A de K* a une unique écriture sous la forme sl_[pe P DP
ou € appartient & A* et ou les v, sont des entiers relatifs presque tous nuls; on dit
encore que v, est la valuation p-adique de A. Un élément de K* appartient a A si et
seulement si sa valuation p-adique est positive ou nulle pour tout p.

Lemme 1.2.11 (Lemme chinois). — Soient ay,...,a, des éléments de A deux d
deuz premiers entre eux. Le morphisme d’anneaux naturel A — Af(ay) x --- x Af(a,)
(donné sur chaque composante par le morphisme quotient) induit un isomorphisme

Al(ay...ar) =~ Af(ar) x --- x Af(a;).

Démonstration. — Remarquons tout d’abord que si r > 2 alors a; est premier a
(ag...a,) par le corollaire Cette remarque couplée a un raisonnement par
récurrence sur 7 permet de se ramener au cas ou r = 2. Soit ¢ le morphisme d’anneaux
naturel de A vers A/(ay) x A/(az). Il induit un isomorphisme d’anneaux de A/ Ker ¢
vers Im ¢ ; il suffit donc pour conclure de montrer que Ker ¢ = (ajaz) et que ¢ est
surjectif.

Etudions tout d’abord Ker ¢. Un élément a de A appartient au noyau de ¢ si et
seulement si a est nul modulo a; et modulo as, c¢’est-a-dire encore si et seulement si
a est multiple de a; et de ay. Cela revient a demander que a soit multiple du PPCM
de a; et aq, qui est égal a ajas puisque a1 et as sont premiers entre eux . Ainsi
ker o = (ajaz).

Montrons maintenant que ¢ est surjective. Choisissons une relation de Bézout
aiuy + agug = 1. Soit x un élément de A/(a1) x A/(az). Choisissons «; et ag dans A
tels que x = (a7, @z). Posons y = ajasus + asaiu;. On a alors modulo a; les égalités
Y = Qiauz; = o7 puisque auz = 1 — a;u; = 1 modulo aq; et par symétrie des
arguments g = @z modulo ay. On a en conséquence p(y) = x et ¢ est surjective. [

Nous allons terminer cette section consacrée aux anneaux principaux généraux par
une breve étude des quotients A/(a).
Lemme 1.2.12. — Soit a un élément de A.

1. Pour tout b dans A, la classe b est inversible dans A/(a) si et seulement si b est
premier avec a.

2. Supposons a non nul. Alors les assertions suivantes sont équivalentes :
(i) A/(a) est intégre;
(i) a est irréductible ;
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(iii) A/(a) est un corps.

Démonstration. — Commengons par (1). L’élément b de A/(a) est inversible si et
seulement s’il existe v € A tel que Th = 1, c’est-a-dire encore tel que bv — 1 soit
multiple de a. Autrement dit b est inversible dans A/(a) si et seulement si il existe u
et v dans A tels que bv + au = 1, c’est-a-dire si et seulement si a et b sont premiers
entre eux.

Montrons maintenant (2). Supposons A/(a) intégre. L’anneau A/(a) est alors non
nul par définition, donc a n’est pas inversible. Soient maintenant b et ¢ deux éléments
de A tels que bc = a. Alors be = 0, donc par intégrité de A/(a) ou bien b = 0, ou bien
¢ = 0; autrement dit ou bien b est multiple de a, ou bien c est multiple de a. Mais
comme a est lui-méme multiple de b et ¢, cela revient a dire qu’ou bien b, ou bien ¢,
est égal & a a multiplication par un inversible pres. Par conséquent ou bien ¢ ou bien
b est inversible, et a est irréductible.

Supposons maintenant que a est irréductible. Il est alors non inversible, donc A/(a)
est non nul. Nous allons monter que c’est un corps, c’est-a-dire que tout élément non
nul de A/(a) est inversible. Soit donc b € A tel que b soit non nul, c’est-a-dire tel que
a ne divise pas b. Comme a est irréductible, le PGCD de a et b vaut ou bien a ou
bien 1 (& inversible pres). Puisque a ne divise pas b, ce PGCD vaut 1. Il résulte alors
de (1) que b est inversible.

11 est enfin immédiat que si A/(a) est un corps, il est intégre. O
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2. Premiéres propriétés spécifiques de Z

A partir de maintenant nous travaillerons essentiellement sur Z. C’est un anneau
euclidien donc principal, et il vérifie par conséquent les propriétés générales établies
du chapitre précédent.

2.1. Généralités. — L’anneau Z présente d’emblée quelques spécificités (au sein
des anneaux principaux) faciles & mettre en évidence et que nous allons décrire.

2.1.1. — La multiplication de Z présente la particularité d’étre essentiellement
une notation abrégée pour la répétition de ’addition, alors que dans les anneaux
généraux les deux lois sont totalement découplées. Il en résulte qu’un sous-groupe de
7 est automatiquement stable par multiplication par n’importe quel élément de Z.
Autrement dit, les sous-groupes de Z sont exactement les idéaux de Z. Cette propriété
est héritée par les anneaux quotients Z/nZ.

2.1.2. — Le groupe Z* est {—1,1}. L’orbite d’un élément de Z sous l'action
multiplicative de Z* contient donc au plus deux éléments (et {0} est la seule qui
n’en contienne qu’un), et exactement un élément positif ou nul. Tout idéal de Z (ou
tout sous-groupe de Z) est donc de la forme nZ pour un unique n € N.

De méme, tout irréductible de Z est associé a un unique irréductible strictement
positif. Les irréductibles strictement positifs de Z sont traditionnellement appelés les
nombres premiers. Nous noterons désormais & ’ensemble des nombres premiers. Un
irréductible de Z est donc de la forme +p avec p € . Tout élément de N\{0} s’écrit
de maniére unique & permutation pres comme produit d’éléments de £2.

2.1.3. — Soit n € N. Si n = 0 Panneau Z/nZ est naturellement isomorphe & Z et est
donc infini. Supposons n > 0. Par division euclidienne tout élément de Z possede une
unique écriture sous la forme an + b avec a dans Z et b € {0,...,n — 1}; il s’ensuit
que Z/nZ est 'ensemble {@}o<a<n—1, €t que les @ pour a € {0,...,n — 1} sont deux &
deux distincts. Par conséquent, Z/nZ est de cardinal n.

2.1.4. Indicateur d’Euler. — Pour tout entier n > 1, on note ®(n) le nombre
d’entiers entre 0 et n — 1 qui sont premiers a n. Par ce qui précede et en vertu
du lemme c’est aussi le cardinal du groupe (Z/nZ)*. On dit que ®(n) est
Iindicateur d’Euler de n, ou que ® est la fonction indicatrice d’Euler.

2.1.4.1. — Soient a et b deux entiers supérieurs ou égaux a 1 et premiers entre eux.
Le lemme chinois fournit un isomorphisme d’anneaux Z/(abZ) ~ Z/aZ x Z/bZ, qui
induit un isomorphisme de groupes de (Z/abZ)* vers (Z/aZ)* x (Z/bZ)*. Il en résulte
que ®(ab) = ®(a)®(b); on dit que la fonction ® est multiplicative. Attention a cette
acception de «multiplicative» en arithmétique : cela signifie que ®(1) = 1 et que ®
commute a la multiplication des entiers premiers entre euz.

2.1.4.2. — Soit m un entier strictement positif et soit p un nombre premier. Le seul
facteur premier de p™ étant p, un entier d est premier a p™ si et seulement si il n’est
pas multiple de p. Or il y a p™~! multiples de p entre 0 et p™ — 1, & savoir les pk
pour 0 < k < p™ ! — 1. Par conséquent il y a p™ — p™~! entiers premiers & p entre 0
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et p™ — 1. Autrement dit ®(p™) = p™ —p™~! = p™~1(p—1). Notez qu’en particulier
®(p) =p—1.

2.1.4.3. — Soit n un entier > 1. Ecrivons n = [[p}* ou les p; sont premiers et deux
a deux distincts, et ou les n; sont non nuls. En vertu de ce qui précede on a

on) =[[e@!) =] [p\" i = D).

2.2. Quelques faits a propos des nombres premiers. — Nous allons
maintenant énoncer quelques résultats spécifiques & Z portant sur les nombres
premiers.

Lemme 2.2.1. — Il existe une infinité de nombres premiers.

Démonstration. — 11 suffit de démontrer que pour tout ensemble fini £ de nombres
premiers il existe un nombre premier ¢ qui n’appartient pas a E. Soit donc F un
sous-ensemble fini de &. Si E est vide on peut prendre ¢ = 2. Si E est non vide,
posons r = 1 + ]_[peE p. L’élément x est > 1 car E est non vide. Il est donc non
inversible et admet deés lors un facteur irréductible ¢. Ainsi x est nul modulo ¢, mais
il est égal & 1 modulo p pour tout p € E. Par conséquent, q ¢ E. O

2.2.2. Commentaires. — Pour bien percevoir I'intérét du lemme ci-dessus, il faut
avoir conscience qu’il existe des anneaux principaux n’admettant qu’un nombre fini
d’éléments irréductibles (a multiplication prés par un inversible, toujours). Le cas le
plus trivial est celui d’un corps : un corps est principal (ses deux idéaux sont (0) et
(1)) et il n’admet aucun élément irréductible.

Mais donnons un exemple moins idiot, et trés utile en arithmétique. Soit p un
nombre premier. On note Z, I'ensemble des rationnels qui peuvent s’écrire a/b avec
b premier & p. C’est un sous-anneau de Q, et on peut démontrer (exercice!) qu’il est
principal et a (& inversible prés) un seul irréductible, & savoir p.

Il a donc fallu utiliser des propriétés spécifiques de Z pour montrer qu’il y a une
infinité de nombres premiers. Lesquelles ? Si vous lisez attentivement la preuve vous
verrez que ce qui a servi c’est 'existence d’une relation d’ordre compatible avec la
structure d’anneau pour laquelle tout nombre premier est > 0 et pour laquelle un
élément > 1 n’est jamais inversible. Remarquez que l'ordre usuel sur Q induit une
relation d’ordre sur Z,) compatible avec sa structure d’anneau, pour laquelle p > 0
et 1 +p > 1. Mais comme 1 + p est premier a p dans Z il est inversible dans Z,),
d’inverse 1/(1 + p). La preuve utilisée pour Z ne marche donc absolument pas pour

ZL(p).-

Lemme 2.2.3. — Soitn un entier > 1. Sin n’est pas premier, il posséde un diviseur
premier inférieur ou égal 4 /n.

Démonstration. — Supposons que n n’est pas premier. Il s’écrit alors comme un
produit pj ...p, de nombres premiers (non nécessairement deux & deux distincts)
avec r = 2. Si p; était strictement supérieur a 4/n pour tout indice ¢ on aurait alors
n>n" = \/ﬁz = n, ce qui est absurde. Il existe donc i tel que p; < 4/n, ce qui
acheve la démonstration. O
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2.2.4. — Le lemme précédent fournit ainsi une méthode théorique pour construire
tous les nombres premiers. Plus précisément, supposons avoir construit tous les
nombres premiers inférieurs ou égaux a un certain entier n. Alors pour savoir si n+1 est
premier il suffit de tester sa divisibilité par tous les nombres premiers déja construits
et inférieurs ou égaux a 4/n + 1. Mais méme si la borne y/n + 1 est bien meilleure que
la borne grossiére n 4+ 1 (qui est celle qui se présente si on applique directement les
définitions sans disposer de I'estimation fournie par le lemme ci-dessus), elle reste bien
trop grande pour que cet algorithme (le crible d’Eratosthéne) soit vraiment efficace.

2.2.5. Le but de ce cours. — Pour tout entier (ou méme tout réel positif) =, notons
7(x) le cardinal de ensemble des nombres premiers majorés par 2. Le premier objectif
de ce cours sera de démontrer le Théoréme des nombres premiers, qui assure que
mw(x) =~ ez duand z tend vers I'infini (ici log désignera toujours le logarithme
népérien, de base e).

Nous verrons ensuite le Théoréme de la progression arithmétique. Il s’énonce comme
suit : soient a et N deux entiers strictement positifs premiers entre eux; il existe une
infinité de nombres premiers égaux & a modulo N (notez qu’il est indispensable que a
et N soient premiers entre eux : s’ils ont un facteur commun d > 1 alors tout nombre
égal & a modulo N est multiple de d). Nous en verrons méme une version raffinée : si
l’on note (xz, N, a) 'ensemble des nombres premiers < x qui sont égaux & a modulo
N alors 6(x, N, a) quand z tend vers l'infini.

~ V) loze
2.2.6. Quelques commentaires sur la répartition des nombres premiers. — On voit
ainsi que la probabilité qu'un entier inférieur ou égal & x soit premier est (quand = est
grand) de ordre de 1/logx ; elle diminue donc avec z, mais trés lentement (elle est
divisée par deux quand z est élevé au carré). Donnons quelques valeurs numériques
arrondies (tirées de Wikipedia) :

x m(x) logz | a/m(x)
10 4 2.303 2.5
102 25 4.605 4
103 168 6.908 5.952

108 78 498 13.816 | 12.74
10° | 50847534 | 20.723 | 19.67

On peut trouver en ligne des listes impressionnantes de nombres premiers. Ainsi a
I’adresse

http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.php

figurent tous les nombres premiers inférieurs ou égaux a 108,

On dispose par ailleurs de méthodes permettant d’exhiber des nombres premiers
absolument gigantesques (mais «isolés» : quand ces méthodes fournissent un nombre
premier p, elles ne donnent en aucun cas la liste de tous ceux qui le précedent) ; le plus
grand nombre premier qu’elles ont permis d’obtenir a la date ou je rédige ce passage
(le 20 janvier 2026) est 2146279841 _ 1 (Pexposant 146 279841 est lui-méme premier)
qui possede 41024 320 chiffres en base 10, et a été découvert le 11 octobre 2024.
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2.2.7. Quelques commentaires sur le théoréme de la progression arithmétique. — Si
N est un entier strictement positif, il y a ®(N) classes d’entiers inversibles modulo
N, ou encore premiers a N. Et la version raffinée du théoréme de la progression
arithmétique que j’ai évoquée ci-dessus, couplée au théoreme des nombres premiers,
assure précisément que la probabilité qu'un nombre premier donné (disons non
diviseur de N) appartienne & une classe fixée d’entiers inversibles modulo N est
précisément 1/®(N). Les nombres premiers se répartissent donc de maniére uniforme,
sans préférence, entre toutes les classes d’entiers inversibles modulo N : par exemple
si vous prenez un nombre premier «au hasard» il a autant de chances de valoir 1,5,7
ou 11 modulo 12 (une sur quatre & chaque fois).

2.3. Compléments d’algébre. — La recherche de grands nombres premiers
demande évidemment en pratique de disposer de tests de primalité aussi efficaces
que possibles. Nous allons en présenter certains; mais pour les décrire nous allons
avoir besoin de quelques lemmes de théorie des groupes.

Lemme 2.3.1. — Soit G un groupe abélien et soient a et b deux éléments de G dont
les ordres respectifs m et n sont finis et premiers entre euzr. Le produit ab est alors
d’ordre mn.

Démonstration. — On a (ab)™ = a™™b™" = e puisque mn est multiple de 'ordre
de a et de l'ordre de b (la premiere égalité utilise le caractére abélien de G de maniére
essentielle). L’ordre d de ab est donc fini et divise mn. Il suffit pour conclure de
montrer que mn divise d.

On a (ab)? = e donc a?b? = e, 14 encore parce que G est abélien. Ainsi a® = b=¢
est un élément du sous-groupe H := {a) n{b) de G. Or comme H < {a) son cardinal
divise celui de {(a), qui est égal & m; et il divise celui de {b), qui est égal a n. Les
entiers n et m étant premiers entre eux, |[H| = 1 et H est trivial. Par conséquent
a® = b4 = e, et b? vaut également e. Il s’ensuit que d est multiple de I'ordre de a, &
savoir m, et de l'ordre de b, a savoir n ; il est donc multiple du PPCM de m et n, qui
vaut mn puisque m et n sont premiers entre eux. O

Lemme 2.3.2. — Soit G un groupe abélien fini et soit S un sous-ensemble de G. Il
existe un élément de G dont l'ordre est exactement le PPCM des ordres des éléments
de S.

Démonstration. — Soit m le PPCM des ordres des éléments de S. Ecrivons m sous
la forme | [ p}"* ot les p; sont des nombres premiers deux & deux distincts et les n; des
entiers strictement positifs. Fixons i. La valuation p;-adique de m est le supremum des
valuations p;-adiques des ordres des éléments de S. Il existe donc s; € S dont I'ordre
est de la forme p;“m; avec m; premier a p;. L’élément s;"* de G est alors d’ordre
p;*. En vertu du lemme précédent (et par une récurrence immédiate sur le nombre
de facteurs) l'ordre de s;' est égal & [[p)'?, c’est-a-dire & m.

O

Indiquons tout de suite un premier corollaire fondamental de ce résultat.
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Corollaire 2.3.3. — Soit K un corps (commutatif) et soit G un sous-groupe fini
de K*. Le groupe G est cyclique.

Démonstration. — Soit d l'ordre de G, et soit m le PPCM des ordres de tous les
éléments de G. Comme g¢ = 1 pour tout g € G l'entier m divise d; en particulier
m < d.

Pour tout g € G on a ¢™ = 1 puisque m est multiple de l'ordre de G. Le polynéme
X™ — 1 a donc au moins d racines dans K ; puisqu’il est de degré m il vient d < m;
comme on avait déja m < d on a finalement m = d.

Or le lemme précédent assure que G possede un élément d’ordre m, donc d’ordre

d. En conséquence, G est cyclique.
O

2.3.4. Le cas de F;. — Soit p un nombre premier. L’anneau quotient Z,/pZ est un
corps, que 'on note également IF,, — précisons que cette notation n’est utilisée que
lorsqu’on veut penser & Z/pZ comme & un corps. Le corps F,, est fini, de cardinal
p. Le corollaire précédent assure alors que [, est cyclique. Mais nous attirons votre
attention sur un point : si vous dévissez la preuve de ce corollaire vous verrez qu’elle
n’est in fine pas du tout effective, et qu’elle se contente de montrer abstraitement
existence d'un élément d’ordre (p — 1) dans S sans dire comment le construire.

On dispose cela dit d’un algorithme brutal pour exhiber un générateur de F. Il
est fondé sur la remarque suivante : si z est un élément de F;' qui n’est pas d’ordre
p — 1, il existe un diviseur strict d de p — 1 différent de p — 1 tel que z% = 1; en
choisissant un diviseur premier ¢ de (p—1)/d et en écrivant (p—1)/d = gm on a alors
z™d — z(®P=1)/2 — 1. Ainsi trouver un générateur de ) revient a trouver un élément
z de F tel que z(P=1/4 5oit différent de 1 pour tout diviseur premier ¢ de p — 1. Il
suffit donc de tester cette propriété lorsque x parcourt toutes les classes d’entiers de
2 a p—1 en s’arrétant dés qu’on trouve un = qui la satisfait.

Mais cet algorithme est en général lent. Nous allons montrer sur des exemples
comment procéder de maniére plus efficace.

Exzemple 2.3.5. — Nous allons exhiber générateur de FJ;, donc un élément d’ordre
22 (multiplicativement !). Soit z un élément de F35. On a 2?2 = 1 et donc (z?)!! = 1.
Il en résulte, 11 étant premier, que si 2 # 1 alors 22 est d’ordre 11. Supposons que
ce soit le cas; comme (—1) est d’ordre 2 il découle alors du lemme que (—x?)
est d’ordre 22.

11 suffit donc d’exhiber un élément = de Fyy tel que 22 # 1. On travaille modulo
23. Tentons notre chance avec 2. On a 22 = 4 # 1; par conséquent 4 est d’ordre 11 et
(—4) est d’ordre 22; c’est donc un générateur de F2.

Ezemple 2.3.6. — Nous allons maintenant exhiber un générateur de F3y. Ce groupe
est de cardinal 28, il s’agit donc d’exhiber un élément d’ordre 28. Si x appartient a
Fuy alors £28 = 1. Par conséquent (z%)7 = 1; comme 7 est premier, on en déduit que
x* est d’ordre 7 deés qu’il est différent de 1. On a aussi (z7)* = 1; il s’ensuit que 27 est
d’ordre 4 deés que (27)? est différent de 1, c’est-a-dire dés que 27 ¢ {1,—1} (puisque
X2 —1= (X —1)(X +1) a pour racines 1 et —1 dans le corps Fag).
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Utilisons ces remarques pour fabriquer un élément y d’ordre 7 et un élément z
d’ordre 4 dans FJy ; leur produit sera alors d’ordre 28 par le lemme

Pour fabriquer un élément d’ordre 7, tentons notre chance avec 2. On travaille
modulo 29. On a 2* = 16 # 1, si bien que 2* = 16 = (—13) est d’ordre 7.

Pour fabriquer un élément d’ordre 4, tentons encore notre chance avec 2. On a
2% =32 = 3, si bien que 27 =4-3 =12 ¢ {1, —1}. Ainsi 27 = 12 est d’ordre 4.

On en déduit que 2'! est d’ordre 28. On peut le calculer rapidement :

211 =2.210 =2.(252 =2.(32)2 =2.32 = 18.

Ainsi, 18 = (—11) est un générateur de Fy.

Mais on aurait pu procéder autrement en exploitant le fait que le méme entier (a
savoir 2) nous a permis de fabriquer un élément d’ordre 4 et un élément d’ordre 7.
On a en effet vu au cours de nos calculs que 2* # 1, et que 27 ¢ {1, —1}, si bien
que 24 # 1. Les deux diviseurs premiers de 28 sont 2 et 7, et I'on a (28/2) = 14 et
(28/7) = 4. Il s’ensuit (voir 'algorithme brutal décrit en [2.3.4) que 2 est d’ordre 28,
donc est un générateur de Fiy.

2.4. Critéres de primalité. — Nous nous proposons maintenant d’énoncer
différents critéres de primalité ou non-primalité.

2.4.1. Utilisation du petit théoréeme de Fermat. — Soit p un nombre premier. Puisque
F) est de cardinal p — 1 on a 2P~1 = 1 pour tout z € Fy (notons que le caractére
cyclique de F* n’intervient pas ici). Autrement si = est un entier compris entre 1 et
p — 1 alors 2P~ ! est égal & 1 modulo p : c’est le petit théoréme de Fermat.

Par contraposition si n est un entier tel qu’il existe a entre 1 et n — 1 pour lequel

a™ ! est différent de 1 modulo n alors n n’est pas premier.
Mais attention : il existe des entiers n qui ne sont pas premiers mais sont tels que
a™ ' = 1 modulo n pour tout a compris entre 1 et n—1 et premier & n; ¢’est ce qu’on

appelle les nombres de Carmichael, le plut petit d’entre eux est 561 = 3-11-17 (voir
les TD).

2.4.2. Le critére de Miller-Rabin. — Soit p un nombre premier impair. Ecrivons
(p—1) = 2"m avec m impair et 7 > 1. Soit @ un entier premier & p. On a a® ™ = 1; il
existe donc un entier s > 0 tel que a®> ™ = 1 et qui est minimal pour cette propriété

(notons qu’on a pour tout ¢ I’égalité a2ttm = (aztm)2 ; par conséquent a?m =1 pour
tout t = s).
Supposons que s > 0. Dans ce cas (la classe de) z := a2 '™ est un élément de

[, différent de 1 qui vérifie 22 = 1. Ainsi 2 est une des deux racines du polyndme
X2 —1=(X—-1)(X +1),et il est donc égal & —1.

On en déduit le critere de non-primalité de Miller-Rabin : soit n un entier impair,
écrivons (n—1) = 2"m avec m impair. S’il existe a premier a n tel que ™ # 1 modulo
n et a?'m £ —1 pour tout d entre 1 et m — 1 alors n n’est pas premier — on dit qu’un
tel a est un témoin de non-primalité de Miller-Rabin pour n.

Théoréme 2.4.8 (Critére de primalité de Lucas). — Soit n un entier > 2. Les
assertions suivantes sont équivalentes :
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(i) Uentier n est premier;

ii) pour tout diviseur premier q de n — 1 de n — 1 il existe un entier a, tel que
q
al”t=1et agnfl)/q # 1 modulo n.

Démonstration. — Supposons n premier. On sait que (Z/nZ)* est alors cyclique, de
cardinal n — 1. Soit a un entier premier a n dont la classe modulo n est un générateur
de (Z/nZ)* . Cette classe est alors d’ordre n—1 modulo n, si bien que a”~! = 1 modulo
n et que a®(™1/7 £ 1 modulo n pour tout diviseur premier g de n — 1 différent de
n — 1; Passertion (ii) est alors valable avec a, = a pour tout g.

Réciproquement supposons que (ii) est vraie. Pour tout ¢, notons e, l'ordre de a,
dans (Z/nZ)* (notons que a, est bien inversible dans Z/nZ puisque a~' = 1 modulo
n). Le lemme [2.3.2 assure Iexistence d'un élément a de (Z/nZ)* dont I'ordre d est le
PPCM des e,. Les égalités a)~' = 1 (dans Z/nZ) assurent que chacun des e, divise
n — 1, si bien que d divise n — 1. Et on ne peut avoir d différent de n — 1. En effet
sinon il existerait un diviseur premier ¢ de n — 1 divisant aussi (n — 1/d); écrivons
(n — 1) = dbg. On aurait alors (modulo n) les égalités

a((zn—l)/q _ agb _ (ad)b =1,
ce qui est absurde (la derniére égalité provient du fait que d est multiple de e,). Par
conséquent d = n —1; le sous-groupe de (Z/nZ)* engendré par a est alors de cardinal
n — 1, d’ot il résulte que (Z/nZ)* = (Z/nZ)\{0}, puis que Z/nZ est un corps, puis
que n est premier. O

2.5. La loi de réciprocité quadratique. — Nous nous proposons maintenant
d’établir un résultat majeur d’arithmétique, la loi de réciprocité quadratique. Ce
théoreme présente la particularité de posséder des centaines de preuves différentes,
souvent extrémement astucieuses ; elles reposent sur des calculs dont on ne saisit pas
bien le sens a priori, et qui donnent le résultat comme par miracle. Mais avant de
I’énoncer, nous allons commencer par introduire de symbole de Legendre.

2.5.1. — Soit p un nombre premier impair. L’application x +— 22 de F) dans lui-
méme est un morphisme de groupes, dont I'image est I’ensemble (IF;)2 des carrés de
[F. Son noyau est {x € IF;,:E2 = 1}, c’est-a-dire 'ensemble des racines dans [, du
polynéme X2 —1 = (X —1)(X + 1), qui n’est autre que {—1,1}. Puisque p est impair
L et (—1) sont deux éléments différents de F* et {—1,1} est donc de cardinal 2. II

s’ensuit que (F))? est de cardinal [F)|/2 = -1 (notez que cela a bien un sens puisque
p est impair).
2.5.2. — L’application x — %7 est un endomorphisme de groupes de F. Puisque

F est de cardinal (p — 1) on a pour tout x € F’ les égalités
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az) et qu’on appelle le symbole
p

. 1s p—1 N .
si bien que  — 22 peut étre vu (en vertu de ) comme un morphisme de F

dans {—1,1}, que 'on note traditionnellement z —

de Legendre.

x
Lemme 2.5.3. — Le symbole de Legendre F; — {—1,1},x <> est surjectif de
p
noyau (F))?.
Démonstration. — Soit H le noyau du symbole de Legendre. C’est ’ensemble des
—1
z € F) tels que z"T =1, c’est-dire encore I'ensemble des racines dans F, du polynéme
X5, Par conséquent |H| < %; pour montrer que H = (F;)Z il suffit donc de
démontrer que H contient (IF;)Q, puisque ce dernier est déja de cardinal p—;l. Soit
donc z € F. On a alors (sr,‘Q)I%1 = 2P71 = 1, ce qui montre Iinclusion souhaitée:
ainsi H = (F))?.
x
L’image de = — () a alors pour cardinal [F|/|(F))?| = 2; par conséquent le

symbole de Legendre est surjectif. O

Remarque 2.5.4. — L’expérience montre qu’il est commode d’étendre le symbole
de Legendre de deux fagons. D’une part, on le prolonge & F, tout entier en posant

0
<> = 0; d’autre part on peut le voir comme une fonction définie sur Z en posant
p

n n
() = > pour tout entier n, ou 7 désigne évidemment la réduction modulo p.
p

Ainsi étendu, le symbole de Legendre reste multiplicatif.

Lorsqu’on a fixé p sans ambiguité et qu’on travaille avec le symbole de Legendre
sur F,, on le voit comme & valeurs dans {—1,0,1} < F,. Si 'on travaille sur Z et
que p est susceptible de varier, on le voit comme a valeurs dans {—1,0,1} < Z. Ces
différences de point de vue n’ont guére de conséquences puisque la réduction modulo
p est injective sur {—1,0,1}.

Exzemple 2.5.5 (Le cas de (—1)). — Pour tout nombre premier impair p le symbole
1 _

de Legendre ( est égal a (—1)pTl et vaut donc 1 si % est pair, c¢’est-a-dire si p
p

vaut 1 modulo 4; et (—1) dans le cas contraire, c’est-a-dire si p vaut (—1) (ou encore
3) modulo 4.

Autrement dit (—1) est un carré modulo p si et seulement si p est égal & 1 modulo
4.

2.5.6. Brefs rappels en théorie des corps. — Pour le calcul du deuxieme cas
important de symbole de Legendre, a savoir (), nous aurons besoin du résultat
p

suivant sur la théorie des extensions de corps, qui nous servira également pour la
preuve de la loi de réciprocité quadratique : si k est un corps et si P est un polynome
non nul a coefficients dans k il existe une extension finie L de k dans laquelle P est
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scindé. Indiquons simplement qu’on le démontre par récurrence sur le degré de P, et
que le point clef de la démonstration est le suivant : si @ est un polynome irréductible
de k[X] alors k[X]/Q est une extension finie de k dans laquelle ) a une racine (a
savoir X).

Rappelons aussi que si p est un nombre premier, 1’égalité P! = 1 pour tout = de
) entraine que 2P = x pour tout = de F;, et méme en fait pour tout = de F;, puisque
0P = 0. Si L est une extension quelconque de F,, le polynéme X? — X a donc au moins
p-racines dans L, a savoir les éléments de F),. Puisqu’il est de degré p il s’ensuit que
ses racines sont exactement les éléments de IF}, et que celles-ci sont simples ; autrement
dit XP — X = HAGFPX - A

Enfin nous utiliserons le fait fondamental que dans un corps de caractéristique p
on a la formule (a + b)? = aP + bP; elle découle de la formule du bindéme et du fait
que (Z) est nul modulo p pour tout n tel que 0 < n < p.

2.5.7. Inversibles modulo 8. — Nous allons également avoir besoin de la description
de (Z/8Z)* . 1l est immédiat que ce groupe est égal a {1, —1, 3, —3}, et tous ses éléments
sont de carré égal & 1. Par conséquent si n est un entier impair alors n? —1 est multiple
de 8. Par ailleurs soient a et k deux entiers. On a (a+ 8k)? = a? + 16ak + 64k?, si bien

(a+8k)%—1 a?—1
8

% modulo 2. Il s’ensuit

que lorsque a est impair le quotient est égal a

qu'un entier impair n est égal & +1 (resp. +£3) modulo 8 si et seulement si ”28’ L est
pair (resp. impair).
Lemme 2.5.8. — Soit p un nombre premier impair. On a alors
2\ _ (_1)p28—1 B 1 sip==+1 modulo 8
p) "l =1 sip= 43 modulo8
Démonstration. — On commence par choisir une extension finie L de IF,, dans laquelle

existe un élément x tel que x* = (—1) (2.5.6)), ce qui entraine que 28 = 1 et donc que
x™ ne dépend, pour tout entier n, que de la classe de n modulo 8. Posons y = x +z 1.

On a
2

=@+ )V =2+ +2=21+2Y)+2=2
Ainsi y est une racine carrée de 2 dans L; 'autre est alors nécessairement (—y), et
2 appartient donc a (IE‘;)2 si et seulement si y € F,,. Remarquons que comme p est
impair, 2 est non nul dans [F,, si bien que y # 0.

Supposons que p = 1 modulo 8. On a alors 2P = x si bien que

Y=@+a W=aP+rP=xt+a ' =y

Ainsi y? = y, et y appartient donc a IF),.
Supposons que p = —1 modulo 8. On a alors 2 = 2!, si bien que
yP = (:E—Hb*l)p —aP 4+ P=z+z =y
Ainsi y? = y, et y appartient donc a [Fp.
Supposons que p = 3 modulo 8. On a alors 2P = 2% = —x~1 (puisque 2* = —1), si
bien que y? = (z +2 )P =aP + 2P = —27! —x = —y. Or (—y) # y puisque y # 0
et que 1 # (—1) (car p est impair). Ainsi y? # y, et y n’appartient donc pas a F,,.
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Supposons que p = —3 modulo 8. On a alors 2P = 273

= —x (puisque 2 = —1), si
bien que y? = (z + 2 )P = 2P + 7P = —x — 2~ ! = —y. Il s’ensuit comme ci-dessus
que y? # y, et y n’appartient donc pas a F,,.

Compte-tenu des rappels faits en[2.5.7] ceci achéve la démonstration du lemme. [J

Commentaires 2.5.9. — La fin de la preuve utilise de maniére essentielle la
caractéristique p & travers la formule (a + b)? = aP + bP. Mais le premier calcul
qu’on y fait vaudrait dans un corps et méme un anneau quelconque : il montre en fait
que si A est un anneau et x un élément de A tel que 2* = —1 (ce qui force x & étre
inversible) alors (z + 27 1)? = 2 dans A. Vous aviez d’ailleurs stirement déja croisé
cette égalité, sans probablement qu’elle vous soit présentée ainsi : vous savez bien en
effet que dans C on a e'™* 4 e~ /4 = 2cos /4 = /2.

Théoréme 2.5.10 (Loi de réciprocité quadratique). — Soient p et ¢ deux
nombres premiers impairs distincts. On a alors

)= ().

Démonstration. — Choisissons une extension K de F, dans laquelle le polynéme
P:= X1+ X724+ ..+ X +1 aune racine a (2.5.6). Puisque (X —1)P = X* 1
on a a* = 1; par ailleurs P(1) = £, et £ est non nul dans le corps K qui est de
caractéristique p; ainsi, a est une racine primitive /-ieme de 'unité

Comme a’ = 1 le morphisme n — a” de Z dans K* passe au quotient par ¢Z

et induit donc un morphisme de groupes de F;, dans K* que nous noterons encore

x — a®. On pose alors
T xr
= -] a”.
v=2 (e)
z€lF,
Notons que la somme est indexée par Fy, mais vit dans le corps K qui est lui de
X
caractéristique p; dans cette somme le symbole de Legendre (Z) doit étre interprété

comme étant & valeurs dans {0,1, -1} c F,,.
2.5.10.1. Montrons que y> = (—1)%5. —Ona

EEERCIOLS

2
(x,t)eF;

INGICHIE

uelF, [ zeF,

le passage a la seconde ligne se faisant en posant u = = + ¢t. Pour alléger les notations
x\ [u—z

on pose Sy = D .cp, <Z) ( 7 ) : on a donc y2 = D ek, Sud®.
Calculons tout d’abord Sp. On a

22 OF)-3(F)-F ()

z€F, z€Fy
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2

T
Or pour tout z € Fy la quantité <€> est égale a 1 si x est non nul et a 0 sinon. Par

conséquent Sy = <_€1> (£—1).

Soit maintenant © un élément de IE‘Z. On a

z€eF,
B f uUu—x
RS

-1 _

SICIoIC=

TEL,
_ (ux1—1>

;ce]F;< ¢ .

Or comme u est non nul, Iapplication = +— uz~! — 1 définit une bijection de F;* sur
F\{—1}; la somme ci-dessus se récrit donc

5 @O-50]-(3)

zelFy,x#—1 zelF,

Si z € Fy alors (%) est nul si z = 0, vaut 1 si z appartient a (F,)?, et (—1) si =

appartient au complémentaire de (F,)? dans F . Mais (F,*)? et son complémentaire

4

X A . N . —1 . 4 LN .
dans [F; ont le méme cardinal, a savoir 5= ; en conséquence Zmem ( g) =0, ce qui

entraine que
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On a dés lors

u€elfy
= So+ ), Sua®
uel )
1 -1 "
- (F)en-(F) 2

ou lavant-derniére égalité provient du fait que P(a) = Zf;lo a™ est nul par choix de

o -1
a, si bien que >, _j a" = —1.

2.5.10.2. Montrons que yP~! = (%) — On a les égalités

pos|

x€lfy

2 ()

zely

yp

x
Or comme p est impair et comme (Z) appartient & {0,—1,1} pour tout = on a

T\P T . . .
(7) = (7> quel que soit z appartenant a Fy. Il vient

4 14
, - B 6

x€elF,
P\ (2N L,
) (z ()
_ Z % %P
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ol nous avons utilisé les faits suivants : p est non nul et donc inversible dans Fy (et
le p~! de la seconde ligne désigne I'inverse de p dans Fy) ; tout élément de {—1,1} est
son propre inverse, d’ou le passage de la seconde a la troisieme ligne; et x — xp est
une bijection de Fy sur lui-méme, d’ou le passage de la quatriéme & la cinquieme ligne
(on pose t = px).

On a donc y? = (%) y. Or y est non nul puisque y? = (—1)2%16 2.5.10.1) et que
¢ est non nul dans le corps K qui est de caractéristique p; il vient y?~! = (%)7 ce

qu’on souhaitait établir.

2.5.10.3. Fin de la démonstration. — L’égalité y* = (—1)%6 vue en[2.5.10.1fassure

2
que y est un élément de F, < K, et (y a donc un sens — mais attention : on ne
p

2 2
peut pas écrire <y> = <y) = 1 pour la bonne raison que y appartient a K, mais
p p

pas a priori a !

On a alors
(%) w1 (25.10.9)
= 07
y?
- (%)
£—1
—-1)7=¢
- <( )= ) @.5.10.1)
=1
- 5) G)
p p
p=1 =1 [ ¥
= (=)= = (=),
7= ()
ce qui acheve la démonstration. O

Remarque 2.5.11. — Le calcul fait en [2.5.10.1| n’utilise absolument pas le fait que
le corps K est de caractéristique p. Par conséquent, dans n’importe quel corps K dans

. 14 =1 5 T\ o .
lequel existe un élément a tel que »; — a™ = 0, la somme erm (7) a® est une racine

l
carrée de (—1)2%16.
lustrons cette observation par un exemple concret. Ona F; = {-3,-2,—-1,1,2,3}
et les carrés de F5 sont donc 1,4 et 9, soit encore 1,2 et —3. Le nombre complexe

e?™/7 est une racine primitve 7-éme de P'unité, donc il annule X® + X%+ .. 4+ X +1.
Par conséquent (%) est égal a 1sixze{1,2,-3}eta (—1)sixze{-2,—1,3}, et

e~ G +T _ 6—4171'/7 _ 6—2171'/7 + e2im+7 + e41,7r/7 _ e6z7r/7
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est une racine carrée de (—1)%7 = —7 (par contre la méthode ne dit pas si c’est iv/7
ou —i\/7).

. 37N« s
Ezemple 2.5.12. — Montrons comment calculer rapidement 97 a laide de la

loi de réciprocité quadratique (et sans chercher & appliquer la définition directe, qui
requerrait de calculer 37%% modulo 97).

On a
g _ (_1)18-48 % _ %
97 37 37)°
On a 337 = 111 si bien que 97 = (—14) modulo 37. Par conséquent
0T\ _ (1) _(1y(2)(T
37)  \ 371 ) \37)\37)\37)°
-1 2
0 =(-D¥ =1, et <) est égal & (—1) car 37 = 40 — 3 est égal & (—3)

"\s7) T 37
modulo 8. En conséquence on a finalement

ﬂ = l :7(71)3-18 ﬁ - _ ﬂ - _ 2
97 37 7 7 7)°
2
Et comme 7 est égal & (—1) modulo 8 le symbole <7> est égal & 1 (ce qu’on pourrait

voir directement en remarquant que 2 = 32 modulo 7!), si bien que (97> = —1;

ainsi, 37 n’est pas un carré modulo 97.
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3. Le théoréme des nombres premiers

Cette longue section va étre consacrée a la preuve du théoréme des nombres
premiers. Celle-ci repose sur des méthodes analytiques, mais un certain nombre de
préliminaires algébriques vont étre nécessaires.

3.1. Caractéres d’un groupe abélien fini. — Nous allons tout d’abord étudier
une construction trés générale de théorie des groupes, qui est extrémement utilisée,
et pas uniquement en arithmétique.

3.1.1. Structures sur les ensembles de morphismes de groupes. — Soient G et H
deux groupes. En général ’ensemble Hom (G, H) des morphismes de groupes de G
vers H n’a pas de structure algébrique intéressante : c¢’est un simple ensemble (avec
tout de méme si I'on veut, un élément particulier qui est le morphisme trivial g — e,
mais rien de plus).

Supposons maintenant que H est abélien. Soient ¢ et ¢ deux morphismes de
groupes de G vers H. Notons ¢y 'application g — ¢y de G vers H. L’application
o est un morphisme de groupes. En effet, soient g et ¢’ deux éléments de G. On a
alors

e(g9") = wlgg)¥(99")
= o(g)p(g)b(g)(g)
= p(9)v(9)e(g)¥(d)
= pY(9)ey(d),

ou la troisieme égalité provient du caractére abélien de H (la premiére et la derniére
découlent de la définition de @1, et la seconde du fait que ¢ et 1) sont des morphismes).

On vérifie alors sans probléeme que le produit (¢,v) — ¢y fait de Hom(G, H)
un groupe abélien; le neutre est le morphisme trivial g — e, et l'inverse de ¢ est

e li=g—p(g)7L

Définition 3.1.2. — Soit G un groupe abélien fini. On appelle caractére de G un
morphisme de groupes de G dans C* ; ’ensemble des caracteres de G est noté @; en
vertu de G a une structure naturelle de groupe abélien ; nous dirons que c’est
le groupe des caractéres de G.

Remarque 3.1.3. — Soit GG un groupe abélien fini et soit n son cardinal. Si x est un
caracteére de G alors x(g)™ = x(¢") = x(e) = 1 pour tout g € G. Ainsi tout caractére
de G est en fait a valeurs dans le groupe pu, des racines de 'unité, qui est fini; il
s’ensuit d’ores et déja que G est fini.

Exzemple 3.1.4. — Soit n un entier > 1. La propriété universelle de Z/nZ assure que
pour tout groupe H, la formule ¢ +— (1) établit une bijection entre Hom(Z/nZ, H)
et {h € H h" = e}. Lorsque H est abélien, il résulte de que Hom(Z/nZ,H) a
une structure naturelle de groupe abélien, et {h € H,h™ = e} est un sous-groupe de
H ; on vérifie alors sans difficulté que la bijection ci-dessus entre Hom(Z/nZ, H) et
{h € H,h™ = e} est un isomorphisme de groupes.
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En prenant H = C* on en déduit que Z/nZ est isomorphe via x — x(1) au
sous-groupe u, de C* constitué des racines n-iéme de 1’unité./C_e\ groupe lui-méme
est cyclique de cardinal n, engendré par €*™/". Il s’ensuit que Z/nZ est isomorphe a
Z/nZ, mais non canoniquement (il faut choisir un générateur de p.,).

Lemme 3.1.5. — Soit G un groupe abélien fini, soit H un sous-groupe de G et soit
X un caractére de H. Il existe exactement [G : H] caractéres de G prolongeant x.

Démonstration. — On raisonne par récurrence forte sur l'indice [G : H]. Si celui-ci
vaut 1 alors H = G et l'assertion & montrer est triviale. Supposons [G : H| > 1 et
le résultat vrai pour les indices < [G : H]. Puisque [G : H] > 1 il existe un élément
g de G qui n’appartient pas & H. Soit H' le sous-groupe de G engendré par H et g;
c’est 'ensemble des éléments de G de la forme g"h avec ne Z et h € H.

3.1.5.1. Les prolongements de x a H'. — Le quotient H'/H est fini et engendré
par g; son cardinal m est 'ordre de g. Nous nous proposons de montrer qu’il y a
exactement m caractéres de H' prolongeant x.

Posons hg = ¢ ; puisque ¢g"" = e, I'élément hy de G appartient a H ; soit &
Pélément x(hg) de C*.

Observons tout d’abord que si 6 est un caractére de H’ prolongeant y alors
nécessairement

0(9)™ = 0(9™) = 0(ho) = x(ho) = ¢.
Ainsi, 0(g) est une racine m-iéme de £. Remarquons aussi que si ¢ est une racine
m-iéme de &, il y a au plus un caractére § de H' prolongeant x tel que 6(g) = ¢ :
pour un tel 6 on aura en effet nécessairement 6(g"h) = ("0(h) = ("x(h) pour tout
(n,h) e Z x H.

Comme 1’élément £ de C* a exactement m racines m-iemes dans C*, il suffit en
vertu de ce qui précede, pour établir que Y admet exactement m prolongements a H’,
de prouver que toute racine m-ieéme ¢ de £ il existe un caracteére 6 de H' prolongeant
x et prenant la valeur ¢ en g. Fixons donc une telle .

L’application 7w: Z x H — G, (n, h) — ¢g™h est un morphisme de groupes d’image
H'. Montrons que son noyau est 'ensemble E des couples de la forme (km, hy k) avec
k € Z. On a pour tout k € Z ’égalité

m(km, hg®) = g"™hg® = hEhg* = e,

ce qui montre que E < Ker w. Réciproquement, soit (n, h) € Ker 7. On a alors ¢"h = e,
et donc g" = h™!. Ceci entraine que g" = e dans le groupe quotient H'/H, ce qui
signifie que m divise n. Ecrivons n = km. On a alors h = ¢~ = g+ = hgk, et
(n,h) appartient donc & E. Ainsi F = Kerm, et 7 induit dés lors un isomorphisme
entre (Z x H)/E et H'.

Soit maintenant 6 le morphisme de groupes de Z x H vers C* défini par la formule
O(n,h) = ("x(h). Pour tout k € Z on a O(mk, hg"*) = ¢™eF = ¢he=F = 1; ainsi
E c Ker#, et 0 passe donc au quotient par E. Au vu de ce qui précede 6 induit donc
un morphisme de groupes 6 de H' vers C*, et I’on a par construction

0(g"h) = 0(n(n, h)) = 0(n,h) = ¢"x(h)
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pour tout (n,h); ainsi € est un caracteére de H' qui prolonge x et prend la valeur ¢
en g.

3.1.5.2. Conclusion. — Le caractere x admet par ce qui précéde exactement [H' : H]
prolongements & H'. Et H’ contient strictement H, puisque g € H' et que g ¢ H. 1l
s’ensuit que [G : H'| < [G : H]. L’hypothése de récurrence assure donc que tout
caractére de H' admet exactement [G : H'] prolongements & G. Par conséquent y
admet exactement [G : H|[H' : H| = [G : H] prolongements a G. O

Théoréme 3.1.6. — Soit G un groupe abélien fini.
(1) Le groupe G a méme cardinal que G.

(2) Pour tout g # e dans G il existe x € G tel que x(g) # e.

Démonstration. — La restriction de tout caractére de G & {e} est égal au caractere
trivial e — 1. Or il résulte du lemme que le caractere trivial e — 1 admet
[G : {e}] = |G| prolongements & G. Ainsi |G| = |G|, d’ou (1).

Montrons maintenant (2). Soit g # {e} dans G. Le sous-groupe {g) posséde un
caractére non trivial ¢ : pour le voir on peut ou bien invoquer (1) qu’on vient de
prouver ou bien plus simplement (et donc plus élégamment) remarquer que {(g) est
cyclique, et citer 'exemple ; comme ¢ est non trivial et que g engendre (g), on
a ¢(g) # 1. En vertu du lemme ¢ admet [G : {g)] prolongements & G; il en
admet en particulier au moins un, ce qui achéve de prouver (2). O

Remarque 3.1.7. — On dispose en fait d’un résultat nettement plus fort que
I'énoncé (1) du théoréme ci-dessus : on peut en effet montrer que le groupe G est
isomorphe (non canoniquement en général) au groupe G. Cela fera objet d’un
exercice en TD; nous 'avons pour le moment simplement constaté lorsque G est

cyclique (exemple [3.1.4)).

3.1.8. Morphismes induits entre groupes de caractéres. — Soit f: H — G un
morphisme entre groupes abéliens finis. L’application x — yof de G vers H (attention
au renversement du sens) est un morphisme de groupes que nous noterons f On a
I/d; =1Idg et mg = fg o fl lorsque ceci a un sens. Si f est un isomorphisme fl’est
aussi et f~! = f—\l

Lorsque H est un sous-groupe de G et que f est 'inclusion de H dans G, le
morphisme f est simplement la restriction des caracteres Le lemme assure que
dans ce cas f est surjectif, et plus précisément que f L(x) est de cardlnal (G : H]
pour tout y € H.

Proposition 3.1.9. — Soit G un groupe abélien fini.
(1) Soit x un caractére de G. On a
_ 0 six#1
geG

ot l’on note 1 le caractére trivial g — 1.
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(2) Soit g un élément de G. On a On a

_ 0 sig#e
ZAX(Q) = { IG| sig=e
x€G
Démonstration. — Montrons d’abord (1). Si x =1ona X ox(9) =X ,cc1 =G|
Supposons x # 1. Il existe alors h € G tel que x(h) # 1. On a

Yixte) = D x(mx(h'g)

geG geG

= x(h) ), x(h™'g)

geG
= x(h) X} x(9),
geG
ol la troisiéme égalité provient du fait que g — h~'g est une bijection de G sur
lui-méme. Puisque x(h) # 1, il vient 3 - x(g) = 0.
Montrons maintenant (2). Si g = eona > ax(g9) = 2 a1l = |G| = [G], la
derniere égalité provenant du théoreme [3.1.6
Supposons g # e. Par le méme théoreme il existe alors ¢ € G tel que ¢(g) # 1. On

> x(g) > e(@) ™))

xeG xeG

= 0l9) > (¢ )

xeG

= 0(9) D] x(9),

xe@

ol la troisiéme égalité provient du fait que y — ¢~y est une bijection de G sur
lui-méme. Puisque ¢(g) # 1, il vient 3, s x(g) = 0. ]

3.2. Caractéres modulaires. — Apres ces généralités sur les caracteres d’un
groupe abélien fini, nous allons nous intéresser a ces derniers dans un contexte
arithmétique.

Définition 3.2.1. — Soit N un entier > 1. Un caractére de Dirichlet modulo N est
un caractére du groupe abélien fini (Z/NZ)*.

Commentaires 3.2.2. — Un caractére de Dirichlet modulo N est donc un
morphisme de groupes x: (Z/NZ)* — C*. On peut I’étendre comme on avait fait
pour le symbole de Legendre : on le prolonge tout d’abord en une application (notée
encore x) -de Z/NZ tout entier vers C, en posant x(xz) = 0 si z est non inversible.
Cette application reste multiplicative (si x est non inversible, zy est non inversible
pour tout y € Z/NZ, si bien que x(zy) = 0 = x(z)x(v)).

On peut aussi composer y avec la réduction modulo N et définir ainsi une
application n — x(7) de Z dans C, qu’on note encore y par abus, et qui est
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complétement multiplicative, c’est-a~dire que x(1) = 1 et que x(ab) = x(a)x(b) quels
que soient a et b (et pas uniquement lorsque a et b sont premiers entre eux). On peut
donc également définir un caractére de Dirichlet modulo N comme une application x
de Z dans C complétement multiplicative telle que x(n) ne dépende que de la classe
de n modulo N, et soit nul si et seulement si n n’est pas premier avec N. Et bien
entendu il suffit de se donner une telle application sur ’ensemble des entiers premiers
a N (il n’y a plus ensuite qu’a la prolonger en la décrétant nulle sur tout entier non
premier & N).

Ezxzemple 3.2.3. — Pour tout nombre premier impair p, le symbole de Legendre
n
n — | — | est un caractere de Dirichlet modulo p. C’est I'unique caractere d’ordre 2

de F;, c’est-a-dire encore son unique caractére non trivial a valeurs dans {—1,1}. En
effet si y est un tel caractére son image est {—1,1} et son noyau est donc de cardinal
(p —1)/2. Et 'on a par ailleurs x(z?) = x(z)* = 1 pour tout x de F), si bien que
Ker y contient (F))?. Comme ce dernier est de cardinal (p — 1)/2, le noyau de x est
exactement (FX)?; ainsi x () vaut 1 si « est un carré et (—1) sinon, ce qui veut dire

worio- (2)

3.2.4. — La loi de réciprocité quadratique va permettre de construire un exemple
plus sophistiqué de caractere modulaire d’ordre 2. Il sera commode pour ce faire
d’introduire les deux notations suivantes : pour tout entier impair a on notera ¢(a) la

classe modulo 2 de 251 et w(a) celle de ‘128—_1 (cf. .

On remarque que €(a) est égala 0sia = 1 modulo4 et a 1sia = (—1) modulo 4; on
a par conséquent pour tout couple (a, b) d’entiers impairs I'égalité £(ab) = £(a) +£(b).

On sait aussi que w(a) est égal & 0 si @ = £1 modulo 8 et & 1 si a = +3
modulo 8. Il s’ensuit aisément que l'on a pour tout couple (a,b) d’entiers impairs
Pégalité w(ab) = w(a) + w(b).

Comme (—1)™ ne dépend pour tout n que de la classe de n modulo 2, les expressions
(=1)5(@) et (=1)“(®) ont un sens pour tout entier impair a. Et 'on a alors pour tout
nombre premier p impair

(2)-crme () -

(la premiere égalité est la définition du symbole de Legendre ; la seconde est le lemme
2.5.8)).

Lemme 3.2.5. — Soit a un entier relatif non nul et sans facteur carré (c’est-a-dire
que vy(a) < 1 pour tout nombre premier p) ; posons N = 4|a|. Il existe alors un unique

caractére de Dirichlet modulo N noté x, tel que x.(p) = <a> pour tout p ne divisant
p
pas N. On x2 =1, et x, est différent de 1 dés que a # 1.

Démonstration. — Commencgons par 1'unicité. Soit . I’ensemble des entiers relatifs
premiers & N, et soit .#* son intersection avec N. Soit z € #*. 1l s’écrit | [p; ou



28 ANTOINE DUCROS

les p; sont des nombres premiers ne divisant pas N (non nécessairement deux a deux

K2

a
distincts), et I'on a alors nécessairement x,(z) = [ [ xa(pi) = [ ]; () Ceci montre
p

que Yo est uniquement déterminé sur . *. Mais il lest alors sur . tout entier : il
suffit en effet de choisir pour tout entier x de . un entier 2’ de .#* égal & x modulo
N, et de remarquer qu’on a nécessairement () = xq(2').

Montrons maintenant 1’existence, en nous inspirant de la formule exhibée ci-dessus.
Ecrivons a = (—1)*2" [[; ¢ ot u et v appartiennent & {0,1} et ot les ¢; sont des
nombres premiers impairs deux & deux distincts; posons b = [ | il

a
Pour tout entier € %, posons x,.(z) = [, <), ol [[p: est Iécriture de
pi

x comme produit de nombres premiers (non nécessairement deux a deux distincts)
ne divisant pas N. Il est immédiat que x, est une application compléetement

a
multiplicative & valeurs dans {—1,1}, prenant la valeur < pour tout nombre
p

premier p ne divisant pas N. Nous allons expliquer comment décrire y, par une
autre formule qui permettra de I’étendre naturellement en une fonction complétement
multiplicative de . vers {—1,1} et montrera que x,(x) ne dépend que de la classe
de x modulo N.

Soit donc « = [ [, p; un élément de .. On a

()
CIIENNE

(H(_l)w(m)> (H(_l)vw(m)> H(_l)s(pi)s(éj) <Izl)

i i 0. J

Xa(T)

I R O RN E RO B (Hz— Pi)
A

_ -1 ue(x)+ovw(x)+e(x)e(db) x
(-1 (7))

ou la troisieme égalité résulte de la loi de réciprocité quadratique et la derniére du
fait que € et w transforment les produits en somme.
On peut des lors étendre x, en une fonction définie sur . en posant

X
Y (1‘) _ (_l)us(m)Jrvw(m)Jrs(m)s(b) ()
a 1(:

pour tout z € .. C’est une application & valeurs dans {—1,1} qui est complétement
multiplicative puisque € et w transforment les produits en somme.

Soit z € .. L'élément x,(z) de {—1,1} ne dépend visiblement que des données
suivantes :
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Z_));

o si v = 1, la classe de  modulo 8 (via le terme w(x); notez que si la classe de
2 modulo 8 est connue, sa classe modulo 4 Vest a fortiori, et e(x) est deés lors
connu).

o pour tout i, la classe de z modulo ¢; (via le terme (

o si v =0, la classe de  modulo 4 (via le terme &(z));

Le lemme chinois assure alors que x,(x) ne dépend que de la classe de z modulo
40y ... L, siv =0 et modulo 81 ...4, siv = 1; autrement x,(x) ne dépend dans tous
les cas que de la classe de  modulo 4|a|, c’est-a-dire modulo N. Ains x, est bien un
caractére de Dirichlet modulo N, & valeurs dans {—1,1} et donc de carré égal & 1,

a
prenant la valeur () en tout nombre premier p ne divisant pas N.
p
Supposons maintenant que a # 1 et montrons que Y, est non trivial. Supposons

m

d’abord que r > 1, et fixons un entier m premier a ¢y tel que )= —1. Le lemme
1

chinois assure qu'’il existe un entier x égal & 1 modulo 8 (ce qui implique que w(x)

et e(x) sont pairs), & m modulo 41, et & 1 modulo ¢; pour tout j > 2. On a alors
Xa(x) = —1, si bien que x, est non trivial.

Supposons maintenant que r = 0, ¢’est-a-dire que a = (—1)*2¥ et que b = 1 (notez
qu’alors £(b) = 0) ; comme a # 1, les entiers u et v ne sont pas tous les deux nuls. On
a pour tout 2 premier & N D'égalité xo(x) = (—1) @) +vw(@),

Il n’y a plus qu’a distinguer trois cas :

o le cas (u,v) = (1,0), c’est-dire a = (—=1); on a x_1(x) = (=1)*®), si bien que

X-1(3) = —1;
o le cas (u,v) = (0,1), c’est-dire a = 2; on a x_1(z) = (—1)*@), si bien que
x2(3) = —1;

o le cas (u,v) = (1,1), c’est-dire a = (—2); on a x_1(z) = (—1)5®)+() i bien
que x—2(5) = —1.
Ainsi x, est 1a encore non trivial. O
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