PSEUDO-ABSOLUTE VALUES: FOUNDATIONS

ANTOINE SEDILLOT

ABSTRACT. In this article, we introduce pseudo-absolute values, which generalise usual
absolute values. Roughly speaking, a pseudo-absolute value on a field K is a map | - | :
K — [0, +00] satisfying axioms similar to those of the usual absolute values. This notion
allows to include "pathological" absolute values one can encounter trying to incorporate the
analogy between Diophantine approximation and Nevanlinna theory in an Arakelov theoretic
framework. It turns out that the space of all pseudo-absolute values can be endowed with
a compact Hausdorff topology in a way similar to the Berkovich analytic spectrum of a
Banach ring. Moreover, we introduce both local and global notions of analytic spaces over
pseudo-valued fields and interpret them as analytic counterparts to Zariski-Riemann spaces.
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INTRODUCTION
Motivations and background.

Arakelov geometry, adelic curves. Let us start by stating the following guiding principle.
Given a field K, together with a distinguished set of absolute values satisfying a product
formula, one can perform Diophantine geometry. The first occurrence of this principle is the
case of global fields. A turning point in this philosophy is due to the seminal work of Arakelov
[Ara74], which led to the development of many arithmetic analogues over number fields of
classical tools in algebraic geometry. Moreover, several other instances of this principle have
been studied in the literature (e.g., trivially valued fields, finitely generated extensions of Q,
infinite algebraic extensions of Q).

In [CM19], Chen and Moriwaki introduced an Arakelov theory over an arbitrary field. The
central object of the theory is called an adelic curve. Namely, an adelic curve is the data
S =(K,(Qv),(||wwea), where K is a field, (2, ) is a measure space and (] - |)weq is a
family of absolute values on K. Moreover, an adelic curve S is called proper if a product
formula holds (see [CM19], §3 for more details).

Adelic curves arise naturally in various number-theoretic situations, and we mention some
of them.

(1) Any global field, including function fields of arbitrary characteristic, can be naturally
equipped with an adelic structure whose parameter space is the set of places of the
global field equipped with the discrete o-algebra and the product formula is the usual
one.

(2) Any finitely generated extension of a base field can be equipped with an adelic
structure by choosing a polarisation of a birational model over the base field ([CM19],
§3.2.4). The parameter space is again equipped with the discrete o-algebra.

(3) A natural example of an adelic structure whose parameter space is equipped with a
non-discrete is the arithmetic variant of bullet (2) above. These are adelic structures
on finitely generated extensions of Q and come from polarised arithmetic varieties
(loc. cit., §3.2.6).

(4) More generally, any countable field can be endowed with an adelic structure ([CM21],
§2.7).

The formalism of adelic curves allows one to study all these examples in uniformly.

Most tools arising in classical Arakelov geometry have a counterpart in the world of
adelic curves: e.g. geometry of numbers, arithmetic intersection theory, Hilbert-Samuel
formula [CM19, [CM21l [CM24]. However, these results hold for adelic curves such that
either the parameter space is equipped with the discrete o-algebra or the underlying field is
countable. This observation is one of the motivation for this article, as we will explain in a
few paragraphs.

Nevanlinna theory and M -fields. Another instance of the guiding principle is encountered in
the analogy between Diophantine geometry and Nevanlinna theory. This analogy was first
observed by Osgood [Osg81] and further explored by Vojta in [Voj87]. Roughly speaking,
Nevanlinna theory can be seen as a generalisation of the fundamental theorem of algebra to
entire functions. It builds on two fundamental theorems. Through the analogy, the first one
corresponds to a suitable construction of a height function. The second one is seen as an
analogue of Roth’s theorem [Rot55].
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In [Gub97], Gubler introduced the notion of M-fields, with the idea of including Nevanlinna
theory in an Arakelov theoretic framework. More precisely, an M -field K is the data of a
field K together with a measure space (M, v) and maps defined v-almost everywhere

(ve M) lal, € Ry

for all a € K satisfying

(i) |a+0bly < |aly + ||, v-ae,

(ii) |a - bly = |aly - |b]y v-ae,

(iii) v+ log|c|, € L*(M,v) and |0], = 0 v-ae,
for all a,b € K and ¢ € K*. This definition is notably motivated by the following example in
Nevanlinna theory. Consider the field M(C) of meromorphic complex functions. Consider a
real number R > 0 and set Mp := {z € C: |z|c < R} where the boundary {z € C: |z]o =

R} is equipped with the Lebesgue measure and the open disc {z € C : |z|o < R} is equipped
with a counting measure. For any f € M(C), consider the map

[f(2)loo if |2]ec = R,
(Z S MR) — {e—ord(f,Z) if ’Z‘oo < R.

Note that the above map is well-defined everywhere except at poles of f on the circle of
radius R. Then one can check that we have a Mp-field M(C).

Using M-fields, Gubler obtains the construction of a height function for fields of arithmetic
nature, including the above example and thus generalising Nevanlinna’s first main theorem.

Remark. Since the notions introduced above will not be further used in the following
presentation, we exposed them very succinctly. For the interested reader, a more detailed
exposition can be found in the introduction of [Séd24].

Goal. Let us list several objectives, questions and issues that led to the present paper.

(1) Broadly speaking, the goal is to obtain a framework in the spirit of adelic curves
allowing to both include Nevanlinna theory and study possibly uncountable fields of
arithmetic interest.

(2) In the case of M-fields, it seems to be a complicated problem to obtain further results,
e.g. geometry of numbers. This is notably due to the fact that the "absolute values"
appearing are not well-defined everywhere.

(3) In the theory of adelic curves, the countability condition on the base field is imposed
by the fact that the parameter space is a measure space and various constructions for
adelic vector bundles thus force this countability assumption (cf. [CM19], §4 and §6).

(4) To address the two previous points, it is aimed to work with a topological parameter
space. To this purpose, the idea is to authorise "absolute values" with singularities.
These are the objects we introduce in this article.

(5) Equip our topological parameter space with extra analytic data to obtain meaningful
arithmetic applications using features in a similar spirit to the theory of global
Berkovich spaces initiated by [Poi07, [Poil0), [Poil3], [LP24].

This article focuses on bullet (4) above and its content is to be seen as the local aspect
of my PhD thesis [Séd24]. The content of §8| and [10| will initiate the implementation of
bullet (5). The global aspects, namely bullets (1)-(3) (cf. Chapters II-IV in loc. cit.) will be
introduced in subsequent work. Since the tools we introduce next have an intrinsic interest,
we decided to publish them in an independent paper.
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Before moving on to the precise content of this paper, let us elaborate a bit more about
the idea of working with a topological parameter space instead of a measure space. First,
one can remark that the parameter spaces appearing in examples of adelic curves in [CM19]
come from a topological space. Second, using (sufficiently nice) topological space allows the
use of topological notions, e.g. neighbourhoods, convergence, (equi)continuity... Concerning
the latter notion, it is worth mentioning the works [Voj21} [DZ25]. In these articles, the
authors address a generalisation of Roth theorem over a more general base than a number
field. In the first mentioned article, Vojta works over the aforementioned adelic structure
given by a polarised arithmetic variety. In the second paper, Dolce and Zucconi yield a class
of adelic curves over which the argument of Vojta can be extended. The main technical
difficulty encountered is to obtain an "equicontinuity property" relative to the adelic curve.
Although the authors work over a measure parameter space, such a property suggests some
underlying topological features of the parameter space. Although the current development
of our topological approach does not allow the analogue of such results, we hope that the
foundations presented in this paper will be helpful for the understanding of Diophantine
problems over more general base fields.

Content of the article. In this article, we introduce the notion of pseudo-absolute value.
Let K be a field. A pseudo-absolute value on K is a map |- | : K — [0, +00] satisfying

(i) |1] =1 and |0] = 0;

(ii) for all a,b € K, |a+b| < |a| + |b];

(iii) for all a,b € K such that {|a|, |b|} # {0,400}, |ab| = |a||b|.

This notion includes "pathological" absolute values that one encounters in the context of
Diophantine geometry or Nevanlinna theory, e.g. maps of the form (f € Q(7T')) — |f(0)|« €
[0,400] or (f € M(C)) — |f(2)|oo, for z € C. Moreover, if | - | is a pseudo-absolute value on
a field K, then A} := {a € K : |a|] < 400} is a valuation ring of K with maximal ideal is
m:={a € A:la| =0} and | - | induces a usual absolute value on the residue field A}.|/m,,.
In other words, pseudo-absolute values are the composition of a general valuation with a
(possibly Archimedean) absolute value.

The first appearance of pseudo-absolute values in the literature seems to be in ([Wei51],
§9). What we call pseudo-absolute values are called absolute values. In this seminal work, he
describes pseudo-absolute values as the composition of a valuation and a residue absolute
value.

In [Tem11], Temkin studies Zariski-Riemann spaces in a relative context. The notion of
semi-valuation or Manis valuation is central in the valuative interpretation of these Zariski-
Riemann spaces. Pseudo-absolute values can be seen as variants of semi-valuations where
the residue valuation is allowed to be Archimedean. In this article, we only limit ourselves to
the classical case where the algebraic morphism is just the inclusion of the generic point of
an integral projective scheme. Nonetheless, more general versions should be studied using
this point of view.

More recently, this notion has appeared in the context of Ben Yaacov-Hrushovski’s
framework of globally valued fields. They obtain several related facts to those proved
in that article (cf. the independent work [BYDHS24] by Ben Yaacov-Destic-Hrushovski-
Szachniewicz). More details will be given in the following of this introduction.

Using this interpretation, we obtain results on the behaviour of pseudo-absolute values
with respect to extensions of the base field as well as some "Galois theoretic" results, namely,
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we describe the action of the Galois group on sets of extensions of pseudo-absolute values
(. It is also possible to complete a field equipped with a pseudo-absolute value (§5)).
Note that in general, the completion is not canonical.

After that, we introduce the analogue of a normed vector space in the case where the base
field is equipped with a pseudo-absolute value (§6)). The generalisation of a norm on a vector
space is called a pseudo-norm and the latter can be described as the data of a free module
over the underlying valuation ring of the pseudo-absolute value together with a usual norm
on the extension of scalars of this free module to the completion of the residue field. In this
context, it is possible to generalise the usual algebraic constructions that are performed over
normed vector spaces (e.g. subspaces, quotients, duals, tensor products, exterior products,
direct sums). This step is necessary in view of developing slope theory in the global context
(cf. [Séd24], Chapter 3).

The core of this article consists of exploring the analytic geometry of spaces of pseudo-
absolute values. First, note that pseudo-absolute values are intrinsically related to multi-
plicative semi-norm on a ring: indeed, if |- | is a pseudo-absolute value on a field K, then | - |
induces a multiplicative semi-norm on the valuation ring A| = {a € K : [a| < +oo}. It is
possible to equip the space of pseudo-absolute values with a topology similar to that of the
Berkovich spectrum of a Banach ring [Ber90]. It turns out that the set of all pseudo-absolute
values on a field K behaves as the analytic spectrum of the Zariski-Riemann space of K,
namely the set of valuation rings of K, as suggested by the following result.

Theorem A. Let K be a field with prime subring k. Denote by Mg the set of all pseudo-
absolute values on K. Then the topological space My is non-empty, compact and Hausdorff.
Moreover, we have a specification map j : Mg — ZR(K/k) which is continuous and open,
where ZR(K/k) denotes the Zariski-Riemann space of K/k equipped with the Zariski topology.

This will be proved in Theorem except for the openness that is proven in Corollary
This shows that the space M is a choice of compactification of the set of usual
absolute values over K and plays the role of an analytic spectrum, the corresponding algebraic
space being the Zariski-Riemann space of K.

In §8}I0, we precise the idea of this "analytic Zariski-Riemann space" interpretation of
spaces of pseudo-absolute values.

In §8 we work locally, namely over a fixed pseudo-absolute value. Let v be a pseudo-
absolute value on a field K determining a valuation ring A and residue field k which is
equipped with an absolute value. We denote by & the completion of k w.r.t. this absolute
value. Let K'/K be a field extension. By a projective sub-model of K'/A, we mean an
integral projective A-scheme whose function field embeds in K’. We can attach to such data
a model local analytic space, defined as the Berkovich analytification of the extension of
scalars to K of the special fibre of X', namely (X ®4 k)*". We then have the following result.

Theorem B (Theorem and Corollary . Let v be a pseudo-absolute value on K
defining a valuation ring A with residue field k. Assume that A is universally Japanese (cf.
Ezxample . Let K'/K be a field extension. Let M, denote the set of all pseudo-absolute
values on K' extending v.

o We have a continuous map
M — ZR(K'/A).

o We have a commutative diagram of topological spaces
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Migry ——— lim (X @4 R)™

| Lo

ZR(K'/A) —=— lim X

where X runs over all projective sub-models of K'/A.
o Assume that v is an absolute value and that K is countable. Then the subset of
absolute values is dense in My ,,.

This result can be seen as an analytic counterpart to the usual algebraic description
of Zariski-Riemann spaces, namely the bottom homeomorphism in the above diagram. It
turns out that in the case where v is a usual absolute value, Theorem [B] can be viewed as a
birational counterpart to (|[Got24], Theorem 1.2).

To give a global counterpart to Theorem [B] Similarly to the local case, we first introduce
model analytic spaces. To do so, we have to specify an integral model of the base field,
which restricts the choice of relevant pseudo-absolute values. This leads to the notion of
integral structure ( Namely, an integral structure for a field K is a Priifer Banach ring
(A, ]| -]]) with fraction field K. It turns out that the Berkovich spectrum M(A, || - ||4) can be
interpreted as a closed subset of My . This notion allows in some cases to describe explicitly
some parts of spaces of pseudo-absolute values. The appearance of Priifer domains in the
theory is not surprising since they play an important role in the theory of Zariski-Riemann
spaces. Namely they characterise the so-called affine subsets of Zariski-Riemann spaces (cf.
e.g. [OIb21]).

Note that, in general, spaces of pseud-absolute values are difficult to fully describe. Integral
structures can be easier to explicit and we obtain a new example of a Banach ring for which
we can explicit the Berkovich spectrum (topologically and sheaf-theoretically) over which we
can perform Berkovich analytic geometry (§9.4.3)).

Using these integral structures, we define model global analytic spaces using the theory of
global Berkovich spaces introduced in [LP24] (§10). These spaces will be used notably in
the implementation of Nevanlinna theory in the global construction. We can now state the
global analogue of Theorem [B]

Theorem C (Theorem [10.2.3[ and Corollary [10.2.4). Let K'/K be a field extension. Let
(A, ]| - |la) be an integral structure for K such that (A,|| - ||) is a geometric base ring ([LP24],

Définition 3.3.8), e.q. (Z,|-|) or Fp. Let V) denote the set of all pseudo-absolute values on
K' restricting to an element of M(A,| - |l4)-

o We have a continuous map
Vi — ZR(K'/A).

If (A,|| - |]) is further assumed to be Dedekind analytic ([LP24], Définition 6.6.1),
then the map is open.
o We have a commutative diagram
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Vi —— lim, &

| I

ZR(K'/A) —=— lim,, X

where X runs over all projective, finitely presented flat sub-models of K'/A.
e Assume that K is countable. Then the set of absolute values is dense in My .

In Corollary we give a list of consequences of Theorem [C] that shed light on
the topological structure of spaces of pseudo-absolute values according to the context. In
particular, we obtain a description of the whole space of pseudo-absolute values over a field
as well as a description of the Archimedean part of the latter.

Future developments and relation with globally valued fields. We conclude the
introduction by making more precise the link between the results presented here and those in
[BYDHS24] and hinting at future developments. We have already mentioned that the authors
of loc. cit. also work with pseudo-absolute values. In particular, they obtain Theorem [A]
and (loc. cit., Propositions 1.5 and 1.6) is a special case of Theorem |C| Although our proofs
are essentially the same, in this article, we aimed to give a systematic description of the
"Zariski-Riemann space" structure of spaces pseudo-absolute values over an arbitrary base.
This description will be used in the sequel of this paper (cf. [Séd25] or [Séd24]) and in further
developments where we will study the sheaf theoretic properties of spaces of pseudo-absolute
values.

In the aforementioned sequel, we will introduce topological adelic curves, which addresses
bullet (4) of this introduction. Note that in ([BYDHS24], Theorem 7.7), the authors prove
that over a countable field, GVFs and proper adelic curves are essentially equivalent, namely
that a GVF structure determines a measure on the space of absolute values yielding a proper
adelic curve structure. If the countability assumption is removed, their result says that
a GVF structure determines a measure on the space of pseudo-absolute values yielding a
proper topological adelic curve structure. The goal of developing tools in the topological
adelic curve world that could also be used in the GVF world is a motivation for developing
the systematic study of pseudo-absolute values. In the countable case, let us mention the
recent paper [DHS24] which allows to hope for fruitful applications of such ideas.

Finally, let us mention that the development of Arakelov geometric methods over an
uncountable field allows to make use of the ultraproduct construction via the GVF-topological
adelic curves correspondence. Such ultraproducts could be used to define GVF structures that
could formalise Diophantine approximation and Nevanlinna theory similarly ([BYDHS24],
Example 11.12). In subsequent work, we will make this idea more precise and give applications
in Nevanlinna theory.
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during the elaboration of this paper. We also thank Keita Goto, Walter Gubler, Klaus
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CONVENTIONS AND NOTATION

e All rings considered in this article are commutative with unit.

e Let A be a ring. We denote by Spm(A) the set of maximal ideals of A.

e By a local ring (A, m), we mean that A is a local ring and m is its maximal ideal. In
general, if A is a local ring, the maximal ideal of A is denoted by m4.

e By an algebraic function field K/k, we mean a finitely generated field extension K/k.

e Let A be a ring and let X — Spec(A) be a scheme over A. Let A — B be an
A-algebra. Then we denote X ®4 B 1= X Xgpec(4) Spec(B).

e Let k be a field. We denote by | - |y the trivial absolute value on k. If we have
an embedding k < C, we denote by | - |« the restriction of the usual Archimedean
absolute value on C.

o Let (k,|-|) be a valued field. Unless mentioned otherwise and when no confusion
may arise, we will denote by % the completion of k w.r.t. | -|.

e Throughout this article, unless specified otherwise, all valuations are considered up
to equivalence.

o We assume the axiom of universes, which will allow taking inverse and direct limits
over collections.

1. PRELIMINARIES

1.1. Valuation rings and Priifer domains.

1.1.1. Rank, rational rank, composite valuations and Gauss valuations. Let V be a valuation
ring. We denote its value group by T'y := Frac(V)* /V*. Let V be a valuation ring with
fraction field K whose underlying valuation is denoted by v : K — 'y U {o0}.

e The rank of V is defined as the ordinal type of the totally ordered set of prime ideals
in V and is denoted by rank(V).

e The rational rank of V is defined by rat. rank(V') := dimg(I'y ®z Q) € NU {co}. In
general we have rank(V) < rat.rank(V) ([Bou75], Chap. VI, §10.2, Proposition 3).

Let us start by recalling the construction of composite valuations, as it is reminiscent of
the main object of this article.

Construction 1.1.1. Let V be a valuation ring with fraction field K, value group I' maximal
ideal m and associated valuation v : K — I' U {oco}. Let T be a valuation on the residue field
k :=V/m. Then ([Vaq06|, Proposition 1.12) implies that

V':i={a€V:v(a) >0}

is a valuation ring of K included in V. The valuation attached to V' is denoted by v' := vow.
In that case, the residue field of V' equals the residue field of v. Moreover, we have the
equalities

rank(v') = rank(v) + rank(v),

rat. rank(v’) = rat.rank(v) + rat. rank(v),
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as well as a short exact sequence of Abelian groups

0—T —I'"—T-—0,

where T', T denote respectively the value groups of 7,v’. In the particular case where I is
order isomorphic to Z" for some integer n € N5 (in that case rank(v) = n), then the above
short exact sequence splits and I" is isomorphic to I' x T’ equipped with the lexicographic
order.

Conversely, let (V/,m’), (V,m) be valuation rings of K whose valuations, resp. residue
fields, are denoted respectively by v/, v and ,x’. Then m NV’ is a prime ideal of V/ and
the quotient ring V7 := V’/(m N V') is a valuation ring of x. Denote by ¥ the corresponding
valuation. Then we have the equality v/ = v o 7.

Definition 1.1.2. With the notation of Construction the valuation v’ := v o T called
the composite valuation with v and .

Definition 1.1.3 (Gauss valuations). Let K be a field and x be transcendental over K. Let
v be a valuation of K with value group I'y and residue field x. Fix an extension of totally
ordered Abelian groups ¢ : I'y < T'y. Let a € K and vy € T's. Let P € K[x] of degree n. Write

n
P = Zcz(:c —a)’,
=0
where cg, ..., ¢, € K, and set
va(P) 1= min {u(e;) + i),

For any P/Q € K(X), where P,Q € K[z] with Q # 0, set v, (P/Q) = Vo (P) — vary(Q).
Then v, : K(X) — I't + Z~ defines a valuation of K(X) extending v. From ([Kuh04],
Lemma 3.10), if v is non-torsion modulo I'y, then v, 4 has value group I'y 4+ Z~ and residue
field k. Otherwise, v, has value group I'y +Z and its residue field is a purely transcendental
extension of transcendence degree 1 of x. Note that in both cases, v, is Abhyankar.

1.1.2. Connection to algebraic geometry : specialisation on a scheme. Valuation rings are
of particular importance in algebraic geometry. An illustration of this fact is the following
result.

Proposition 1.1.4 ([Sta23], Lemma 00PH). Let R be a Noetherian local domain which is
not a field. Let K := Frac(R). Let L/K be a finitely generated extension. Then there exists
a DVR V with fraction field L which dominates R.

Proposition 1.1.5. Let X be a locally Noetherian scheme and let x,x' € X be such that
x is a specialisation of x', namely x € {z'}. Then there exist a discrete valuation ring V
and a morphism Spec(V) — X such that the generic point of Spec(V) is mapped to x’' and
the closed point of Spec(V') is mapped to x. Moreover, for any finitely generated extension
K/k(x") we may choose V' such that the extension Frac(V')/k(x') is isomorphic to the given
extension K/k(x').

Proof. Let K/k(z") be a finitely generated extension, this induces ring morphisms Ox , —
k(z') — K. Now Proposition yields the existence of a DVR V with fraction field
K which dominates Ox ;. Therefore, the morphism Ox , — V yields the desired scheme
morphism Spec(V) — X. O
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Roughly speaking, Proposition [1.1.5| implies the fact that any specialisation of a locally
Noetherian scheme can be encoded through a discrete valuation ring. In general, we have no
information on the extension of residue fields of the special points. The following result gives
a partial answer in this direction.

Proposition 1.1.6. Let X be a locally Noetherian integral scheme and let x € X be a regular
point. Then there exists a valuation ring V. dominating Ox , with residue field x such that
Frac(V) = K(X) and k = k(x).

Proof. Since x is regular, there exist ai,...,a, € Ox, whose images in m, /mg are lin-
early independent over x(x) such that the maximal ideal m, of Ox . is (a1, ...,a,). More-
over, for any ¢ = 1,...,r, the image of a; is an irreducible element of the regular ring
Ox »/(a1,...,ai—1) which is a UFD, and thus is a prime element of Ox ,/(a1, ..., a;—1). This
yields a prime divisor D; C Spec(Ox z/(a1,...,a;—1)) and thus a discrete valuation v; of the
field Frac(Ox s/ (a1, ...,ai—1)). We now define a valuation v : Frac(Ox ) = K(X) — Zj,, by
sending any f € Ox, to (vi(f mod (ai,...,a;—1)))1<i<r- Then the valuation ring V' of v is
a rank r valuation ring of K(X) dominating Ox , with residue field x(z). O

Proposition 1.1.7. Let X be a locally Noetherian integral scheme over a field K. Assume
that there exists a proper birational morphism m : X' — X of K-schemes such that X' is
smooth. Then, for any x € X, there exists a valuation ring V' dominating Ox , with residue

field K such that Frac(R) = K(X) and k/k(z) is finite.

Proof. We may assume that € X is a closed point. Then, for any 2’ € 7=}(X’), 2’ is a
closed regular point of X’ and Proposition yields a valuation ring V C K(X') 2 K(X)
dominating Ox ,» with residue field x(z’). Since the extension x(z’)/k(x) is finite, we obtain
the desired property for V. O

Remark 1.1.8. In particular, Proposition holds when the base field is of characteristic
zero (cf. [Hir64]).

1.1.3. Priifer domains. Let A be an integral domain with fraction field K. A is said to be a
Priifer domain if, for any prime ideal p € Spec(A), the localisation A, is a valuation ring.
There are many characterisations of Priifer domains (see e.g. [FHP97], Theorem 1.1.1).

Proposition 1.1.9. Let A be a Priifer domain with fraction field K.

(1) Let V be a valuation ring of K containing A, and denote by m the mazximal ideal.
Then mN A is a prime ideal of A and V = Apna-

(2) Let L/K be an algebraic extension. Then the integral closure of A in L is a Priifer
domain ([ESO1], Chap. III, Theorem 1.2).

(3) An A-module is flat if and only if it is torsion-free ([Bou7b|, Chapitre VII, §2,
FEzxercices 12 et 14).

(4) A finitely generated A-module is projective if and only if it is torsion-free ([FS01],
Chapter V, Theorem 2.7).

(5) Assume that A is Bézout. Then any projective A-module is free (J[ESO1], Chapter VI,
Theorem 1.11).

(6) Let (A;)ier be direct system of Prifer domains with injective arrows. Then lim, A

is a Prifer domain ([FSO1], Proposition 1.8).
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Proof. By definition, Apyna = {a/b:a,b€ Aand b ¢ mnN A}. Thus Apna C Vin = V. Since
(mN A) C m, the inclusion Ayna — V' is a local morphism of local rings whose fraction fields
are K. From the fact that Ayn4 is a valuation ring, we get Apna = V. O

Example 1.1.10. (1) Any field is a Priifer domain.

(2) Any Dedekind ring is Priifer. Indeed, these are exactly the Noetherian Priifer domains
since they are locally discrete valuation rings, i.e. Noetherian valuation rings. In
particular, the ring of integers of a number field is a Priifer domain, and so is its
absolute integral closure (cf. Proposition [1.1.9] (2)).

(3) Let X be a (connected) Riemann surface. Then the ring O(X) of holomorphic
functions on X is a Priifer domain (it is a Dedekind domain if X is compact and
the non-compact case follows from [Roy56], Proposition 1). Moreover, it is a Bézout
domain.

(4) Let C C U be a connected Stein subset of a connected non-compact Riemann surface
U, namely C has a basis of Stein open subset neighbourhoods in U. Denote A = O(C')
the ring of germs of holomorphic functions on C'. It is an integral ring whose fraction
field K := M(C) is the field of germs of meromorphic functions on C. Then A is
Prifer. Indeed, for any Stein open set C C U’ C U, O(U’) is a Priifer domain and
A= hﬂO(U’), where U’ runs over the open sets U’ such that C C U’ C U. Hence
Proposition (6) implies that A is Prifer.

1.2. Application to rings of holomorphic functions. In this subsection, we recall useful
algebraic properties of rings of holomorphic functions that are studied throughout this article.
As we will be interested in non-compact Riemann surfaces and Stein subsets of such, we
limit the exposition to the latter.

Proposition 1.2.1. Let X be a non-compact Riemann surface.

(1) Any finitely generated ideal of A := O(X) is principal. Furthermore, any such ideal
I C A is prime iff it is mazximal iff any generator of I has exactly one zero, namely
I is the ideal of analytic functions vanishing at a point of X.

(2) If m is a mazimal ideal of A, then m is principal iff m is the kernel of a C-algebra
morphism 7w : A — C.

Proof. Let I = (f1,..., fn) be a finitely generated ideal of A. Denote d := ged(fy, ..., fn) € A.
Then there exist eq, ..., e, € A such that d = ey f1 + - + en fn, (cf. [Roy56], Proposition 1).
Therefore I = (d), i.e. I is principal. Then (1) is exactly Proposition 2 of [Roy56]. (2) is
Proposition 3 of [Roy56]. O

Proposition 1.2.2. Let X be a non-compact Riemann surface. Denote by A the ring of
holomorphic functions and by K the fraction field of A. Let | - | be an absolute value on K
such that A C {f € K : |f| <1}. Then || is either trivial or there exists z € X such that
| -| is equivalent to an absolute value of the form e~ °rd(:2),
Proof. Let |- | be such an absolute value, it is necessarily non-Archimedean. Denote by V'
the valuation ring of V' and by m the maximal ideal. The hypothesis ensures that A C V.
Then p :=mnN A € Spec(A) and A, is a valuation ring of K and the injection A, — V is
local. Therefore, we have A, = V.

Now assume that p does not contain any m,, for z € X, and is not (0). Let us show
that any element f in p has an infinite number of zeros. Assume that f has a finite
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number of zeros z1, ..., z,. By hypothesis on p, there exist fi,..., f, € p such that, for all
i=1,..,n, fi ¢ my,. Thus ged(f, f1,..., fn) = 1 € p, which gives a contradiction. Let
N = {f € A : f has a finite number of zeros}, it is a multiplicative subset of A. From
(IGil72], §13, Exercise 21), we get that the localisation Ay is a ring whose complete integral
closure is K. By the above remark, we have an inclusion Ay C Ap. Let S denote the
complete integral closure of Ay,. Then K C S C K and thus A, is not completely integrally
closed. Then ([ESO1], Chapter II, Exercise 1.12) implies that Ay is a valuation of rank greater
than 1. This contradicts the fact that A, is the valuation ring of an absolute value on K.
Therefore either p is (0) or there exists z € X such that m, C p. In the first case, we
get V=A, = K and |- | is trivial. In the second case, let z € X such that m, C p. Then
we have an inclusion Ay, C Ay of rank 1 valuation rings with fraction field K. Therefore

Ap = Ay, and |- | is equivalent to the absolute value e~ °r4(+2), O

Remark 1.2.3. Propositions and hold in the case of a compact Riemann surface
due to the Noetherianity of its ring of holomorphic functions and the description of absolute
values on a transcendence degree one extension of the trivial absolute value.

We now describe prime ideals of A = O(C), the ring of entire functions on C. For any
entire function f € A, denote by Z(f) the set of zeroes of f. For any ideal I C A, if
Nrer Z(f) # @, I is called fized. Otherwise, the ideal I is called free.

Proposition 1.2.4. Let p be a prime ideal of A.

(1) If p is fized, it is mazimal and of the form m, := {f € A: f(z) = 0} for some z € C.
(2) If p is a free mazimal ideal, then A, is a valuation ring of rank at least AR
(3) If p is free, it is contained in a unique (free) mazimal ideal m and

p* = ﬂ m*
n>0
is the largest non-mazimal prime ideal contained in m. Moreover, for any f € p, f
has an infinite number of zeroes.
(4) If p is free and m is the unique mazimal ideal containing p, then A/p is a valuation
ring whose maximal ideal m/p is principal.
(5) Assume that p is free. Then A/p is a complete DVR iff p = p*.

Proof. (1), (2) and (3) follow from ([Henb52], §3, Theorems 1-5). (4) is (loc. cit., Theorem 6)
and (5) is (loc. cit., Theorems 7 and 8). O

Remark 1.2.5. More generally, by looking at the proof of Proposition [1.2.4] one can prove
that the same conclusions as the above proposition hold by replacing A by the ring of global
analytic functions on a non-compact Riemann surface.

Let X be a complex analytic space. Denote by Oy its structure sheaf. Let A C X be any
subset. Then the space of germs of analytic functions on A is

[(4,0x) = lim T'(U, Ox),
UDA

where U runs over the open subset of X containing A. Conditions on A to study algebraic
properties of I'(A, Ox) can be found in [Fri67, [AII68] [Siu69l, Dal74].
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Proposition 1.2.6. Let R > 0 and let D(R) denote the closed disc of radius R in C. Then

the ring O(D(R)) of germs of holomorphic functions on D(R) is a principal ideal domain
(hence a Dedekind domain).

Proof. The fact that O(D(R)) is Noetherian is a consequence of ([Eri67], Théoreme 1.9), see
also ([Siu69], Theorem 1). O(D(R)) is a unique factorisation domain by ([Dal74], Corollary
to Theorem 1). Now Example (4) implies that O(D(R)) is a Noetherian Prifer domain,
hence is Dedekind. Moreover, a Dedekind unique factorisation domain is a principal ideal
domain. 0

Proposition 1.2.7. Let R > 0 and let D(R) denote the closed disc of radius R in C. Then

the maximal ideals of the ring O(D(R)) of germs of holomorphic functions on D(R) are of
the form m, :={f € O(D(R)) : f(z) =0}, for some z € D(R).

Proof. For any R’ > R, let D(R') denote the open disc of radius R’ and Ap := O(D(R'))
the ring of holomorphic functions on D(R’). Then we have an isomorphism

O(D(R)) = lim Ap,
R>R

where, for any R < R” < R’, we consider the inclusion Ar' C Agr. It follows that we have
an isomorphism of schemes

Spec(O(D(R))) = lim Spec(Ap).
R'>R

Let p = (pr/)r'>r € Spec(O(D(R))) be a non-zero prime ideal, namely, for any R’ > R,
pr € Spec(Ag) and, for any R < R” < R', prv N Arr = pr. Let us prove that, for any
R < R/, pp is fixed. Assume that pp is free and non-zero for some R < R’. Let f € pr/ ~{0}.
Then Proposition m (3) together with Remark imply that f has an infinite number of
zeroes written as a sequence (ay,)n>0. Discreteness of (ay)n>0 yields |an| —n—+co= R’. Now
for any R < R” < R/, pgrn is free. Thus the restriction of f to Ar~ yields a non-zero element
of prr, which has an infinite number of zeroes in D(R”) thus accumulating at the boundary
of D(R") which is included in the interior of D(R’). Hence we get a contradiction. Therefore,
for any R < R, pp is fixed and corresponds to some m. , := {f € Ap/ : f(zr/) = 0} for some

zr € D(R'). Since (pr/)r/>g is a projective system, we obtain that there exits z € D(R)
such that, for any R < R, we have zg = z. Conversely, for any z € D(R), m, is a maximal

ideal of O(D(R)). O

1.3. Models over a Priifer domain. Throughout this paragraph, we fix a Priifer domain
A with fraction field K.

Let X — Spec(K) be a separated K-scheme of finite type. By a model of X over A, we
mean a separated A-scheme X — Spec(A) of finite type such that the generic fibre of X is
isomorphic to X. A model X' of X over A is respectively called projective, flat, coherent, if
the structural morphism X — Spec(A) is projective, flat, of finite presentation. Note that if
X is a projective model of X, then X is projective.

If A is a valuation ring with residue field s, we denote by Xs := X ® 4 x the special fibre
of X. In general, for any y € Spec(A), we denote X, := X ®4 A, and by &, ; the special
fibre of X,.
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Let L be an invertible Ox-module. By a model (X, L) of (X, L) over A we mean the data
of a model X of X over A together with an invertible Oy-module £ whose restriction to the
generic fibre X isomorphic to L. A model (X, L) of (X, L) over L is respectively called flat,
coherent, if the corresponding model X of X over A is so. If A is a valuation ring, we denote
by L the restriction of £ to the special fibre Xs. In general, for any y € Spec(A), we denote
by L, the pullback of £ to X, and by L, s the restriction of £, to the special fibre of X,.

Proposition 1.3.1. Let L be a line bundle on a projective K-scheme X. Then there exists
a model of (X, L) over A.

Proof. First, assume that L is very ample. Denote by ¢ : X — P% a corresponding closed
immersion. Let X denote the schematic closure of X in Pj. Then & — Spec(A) is a model
of X over A and the pullback £ of Opr yields a model (X, L) of (X, L) over A.

In the general case, write L = Ly — Lo as a difference of very ample line bundles. The
above case ensures the existence of a model (X;, £;) of (X, L;) for i = 1,2. Let X denote the
schematic closure of X in X1 Xgpec(4) X2, it is a model of X over A. Then set £ := pjL1—p5La,
where p; : X — A&} denote the i-th projection. O

Remark 1.3.2. The projectivity assumption in Proposition [1.3.1] is superfluous: one could
only assume that the K-scheme X is proper. Indeed Nagata’s compactification theorem
furnishes a model X of X over A and one can extend L to a coherent sheaf on X which can
be made flat by Raynaud-Gruson’s flattening theorem ([RG71], Théoreme 1.5.2.2). We do
not detail the proof since we only consider the projective case in this article and refer to
(IGM19], §2.1) for the interested reader.

Proposition 1.3.3. We assume that A is a valuation ring with residue field k. Let X —
Spec(K) be a projective K-scheme and L be an invertible Ox-module. Let (X,L) be a
projective model of (X, L) over A.

(1) There exists a flat projective model (X', L") of (X, L) such that L' = Ly and the
special fibres of X' and X coincide.
(2) There exists a coherent projective model (X', L") of (X, L) such that
(i) X is a closed subscheme of X';
(ii) the special fibres of X' and X coincide;

(iii) £y = L.
(3) Assume that the restriction of L to every fibre of X — Spec(A) is ample. Then L is
ample.

Proof. Let Ox tors denote the torsion part of Oy as an Ogpec(a)-module. Then the closed
subscheme X’ of X defined by the ideal sheaf Ox tors is a projective model of X with special
fibre X" Xgpec(a) Spec(k) = X Xgpec(a) Spec(x). Moreover, the morphism X7 — Spec(A) is
flat since Oy is torsion free (cf. Proposition m (3)). By setting q > we conclude the
proof of (1).

(2) is (JCM21], Lemma 3.2.17), by noting that the proof does not use the fact that the
rank of the valuation ring is less than 1.

Let us prove (3). Let (X, L") be a model such that conditions (i)-(iii) of (2) hold. Since
X’ — Spec(A) is a proper and finitely presented and £’ is ample along the fibres, ([Gro65],
Corollaire (9.6.4)) gives the ampleness of £'. Thus £ = £/, is ample. O
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Proposition 1.3.4. Let X — Spec(K) be a projective K-scheme and L be an invertible
Ox-module. Let (X, L) be a projective model of (X, L) over A.
(1) We have an isomorphism H°(X,L) = HY(X, L) ®4 K.
(2) Assume that (X, L) is a flat model. Then the following hold.
(i) H°(X, L) is a flat A-module.
(ii) Let y € Spec(A), denote by X, the fibre of X — Spec(A) over p and by L, the
restriction of L. Then we have an injection HY(X, L) ®4 k — HO(X,, Ly).
(3) Assume that (X, L) is a coherent model. Then H°(X,L) is a finitely generated
A-module.
(4) Assume that (X,L) is a flat and coherent model. Then H(X,L) is a projective
A-module of finite type. In particular, if A is Bézout, then H°(X, L) is a free module
of finite rank.

Proof. (1) Since A — K is flat and X — Spec(A) is qcgs, (1) follows from the flat base
change theorem ([GW10], Corollary 12.8).

(2.i) Since X — Spec(A) is flat, we obtain that HO(X, L) is a torsion-free A-module. Now
Proposition m (3) implies that HY(X, £) is a flat A-module.

(2.ii) We first treat the case where A is a valuation ring with maximal ideal m and residue
field k. As f : X — Spec(A) is a flat, we have an exact sequence of Ox-modules

0—— fFmeL c L, 0

and thus an injection HO(X,L)/H(X,L ® f*m) — H°(Xs,Ls). Now m is a torsion-
free A-module, hence is flat. By the projection formula ([GW23], Proposition 22.81),
HY(X, L® f*m) 2mHY(X,L). As H'(X, L) is a flat A-module we have

HY(X,L)®a k= HY(X,L)/mH(X, L) — H(Xy, Ly).

We finally treat the general case. Let y € Spec(A) and denote by p, the corresponding
prime ideal of A. Then Ay, is a valuation ring and (X ®4 Ay, , L ®4 Ayp,) is a flat model of
(X, L) over Ay, whose special fibre coincides with Xs. As A — A, is flat, the previous case
combined with the flat base change theorem yields

HO(X,L) @4 k= (H (X, L) @4 Ap,) ®a,, k= H (X @4 Ay, L&A Ap,)) @a,, & H(X,, Ly),

which gives the conclusion.

(3) First mention that Priifer domains and valuation domains are stably coherent, namely
any polynomial algebra with finitely many indeterminates over a Priifer domain is coherent
(cf. [Gla89], Theorem 7.3.3 and Corollary 7.3.4). Since X — Spec(A) is projective and
of finite presentation, ([UII95], Theorem 3.5) implies that H°(X, £) is a finitely generated
A-module.

(4) Finally, (4) is a consequence of (2.i) and (3) together with Proposition (4)-(5). O

1.4. Zariski-Riemann spaces. Let K be a field and let k& be a subring of K (we do not
necessarily assume that k is a domain with quotient field K). Define the Zariski-Riemann
space of K /k, denoted by ZR(K/k) as the set of valuation rings of K containing k. The
set ZR(K/k) is equipped with a topology. It is defined as follows. For any sub-k-algebra
A C K of finite type, let E(A) denote the set of valuation rings on ZR(K/k) containing A.
Then the sets E(A), where A runs over the set of sub-k-algebra of finite type of K, form
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a basis for a topology on ZR(K/k), it is called the Zariski topology. There is a centre map
ZR(K/k) — Spec(k) sending any V € ZR(K/k) to my N k.

1.4.1. (Sub)-models. By a projective sub-model X of K/k, we mean a projective integral
k-scheme X whose function field K (X) embeds in K. Equivalently, a projective sub-model
of K/k is a factorisation Spec(K) — X — Spec(k), where the first arrow is schematically
dominant and the second is projective, i.e. a Spec(K)-modification of Spec(k) in the
terminology of [Tem11]. We define the domination relation between projective sub-models of
K /k as follows. Let X,Y be two projective sub-models of K/k. We say that Y dominates X
if there exists a k-morphism of schemes ¥ — X compatible with the schematically dominant
maps Spec(K) — X and Spec(K) — Y. The category of projective sub-models is cofiltered:
indeed given two projective sub-models Spec(K) — X; — Spec(k), Spec(K) — Xo —
Spec(k), let X be the Zariski closure of Spec(K) in X7 Xgpec(4) X2, this is a projective
sub-model of K/k dominating both X; and Xj.

By a projective model of K/k, we mean a projective sub-model X of K/k such whose
function field is isomorphic to K. The full subcategory of projective sub-models of K /k is
cofiltered and its morphisms are birational morphisms. Let us give a criterion of existence
for projective models. Since we will consider possibly non-Noetherian domains, we need the
following definition. An integral domain k is called Japanese if its integral closure in any
finite extension of its fraction field is a finite k-algebra. Moreover, we say that k is universally
Japanese if any finite k-algebra that is an integral domain is Japanese. In the literature,
universally Japanese Noetherian domains are called Nagata ([Sta23], Definition 032R), this
notion includes most of the rings coming from algebraic geometry.

Proposition 1.4.1. Assume that k is a universally Japanese integral domain. Then projec-
tive models of K/k exist iff K/Frac(k) is finitely generated.

Proof. By definition, a projective model K /k is a projective morphism X — Spec(k) with
K(X) = K, thus the field extension K/ Frac(k) is finitely generated. Conversely, there exists
Z1,...,Tn € K such that K/Frac(k)(x1,...,zy) is algebraic. Let X denote the normalisation
of P} in Spec(K). Since k is universally Japanese, the morphism X — P} is finite and X is
a projective model of K/k. O

The condition of being universally Japanese can be a bit more pathological in the non-
Noetherian setting. Let us list a few examples that will cover the cases of application of
interest for us.

Example 1.4.2. The following integral domains are universally Japanese (cf. [Sta23],
Proposition 0335/ and [Lyu25|, Theorem 7).

(1) Nagata rings, e.g. fields, Dedekind domain of characteristic zero, Noetherian complete
local rings and finite type ring extensions of such.

(2) A valuation ring of characteristic zero with divisible value group.

(3) The absolute integral closure of a Priifer domain.

1.4.2. Zariski-Riemann spaces as projective limits of sub-models. By the valuative criterion
of properness, for any V € ZR(K/k), for any projective sub-model X of K/k, there exists
a unique &y € X such that V' dominates Ox ¢,,. This defines a map ZR(K/k) — X which
is compatible with the domination relation. Hence we have a map d : V € ZR(K/k) —
(d(V))x € m X, where X runs over the projective sub-models of K /k. Moreover, one can
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define a structure sheaf on ZR(K/k). For any open subset U C ZR(K/k), define Ozg k/x)(U)
to be the intersection of the valuation rings V' € U. This defines a sheaf of rings on ZR(K/k)
such that (ZR(K/k), Ozr(k/k)) is a locally ringed space and the previously defined map d is
a morphism of locally ringed spaces.

Theorem 1.4.3. (1) The domination map d defined above is a homeomorphism.
(2) Let V € ZR(K/k). Then V is the union of the local rings Ox q(vy, , where X runs
over the collection of projective sub-models of K /k.
(3) The map d defined above is an isomorphism of locally ringed spaces.
Moreover, in the case where k is universally Japanese and K/ Frac(k) is finitely generated,
the conditions (1)-(3) hold for the map d' : (V € ZR(K/k) — (d(V))x € Hm X, where X
runs over the projective models of K /k.

X

Proof. The first three assertions are a consequence of ([Temll], Corollary 3.4.7). For the
remaining one, it suffices to remark that the full subcategory of projective models K/k is
cofinal in the category of projective sub-models of K/k. O

1.5. Berkovich spaces.

1.5.1. Banach rings. Recall that a Banach ring is a pair (A, || - ||4), where A is a ring and
|| - || is a (sub-multiplicative) norm on A such that A is a complete metric space. To such
Banach ring, Berkovich associated its analytic spectrum M(A,|| - |l4) defined as the set of
all multiplicative semi-norms on A which are bounded from above by || - ||. This space is
equipped with the pointwise convergence topology and is a non-empty compact Hausdorff
space ([Ber90], Theorem 1.2.1).

Example 1.5.1. (1) Let (K,|-]|) be a complete valued fields. Then (K, |-|) is a Banach
ring and the corresponding analytic spectrum is a one-point space.
(2) Let K be a field, let |- |, be a non-trivial absolute value on K. Denote by | - |ty the

trivial absolute value on K. Then ||-||nyb := max{]|-|, |- |triv} is @ norm on K such that
(K, - |lnyb) is a Banach ring. The norm || - ||y, is called the hybrid norm associated
to |- |. The corresponding analytic spectrum M (K, || - ||nyb) is homeomorphic to [0, 1]
via

(e €[0,1]) = |- | € MK, - [lnyb),

where |- % := | - |triv-

(3) The construction of (2) can be generalised to the case of a ring. Let A be an
arbitrary ring, let || - || be any norm on A. Denote by || - ||ty the trivial norm
on A, namely [|0|tiv := 0 and for any a € A\ {0}, we have ||a||tiy := 1. Define
| - [nyb := max{|| - ||| - [[triv}- Then || - ||nyb is a Banach norm on A. In this article,

such a norm is called a hybrid norm and the corresponding normed ring is called a
hybrid ring.

Definition 1.5.2. Let (4, | -||) be a Banach ring. We define the spectral semi-norm on A by

[flsn:| A — Rxo )
fo— infpens [|F5]5
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Theorem 1.3.1 of [Ber90] yields, for all f € A, the equality || f||sp = maxzepqcay|f(x)|. The
norm || - || is called uniform, and that (A, || - ||)is a uniform Banach ring, if || - || is equivalent
to the spectral semi-norm. In that case, | - ||sp is @ norm and we have a homeomorphism

MA - = MA - flsp)

induced by the identity on A. In practice, unless explicitly mentioned, when a ring A is
equipped with a uniform norm, we always assume that the norm is the spectral norm.

Proposition-Definition 1.5.3. Let (A, || - |) be a Banach ring. For any compact subset
VX =MAI|-|)), let

Sy :={a€A:VYzeV,al, #0}, K(V):=S, A

K(V) is called the set of rational functions without poles on V. Define a sheaf of rings Ox
as follows. For any open subset U C X. Denote by Ox(U) the set of maps

f:U— |_|E(a:)

zeU
such that
(1) for any x € U, f(x) € k(z);
(2) for any x € U, there exist a compact neighbourhood V of x in U and a sequence
(fi)ien of non-singular rational functions on V' such that || fiy — fillv —i—+00 0.

Then Ox defines a sheaf of rings on X such that (X, Ox) is a locally ringed space.

Proof. We refer to ([Ber90], Definition 1.5.1) and ([LP24], Définition 1.2.11 and Lemme
1.2.14). O

1.5.2. Analytification in the sense of Berkovich: completely valued field case. In this para-
graph, we fix a completely valued field (k,|-|).

Let X be a k-scheme. Its analytification in the sense of Berkovich, denoted by X?", is
defined in the following way: a point z € X" is the data (p, |- |;) where p € X and |- |,
is an absolute value on k(z) extending the absolute value on k. X?" can be endowed with
the Zariski topology: namely the coarsest topology on X?" such that the first projection
j : X® — X is continuous. There exists a finer topology on X?", called the Berkovich
topology: it is the initial topology on X®" with respect to the family defined by j : X*" — X
and the applications

|f| v — Rzo,
z — |fla

where U2 is of the form U?" := j~1(U), with U a Zariski open subset of X, and f € Ox(U).
Endowed with this topology, X" is a locally compact topological space. There are GAGA
type results: namely, X is separated, resp. proper iff X" is Hausdorff, resp. compact
Hausdorff. If X is a scheme of finite type, X" can be endowed with a sheaf of analytic
functions.

Let L be a line bundle on X. A metric on L is a family ¢ := (| - |,(2))zexan, where

Vo € X | |u(z) : L(z) = L ®oy R(x) — Rsg
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is a norm on the k(x)-vector space L(x). The metric ¢ is called continuous if for all U C X
open and for all s € H°(U, L), the map |s|, - U™ — R>q is continuous with respect to the
Berkovich topology.

Let ¢ be a continuous metric on a line bundle L. Let

Vse HYX,L), [slo= sup |slo(x) € Rao,
reXxan

it defines a seminorm on H°(X, L). Moreover, if X is reduced then || - ||, defines a norm on
H°(X,L). In general ([CM19], Proposition 2.1.16) implies that if a section s € H°(X, L)
satisfies ||s||, = 0, then there exists an integer n > 1 such that s®" = 0.

1.5.3. Analytification in the sense of Berkovich: global case. We now briefly recall the global
counterpart of the last paragraph. The relevant class of base global analytic objects are
the so-called geometric base rings (cf. [LP24], Définition 3.3.8 for more details). This class
includes many usual examples of Banach rings studied in analytic geometry (e.g. rings of
integers of number fields, hybrid fields, discretely valued Dedekind rings).

Let (A, -||) be a Banach ring. In ([LP24], Chapitre 2), the authors define the category of
analytic spaces over (A, || -||), which is denoted by (A, || - ||)-an.

Theorem 1.5.4 ([LP24], Corollaire 4.1.3, Lemme 6.5.1 and Proposition 6.5.3). Let (A, |- ||)
be a geometric base ring. Let X — Spec(A) be an A-scheme which is locally of finite
presentation. Then the functor

Sy :| (A -])—an —> Sets
Y +— Hom(Y,X)

is representable. The (A, || -||)-analytic space which represents ®x is called the analytification
of X and is denoted by X*". Moreover, if X is projective, then X*" is a compact Hausdorff
topological space.

2. PSEUDO-ABSOLUTE VALUES

In this section, we introduce the main object of this paper: pseudo-absolute values.

2.1. Definitions.

Definition 2.1.1. Let K be a field. A pseudo-absolute value on K is any map |- |: K —
[0, 400] such that the following conditions hold:
(i) [1] =1 and |0 = 0;
(ii) for all a,b € K, |a+b| < |a| + |b];
(iii) for all a,b € K such that {|a|, |b|} # {0, +00}, |ab| = |a||b|.
The set of all pseudo-absolute values on K is denoted by M.
Proposition 2.1.2. Let | -| be a pseudo-absolute value on a field K. Then Ay :={a € K :

la| # +oo} is a valuation ring of K with mazimal ideal m.| :={a € A : |a| = 0}. Further,
| - | induces a multiplicative semi-norm on Ay with kernel m,.|.

Proof. From (i), (ii), A and m|| are Abelian subgroups of K. From (i), (iii), A is an
integral subring of K and m| C A}, is an ideal.
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We show that A} is a valuation ring of K. It is enough to treat the A # K case. Let
z € KA. If [o71 = 4o, (iii) yield 1 = |1| = |& - 27| = 400, contradicting (i). Hence
27| # 400, ie. x7 € Ay,

We now prove that m| is the maximal ideal of A|. Let @ € A} /m |\ {0} and fix a
representative a € Aj) of @. Then a € A\X-I and a~! is a representative of @. Hence m| is the
maximal ideal of A||. The last statement is a direct consequence of (i) — (iii). O

Notation 2.1.3. Let K be a field.

(1) Let |- | be a pseudo-absolute value on K. We call
— A) the finiteness ring of | - |;
— my, the kernel of | - |;
Ky i= A /my| the residue field of v.
— vt K = Ty U{oo} the underlying valuation of | - |.
(2) By "let (]-], A, m, k) be a pseudo-absolute value", we mean that |-| is a pseudo-absolute
value on K with finiteness ring A, kernel m, residue field k.
(3) By abuse of notation, by "let v be a pseudo-absolute value" on K, we mean the
pseudo-absolute value (| - |y, Ay, My, Ky)-
(4) By abuse of notation, if v is a pseudo-absolute value on K, we denote by v : K —
I'y U {oo} the underlying valuation of | - |s.
(5) Let v be a pseudo-absolute value on K. The map |- |, : K — [0, 400] is uniquely
determined by the residue absolute value on the residue field x,, namely the absolute

value defined by |Z|, := |z| for all T € k,, where x,, denotes any representative of =
in A,. By abuse of notation, we shall denote by |- |, the residue absolute value. We
denote by k, the completed residue field, namely the completion of x, with respect
to the residue absolute value

Remark 2.1.4. The construction of Proposition can be reversed. Let A be a valuation
ring of a field K with maximal ideal m. Let | - | be a multiplicative semi-norm on A. Then
| - | can be extended to K by setting |x| = co if z € K \~ A. Then |- | : K — [0, +00] defines
a pseudo-absolute value on K with finiteness ring A and kernel m.

In the following, we shall implicitly use Remark and we shall often describe a
pseudo-absolute value by specifying the finiteness ring and the residue absolute value.

Definition 2.1.5. Let v be a pseudo-absolute value on a field K.

(1) The rank of v is defined as the rank of the finiteness ring A,. It is denoted by rank(v).

(2) Likewise, the rational rank of v is defined as the rational rank of the finiteness ring
A,. Tt is denoted by rat. rank(v).

(3) v is respectively called Archimedean, non-Archimedean, residually trivial if the residue
absolute value is Archimedean, non-Archimedean, trivial.

Remark 2.1.6. The notion of pseudo-absolute value is related to the notion of composite
valuations (cf. Definition . Indeed, a non-Archimedean pseudo-absolute value on a
field K is nothing else that the data of a valuation v of K with a specified decomposition
v =10 0w, where v’ is a (general) valuation of K and v is a rank one valuation of the residue
field of v'. Likewise, an Archimedean pseudo-absolute value on K is the "composition" of a
valuation of K with an Archimedean absolute value. Roughly speaking, a pseudo-absolute
value can be seen as the composition of a valuation with a "real valuation".
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2.2. Example of pseudo-absolute values.

Example 2.2.1. (1) Any usual absolute value |-| on a field K defines a pseudo-absolute
value with finiteness ring K and trivial underlying valuation.
(2) Let z € PL and € €]0,1]. Denote by | - |« the usual absolute value on C. Then the
map

||z | C(T) — [0, +00]
Po— P25
defines a pseudo-absolute value on C(T") denoted by v,  «, where P(c0) € P{. denotes
the evaluation in 0 of Q(T") := P(1/T). Its finiteness ring is A, := {f € C(T) :
ord(f,z) > 0}, its kernel is m, := {f € C(T') : ord(f, z) > 0}, and its residue field is
C endowed with the absolute value | - |S.

(3) Let K = M(U) be the field of meromorphic functions on a non-compact Riemann
surface U and denote by O(U) the ring of analytic functions on U. Then O(U) is a
Priifer domain (cf. §I.1.3). Let z € U, then the localisation A, := O(U)m, of O(U)
at the maximal ideal of functions on U vanishing in z is a valuation ring of K with
residue field C. For all € €]0,1], let v, (o € Mg be the pseudo-absolute value on K
with valuation ring A, and residue absolute value | - |<.

(4) Let K = Q(T) and let t € [0,1] such that ¢*™ € Q. Denote by m; the ideal of
Q[T generated by the minimal polynomial of €™, For all € €]0,1], let vt ¢ oo be the
pseudo-absolute value on K defined by

VP € QTTm;; | Pleco = [P(€*™)]o0,

where | - | denotes the usual absolute value on C.

(5) Let K be a field and (A, m) be a valuation ring of K. Then there is a residually trivial
pseudo-absolute value v 4 ¢riv whose finiteness ring is (A, m) and the residue absolute value is
the trivial absolute value on A/m. Conversely, all residually trivial pseudo-absolute values
arise this way.

2.3. Extension of pseudo-absolute values.

Definition 2.3.1. Let K'/K be a field extension. Let v = (| - |, A,m, k), resp. v =
(|-, A", m' k), be a pseudo-absolute value on K, resp. on K'. If |z|" = |z| for all z € K, we
say that |- | extends (alternatively is above) | - |. In that case, we use the notation v'|v.

Proposition 2.3.2. Let K'/K be a field extension. Let v = (| -], A,m,k), resp. v/ =
(|-, A", w' k), be a pseudo-absolute value on K, resp. on K'. Assume that v'|v. Then

(i) A’ is an extension of A, namely there is an injective local morphism A — A’;
(ii) the residue absolute value of |- | extends the one of |- |.

Conversely, given any extension A — A’ of valuation rings (of K and K' respectively)
endowed with multiplicative semi-norms with kernel the maximal ideal satisfying (ii), the
induced pseudo-absolute value on K' extends the induced pseudo-absolute value on K.

Proof. The first statement is a direct consequence of Definition Let o' = (|-, A", m’, K/),
resp. v = (| - |, A, m, k), denote the induced pseudo-absolute value on K’, resp. on K. Then
(it) yields |z|" = |z| for all x € A. If x € K \ A, then |z|' = +0o (otherwise z € AN K = A).
Hence the conclusion. (]
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Let SVF be the category defined as follows. An object of SVF is a field endowed with a
pseudo-absolute value and morphisms in SVF are given by the extensions of pseudo-absolute
values. Let VR be the category with objects valuation rings endowed with multiplicative
semi-norms with kernel the maximal ideal and with morphisms the extensions satisfying

conditions (i), (ii) of Proposition [2.3.2]
Proposition 2.3.3. The categories SVF and VR are equivalent.
Proof. It is a consequence of Remark (2) combined with Proposition [2.3.2] O

Remark 2.3.4. Proposition [2.3.3]allows to safely treat extensions of pseudo-absolute values
in the context of the category VR

3. ALGEBRAIC EXTENSIONS OF PSEUDO-ABSOLUTE VALUES

In this section, we study extensions of pseudo-absolute values with respect to algebraic
extensions of the base field. We first treat the separable case ( Then we extend the
results to arbitrary finite extensions (§3.2)). Finally, we introduce elementary Galois theory
of pseudo-absolute values (§3.3]).

3.1. Finite separable extension. In this subsection, we fix a finite separable extension
K'/K and a pseudo-absolute value v on K. We study extensions of v to L. Let A’ be the
integral closure of A, in K. ([Bou75], Chap. VI, §1.3, Théoréme 3) implies that A’ is the
intersection of all the extensions of A, to L.

Lemma 3.1.1. A’ is a semi-local ring.

Proof. Let m’ be a maximal ideal A’. One the one hand, we have m’ N A, = m and A’ is a
Priifer domain (cf. Proposition (2)). Hence A, is an extension of A, to L. On the
other hand, the set of extensions of A, to L is finite. Whence A’ is semi-local. O

For any m,, in the fibre of m/ of the morphism Spec(A’) — Spec(4,), let A := (A" )m,,
the localisation in m},. From ([Bou75|], Chap. VI, §8.6, Proposition 6), extensions of A, to
L are of the form A/, for w as above. For any such extension A, — A}, we have a finite
extension kK, — Ky, of residue fields.

Proposition 3.1.2. There is a bijective correspondence between the set of pseudo-absolute
values on L above v and the set of extensions of the residue absolute value of v with respect
to extensions of the form Kk, — Kku, where w runs over the set of mazximal ideals of A’.
Furthermore, we have the equality

o~

1 (Fuwyit Fols
2 o TSm0 2 -t W

My ESpm (A’ [l{w : KU]S

where, for all my, € Spm(A’), i runs over the set of extensions of the residue absolute value
of | - |v to Ky and Ky,; denotes the completion of Ky, for any such absolute value.

Proof. Remark gives the first assertion. We first assume that, for all m,, € Spm(A’),
the extension K, — Ky is separable. Then ([Bou75], Ch.V §8.5 Proposition 5) yields (I)). In
the case where Kk, — K, is not separable, denote by ¥ the separable closure of K, inside .
For any i|v, (JCM19], Lemma 3.4.2) allows to identify the completion &, with the separable
closure of k, inside ky;. Since we have an identification of the set of extensions of v to &y,
with the set of extensions of k, to &5, is obtained from the previous case. O
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3.2. Arbitrary finite extension. In this subsection, we fix a finite extension L/K. Let
K' denote the separable closure of K inside L. Then L/K’ is a purely inseparable finite
extension and we denote by ¢ its degree. Therefore, for all x € L, we have 27 € K’.

Proposition 3.2.1. Let v/ = (| - ', A,w', k") be a pseudo-absolute value on K'. Then
Ap :={x € L:x2%€ A’} is the unique valuation ring of L extending A’. Its mazximal ideal
ismy :={x € Ap : 29 € m'}. Moreover, the residue field extension k' — Ap/my is purely
inseparable and finite.

Proof. Let v’ : K/ — T be the underlying valuation of A’. Then (x € L) — (1/¢)v'(2?) is the
unique extension of v to L. The corresponding valuation ring is A, = {zx € L: 2% € A’} and
its maximal ideal ismy, = {z € L: 2?7 ¢ m'}. Let @ € Ar,/my and a € Ay, be a representative.
Then a? € A’ and represents a? € x’. Hence the conclusion. O

Corollary 3.2.2. Let v be a pseudo-absolute value K. Then the set of extensions of v to L
is in bijection with the set of extensions of v on K' described in Proposition [3.1.2,

3.3. Galois theory of pseudo-absolute values. Throughout this subsection, we fix a
field K.

Proposition 3.3.1. Let L/K be an algebraic extension. For all x € My, for all 7 €
Aut(L/K), the map

‘ : |‘r(x) Lo — [07+OO]
a +— |7(a)|s
defines a pseudo-absolute value on L denoted by x o 7. This construction defines a right
action of Aut(L/K) on M.

Proof. Let x € My, and 7 € Aut(L/K). Let us show that |- |.(,) defines a pseudo-absolute
value on L. Let a,b € L, by linearity of 7, we have

|(l + b”r(:c) = |T(a) + T(b)|$ < ‘a|7'(z) + |b|7'(x)
as well as |0]-(;) = 0 and [1];(;) = 1. Assume that {|a|-(y),[b|-@)} # {0, +00}. Then

|abl (@) = [7(a)7(0)|z = [7(a)[a[T(D)] = |alr(z)[blr(a)-
Hence | - |,z € ML. O

Lemma 3.3.2. Let L/K be a (possibly infinite) Galois extension with Galois group G. Let
B denote the integral closure of A in L. Then G acts on B and acts transitively on the set
of maximal ideals of B.

Proof. First, G acts on B since G stabilises A. Furthermore, we have inclusions A ¢ B¢ C
K = L% and elements of B are integral over A. Hence A = B as A is integrally closed.
When L/K is finite, ([Sta23], Lemma 0BRI) gives the conclusion. In the general case, note
that the set of maximal ideals of B is in bijection with the set of extensions of A to L. Hence
any maximal ideal of B is mapped to m via the morphism Spec(B) — Spec(A). We conclude
by using ([Sta23], Lemma 0BRK)). O

We shall use the following crucial result.
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Proposition 3.3.3 ((|[Efr06], Corollary 15.2.5), ([Sta23], Lemma 0BRK). Let L/K be a
normal extension. Let A’ be an extension of A on L and denote by m' its mazimal ideal and
k' its residue field. Then the extension k'/k is normal and the canonical homomorphism
{o € Aw(L/K) :o(w') =w'} — Aut(k'/k) is surjective.

Proposition 3.3.4. Let v = (] -|,A,m, k) be a pseudo-absolute value on K. Assume that
the residue field k is perfect. Let L/K be a Galois extension with Galois group G. Denote by
My, ., the set of extensions of v to L. Then G acts transitively on My, ,,.

Proof. First, remark that G acts on My, , as G stabilises K. Let wi = (| - [1, A1, mq1), we =
(|- ]2, A2, mg) € My, and denote by B the integral closure of A in L. Lemma m gives the
existence of ¢ € G such that o(m; N B) = mp N B. Hence the map

|“lo:| L — [0,+oq]
a — Jo(a)la

defines an element of M|, , with finiteness ring A; and residue absolute | - |,. Proposition
implies that the extension k; := (A1/my)/k is Galois. Hence there exists 7 € Aut(k1/k)
such that, for all @ € k1, |a|; = |a|, ([Neu99], Chapter II, Proposition 9.1). Furthermore,
there exists 7 € G lifting 7 and such that 7(m;) = m;. We then have

laly = [o(7(a))l2
for all a € K, i.e. v1 = o7(v2). O

Proposition 3.3.5. Let v be a pseudo-absolute value on K. Assume that Kk, is perfect and
trivially valued if char(k,) > 0. Let L/K be a Galois extension. Let ¢ € AS (the integral
closure of A, inside K°). Let P =T%+a T+ .- 4aq € A,[T] be the minimal polynomial
of ¢ over K and let L be the field of decomposition of P. Let O, := {aq, ...,aq} denote the
orbit of ¢ under the action of the Galois group of L/K. We fiz a choice wy := (|- o, Bo, Mo, ko)
of a pseudo-absolute value on L above v. Then

z|-

d

Doy

max |a;lo = max|c|, = limsup
w -
7j=1

1<j<d lv N—so0

v

Proof. As L/K is Galois, Proposition yields the first equality. We now prove the
second equality. The char(k) > 0 case being trivial, we assume that char(k) = 0. Let B
denote the integral closure of A, in L. Then Lemma [3.3.2] combined with the fundamental
theorem of symmetric polynomials yield, for all j € {1,...,d}, a; € B and 2?21 aé-v € A,.
From §3.1] B is a Priifer semi-local ring and denote by my,...,m, its maximal ideals and
respectively (B, my, K1), ..., (B, m,, k,) the corresponding localisations. For all i € {1,...,7},
for all j € {1,...,d}, denote by oTj(i) € k; the image of a; in x;. Then OTj(i) is a root of the
minimal polynomial of &%) over k., hence it is separable over x,. Hence, for all i € {1,...,7},
for all integer N > 0, the image of Z;l:l ajy € A, in k; is of the form

> ny(a; )N,
JjeJi

where J; C {1,...,d} is of cardinality d; := [k; : #,] such that for all j # j' € J;, a5 # ;71"
and for all j € J, n; is a non-zero integer in r,. Fixing an extension |- |; of | - |, to k;, we
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have
1 1

N N d

max |c|,, = max |oTj(i)|Z- = lim sup Z nj(oTj(i))N = Z nj(oTj(i))N = lim sup Z ozé»v

2|~

7 v J=1 v

where E; denotes the set of extensions (in the sense of usual absolute values) on |-|, to x;. The
first equality comes from Proposition (cf. ki/k, is Galois). The second equality comes
from Lemma below. Finally, the fact that, for all integer N > 0, 3=, ;. n; (@ N € gy

(as a symmetric functions of roots of F(i), the image of P in k,) provides the third and
last equalities. We can then conclude the proof using the description given in Proposition

5.1.2) U
Lemma 3.3.6. Let I be a field endowed with a (usual) absolute value | -|. We fiz an
extension of | - | to F' again denoted by | -|. Let {aa,...,aq} be a family of pairwise distinct

separable elements of F' and let {nq,...,nq} be a family of non-zero integers. Then

d ~

max |a, | = limsup njaly
je{l’“'»d} | J| N—~+oo ]Z::l I
Proof. The proof of ([CM19], Lemma 3.3.5) can be adapted mutatis mutandis replacing the
a;’s by the njo;’s. O

4. TRANSCENDENTAL EXTENSIONS OF PSEUDO-ABSOLUTE VALUES

Throughout this section, we fix a field K. We will address the problem of extending
pseudo-absolute values on K to transcendental extensions. Given study of transcendental
extensions of valuations, this is a quite complicated problem (cf. e.g. [Mac36, [Vaq06]).
Therefore, we will mostly give specific, yet important, examples of such extensions.

4.1. Purely transcendental extension of degree 1 and usual absolute value case.
Throughout this subsection, let K’ = K(X), where X is transcendental over K and let v be
a usual absolute value on K.

Let o' = (|-, A/, m’, k') be an extension of v to K’. Then by ([Bou75|], Chap VI, §10.3,
Corollaires 1-3), we have rank(v’) € {0,1}.

For the rank(v’') = 0 case, v’ is an absolute value on K’ extending v.

If rank(v) = 1, then ([Bou75], Chap VI, §10.3, Corollaires 1-3) yields tr.deg(x'/K) = 0
and v' is Abhyankar, thus A’ is a discrete valuation ring and there exists a closed point
x € P} such that A’ = {f € K’ : ord(f,2) > 0}. The residue absolute value of v’ is an
extension on v to the algebraic extension x'/K.

From the above description, we get the following result.

Proposition 4.1.1. Assume that K is complete with respect to the absolute value v and
denote by My, the set of extensions of v to K'. Then we have a homeomorphism.

1,an
My, 2 PR

where P}gan denotes the Berkovich analytification of Pk (cf. .

’
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Proof. From what is written above, we have a bijection M, — P}gan. It is continuous by
definition of the topologies and thus we can conclude by compactness of Mg, and IP)};&“. O
4.2. Composition with a valuation. Let K’/K be a field extension. Let 7 = (] - [, V, 7, )
be a pseudo-absolute value on K. Let V’/ be a valuation ring with fraction field K’ with
residue field K, denote by v’ the associated valuation of K’. For any a € V', denote by @
the image of @ in K. Then V := {a € V' : @ € V}. The results of imply that V' is a
valuation ring of K’ with residue field x.

Definition 4.2.1. Using the above construction together with Remark we obtain a
pseudo-absolute value v on K’ which is denoted by v = v’/ o ¥. v is called the composite
pseudo-absolute value with v’ and v.

Lemma 4.2.2. We use the above notation. Assume that K is a subfield of K'. Then the
pseudo-absolute value v is an extension of v to K'.

Proof. Since K ’L K is an extension, we have a section K — V/ — K. Thus, for any a € K,
we have |al, = |al. O

4.3. Extension by generalisation. Assume that K’'/K is an extension of algebraic func-
tions fields, namely K'/K is finitely generated. Let X — Spec(K) be a K-variety with
function field K(X) = K’, namely a model of K'/K. Let z € X be a non-singular point.
Then Proposition implies that there exists a valuation v of K’/K with valuation ring V'
dominating Ox , and residue field isomorphic to x(x). Let T; be a pseudo-absolute value on
#(z). Using Definition we obtain a pseudo-absolute value v, = vow, on K’. Moreover,
if k() is a subfield of K’, Lemma implies that v, is an extension of v, to K’. Note
that this is the case when x is a regular rational point.

Definition 4.3.1. We use the above notation. The pseudo-absolute value v, is called the
extension by generalisation (alternatively the extension through specialisation) of T, to K
w.r.t. the valuation ring V.

5. COMPLETION OF PSEUDO-VALUED FIELDS

Let K be a field and v be a pseudo-absolute value on K with residue field k. The goal of
this section is to construct a pseudo-absolute value (possibly on an extension of K) which
extends v and whose residue field is %, the completion of x w.r.t. the residue absolute value.
We make use of the notion of "gonflement" introduced by Bourbaki and which we recall (§5.1)).
Then we introduce (non-canonical) completion of a field with respect to a pseudo-absolute
value (§5.2)).

5.1. Gonflement of a local ring. We will use results from ([Bou75], Chap. IX, Appendice
2) we now recall.

Definition 5.1.1. Let (A, m) be a local ring with residue field x. An A-algebra A’ is called
an elementary gonflement (gonflement élémentaire in French) of A if either A’ is isomorphic
to the A-algebra A]X[:= A[X]nax) or there exists a monic polynomial P € A[X], whose
reduction in k[X] is irreducible, such that A" is isomorphic to the A-algebra A[X]/(P).
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Lemma 5.1.2. Let A be a local ring and v : A — A’ be an elementary gonflement of A.
Then A’ is local. We denote respectively by k., k' the residue fields of A, A’. Moreover, the
following assertions hold.

(1) The morphism v is flat, injective and local.

(2) The residue field extension k'/k is generated by a single element.

(3) The mazximal ideal of A generates the mazimal ideal of A’.

(4) If A is Noetherian, then so is A’.

(5) If A is a valuation ring, then so is A" and the value groups of A and A’ are equal. In
particular, if A is a DVR then so is A’.

Proof. We first consider the case where ¢ is finite, i.e. A’ = A[X]/(P), where P € A[X] has
irreducible reduction P in x[X]. Let m denote the maximal ideal of A. Since A’/mA’ =
k[X]/(P), mA’ is a maximal ideal of A’. Let p be a maximal ideal of A’. Since ¢t : A — A’
is finite, p N A = m and thus mA’ C p hence p = mA’, i.e. A’ is local. The residue field
extension is generated by the class of X in x’. We now prove (5). Assume that A is a
valuation ring and denote by v : A — I the corresponding valuation. We assume that
the valuation is trivial (i.e. A is not a field), otherwise the assertion is trivial itself. Since
P € A[X] has irreducible image in x[X], it is irreducible in A[X]. Indeed, if we could write
P = f-g, where f,g € A[X] are non-constant polynomials, then either f or g has coefficients
in m and thus P € m[X], which contradicts P is monic since A is not a field. Now P is
monic and irreducible in A[X] and A is integrally closed. Therefore P is irreducible in K[X],
where K denotes the fraction field of A. Thus A’ is an integral domain with quotient field
K':= K[X]/(P) which is a finite extension of K. Now define the map v’ : A[X] — T sending
agX%+ ---ap € A[X] to ming<;<qv(a;). This defines a valuation on K(X) and A[X] is
contained in the valuation ring A]X[ (cf. Definition [1.1.3). Since P is monic, v(P) = 0 and
v’ induces a map v’ : A’ — I'. It is straightforward to check that v’ defines a valuation on A’,
which is non-negative on A’. Therefore, if V' denotes the valuation ring of K’ of the valuation
v', we have A" C V. Assume that there exists a’ € V'’ which does not belong to A’. Choose a
representative ag X+ - --ag € K[X] of a’. By hypothesis, v'(a’') = ming<;<qv(a;) > 0. Since
a' ¢ A’ there exists an index j € {0,...,d} such that v(a;) = ming<,<4v(a;) and a; ¢ A.
Thus 0 < v(a’) = v(a;) < 0, yielding a contradiction. Finally, A" is a valuation ring. Using
(4), we obtain the final part of (5).

If ¢ is not finite, namely A’ = A] X[, since mA[X] is a prime ideal in A[X], A" is local.
Then (1)-(4) follow directly from the definition. (5) follows from the following claim.

Claim 5.1.3. If A is a valuation ring, then A] X[ is the valuation ring of the Gauss valuation
vo,0 (¢f. Definition .

Proof. Let F = P/Q be a non-zero element of K(X), where P,Q € A[X] are coprime
polynomials. Assume that both P and @ belong to mA[X]. Then we can write P = aP; and
Q = bQ1, where P, @ € A[X] are coprime and a,b € m are non-zero. Since A is a valuation
ring, either a|b or bla, which contradicts the fact that P and @ are coprime. Thus A]X| is a
valuation ring of K (X).

Denote by (V, my) the valuation ring of the Gauss valuation vg on K(X). By definition
of the Gauss valuation, we have A[X] C V and my N A[X]| = mA[X]. Thus the canonical
morphism A]X[— V is local and therefore V' = A] X[ since A]X]| is a valuation ring. O

O
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Definition 5.1.4. Let A be a local ring. An A-algebra A’ is called a gonflement of A if
there exist a well-ordered set A with a greatest element w together with an increasing family
(A\)xrea (w.r.t. inclusion) such that the following conditions hold:

(i) for any A € A, A is a local ring and A’ = A/ ;

(ii) let a be the least element of A, then A, is isomorphic to A;

(iii) let v € AN {a}, let Sy, :={A € A: XA <wv}. If S, has a greatest element p, then A/

is an elementary gonflement of Aj,. Otherwise, then A;, = U Al
AES,

Proposition 5.1.5. Let A be a local ring and let A — A’ be a gonflement.

(1) A’ is a local ring and ma = myA'.

(2) The ring extension A — A’ is faithfully flat.

(3) Assume that A is Noetherian. Then A’ is Noetherian and dim(A’) = dim(A).
Moreover, if A is regqular, then A’ is reqular.

(4) If A is a DVR, then A’ is a DVR. Moreover, the mazimal ideal of A’ is generated by
any generator of the maximal ideal of A.

(5) If A is a valuation ring, then A’ is a valuation ring. Moreover, the value groups of A
and A’ are equal.

Proof. (1)-(3) are ([Bou75], Chap. IX, Appendice 2, Proposition 2 et Corollaire). (4) follows
from (1) and (3) together with the fact that discrete valuation rings are exactly regular rings
of dimension 1.

Let us prove (5). Let A be a valuation ring with value group I'. Let A’ = (A4))xca be a
gonflement of A, where A is a well-ordered set. Denote respectively by «,w the least and
greatest elements of A, namely A = A, and A’ = A,. Let

N :={\e A: A, is a valuation ring with value group I'}.

Assume that A ~ A’ # @. Since A is well-ordered, there exists a least element v € A’. Let
Sy, :={A € A: X <v}. Note that « < v and S, C A"

If S, has a greatest element p, then A, is an elementary gonflement of A, and we obtain
a contradiction using Lemma (5).

Now assume that S, does not have a greatest element. Then A, = U Al. Note that,

AESy
for any A < X, the morphism Ay — Ay is injective and local, thus A, is a direct limit of
Priifer rings with injective arrows and is thus Priifer (Prop[1.1.9] (6)). Hence A, is a local
Priifer domain, i.e. a valuation ring. Since S, C A/, we deduce that the value group of A, is
I', providing a contradiction. O

Theorem 5.1.6 ([Bou75|, Chap. IX, Appendice 2, Corollaire du Théoreme 1). Let A be a
local ring with residue field k. Let k'/k be a field extension. Then there exists a gonflement
A — B such that the field extension k' /k is isomorphic to the field extension kp/k, where
kp denotes the residue field of B.

5.2. Completion.

Definition 5.2.1. Let K be a field and v = (] - |, A,m, k) be a pseudo-absolute value on K.
We say that K is complete w.r.t. v if the following conditions hold.

(i) The finiteness ring A’ is Henselian.
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(ii) The residue field " is complete w.r.t. the residue absolute value induced by v'.

Proposition 5.2.2. Let K be a field and v = (|- |, A,m, k) be a pseudo-absolute value on K.
Assume that K is complete w.r.t. v. Then for any algebraic extension K'/K, there exists a
unique extension v'|v to K.

Proof. Let K'/K be an algebraic extension. Since A is Henselian, the underlying valuation
of v extends uniquely to K’, denote by A’ the corresponding valuation ring of K’. Let x’
denote the residue field of A’. Then +'/k is an algebraic extension and, since & is complete,
the residue absolute value of v extends uniquely to x'. O

Definition 5.2.3. Let K be a field and v = (] - |, A,m, k) be a pseudo-absolute value on K.
Let K'/K be field extension and v' = (| - |, A, m’, k") € M be a pseudo-absolute value on
K’ extending v. We say that the extension v'|v is complete if K’ is complete w.r.t. v'.

The following proposition allows to construct complete pseudo-valued fields.

Proposition 5.2.4. Let K be a field and v = (| - |, A,m, k) be a pseudo-absolute value on
K. Denote by k the completion of k w.r.t. the residue absolute value induced by v. Then
there exist a field extension R\/K and a pseudo-absolute value U € Mz extending v such that
olv is complete (Definition [5.2.5).

Proof. Theorem implies that there exists a gonflement A — A’ such that A’ has residue
field K. Moreover, Proposition (5) implies that A’ is a valuation ring with same value
group as A. Now consider A := (A’)" the Henselisation of A’. Then ([Sta23], Section 0BSK)
implies that A is a valuation ring extending A’ with same value group as A’ and A. Moreover,
its residue field is %. Let K := Frac(A). Then A is a Henselian valuation ring of K and by
considering the unique extension of the residue absolute value induced by v on k to K, we
obtain a pseudo-absolute value ¥ on K. The extension Ulv is complete by construction. [

Remark 5.2.5. The completion construction given by Proposition 5.2.4 is unfortunately
non-canonical in the following sense: it depends on the choice of a good order on the
completion of the residue field ([Bou75], Chap. IX, Appendice 2, Exemple 1)). A priori,
different choices of such orders may lead to different completions.

6. PSEUDO-NORMS

In this section, we introduce the analogue of a normed vector space when the base field is
equipped with a pseudo-absolute value. Throughout this section, we fix a field K.

6.1. Definitions.

Definition 6.1.1. Let E be a finite-dimensional vector space over K of dimension d. For
any pseudo-absolute value v = (| - |y, Ay, My, Ky) € Mg, we call pseudo-norm on E in v any
map || - |l : £ — [0,400] such that the following conditions hold:

(i) ||0][, = 0 and there exists a basis (ey, ...,eq) of E such that |le1]|y,- -, |leq|ls € Rso;
(ii) for any (\,z) € K x FE such that {|\|y, ||z]|»} # {0, +o0}, we have || Az, = |A|o||2||v;
(iii) for any =,y € E, ||z + yllv < [|z]lv + [|¥]lo-
Under these conditions, (E, || - ||,) is called a pseudo-normed vector space in v. Moreover, a
basis satisfying condition (i) is called adapted to || - ||,-
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Remark 6.1.2. In [Séd24], pseudo-norms are called local pseudo-norms. Since in this article
we only focus on local aspects, we decided to remove the qualification "local" to ease the
reading.

Proposition 6.1.3. Let (E,| - |,) be pseudo-normed finite-dimensional K -vector space in
v € Mg. Let d := dimg(F) and let (e1,...,eq) be a basis of E which is adapted to || - ||,.
Then the following assertions hold.
(1) &y == 1{z € E : |lz[|y < +o0} is the restriction of scalars of DL, K -e; to A,.
Moreover, ., is free Ay-module of rank d.
(2) Ny, =1z € E : [|z[|, = 0} is an A,-submodule of &, and we have the equality
Nyjj, = M€, - N
(3) || - llv induces a norm on the k,-vector space

Bl = &, @4, o = (€1, /mul)y, ) ©n, o

Proof. Proof of (1): The defining properties of || - ||, directly imply that &, is an A,-
module. Let a € A, ~ {0} and x € &, such that ax = 0. Since A, is integral, the inclusion
&, € E implies that az = 0 in FE, thus z is torsion £ and z = 0. Hence £, is a
torsion-free A,-module. Proposition m (5) implies that it suffices to prove that Ep is
finitely generated.

Let us show by induction on n that, for any = € £, there is no linear combination
x = x1ey + - - - + xqeq, where z1,...,xq € K, such that [{i € {1,...,d} : x; € K \ A,}| = n.
We first assume that n = 1. Let x = z1e1 + -+ + zqeq € &, Where z1,...,24 € K, such
that |{i € {1,...,d} : x; € K \ A,}| = 1. By symmetry, we may assume that z4 ¢ A,. On
the one hand, we have ||z4eq4/[y = +00 and thus zgqeq ¢ &), On the other hand, we have

Tgeq =T —T1€1 —* — Tg-1€4-1 € E||.|,-

Hence a contradiction. Assume that n > 1 and that the property is satisfied for k =1, ...,n—1.
Let * = wie; + -+ + wqeq € &, Where x1,...,xq € K, such that [{i € {1,...,d} : x; €
K \ Ay}| = n. By symmetry, we may assume that x1,...,z, ¢ A, and Tp11,...,25 € A,.
Since z,,! € A,, we have

-1 -1 -1 -1 -1
T, Ti€1+ - -+ X, Tpn_1€n_1 =%, T—€n — T, Tpniipil — ' — T, Tieqd € 5H.||v.

The induction hypothesis yields a contradiction. Consequently, for any decomposition
r1€1 + - + zgeq € E||,, we have x1,...,zq € A,. Hence &, is of finite type.

Proof of (2): The defining properties of | - ||, show that N, is an A,-submodule of
&||-||,- Moreover, we clearly have an inclusion m,&y, C Nj,-

To prove the inverse inclusion, we show by induction on n > 1 that, for any x € N,
there is no linear combination x = x1eq + -+ + xg4eq, wWhere z1,...,xq4 € A,, such that
Hie{l,...,d} 2 ¢ my}| = n. We first assume that n = 1. Let x = z1e1+- - +x4eq4 € &,
where x1,...,xq4 € Ay, such that [{i € {1,...,d} : ; ¢ my}| = 1. By symmetry, we may
assume that x4 ¢ m,. On the one hand, we have |[z4eq4|[» # 0, and thus x4eq ¢ Nj.|,- On
the other hand, we have

Tgeq =T —T1€] — -+ — Tg_1€4—1 € N”,”v.

Hence a contradiction. Assume that n > 1 and that the property is satisfied for k =1, ...,n—1.
Let © = x1eq + -+ + wgeq € Nj.|,, Where x1,...,7q € Ay, such that [{i € {1,...,d} : z; ¢
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my}| = n. By symmetry, we may assume that z1,...,z, ¢ m, and 41, ..., 24 € m,. Since
x,; ' € A,, we have

-1 -1 -1 -1 -1
T, Ti€1 + -+ X, Tp_1€n_1 =T, T —€n — Ty Tpitilnil —  * — T, TJ€qd € N||.||U.

The induction hypothesis yields a contradiction. Consequently, for any decomposition
r1e1 + -+ xgeq € Ny, we have z1,...,24 € my.

Let x = wieq + - + xgeq € N).,, Where z1,...,7qg € my, let 6 := ged(z1, ..., 24) € My
Then we have x = dx’, where 2’ € &||.),- Hence Ny, € my&)j,. This concludes the proof of
(2).

Proof of (3): By definition, EII-HH is the extension of scalars of £, via the morphism
A, — Ky. Thus we have an isomorphism of %,-modules E”.”v = (SII-HU/mngI~IIU) Ry Fo-

Furthermore, (1) and (2) imply that the restriction || - [|,4, induce a norm on Ej.,. O

Notation 6.1.4. Let (E,|| - ||,) be pseudo-normed finite-dimensional K-vector space in
v="|" v, Ap, My, Ky) € Mk.
(1) In analogy with Notation we call
= &y =1z € E 1 ||lzly < 00} the finiteness module of | - ||,;
= Ny, = 1{x € E: [|z[|, = 0} the kernel of || - [|,;
- EII-HU = &|.||, ®a, Fy the residue vector space of || - [|,. By abuse of notation, we
denote by || - ||, the induced norm on E”_”v, called the residue norm of || - ||,.
(2) By "let (|| - ||,&€, N, E) be a pseudo-norm on the K-vector space E in v", we mean
that || - || is a pseudo-norm on K in v with finiteness module &, kernel N and residue
vector space E.
(3) By abuse of notation, by "let || - ||, be a pseudo-norm on E in v", we mean the
pseudo-norm (|| - ||y, Evs Ny, Ey).

In fact, in analogy with the case of pseudo-valued fields, a pseudo-normed vector space is
determined by the objects defined in Notation [6.1.4] More precisely, let
® V= (‘ : "U7A'U7m117’%’0) e MK7
e &, be a free Ay,-module of rank d < +oc;
o |- |2 beanormon E, := &, ®4, Ky.
Define the map

- llo: & — Rxo
a > @l

Then N, := {z € E : ||z]j, = 0} = m,&,. By lifting to &, a basis of E,, we get a basis
(e1,...,eq) of & such that [le;]|, > 0 for all # = 1,...,d. Then we can extend || - ||, to
E =&, ®4a, K by setting ||z||, = +oo if x ¢ &,.

Proposition 6.1.5. We use the same notation as above. Then | - ||, is a pseudo-norm in v
on E. Moreover, this construction is inverse to the one in Proposition [6.1.3

Proof. By construction of || - [|,, we have ||0]l, = 0. We can see (ey, ...,eq) as a basis of F
such that 0 < ||e;]|, < 400 for all i =1, ...,d. Hence || - ||, satisfies condition (i) of Definition
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Let (\,z) € K x E such that {|A|y, ||z]} # {0, +oc}. We distinguish three cases. First,
assume that ||, # 400 # ||z||y. Then by definition of || - ||, on &,, we have || Az||, = |Alv||z||v-
If now ||z|| = 400, i.e. © € E N &, then |A|, #0, ie. A € K \my, hence Az € E\ &, and
|Az]|y, = 400 = |Alo||z|lp- Finally, if |A|, = 400, i.e. A € K\ A,, then we have ||z| # 0,
iex € E~m&,, hence \x € E N &, and || \z||, = +00 = |A|y]|z]|v. Thus || - ||, satisfies
condition (ii) of Definition

Since || - | is a norm on E,, for any z,y € &,, we have ||z + y||, < ||z|ls + ||ly||»- Then the
triangle inequality for || - ||, on E follows from the fact that +oo is the maximal element of
[0, +o0].

From the construction, we directly see that it provides an inverse to the one in Proposition
6.1.3 (]

Remark 6.1.6. Similarly to the case of pseudo-valued fields, we can use Proposition [6.1.5
to define properties of pseudo-normed vector spaces from the corresponding property of the
residue norm. For instance, a pseudo-norm on a vector space is called ultrametric if so is its
residue norm.

To study restrictions and quotients for pseudo-norms, we will make use of the following
lemma.

Lemma 6.1.7. Let (E, (|| - ||v, Evs No, Eb)) be pseudo-normed finite-dimensional K -vector
space in v = (| - |y, Ay, My, Ky) € Mg. Let (e1,..,eq) be a basis of E such that, for all
i=1,..,d, we have e; € E, \ Ny, i.e. |lej]lv € Rsg. Let (€], ....e;) be another basis of E.
Then, f07" all i € {1,...,d}, there exists \; € K such that \je, € E, . N,.

Proof. We fix i € {1,...,d}. Then there exist agi), . agl) € K such that e} = Z _— )ej By
symmetry, we may assume that (agi))_laéi) € A, forall j =1,...,d. Then, for all j =1,....d,
we have (agi))*le; € &,. Furthermore, writing

(agi)) Ll —e + (ag)) 1 (Z)e +o 4 (agi))flag)ed,
we deduce (agi))_leé ¢ N, = m,&,. O

Remark 6.1.8. Lemma[6.1.7)shows that any basis of a pseudo-normed vector space (E, ||-[|,)
can be scaled so that it is adapted in the sense of Definition In particular, Definition
6.1.1] remains unchanged if one puts the condition
(1') For any basis (eq,...,eq) of E, there exists a family (\q,...,\q) € K¢ such that
IAi€illo € Ry foralli=1,...,d
instead of condition (1).

6.2. Algebraic constructions for pseudo-norms. We now extend the usual algebraic
construction for normed vector spaces in our context (cf. e.g. [CM19], §1.1 for more details).

Definition 6.2.1. (1) Let (E,|| - |l») be a pseudo-normed finite-dimensional K-vector
space over K in v € M. Let F' C E be a vector subspace of E. Let (eq,...,e,) be a
basis of F' enlarged in a basis (e, ..., €y, €741, ..., €4) of E. Lemma ensures that
we may assume that, for all ¢ = 1, ...,d, we have ¢; € £, ~ m,. Then the restriction
restriction of || - ||, to F is a pseudo-norm in v on F called the restriction of | - ||, to
F. By abuse of notation, unless explicitly mentioned, we denote this pseudo-norm by
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Il - [|o- Moreover, the finiteness module of || - ||, (the pseudo-norm on F'), denoted by
Fu, has (e1,...,e,) as a basis.
(2) Let (E,| - ||lv) be a pseudo-normed finite-dimensional K-vector space in v € M.

Let F C FE be a vector subspace of E. Let (eq,...,e,) be a basis of F' enlarged in a
basis (€1, ..., €r, €r41, ..., €q) of E. Lemma ensures that we may assume that, for
all i = 1,...,d, we have ¢; € &, ~ m,. Using the same notation as in (1), &,/F, is
a free A,-module of rank d — r and is spanned by e,41,...,e4. On the K,-quotient
vector space E; / ﬁ;, we consider the quotient norm induced by the residue norm of
|| - |lv. Then Proposition yields a pseudo-norm in v on E/F, called the quotient

pseudo-norm and denoted by || - | g/F,,- Moreover, we have
Ve E/F, ||z = inf ,
v B/, |alume = _int el

where 7 : E — E/F denotes the canonical quotient map.
(3) Let (E,|| - ||v) be a pseudo-normed finite-dimensional K-vector space in v € M. Le
&) :=Homy, (Ey, Ay), it is a free A,-module of rank dimg (E). We denote by | - ||2,

the dual norm on (E,)" of the residue norm || - | of || - ||». Then Proposition

yields a pseudo-norm in v on EY 2 €Y ®4, K, called the dual pseudo-norm of || - ||,
and denoted by || - ||y «. Furthermore, we have
VQO c Ew\/7 HSOH’U,* — sup |<p(aj)’1}

r€EL,NMYEy ||xHU .

(4) Let (E,| - ||v) and (E',|| - ||}) be two pseudo-normed finite-dimensional K-vector
spaces in v =€ M. The data of &, ®4, £/, and respectively of the m-tensor product
and the e-tensor product norms on Ev R /E\’v induce pseudo-norms in v on £ @ E’
respectively called the w-tensor product and the e-tensor product pseudo-norms.

(5) Let i > 1 be an integer. (E,|| - ||») be a pseudo-normed finite-dimensional K-vector
space over K in v € M. We define the i*"r-exterior power pseudo-norm || - o, A1
of || - ||, on A'E is defined as the quotient norm of the m-tensor product norm of
| - |lo on E®'. Likewise, the it"e-eaterior power pseudo-norm || - [v,a2 Of [| -l on
A'E is defined the quotient norm of the e-tensor product norm of || - ||, on E®%. In
the i = dimy(E) case, the i*"7-exterior power norm on A'E = det(F) is called the
determinant pseudo-norm of || - ||, and we denote it by || - ||y det-

Proposition 6.2.2. Let (E, (|| - ||v, Evs No, Ey)) be a pseudo-normed finite-dimensional K -
vector space in v = (| - |y, Ay, My, ky) € M. Let G be a quotient of E and denote by || - |G
the quotient pseudo-norm on G. Then the dual pseudo-norm || - ||g.v.« on G identifies with
the restriction of the pseudo-norm || - ||y« on EY to GV.

Proof. Let G, denote the finiteness module of || - ||, it is a quotient of &,. Thus we have an
inclusion of duals G < &/. The latter are respectively the finiteness modules of || - |G«
and || - [|y,«. To conclude the proof, it is enough to show

Vo € Gy ~mGys lellas = 1@l

This is obtained by lifting the corresponding assertion (J[CMI9], Proposition 1.1.20) for the
residue norms. g
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Proposition 6.2.3. Let (E, || - ||y) be a pseudo-normed finite-dimensional K -vector space in
v € My Then the inequality

[ P [

holds, where || - ||l denotes the dual pseudo-norm of || - ||y« on EYY = E. Moreover, if
either v is Archimedean, or if v is non-Archimedean and the pseudo-norm || - ||, is ultrametric,
then we have

[ Noee =11+l
Proof. Definition (3) ensures that, for any z € &, ~ m,&,, for any ¢ € &), we have

[o(@)lo < Nlllos - 2]l

Hence, for any =z € £, ~ m,&,, we have

T
e = sup 2@
peey~muy ollvx

||

Note the, for any z € m,&,, for any ¢ € £, we have ¢(z) € m,, i.e. |p(z)|, =0, and thus
|z||y4x = ||]|« = 0. This concludes the proof of the first statement.

Now assume that the pseudo-absolute value v is either Archimedean or v is non-Archimedean
and the pseudo-norm || - ||, is ultrametric. Then Proposition 1.1.18 and Corollary 1.2.12 of
[CM19] give

vieE, |z

e = |17
Thus we obtain
V=z€&, |xlom=I2o

To conclude the proof, it suffices to see that, for any z € E \ &,, we have ||z, = +00. Let
(e1,...,e,) a basis of E which is adapted to || - ||,. Then (eY, ...,e)) is a basis of EV which is
adapted to || - ||y «. Let x = x1e1 + -+ + xre, € E N &,. By symmetry, we may assume that

1 € K\ A,. By definition,

o(@)lo
(pegb/\muf)},/ ||(10HU7*

[2]fo, e =

Take p = ¢f € &/ ~m,&/. Then |p(z)|, = |z1|y = +00 and ||¢||v« € Rso. Therefore
]| 0,6 = +00- .

We now generalise the Hadamard inequality to the pseudo-norm case.

Proposition 6.2.4. Let (E,|| -||v) be a pseudo-normed finite-dimensional K -vector space in
v € Mg. Let (e1,..,er) be a basis of E which is adapted to || - ||,, namely, for alli=1,..,r,
we have e; € E, \ Ny, i.e. ||e;]ly € Rsg. Then, for any n € det(E), we have the equality

Inllv,det = inf {||z1]lo - [|zr]lo s 21,y zr € Ep and n =21 A -+~ N2y}

Proof. We may assume that n # 0. Let ng = e; A --- A e,. From the construction of tensor
product and quotient pseudo-norms above, we obtain that ||7o]y,det € R>o. Since det(E) is
of dimension 1, there exists a € K such that n = any. We first consider the |||, det € Rso
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case. Then there exist x1,...,x, € &, such that n = 1 A --- A 2. From the definition of
|| - ||v,det, We directly obtain

7llv,des < Nz allo -~ 1o

We assume that a € A, \ m,, namely |||y det € R>o. Since ||9]|y det is computed from the
residue norm on FE,, the classical Hadamard inequality implies that

Inllv.det = inf {||z1lo - - [|zo]lo : 21, yzr € Eyand n =21 A--- Ay}
Now assume that a € m,, then n = (ae;) A--- A e, and

11lv,det = llaerllo -~ [lex[| = 0,

hence we obtain the Hadamard equality.

Finally, we treat the a € K \ A, case. Now |[|n]|y.det = +00. Moreover, there is no
possible decomposition n = z1 A - -+ A x,, where z1, ...,x, € &, (otherwise we would have
1Mlv,det < +00). Thus the RHS desired equality is inf(&) = +o0. O

7. GLOBAL SPACE OF PSEUDO-ABSOLUTE VALUES

We now define various notions of global spaces of pseudo-absolute values on a given field.
Such spaces will contain all the relevant pseudo-absolute values in the context of topological
adelic curves. Throughout this section, we fix a field K.

7.1. Definitions.

Definition 7.1.1. Recall that we denote by Mg the set of pseudo-absolute values on K.
By definition, we have an inclusion

My C H [0, 4+00]
acK
of sets. We equip Mg with the subspace topology induced by the product topology of the
RHS above, where each [0, +o00] is endowed with the one-point compactification topology
induced by the Euclidean topology on [0, +00[. This is the coarsest topology making the
evaluation maps |a|. : Mg — [0, +00] continuous.

Theorem 7.1.2. My is a non-empty, compact Hausdorff topological space.

Proof. Mg contains the trivial absolute value on K and is thus non-empty. Moreover, by
Tychonoff theorem, [],cx[0, +00] is a compact Hausdorff space and thus Mg is Hausdorff
and remains to prove that the space My is defined by closed conditions w.r.t. the pointwise
convergence topology.

Let I be a directed set and let (|- |;)ier be a generalised sequence in My which converges
to|-]: K — [0,400]. We prove that |- | is a pseudo-absolute value on K. By definition of
the pointwise convergence topology, for all a € K, we have a generalised sequence (|al;)ier
in [0, +o0] which converges to |a|. Hence |1| = lim;er |1]; = 1 and |0| = lim;ey [0; = 0. Let
a,b € K. For all i € I, we have |a + b|; < |a|; + |b|;, hence

la+ b = lim |a + b]; < lim |al; + lim [b]; = |a| + [b].
el i€l i€l

Finally, if a,b € K are such that {|al,|b|} # {0, +00}, then there exists ig € I such that
Viel,i>io={lali,[bl:} # {0,400} = [abl; = [al:[b]:-
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Whence

bl = i bl; = L [0l = 1i ; lim |b]; = |al|b|.
(abl = i Jabl; = tim ol [b]; = Liry |alLiny o} = [al|y

O

Definition 7.1.3. Let L/K be a field extension. There is a restriction map T M —
M. Tt is continuous (by definition of the topologies of My and M), surjective, and proper

(cf. Proposition [7.1.2)).

Notation 7.1.4. Let K be a field. We introduce the following notation.

M o denotes the set of Archimedean pseudo-absolute values on K.

M um denotes the set of ultrametric pseudo-absolute values on K.

M ¢n denotes the set of pseudo-absolute on K values whose kernel is non-zero.

M 1riv denotes the set of pseudo-absolute values on K whose residual absolute value
is trivial.

® Mk qisc denotes the set of discrete pseudo-absolute values, namely the set of pseudo-
absolute values on K that correspond either to a discrete non-Archimedean absolute
value on K or to a pseudo-absolute value whose finiteness ring is a discrete valuation
ring that is not a field.

7.2. Examples.

7.2.1. Number fields. Let K be a number field and O be its ring of integers endowed with
the norm

I oo = mmax |,

where ¢ runs over the set of embeddings of K in C.

Proposition 7.2.1. My is homeomorphic to M(Ok, || - ||oc), the analytic spectrum in the
sense of Berkovich of the Banach ring (O, || - |loo)-

Proof. Let | - | : K — [0,400] be a pseudo-absolute value on K which is not an absolute
value. Denote by A its finiteness ring. Then A corresponds to a non-trivial valuation of K
and is thus of rank 1. Therefore, by Ostrowski theorem, it corresponds to some prime ideal
p € Spec(Of). The residue field of A being finite, the residue absolute value induced by
| - | needs to be trivial. Therefore the restriction of | - | to Ok corresponds to the extremal
point of the branch associated with p € Spec(Ok) in the analytic spectrum M (O, || - [|c0),
namely the map

0if a € p,
lifa¢p.

Conversely, any extremal point of M(Ok, || - ||s) gives rise to a pseudo-absolute value on K
which is not an absolute value. These constructions are inverse to each other. The remaining
points of M(Ok, || - ||sc) correspond directly to absolute values on K. Therefore we obtain a
bijection ¢ : Mg — M(Ok, || - |loo) Which is continuous by definition of the topologies of M
and M(Ok, | - |loo). We can conclude the proof as Mg, M(Ok,| - ||c) are both compact
Hausdorff. O

(CLEOK)'—)
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7.2.2. Function fields over C. Let us describe the Archimedean part of the space of pseudo-
absolute values of a complex function field of transcendence degree 1.

Proposition 7.2.2. Let K = C(T'). We have a homeomorphism
M o = PHC)x]0,1].

Proof. Let v = (]-|,A,m) € Mk o. Then A is a non trivial valuation ring of C(7") and thus
is of the form

A:={feK:ord(f,z) >0}

for some z € CU {oo}. Then the residue field A/m is C endowed with an Archimedean
absolute value, necessarily of the form ||, where € €]0, 1]. Hence v = v, ¢ o0, where z € P1(C)
(using the notation of Example (2)). Thus we have a bijection ¢ : M, o, — P}(C)x]0,1].
To show that ¢ is continuous, it suffices to prove that its composition with the maps
71 : PY(C)x]0,1] — P(C) and o : P1(C)x]0, 1] —]0,1] are continuous. We have

My — PYC)
Vieoo H— 2 ’

Mo :

It is continuous by definition of the analytic topology on P}(C). meo ¢ : ||z € Mk co +
log(|2(x)|)/log(2) €]0, 1] is also continuous. Furthermore, for all f € K, the map

| lpm1y : [ PHC)x]0,1]  — [0, +00]
(z,6) — [f(2)[

is continuous. Hence ¢ is a homeomorphism. U

Remark 7.2.3. (1) The ultrametric part of My does not admit an easy description.
This is due to the fact that the valuative structure of C(T') can be very wild if one
does not impose any kind of continuity condition. This question will be addressed by
introducing the notion of integral structure (cf. Proposition .

(2) As pointed out by the referee, studying the Archimedean part of the space of pseudo-
absolute value on a function field of higher transcendence degree is a natural direction
to investigate. For instance, in the case of a complex function field of two variables
K = C(T1,T3), a description of the valuation rings of K that are trivial on C is
given in [Zar39, [CZ97]. A pseudo-absolute value v € M o has finiteness ring whose
residue field is C. Therefore, its underlying valuation must be of type (ii)-(iv) in the
terminology of ([CZ97], first Theorem of §3). This gives a set-theoretic description
of Mk ~. Nonetheless, finding a topological description from this approach seems
to be a quite challenging problem. Indeed, the pseudo-absolute belonging to Mk
correspond, roughly speaking, to branches of algebraic or analytic curves in some
model of K over C. This is a first hint that the topology of Mk o should be of
"Zariski-Riemann fashion". In Corollary (2.c), we will give such a topological
description for general function fields over C.

7.3. Connection to Zariski-Riemann spaces. Let K be a field with prime subring k.
The construction of the Zariski-Riemann space ZR (K /k) was recalled in Then there is
amap j: Mg — ZR(K/k) mapping a pseudo-absolute value v € Mg to its finiteness ring
Ay, € ZR(K/k). The map j is called the specification map.
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Proposition 7.3.1. The specification map j : Mg — ZR(K/k) is continuous, where
ZR(K/k) is equipped with the Zariski topology.

Proof. Let ay, ...,a, be elements of K. Let U := {V € ZR(K/k) : a1, ....,ar € V} be a basic
open subset of ZR(K/k). Then we have

i U) = ﬁ{v € Mg : |ai|, € [0,400[},
i=1

which is open. ([

Remark 7.3.2. In the next sections, we will be able to tell more about the specification
map: namely j is open and the generic fibre, i.e. the subspace of absolute values, is dense in
K if K is countable.

8. LOCAL ANALYTIC SPACES

In §3] we gave a description of the behaviour of pseudo-absolute values w.r.t. algebraic
extension of the base field. In view of §4] the transcendental case is much more complicated.
In this section, we precise the connection with Zariski-Riemann spaces introduced in §7.3]
in view of Theorem [[.4.3] to give a description of arbitrary extensions of pseudo-absolute
values. More precisely, the set of extensions of a given pseudo-absolute value to an arbitrary
field extension admits a natural description as a projective limit of Berkovich analytifications
given by sub-models over the finiteness ring. We start this section by defining these analytic
spaces that we call (sub)-model analytic spaces ( We then prove the announced "Zariski-
Riemann type" description (Theorem . We conclude the section by relating local
(sub)-model analytic spaces and "Zariski-Riemann type" spaces (§83.3).

Throughout this section, we fix a field K and a pseudo-absolute v = (| - |, A, m, k) € M,
namely |- |: K — [0, +0o0] is a pseudo-absolute value with finiteness ring A, kernel m and
residue field k.

8.1. Local (sub-)model analytic space. Let X — Spec(K) be a K-scheme, which is
assumed to be projective for simplicity. Assume that we have a projective model X of X
over A (cf. . The special fibre Xs := X' Xgpec(4) Spec(k) is now a projective x-scheme.
Denote by & the completion of £ w.r.t. the residue absolute value on x induced by the
pseudo-absolute value v. We call Xs := Xy Xgpec(x) Spec(k) the completed special fibre of

the model X. Now X is a projective #-scheme and 7 is a completely (real Jvalued field.
Henceforth, we can construct the Berkovich analytic space X attached to X

Definition 8.1.1. With the above notation, the space Xs " is called the local model analytic
space attached to X w.r.t. the projective model X over v. Note that if v is a usual absolute
value on K, i.e. when A = K =k, X 2 X and the corresponding local analytic space is just
(X @k K)™.

In order to perform Arakelov geometry in the global setting over pseudo-absolute valued
field, we will use the local model analytic spaces from Definition [8:1.1] Using the classical
theory of Berkovich analytic spaces, we can adapt the usual notion of metric on a line bundle.

Definition 8.1.2. Let X be a projective scheme over Spec(K) and let L be an invertible
Ox-module. We call local model pseudo-metric in v on L the data ((X, L), ¢) where:
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(1) (X,L) is a flat projective model of (X, L) over A (cf. §l.3), with special fibre X, and
completed special fibre /'/V;;
(2) ¢ is a metric on Z',\S, where Z\S is the pullback of £ to completed special fibre 9?5
A local model pseudo-metric ((X, L), ¢) on L is called continuous if the metric ¢ is so. In the
case where X is fixed, by "let (£, ¢) be a local pseudo-metric on L", we mean that ((X, L), ¢)
is a local model pseudo-metric on L which is denoted by (£, ¢).

Let X be a projective scheme over Spec(K) and let L be an invertible Ox-module. Let
(X, L), ¢) be alocal model-pseudo metric in v on L. The attached local model analytic space
(X ®4 R)* is a compact Hausdorff topological space and the metric ¢ defines a supremum

seminorm on the k-vector space of global sections H 0(:’(;, Z;) defined by

Vs € H(Xs,Ls), |I3lly := sup [3]u(x) € Rxo.
reXan

Assume that the model (X, £) is flat, coherent and that the special fibre X is geometrically
reduced. Then Proposition implies that H°(X, L) is a free A-module of finite rank.
Since X is reduced, ([CM19], Proposition 2.1.16 (1)) implies that the seminorm || - ||, is a
norm on Ho(j(; Z\S) Proposition (2.ii) implies that HY(X, L) ® k is a vector subspace
of H(Xs, Ls). Thus || - ||, induces a norm on H(X, L) ® 4 & and Proposition implies
that we can lift | - ||, to a pseudo-norm in v on H°(X, L), which is again denoted by || - ||,
by abuse of notation.

Now we assume that the model (X, L) is flat and coherent. We denote by (X:)red
the reduced scheme structure on X, and by (Z\ )red the restriction of L, to (2/\,’\ Jred- Then
([CM19], Proposition 2.1.16) implies that the kernel of the Supremum semi-norm on HO(X,,L,)
coincides with the kernel of the natural map HO(XS, L ) — HO((XS)red, (Ls)red) Moreover,
if 5 € HO((X,)red, (Ls)req) lies in the kernel of the supremum seminorm || - ||lo, there exists
some integer n > 1 such that 5™ = 0.

Lemma 8.1.3. Assume that the valuation ring A is non trivial. Let s € H(X, L) be a
global section such that ||s|x,||, = 0. Then s € mH(X, L).

Proof. The above paragraph implies that if ||s|x,[/|, = 0, then there exists some integer
n > 1 such that s(‘gm = 0. Let X = U¥_,U; be an open covering, where U; = Spec(4;) for
i =1,...,k, and such that £y, = Op,. Then for any ¢ = 1, ..., k, there exists a; € A; such that
S|y, = aiei, where e; denotes a generator of L. Therefore, for any ¢ =1,...,k, a] € mA,,
hence a; € mA;. By glueing, we obtain s € HO(X, mL) = mH(X, L). O

Therefore, we can lift the supremum seminorm || - ||, on H 0(X,, L) to a pseudo-norm on
H°(X,L). This construction is summarised in the following definition.

Definition 8.1.4. Assume that X is geometrically reduced if A = K. Let L be a line bundle
on X. Let (X, L) be a flat and coherent projective model of (X, L) over A. Let (L, ¢) be a
local pseudo-metric on L. The pseudo-norm || - ||, in v on H%(X, L) is called the supremum
pseudo-norm attached to ((X,L),¢). Its finiteness module is H(X, £) and its kernel is
mHY(X, £). In particular, if A = K (i.e. v is a usual absolute value on K), then | - [,
corresponds to a norm in the classical sense.
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8.2. Zariski-Riemann local analytic space. We now give an analytic local analogue of
Theorem [1.4.3] We assume that the finiteness ring A is universally Japanese (cf. Example
1.4.2). Let K'/K be an arbitrary field extension. Since A is universally Japanese, Proposition
1.4.1| ensures that there projective sub-models of K'/A exist.

Definition 8.2.1. The Zariski-Riemann local analytic space attached to K’ above v is the
set M, of pseudo-absolute values of K’ extending v on K. In other terms, Mg, is the
fibre of v via the projection /g : Mg+ — Mg. Mg, is equipped with the subspace
topology induced by the topology on My defined in §7} Proposition [7.1.2]implies that M,
is compact Hausdorff.

Consider the Zariski-Riemann space ZR(K'/A) (cf. §1.4). We have a specification mor-
phism j : Mg, — ZR(K'/A) mapping any v' € Mg, to its finiteness ring.

Lemma 8.2.2. The specification morphism j : Mg, — ZR(K'/A) is continuous, where
ZR(K'/A) is endowed with the Zariski topology.

Proof. Let a € K' and U := {A’ € ZR(K'/A) : a € A’} be a basic open set of ZR(K'/A).
By definition, j—1(U) is the set of pseudo absolute values v' on K’ extending v and with
finiteness ring containing a. Thus we see that j~1(U) = |a|~!([0, +00]). Since [0, +-00[ is an
open subset of [0, +00], j71(U) is open by definition of the topology on M . O

Let X be an arbitrary projective sub-model of K’ over the valuation ring A. Denote by
:\i the local model analytic space attached to X. Note that in the case where v is a usual
absolute value, X is a projective model of K'/K and X, = (X @ K)™.

Let o' = (|- |, A',w', k") € Mg ,. We have a commutative diagram

Spec¢(K') —— X

| |

Spec(A’) —— Spec(A)

By valuative criterion of properness, there exists a unique morphism of schemes Spec(A’) — X
factorising Spec(K’) — X. Denote by p the image of the closed point of Spec(A’) in
Xs. By considering the restriction of the residue absolute value of v' to k(p), we obtain
an absolute value on k(p) extending the residue absolute value of v. Therefore we have
successive valued field extensions &’ /k(p)/k. Denote by p the r(p)-point of X, induced by
Spec(r(p)) — Spec(k(p)). Then we have extensions #//k(p) /R of completely valued fields.
Thus we obtain a point = € Zan. Finally, we have obtained a map redy : Mg, — /'?San
such that the diagram

My, — ZR(K'/A)

] J

./X‘\San L
commutes, where the horizontal maps are the specification morphisms and the right vertical
map is the center map defined by the valuative criterion of properness.

Proposition 8.2.3. Let X' be a projective sub-model of K'/A. Then the map redy : Mg, —

o~

an .
Xy is continuous.
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Proof. Denote by k : ?San — /'/tz the specification morphism, by j : /'/t'\s — X; the extension
of scalars and by i : X5 — X the closed immersion. Let us first prove that the composition
fi=tioojokoredy : Mgs, — X is continuous. Let U = Spec(B) be an open affine subset
of X. By definition, we have
F7HU)=A{] | € Mgr - B C Ay}

Let x4, ...,z denote generators of B as an A-algebra. Then we have

F0) = {11 € My s max [aif' < +oo),

=1,
which is an open subset of M. Thus f is continuous, hence so is jokoredy. Since j is open,
koredy is continuous. Let Spec(é ) be an affine open subset of X;. Let f € B. By construction
of redx and by definition of the topology on M s, the map |f]. : red;(l(Spec(B)an) — R>o
—-an

is continuous. By definition of the topology of Xsa , the map redy is continuous. ([

In view of results of §I.4] we now study the compatibility of the above reduction maps
w.r.t. the domination relation between sub-models.

Let X,Y be two projective sub-models of K'/A. Assume that we have a morphism of
schemes f: )Y — X. f induces a morphism f; : Y, — X, between the special fibres and the
corresponding analytification f2" : ot By uniqueness of the maps Spec(A’) — X,
Spec(A’) — Y from the valuative criterion of properness, we have a factorisation

My,

WIS

red y
<~-an ——-an

ys ? Xs

Denote by M the collection of all projective sub-models of K'/A. Then M is an inverse
system of locally ringed spaces which induces an inverse system of locally ringed spaces

—~an

(Xs )xem. The above construction shows that the reduction maps are compatible with this
projective system. Therefore we obtain a commutative diagram

My, —2— ZR(K'/A)

red | f’ : (2)
lim , X" —— lim,, X
where the right hand side arrow is a homeomorphism by Theorem [1.4.3

—~an

Theorem 8.2.4. We use the above notation. The map red : My, — l.&nXeM Xy isa
homeomorphism. Moreover, if K'/K is finitely generated, red induces a homeomorphism
Mg, — @XGM’ Xsan, where M' denotes the collection of all projective models of K'/A.

Proof. Note that from Proposition [8.2.3] the map red is continuous. Since Mg, and
@ YeMm Xsan are both compact Hausdorff, it suffices to prove that red is bijective.

We first prove that red : Mg+, — Hm X" s injective. Let v},v5 € Mg, be such

that red(v]) = red(v}). implies that the finiteness rings of v} and v}, are equal. We denote
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this valuation ring by A’ and by &’ its residue field. Denote respectively by |- |}, |- |5 the
residue absolute values on «’ induced by v{, vh. Now Theorem [1.4.3 (2) implies that

U OX,wA/’Xa
XeM

where, for any X € M, x4 x denotes the centre of A’ on X. Since morphisms between
models are dominant morphisms of integral schemes, any morphism of models X’ — X in
M induces an injective morphism of local rings Ox ;. ,, , = Ox’s,, ,,- Therefore ([Bou75],

Chap. IX, Appendice 1, Proposition 1) implies that A" = @XGM OX@’A’,X and that
K = U K(xar x)- (3)
XeMm

Now |- | and | - |, are absolute values on £’ such that, for any X € M, their restrictions to
k(xyr x) are equal. Thus implies that |- || is equal to | - |5, which shows the injectivity of
red.

Let us now prove the surjectivity of red. Let x = (xx = (px, |- |zy))xem be an element of

I‘&HXGM 2/\,’\5311. Then by Theorem [1.4.3] the colimit of local rings MXGM
ring of K’ over A. Moreover, the residue field x’ of A’ is the union of the x(px)’s. These
fields are equipped with an absolute value by construction and this data defines an absolute
value on the residue field ', thus defining a pseudo-absolute value v' = (| -|', A", m’, k') on K

extending v. By construction red(v’) = x. O

Remark 8.2.5. In view of Definition and Lemma [8.2.2] we see that the definition
of local analytic space is birational. Roughly speaking, the "algebraic part" is a certain
Zariski-Riemann space instead of a scheme in the classical case.

Ox p, 1s a valuation

Corollary 8.2.6. We use the same notation as above. Assume that v is an absolute value
and that K' is countable. Then the set of absolute values extending v on K' is dense in
MK’,U

Proof. In our case, sub-models of K’/A are integral projective K-schemes whose function
field embeds in K’. The set of absolute values in M-, is by definition the intersection

ﬂ {la] < +o0}.
ag(K')x
Note that Mg, is a Baire space. Since K’ is countable, it suffices to prove that the set
U, := {]a|] < +o0} is dense in M, for all non-zero a € K’. Let a € (K')*. By Theorem
8.2.4} it suffices to prove that, for any projective sub-model A" of K'/K such that a € k(X)
and for any open subset U C (X @ K)™®, we have U, ﬂredX (U) # . Let X be a projective
sub-model of K’/K. Then the generic fibre of (X ®x K )™ — X @k K is dense in (X @ K)™»
(cf. [Ber90], Corollary 3.4.5 and Theorem 3.5.1). Thus there exists € U whose image in X
is the generic point. Now choosing an element v’ in M K’ such that red x(v) = x, we obtain
a pseudo-absolute value | - |' on K’ which belongs to U, Nred ' (U). O

8.3. Local Zariski-Riemann analytic space associated with a scheme. We conclude
this section by saying a few words about the analytic geometry over a pseudo-valued field
allowed by Theorem [8:2.4f The general picture is as follows. Let K be a field equipped with
a pseudo-absolute value v. We want to associate to any K-scheme X which is locally of finite
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type a topological space X2" which enjoys sufficiently nice properties (e.g. locally compact
Hausdorff) and which can be equipped with a sheaf of analytic functions. Morally, this
space encodes all the relevant arithmetic data at v. We again assume that A is universally
Japanese.

8.3.1. Naive attempt. Let X — Spec(K) be a K-scheme, one could try mimic directly
constructions of Berkovich analytic spaces by replacing absolute values and norms by pseudo-
absolute values and pseudo-norms. This naive construction is the following.

Let f : X — Spec(K) be a K-scheme. The naive local analytic space X212V attached
to X over v is defined as the set of pairs x = (p,| - |z), where p € X is a scheme point
and |- | € M, is a pseudo-absolute value on the residue field x(p) of p such that the
restriction of | - |, to K is | - |,. There is a specification morphism jidive . Xamnaive _, x
sending any = = (p,| - |z) € X214V to p. For any Zariski open subset U C X, let
panmaive . (gnaive)=l(gr) = For such U, any regular function f € Ox(U) defines a map
|f|. : Uammaive [0 4+ o00] by sending any point z € X to |f(j(z))|s-

We now equip X2V with the coarsest topology making j together with the maps |f|.,
for any Zariski open subset U C X and any f € Ox(U).

Xan,naive
v

Proposition 8.3.1. Assume that X is a K-variety. Then the space is not Haus-

dorff.

Proof. Let p € X be a regular closed point. Let vy = (| - |z, Az, My, k) € My, be a
pseudo-absolute value. Proposition yields the existence of a valuation ring V' of K(X)
dominating Ox , with residue field x(p). Then consider the extension by generalisation of
vy to Mg induced by V (cf. Definition [4.3.1]), we denote it by v}, = (| - |1, AL, m), k;). Let
U C X be an open Zariski neighbourhood of p, let f € Ox(U) be a regular function. By
definition of v/, and since f € Ox, C V, we have

|f1e = 1f(P)le-
Therefore, any open neighbourhood V' C X3" of z = (p, v,) contains (1, v},), where 7 denotes
the generic point of X. This implies that X3" is not Hausdorff. O

8.3.2. Definition. In view of Proposition [8:3.1] one has to refine the definition of the local
analytic space associated with a scheme by only allowing only pseudo-absolute values on the
residue field of generic points of irreducible components extending v.

Definition 8.3.2. Let X be a projective K-variety. Denote K’ := k(X). Define the
Zariski- Riemann local analytic space associated with X by

—~an

X3 = fm X,
XeMx
where M x denotes the sub collection of M consisting of projective models of K'/A with
generic fibre isomorphic to X. This is a compact Hausdorff space.

Xamnaive
v

Let X be a projective K-variety. We can link the space X3" above with the space
as follows. For any X € My, using the valuative criterion of properness, we define a
continuous map

o —ean
redy x @ Xamneive 3
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in a similar fashion redy : Mg, — Ean was constructed. This construction is compatible
with respect to maps between elements of M x and thus induces a map

redy : H — X"

Proposition 8.3.3. Let X be a projective K -variety. Denote K' := r(X). Then X2" is
homeomorphic to the quotient of X3™"*V¢ by the equivalence relation ~ defined by

Vo, y € X2mnaive g oy o redy(z) = redx (y).

Proof. By definition of ~, redx factorises via a continuous map X2"1aive / ~— X3 More-
over, the natural map Mg/, — X" is a continuous surjective map between compact
Hausdorff spaces, and henceforth a quotient. Thus the continuous injection Mg, — X"
induces a continuous map 7 : X2 — X20aive /  Then redy oi is the identity on X" and
thus 7 is a homeomorphism. O

Remark 8.3.4. (1) If v is a usual absolute value, and X is a projective K-variety, then
X3 corresponds to the usual Berkovich analytification (X ®@x I/(\v)an.

(2) Proposition illustrates a feature of spaces of pseudo-absolute values which are
reminiscent of adic spaces. For such spaces, the topological structure is by essence
much more algebraic and specialisation procedures can be studied to prove that,
under suitable conditions, the maximal Hausdorff quotient of an adic space is a
Berkovich space.

(3) In subsequent work, we will make use of these Zariski-Riemann local analytic spaces
for which the description as a projective limit allows to define a sheaf of analytic
functions.

9. INTEGRAL STRUCTURES

In general, spaces of pseudo-absolute values might be "too big" for performing a suitably
well-behaved analytic geometry. For instance, the space of (pseudo-)absolute values on C
already contains a lot of p-adic absolute values that one would not want to include, at least
at first glance. To remedy the situation, we limit the space of pseudo-absolute values in
our space by imposing some continuity condition. This gives rise to the notion of integral
structure which can be interpreted as affine subsets of our spaces of pseudo-absolute values.
As a guideline for the reader who might be frightened by the technical content of this section,
let us say that consist of fundamental results that allow to explicit Berkovich spectra
that topologically embed in spaces of pseudo-absolute values. In we describe precisely
some examples of integral structure coming from Nevanlinna theory. The main example to
focus on is found in We make a full description of the Berkovich spectrum associated
with the ring of holomorphic functions on a closed complex disc, equipped with a hybrid
norm (Example (4)), as a locally ringed space. We also prove that the underlying
Banach ring is a geometric base ring ([LP24], Définition 3.3.8). This gives a new example of
such Banach rings that allow the employment of the machinery in loc. cit. and will be used
to formalise Nevanlinna theory in our framework.

Throughout this section, we fix a field K.

9.1. Definition of integral structures.

Definition 9.1.1. An integral structure for K is the data (A, || - ||4) where:
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(i) A is an integral subdomain of K with fraction field K;
(ii) A is Priifer;
(iii) || - || 4 is a Banach norm on A.

When no confusion may arise, we use the notation A for an integral structure (4, | - ||4).

Remark 9.1.2. Denote by k the prime subring of K. Let (A4, |- ||.4) be an integral structure
for K. The latter can be interpreted through the Zariski-Riemann space associated with
K, namely the set ZR(K/k) of valuation rings of K. As A is integrally closed (|Gil72],
Chapter IV), it is the intersection of all its valuation overrings ([Bou75|], Chapter VI, §1.3
Corollaire 2). Note that any valuation overring of A is of the form A, for some p € Spec(A)
(cf. Proposition [1.1.9 (1)). Hence we have

peSpec(A)
Let X C ZR(K/k) be the subset such that A = ,cx V. We have a characterisation of such
subsets X in terms of affine subsets of ZR(K/k) (cf. [OIb21], Theorem 6.2). Let us also
mention that Olberding has done extensive work in these directions |OIb0g|, [O1b10, [OIb11].

The notion of integral structure allows to define refined versions of M.

Definition 9.1.3. Let K be a field equipped with an integral structure (A, || - ||4). The
global space of pseudo-absolute values relative to the integral structure A is defined as

Vica:={l-1€ Mg :|-|ja < |-},
and is equipped with the topology induced by that of M.

Notation 9.1.4. Let K be a field. Let (A, ]| -||a) be an integral structure for K. Denote by
V' the associated global space of pseudo-absolute values. We introduce the following notation.

o V= Mg, NV denotes the set of Archimedean pseudo-absolute values of V.

® Vim := Mg ym NV denotes the set of ultrametric pseudo-absolute values of V.

o Vin := Mg s NV denotes the set of pseudo-absolute of V' values whose kernel is
NON-Zero.

® Viriv := Mk triv NV denotes the set of pseudo-absolute values of V' whose residual
absolute value is trivial.

® Viise := Mg gisc NV denotes the set of discrete pseudo-absolute values, namely the set
of pseudo-absolute values of V' that correspond either to a discrete non-Archimedean
absolute value on K or to a pseudo-absolute value whose finiteness ring is a discrete
valuation ring that is not a field.

Proposition 9.1.5. With the notation of Definition V is a non-empty compact
Hausdorff topological space.

Proof. There is a natural map f : Vg a4 — M(A), where M(A) denotes the Berkovich
analytic spectrum of (A, || - ||a), which is given by restricting elements of Vi 4 to A. By
definition of the topologies, f is continuous. Let z € M(A) and denote by p, € Spec(A) its
kernel. Since A is Priifer, the localisation A, is a valuation ring of K on which x defines a
multiplicative semi-norm. Therefore, every element of M(A) induces an element of Vi 4.
This construction provides an inverse of f that is a continuous function. The conclusion
follows from ([Ber90], Theorem 1.2.1). O
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Remark 9.1.6. The above proof shows that V' is homeomorphic to M(A).

Proposition 9.1.7. Let (A,| - ||) be an integral structure for K and denote by V be the
associated global space of pseudo-absolute values. We assume that Voo # @. Recall that we
denote by | - | the usual absolute value on Q. Let € : Vo —]0,1] be the function mapping
x € Voo to the unique €(z) €]0, 1] such that the residual absolute value on kK induces the

absolute value | - ZE;”“") on Q. Then, by extending the definition of € to V' by setting e(x) := 0
if x € Vim, € s a continuous function on V.

Proof. From the assumption that ., # @, K has characteristic zero. By definition of ¢, for
any = € Vo, we have e(z) = log |2|,/log 2. Tt follows that for any x € V', we have

e(z) = max{0, log \2]9;}

log 2
Since log|2|. is continuous on V', we deduce the continuity of the function e. O

To study the topology of global spaces of pseudo-absolute values, we make use of the
constructions in ([Poil0], §1.3).

Notation 9.1.8. Let (A, || - ||) be an integral structure for K and denote V := M(A). For
any x € V, we define the interval

I:E::{EEIR>0:vf€147|f|6 §|f|}

For any € € I, we can then show that |- | defines an element of V' that we denote by z¢. In
the case where I, has 0 as a lower bound, we can extend this definition to € = 0 by defining
20 as the pseudo-absolute value on K defined by
|l2:] A — Ry
0if [f], =0,
— .
R Y i

9.2. Examples of integral structures.

Example 9.2.1. (1) Let || - || be any Banach norm on K. Then (K, || - ||) is an integral
structure for K. This is the case when K is either a complete valued field or a hybrid
field, namely the norm || - || is of the form || - || = max{|-|,| - |triv}, where |- | denotes
a non-trivial absolute value on K.

(2) Let K be a number field with ring of integers Ok . The latter is a Priifer domain (cf.
Example (2)) with fraction field K. Let || - || := maxysc | - |0, where o runs
over the set of embeddings of K into C. Then (O, || - |l«) is an integral structure
for K.

(3) Let U be a non-compact Riemann surface and K := M(U) denote its field of
meromorphic functions. Then the ring of holomorphic functions A := O(U) is a
Priifer domain (cf. Example (3)) with fraction field K. Let C' C U be a
compact subset. Then define a norm on A as follows.

vieA  fleny =max{l|fle, [ fllu},

where | - ||c denotes the supremum norm on C' and || - ||4riv denotes the trivial norm
on A. Then (A, | - |lcnyb) is a Banach ring and thus (A, | - [|[cnyb) is an integral
structure for K.
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(4) Let R > 0 and let D(R) denote the complex closed disc of radius R. We denote
respectively by A = O(D(R)) and K = M(D(R)) the ring of germs of holomorphic
functions and the field of germs of meromorphic functions on D(R). Then A is
a principal ideal domain with field of fractions K (cf. Example (4) and
Proposition and a Priifer domain. Let || - ||g denote the supremum norm on
D(R) and define || - || gnyb := max{|| - ||r, | - |tziv}, where ||| - |[tiv denotes the trivial
norm on A. Then (A4, |- ||rnyb) is a Banach ring and (A, || - || g nyb) defines an integral
structure for K.

9.3. Tame global spaces of pseudo-absolute values. The following definition is moti-
vated by the explicit study of global spaces of pseudo-absolute values we shall consider in
the context of Nevanlinna theory.

Definition 9.3.1. Let (A, || - ||) be an integral structure on K and denote V := M(A). V is
called tame if the following conditions are satisfied:

(i) Vtriv € V;

(ii) for any x € Vi, and any f € A, the inequality

1fls <1

is satisfied;
(iii) (A, ] - ) is a uniform Banach ring (cf. Definition [L.5.2)).

Example 9.3.2. The spectra of Example [9.2.1] are tame spaces. This is immediate in the
case of the spectrum of the ring of integers of a number field. Let us show this fact in the case
of the hybrid spectrum of the ring of analytic functions on a non-compact Riemann surface.
We use the notation of Example (3). Let © € Viym \ Van. Then for all f € A~ {0}, we
have | f|, < || flla = max{||f||c,1}. For all a € C, we have |af|, = |f|. (since the restriction
of |- |z to C is necessarily trivial). By choosing a of sufficiently small modulus, we obtain
lafllc <1 and the inequality

In §9.4.2) we will see that the norm || - || 4 is uniform.

The following proposition ensures that the notion of tame space is compatible with algebraic
extensions of the field of fractions, which is fundamental in what follows.

Proposition 9.3.3. Let (A, ||-||) be an integral structure on K and assume that V := M(A)
is tame. Let L/K be an algebraic extension and let B denote the integral closure of A in L.
Then B can be equipped with a norm || - ||g such that

(1) (B,||-|lB) is a Banach ring;

(2) Vi, := M(B) is a tame space;

(3) the inclusion morphism (A,| - ||) = (B, || - ||B) is an isometry.
Moreover, Vi, is "universal” in the following sense. If v € My, is such that its restriction to
A belongs to V', then v € V.

Proof. Case 1: the extension L/K is finite and Galois. Let us show the existence of
|- ||5. First note that B is a Priifer domain (cf. Proposition [I.1.9] (2)). Define the set

E:={|-|:|-|is a multiplicative seminorm on B and |- |4 € V}.
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Let us show that the application

|-llz:| B — Rxo
b — supgep[b(z)|
defines a Banach norm on B. Let b € B \ {0}, we a priori have ||b||p € [1,+00] (since the

trivial absolute value belongs to F). To show that [|b||p < 400, we will use the following
lemma.

Lemma 9.3.4. Let b € B and denote by P = (T — o) -+ (T — aq) € A[T] its minimal
polynomial over K. Then there exists a constant M > 0 such that

d
D oy
j=1

Proof. Write P = a4T?% + --- + ap and denote M := maxp<i<p ||ai]].. We fix v = (| -

lv, Ay, My, k) € V. For any integer N > 1, define Ay := d:1 a and

J

YoeV, 3INy>0, VYN >0, < gNHNop N, (4)

v

J

A= 1

1252 Al
Let Ng > 0 be an integer such that A < d™°. Let us show by induction on N that (4)) holds
for all N > 0. Let N be an integer. Assume first that N < d. Then we have
An| < A < dNotN N

The second inequality comes from M > 1 (since vyiy € V). We now assume that N > d and
that holds for any N’ < N. Then, from Newton identities, we have

N-1
Av= > ()N ran g,

where
a; = Z Ony =" Qn;
1<ny<--<n;<d
for any j € {1,...,d}. Note that for all j € {1,...,d}, a; is a coefficient of P (up to sign).
Hence |aj| < M. Then the induction hypothesis yields

Avlo <dM  max  d¥Nopgk < gNHNoprN
N—d<k<N-1

Hence the conclusion. O
We are now able to show ||b||p < +00. Let {a1,...,aq} be the Galois orbit of b. Fix an

arbitrary pseudo-absolute value v € V. Proposition and Lemma [9.3.4] give the existence
of M > 0 such that

L
d N

Doy

=1

max |b|,, = lim sup < dM.

wlo Nesoo

v

Since both d and M are independent on v, we have ||b||p < dM < +oo. It is immediate
to see that || - || g defines a norm on B. Since the trivial absolute value on L belongs to E,
the topology on B induced by || - ||z is discrete. In particular, (B, | -|g) is a Banach ring.
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Furthermore, for any a € A, we have ||a||p = ||a||. Hence we have an isometric embedding
(A, ]| -|) = (B,|| - llB)- This concludes the proof of (1) and (3).

We now show that Vi := M(B) is a tame space. Note that V7 contains the trivial
absolute value. Let x = (| - [z, By, my) € VL um. Let f € B whose Galois orbit is denoted by
{a1,...,;aq}. Let us show that |f|, < 1. Let v = (|- |y, Ay, my) := 7k (x) € V denote the
restriction of x to K. Then Lemma yields

1
d N
[fla < max [f|y =limsup Za;v <1,
:LJGTFZ/K v N—+o00 j=1
v
The last inequality comes from the fact that, for any j € {1, ...,d}, for any N > 0, Z?Zl ozj-v €
A. Finally, ([Ber90], Theorem 1.3.1) implies that the norm || - || g is uniform and V7, is tame.

Case 2: the extension L/K is finite separable. Let L'/L/K be the normal closure
of L/K and denote by B’ the integral closure of A in L', which is equal to the integral
closure of B in L'. From the finite Galois case, there exists a norm || - || g7 on B’ such that
(B', || Il’) (1)-(3) hold. Since B is a subring of B’, the restriction of || - || g to B, denoted by
| - || B, induces the discrete topology B, hence is a Banach norm. We also have an isometric
embedding (A, || - ||) = (B,] - ||z) and M(B) is tame.

Case 3: the extension L/K is infinite and separable. Let £,/ denote the set of
finite sub-extensions of L/K. &, /K 1s a directed set with respect to the inclusion relation
and we have

L= |\J K and B= |J Ak,
K’GEL/K K’EgL/K

where, for all K’ € £, /x, Ag+ denotes the integral closure of A in K'. For any K’ € &/,
we denote by || - ||4,, the norm on Ay constructed in the finite case. If K”/K'/K are
sub-extensions in &7/, we have the compatibilities

(AK//, H ’ HAKN) o (AK'7 H : ”AK/)

LK /K

(A -1

where the arrows are the isometric embeddings previously constructed. Thus we have a

filtered direct system (Ag, || -[la,,)xes, ,, of Banach A-algebras whose arrows are isometric

embeddings. One can prove that the direct limit of this direct system exists in Baniialg
and using the fact that all Ag are discrete its underlying set can be identified with B. B
is Priifer (cf. Proposition (2)). Thus we have an integral structure (B, | - ||z) on L.
Let us show that V; := M(B) = imK'e&‘L/K M(Ag) is tame. From the description of V7,

as an inverse limit, we see that V7, contains the trivial absolute value and that the norm
|| || B is uniform. Moreover, by definition of || - || g, for any f € B, for any x € Vi um, we have
@) < 1.

Case 4: general case. Let K'/K be the separable closure of K in L and let ¢ denote
the degree of the purely inseparable extension L/K’. From the latter case, we have a norm
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| - ||ar on A’, the integral closure of A in K, satisfying (1)-(3). Define a map
[-1lB: (b€ B) = b4 € Rxo.

Then || - || 5 is @ norm on B satisfying (1)-(3).

To conclude the proof of the proposition, it remains to show that V, is "universal'. Let
v € My, and denote by B, its finiteness ring. As a valuation ring of L containing A, it is an
overring of B. By construction of || - || g, we have |b|, < ||b||p for all b € B,ie. ve V. O

The following propositions ensure that the ultrametric part of global spaces of pseudo-
absolute values arising from integral structures enjoys sufficiently nice properties.

Proposition 9.3.5. Let (A, || -||) be an integral structure on K and assume that V := M(A)
is tame. Let x € Vi \ Vi, t.e. an ultrametric absolute value on K, and assume that x is

non-trivial. Then, for all e € [0, +00], ¢ € V. Furthermore, the pseudo-absolute value on K
s defined by
| . |g° A — RZO
0 if|fle <1,
— .
R
belongs to V.. We denote it by x™.

Proof. As V is tame, we have 2° = vy, € V. For any € € Ryg, 2¢ is an ultrametric and

nontrivial absolute value on K. For any f € A, we have |f|, < 1 and thus |f|S < 1. Therefore
x€ €V (since 1 < ||f|]). For any f € A, we have |f|3° < |f|l. <1< | f|. Hence 2> e V. O

Proposition 9.3.6. Let (A, |-|) be an integral structure for K and assume that V := M(A)
is tame. Let x € Vi \ Vgn and assume that x is nontrivial. Then the map

[0,400] — V
€ — xf

x

induces a homeomorphism onto its image.
Proof. Proposition [9.3.5] implies that the map x is well-defined. Since for any f € A, the
map

[0,+OO] — RZO
e — |fl3

P

is continuous, " is continuous. Thus x" is a continuous bijection between compact Hausdorff
spaces, and consequently a homeomorphism. O

The following definition allows to get rid of pseudo-absolute values whose finiteness ring is
of rank greater than 1.

Definition 9.3.7. A pseudo-absolute value z € Mg with finiteness ring A, is called of rank
at most 1 if A, is a valuation ring of rank < 1.
Let (A, |- ||) be an integral structure for K and denote V= M(A). We define

V< :={z € V : 2z is of rank at most 1}.

Then V< is a topological subspace of V', with the subset topology.

Proposition 9.3.8. Let (A, ||-||) be an integral structure for K and assume that V := M(A)
is tame. Let © = (] - |¢, Ag, My, Kz) € Van N V<1. Then the following assertions hold.
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(1) The residue absolute value on k, is either Archimedean or trivial.
(2) Further assume that x € Vym. Then there exists v € V<1 such that © = v> (cf.

Proposition .

Proof. We first show (1). Let z = (| - |5, Az, Mg, Kz) € Vin N V<1 and assume z is ultrametric.
Since V' is tame, for any a € A, we have |a|, < 1. Furthermore, the canonical homomorphism
A — Ky is surjective. Hence, for any @ € k., we have [a|, < 1, i.e. k; is the valuation ring of
the residue absolute value of x, i.e. z is residually trivial.

We now prove (2). Let z = (] - |z, Az, mz) € Vin N V< be ultrametric. From (1), kg is
trivially valued. Let v be a valuation (necessarily of rank 1) on K with valuation ring A,
and denote by | - |, the corresponding absolute value on K. Note that, since x, vyiy € V, we
have A C A, and, for any a € A, |al, <1 < ||la||. Hence v € V<; and z = v>. O

Remark 9.3.9. With the notation of Proposition we have the set-theoretic description
of Vum,<1 as

|_| [07 +OO]/ ~

veEP
where:
e P denotes the set of equivalence classes of nontrivial ultrametric absolute values on
K;
e for any v € P, [0, +00] denotes the branch introduced in Proposition [9.3.6}
e ~ denotes the equivalence relation which identifies the extremity 0 of each branch.

Proposition 9.3.10. We use the notation of Remark[9.3.9. Assume that A is Dedekind.
Then the bijection

Vam = Vum,§1 = |_| [Oa +OO]/ ~
veP

is a homeomorphism.

Proof. This follows directly from the description of the Berkovich analytic spectrum of a
trivially valued Dedekind ring (e.g. [LP24], Example 1.1.17). O

9.4. Examples. We can explicitly describe global spaces of pseudo-absolute values for
various examples.

9.4.1. Function field over C. Let K = C(T). Let R > 0. Denote by | - ||z the supremum
norm of polynomial functions on the closed disc D(R) of radius R. Let || - || denote the
hybrid norm || - || := max{|| * ||tziv, || - ||z}, Where || - |ltriv denotes the trivial norm on C[T].
Then (C[T7], || - ||) defines an integral structure for K. We describe the associated global space
of pseudo-absolute values Vi.

Proposition 9.4.1. We use the same notation as above.
(1) We have homeomorphisms

VR,OO = (R)X]O, 1}, VR,um = P(%j,triv N {‘T’ < 1}7

where ]P’(lc’t]riV is the Berkovich analytic space associated with IP’(lc, where C is trivially

valued.
(2) VRoo is dense in Vg
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Proof. (1) Let ¢ be the map mapping (z,€) € D(R)x]0,1] to v, ¢ € Mg. First let us
prove that ¢ has image contained in Vg . For this purpose, it suffices to show that, for any

(z,€) € D(R)x]0,1], we have

vP e C[T], [P(2)l <Pl

Let (z,€) € D(R)x]0,1] and fix an arbitrary non-zero polynomial P € C[T]. First assume
that |P(2)]|c < 1. Then |P(2)|S < 1= ||P||tiv < ||P]|. Now assume that |P(z)|s > 1. Then
we have the inequalities

1 <[P(2)[& < |P(2)loo < I1PllR = [IP]-
Therefore ¢ has image contained in Vg .
Let us now prove that ¢ has exactly image Vg o,. We first consider the case where z ¢ D(R)
and € = 1. Then if P(T) :=T + 1 € C[T], we have
{ P(2)|oo = |2loo + 1> 1 = [ Plesivs
|P(2)|oo = |2loc +1 > R+ 1= ||P||g.
Therefore v, 1,00 ¢ VRoo-

Now let z ¢ D(R) and € €]0,1[. Then we construct a polynomial @) € C[T] such that
|Q(2)|S > [|Q]]- For any a € R~g, denote

Py(T) = g e C[T).

Then for any a > 0, we have || P,||r = R/a and

215 _
=>1= ||PaHtriv>

|Pa(2)|5 > |1 Fall { 9

a a 2l < % = | Pullg.

a€

Let u : (a €]0,|2|s]) = R/a'™¢. Then u is a continuous function. Note that

R < |z|lo & lim wu(a) =

= —— < |z|%-
oot T o <Pl

Moreover, for any a €]0, |z|[, we have

[Pa(2)[5 > 1Pl[R < ula) <25
Since lim,_, - u(a) < |z]S, by continuity, there exists a €]0, |z|oo[ such that u(a) < |z
and we denote @) := P,. From what precedes, we have |Q(z)|S, > [|Q]], thus v; 00 & VR co-

Combining the two above paragraphs, ¢ defines a bijection between D(R)x]0,1] and Vg .
It is a homeomorphism by definition of the topologies of its domain and codomain.

’ €
o]

We now prove the second homeomorphism. Let | | € Vgum- As |- [ < 1, we
deduce that the restriction of | - | is the trivial absolute value. We distinguish two cases.
The first one is the case where |- | is a usual absolute value. Then |- | is of the form
| |z,cum @ f € K — exp(—cord(f,z)) € Rsp, where z € CU {oo} and ¢ > 0 (using the
conventions ord(-,00) = —deg(-) and |- |;,0,um = | |triv for all z € CU{oo}). The second case
is when | - | has a non-zero kernel. Then there exists z € CU {oo} such that |- | = . c0,um;
where

|‘ ‘z,oo,um: C[T](sz) — RZO

0if f(z) =0,
fo= { 1if f(2) # 0.



PSEUDO-ABSOLUTE VALUES: FOUNDATIONS 53

Thus | - | can be identified with an element of ]P’(lc’triv. Moreover, the condition | - |icir) < 1

implies that | - | can be identified with an element of ]P’(%:’triv N{|T| < 1}, this yields a map
¥ VRum — P(lc’tmﬂ {|T| < 1} which is continuous by definition of the topologies. Conversely,

by definition, any element z € Pémv N{|T| < 1} gives rise to a ultrametric pseudo-absolute
value |- | € Mg um. As z € {|T| < 1}, we deduce |-|cir) < 1 < || - || and therefore |- | € Vg ym-
This construction yields an inverse to ¢. To conclude, it suffices to remark that Vg um
compact Hausdorff and that AgZ™ N {|T| < 1} is Hausdorff.

(2) We refer to the proof of Proposition (2). O

Remark 9.4.2. The notion of integral structure allows to characterise the ultrametric part
of our space of pseudo-absolute values. This addresses the issue mentioned in Remark [7.2.3]

(1).

9.4.2. Nevanlinna theory: open disc. A motivation for this work is to study problems arising
from Nevanlinna theory. We start by studying the Berkovich spectrum associated with the
integral structure of Example (3) over the ring of holomorphic functions on a closed
disc. Although the description of the whole space cannot be made explicit, its study will be
useful for the closed disc case (

Let 0 < R’ < +o0 and let Kp := M(D(R’)) be the field of meromorphic functions on
D(R') :={z € C: |z|oc < R'}, where D(+00) = C. Let R’ < R and denote by | - |r the
restriction to O(D(R')) of the hybrid norm on the disc D(R) (cf. Example (3)). Then
(O(D(R')), || - llr) defines an integral structure for K. Denote by Vg r/ the corresponding
global space of pseudo-absolute values. In what follows, we explicitly describe Vg r/ <1.

Proposition 9.4.3. Letv = (|-, A,m,k) € Vg g/ oo Then there exist z € D(R) and € €]0, 1]
such that v = v, o0 (¢f. Ezxample (8)). Furthermore, we have a homeomorphism

VR.R' 00 = D(R)x]0, 1] which maps any v eoo € VR r' 00 to (2,€) € D(R)X]0,1].

Proof. Recall that | - | denotes the usual complex Archimedean value. Note that, since
v € Vg r, we have an inclusion O(D(R’)) C A. In particular, C is a subfield of A and
thus C C A*. We have arrows C C A* — k and an extension C — k. Since v induces an
Archimedean absolute value on k, the Gelfand-Mazur theorem ([Bou75|, Chapitre VI, §6, n°
4, Théoreme 1) ensures that x = C and that there exists € €]0, 1] such that |- | =|-|5 on &.

From the inclusion C — O(D(R'))* we deduce that the C-algebra morphism O(D(R')) —
C is surjective whose kernel is the maximal ideal m’ := mNO(D(R’)) of O(D(R')). Proposition
implies that m’ is principal and that there exists z € D(R’) such that m’ is the set of
functions in O(D(R’)) vanishing in z. Thus v corresponds to the map (f € O(D(R’))) —
|f(2)|5% € [0,400]. The condition v € Vg g ensures that z € D(R). Hence the conclusion of
the proof of the first statement of the proposition.

For any v € Vg r/ «, denote by z(v) the unique z € D(R) such that & = v,(,) ¢(v),00- Let
¢ : VR r 0o = D(R)x]0, 1] be the map mapping any v € Vg g/ o to (2(v), €(v)) € D(R)x]0, 1].
Then ¢ is bijective. Let us show ¢ is a homeomorphism. To show that ¢ is continuous,
it is enough to show that so are the induced maps € : v € Vi g oo — €(v) €]0,1] and
2:0 € VR R oo = 2(v) € D(R). The first map is continuous (cf. [9.1.7). The map z is equal
to the composition Vi r/ oo = Vr,oo = D(R), where Vi o is the Archimedean part described
in Proposition It remains to prove that ¢ ~! is continuous. For this purpose, it suffices
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to show that, for any f € O(D(R’)), the map

|flop™!:| D(R)x]0,1] — R,
(z,6) — |f(2)l5%

is continuous. This fact being certainly true, concludes the proof. O

Remark 9.4.4. Let K = M(U) denote the field of meromorphic functions on a (connected)
non-compact Riemann surface U. On can adapt the above proof to describe the Archimedean
pseudo-absolute values on K: they are the pseudo-absolute values of the form (f € K) —
|f(2)|% € [0, +00], for some z € U and € €]0, 1].

We now study the ultrametric pseudo-absolute values in Vg g/. We first exhibit some
of them. For any z € D(R') and ¢ > 0, denote by v, .um the absolute value |- |, cum :
(f € Kpr) — exp(—cord(f,z)) € Ry (it is an element Vi s since for all f € O(D(R')), we
have | fl.,cum < 1). Example (4) provides, for any z € D(R’), a pseudo-absolute value
Vz,00,um defined by

"|z,oo,um: A, — RZO
0if f €m,,
fo= { 1if f ¢ m.,

where A, and m, denote respectively the set of elements of Kg without pole and vanishing
in z. Finally, for any z € D(R'), we denote by v, o um the trivial absolute value on Kp.

Proposition 9.4.5. Vi g/ <1 um %5 the set of pseudo-absolute values v on K such that there
exist z € D(R') and ¢ € [0, +00] such that v = vV ¢ ym-

Proof. Let v € Vg g <1. We first assume that v € Vg r/ \ Vg rren, i.6. v is a usual absolute
value on K. Let A C K denote the valuation ring of v. We have the inclusion O(D(R’)) C A
since v € Vg g/. Moreover, v is a valuation of rank 1, hence v is either trivial or equivalent
to the valuation ord(,z), for some z € D(R') (cf. Proposition [[.2.2). Thus there exist
z € D(R') and ¢ € Ry such that v = v, ¢ um.

We now assume that v € Vg r/ snum- Since Vg pr is tame (Définition and, for any
v € Vg R <1sn, We have k(v) = C and a surjection O(D(R’)) — k(v), Proposition W
ensures that v is of the form v, oo um, for some z € D(R'). O

Proposition 9.4.6. We have homomorphisms Vg p/ o = D(R')x]0,1] and
VR,R’,Sl,um = |_| [07 +OO]/ ~,
veEP
with the notation of Remark[9.3.9

Proof. This is a consequence of Propositions [9.4.3] and [0.4.5] The only part needing a
justification is the fact that the nontrivial ultrametric absolute values of K are discrete.
This comes from the first part of the proof of Proposition [9.4.5 O

9.4.3. Nevanlinna theory: compact disc. We now make use of the previous example to make
an explicit description of the integral structure from Example (4). We also give a
description of the structure sheaf of the corresponding Berkovich spectrum and show that
the underlying Banach ring is a geometric base ring in the sense of [LP24], so that Berkovich
analytic geometry can be performed over such a Banach ring. This gives a new explicit
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example of Berkovich space where the Archimedean points interact with the ultrametric ones
in a less standard way.

Let R > 0 and denote by Kr := M(D(R)) the field of (germs) of meromorphic functions
on the closed disc D(R) := {z € C : |z|co < R}. Let Ag = O(D(R)) denote the ring of
(germs of holomorphic functions on D(R)). Equip A with the hybrid norm || - ||gnyb (cf.
Example (4)). Then (AR, | - ||rnyb) is an integral structure for Kr. We now describe
the corresponding global space of pseudo-absolute values Vi.

Firstly, Vg = D(R)x]0, 1] where (z,€) € D(R)x]0, 1] is mapped to the pseudo-absolute
value v ¢ o defined in Example [2.2.1] (3) (see also Proposition [9.4.3).

We now describe Vg um. By Propositions [[.2.6|and [1.2.7] a non-trivial ultrametric absolute
value in Vg uym is given by a valuation ord(:, z) for some z € D(R). Hence it is of the form
| |z,cum : (f € KR) — exp(—cord(f,z)) € Ry for some ¢ > 0 and z € D(R). The remaining
elements of Vg ym are of the form

| - [2,00,um : O(D<R))(T—z) — Rxo ‘
PR { 0if fe (T - 2),

for some z € D(R)

Proposition 9.4.7. (1) We have homeomorphisms
Voo = D(R)x]0,1], Veum = || [0,+00]/ ~,
z€D(R)

where ~ denotes the equivalence relation which identifies the extremity 0 of each
branch.
(2) VR is dense in Vpg.

Proof. The homeomorphisms in (1) follow from the above paragraphs together with Proposi-
tion

We now prove (2). Let (v,)n>0 be a sequence in Vg o converging to some v € Vg. (1)
implies that, for any integer n > 0, v, = v, ¢, 00, fOr some z, € D(R) and €, €]0,1]. By
compactness of D(R) and [0, 1], up to extracting subsequences, we may assume that there
exists (z,€e) € D(R) x [0,1] such that lim,_,~ 2, = z and lim,,_, €, = €. Let us prove
that v = v, ¢ oo if € > 0 and that there exists ¢ € [0, 00| such that v = v, ¢um if € = 0.

We first assume that € > 0. Since |2|, > 1, v is Archimedean. Moreover, |(T' — z)|, =
limy,—s o0 |2n — 2|52 = 0. Thus (T' — z) belongs to the kernel of v and v is of the form v, ¢ o,
for some ¢ €]0,1]. |2], = 2¢ = 2¢ yields e = €.

We now consider the ¢ = 0 case. Thus |2]|, = 1 and v is ultrametric. Consider the
sequence u = (€, 10g|2n — 2|oo)n>0- Up to extracting a subsequence, we may assume that
u converges to —c € [—00,0]. Let us prove that v = v, .um. By hypothesis, we have
|(T — 2)|, = €€ (with the convention e~ > = 0). Moreover, for any z’ # z in D(R), we have
(T — 2')| = limp—s 400 |2n — 2’| = 1. From the aforementioned description of Vi um, we see
that v = v, ¢ um. O

Remark 9.4.8. The above example shows that the subspace of absolute values need not be
open, discrete or dense in the space of pseudo-absolute values. However, we will show that

density holds if K is countable (Corollary [10.2.4]).
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Now that we have a set-theoretic description of the space Vg, we can fully describe its
topology. Let us define the center map z : Vg~,,.., — D(R) defined by mapping an element
v € VR \ {vuiv} to the unique 2(v) € D(R) such that v = v, for some e €]0, 1jor
U = V() cum fOT some ¢ €]0, 0ol
Proposition 9.4.9. Let v € Vi. Define the following set B,.

(1) If v ="0;¢00 € VR oo, where (2,€) € D(R)x]0,1],

z,€ 1 —_ 1 1
BW:{%J%:<%eux) 12 = 2l < k}ﬂMROx}—lx+lP0<kJer}

ife <1 and
B, = &ﬁ”. GzeD()]z—dm ;}mpmﬁxk_}gyo<kJer}
ife=1.
(2) If v =0, cum, for (z,¢) € D(R) x [0, o0],
(a) if c= o0

zZ,00 1 1
Bo= {uf = fir—a < Ty {0 < 1k enaol;
(b) ifC€R>0,
1

z,C — - 1
Bv::{Ué’)::{e c—%<|T—Z|<€ c+k}:k€N>0}§

(C) ifv = Utriv,

1
B, := {Umv3_m{|T_Z|>1_k} k € Nsg and S C D(R )ﬁmte}

z€S
Then B, defines a basis of neighbourhood of v in Vg.

Proof. Proof of (1): This is a direct consequence of the fact that we have a homeomorphism
Vr = D(R)x]0,1].

Proof of (2.a): For any k € Ny, U,goo) is open by definition of the topology of Vg.
Note that v € U,EOO) iff v = v, cum With ¢ > logk or v = vy oo with € < 1/k and
€'log|z’ — 2|0 < —logk. Thus from the description in the proof of Proposition it
follows that B, is a basis of neighbourhood of v.

Proof of (2 b): Asin case (2.a), for any k € Ny, U,E 9 s open and v € U,E ) iff p = V¢! um
with [e7¢ — €| < 1/k or v = v, ¢ oo With ||2' — 2|5, — e7¢| < 1/k. Thus from the description
in the proof of Proposition it follows that B, is a basis of neighbourhood of v.

Proof of (2.c): Let k € Nyg and S C D(R) be a finite subset. Then U} is an

open neighbourhood of wvy,. Moreover, the intersection of the Utr}cv’s is vyiv. Indeed, a

multiplicative semi-norm in the intersection must have kernel zero and thus belongs to Vg.
Thus this point is vy from the description of the open neighbourhoods of viiy in Vg ym. U

Proposition 9.4.10. Let v € Vi. The stalks of the structure sheaf Or of Vg have the
following description.
(1) If v = 0; ¢ 00 € VRoo, where (z,€) € D(R)X]0,1], then Og,, identifies with Oc ., the
ring of germs of holomorphic functions at z.
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(2) If v ="v;cum, for (z,c¢) € D(R) x [0,00], then O, identifies with:
(a) Oc,z, the ring of germs of holomorphic functions at z, if ¢ = oo;
(b) Mc, ., the ring of germs of meromorphic functions at z, if 0 < ¢ < oo;
(¢) M(D(R)), the field of meromorphic functions on D(R), if ¢ = 0.

Proof. Proof of (1): Let (z,¢) € D(R)x]0,1]. Let f € Oc,. be a germ of holomorphic
functions at v. By definition, there exists an open subset U C D(R’), where R < R/, such that
f is holomorphic on U. Then there exist a compact neighbourhood V of v in U and a sequence
(fi)i>o of rational functions without poles on V' such that ||f|VmW - fi”‘mﬁ —ito00 0.

Set Uyp := (UND(R))x]a,b], where 0 < a < e < b < 1and V,; = (VND(R))x]a,b]. Define

fa,b : Ua,b — |_| ((C7 | : |§o)7
(zlvel)eUa,b
() — f(&).

Similarly, for all ¢ > 0, set

fi,a,b : Ua,b — |_| (C7 ’ : glo)7
(Z,)EI)GUu,b

(2, €¢) —  fi(2),

this is an element of K(V, ;). Using the equivalence of norms on C, we see that

!
[ fapivey = fiapllve, = sup  |f(Z) = fi(2)|5 —isto0 O
' (zl’E,)GVa,b

Thus f,; defines an analytic function on a neighbourhood of v, .~ which gives a ring
homomorphism Oc . — Or., . -

Conversely, let g € Og,y. ... We may assume that g is defined by f,5 € Or(Uap) on
a neighbourhood of the form U, := Ux]a,b] C D(R)x]0,1], where U C D(R) is an open
subset and 0 < a < € < b < 1. By definition, there exists a compact neighbourhood V, ; of

Uze00 i Ugyp and a sequence (f;qp)i>0 of meromorphic functions on D(R) without poles
on Vg such that || fouv, , = fiabllv., —istee= 0. Define f: (2" € U) = fop(2,€)C and
fiap: (21 €V) = fiap(2,€) € Cfori>0, where V denote the first projection of V4 ;. Then
using again the equivalence of norms on C, we obtain that f is on V a uniform limit of
meromorphic functions without poles, hence is holomorphic. This construction defines a ring
homomorphism Og,, . ., — Oc,. which is inverse to the previous one.

Proof of (2.a): Assume that v = v, oo ym. Consider the Berkovich spectrum M (O(D(R)), ||-
||triv). This is the spectrum of a trivially valued Dedekind ring which identifies as Vi um by
Proposition The stalk of the structure sheaf of M(O(D(R)), || - ||triv) at v identifies
with the ring of power series C[T" — z]]. The inclusion M(O(D(R)),| - |ltriv) € Vg and the
construction of the structure sheaf yields an inclusion Or, C C[T — z] of rings. Assume
that f € C[T — z] is a convergent power series that defines a germ of holomorphic functions
at z defined on a ball of radius r < 1 around z. Let k& € N5 such thzﬁk‘ < r and consider

U,gz’oo) ={|T — z| < 1/k}n{e(-) < 1/k} C Vg from Proposition 9.4.9 This is an open

neighbourhood of v such that U ,E,z’oo) N VRum is contained in the branch associated with z.
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Moreover, (2,€') € D(R)x]0, 1] belongs to U,gz’oo) iff |2/ — z|S, < r. Thus we can define

for [ UE — ] R
v’EUIEZ’OO)
e
, N f lf (S Vvk(z,oo)R7um,
f(Z)ifd = Uzt el oo € VR oo-

Then f; defines an element of Or(U, ,EZ’OO)) and thus an element of Og,. Moreover, Oc ., C
ORr.v-

Conversely, assume that f € C[T — z] is not convergent around z. If it would correspond
to a stalk in Og,, we could find some k € N5 such that f is defined on U,gz’oo). But
V2 1/2k00 € U ,EZ’OO) and considering the stalk at this point, f corresponds to a convergent
power series at z by (1). This gives a contradiction.

Proof of (2.b): Assume that v = v, ¢ um, where ¢ € R>g. By the same argument as in case
(2.a), we have an inclusion of rings Or, C C((T — z)). Consider the open neighbourhoods
Ulgz,c) ={e“—1/k<|T —z| <e “+1/k}, where k € N5( from Proposition m Let
f € C(T — z)) correspond to a germ of meromorphic functions at z. Then on a complex
neighbourhood of z, f defines a meromorphic function that is holomorphic everywhere except
possibly at z. Then there exists k € N5 g such that U, Igz’c) contains only Archimedean points
of the form v,/ ¢ o, such that f defines a germ of holomorphic functions at z’. Thus

i UkZ’C) — |_| K/(-UT)
U’EU,EZ’C)
v —s { f if v/ € VR,um7
f(zl) if v = Uzl € 00 € VR,oo

defines an element in Og (U, ,S,Z’C)) and the stalk in Og . Moreover, Mc . C ORr,.

Conversely, assume that f € C(T — z)) does not define a germ of meromorphic functions
at z and corresponds to a stalk in Ogr,. Then we could find an integer £ € Ny such
that f defines an analytic function on U,EZ’C). Then for all (2/,€') € D(R)x]0,1] such that
lelog |2 — 2z|oo + | < 1/k, Uy o0 € Ukz’c) and considering stalks, f would define a germ in
Oc,. Since 2’ can be chosen to describe a complex open ball around z, f would define a germ
of meromorphic functions at z, which gives a contradiction. This means that Or, C Mc .
and therefore Og , = Mc_..

Proof of (2.c): By the same argument as in the last two cases we have an inclusion
Opry C M(D(R)). Let f € M(D(R)). Let S denote the finite set of poles of f. Then for
any k € Nsg, define

f . Utriv N |_| KJ/(U\,)
k - S,k
v’eUgf}'C”
if v/ € Vi
/ — f 1 ,um s
v FE) it v =0y 000 € Voo

This is an element of OR(Ug}Q’)- This gives the inverse inclusion M(D(R)) C Og.,. O

)
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We conclude this section by proving that the Banach ring (O(D(R)), || - ||rnyb) is a
geometric base ring in the sense of ([LP24], Definition 3.3.8). This implies that one can
perform Berkovich geometry over such a Banach ring.

Proposition 9.4.11. Let v € Vi and consider the basis of neighbourhood B, introduced
in Proposition[9-4.9. Then B, is a fine basis of path-connected neighbourhoods of v whose
closure is spectrally conver.

Proof. Let v € Vi. The fact that B, is fine is straightforward from the definition of the
neighbourhoods.
Proof of path connectedness: The result is clear if v € Vg .

Assume that v = v oo um for some z € D(R) and let k& € N5 . Note that U,EZDO) NVR,um and
U,gz’oo) N VR, are both path connected. Let 0 < € < 1/k, then (¢ € [0,1]) = v, 00 € U,gv’oo),
where v, ¢ oo 1= Uz 00,um 18 @ path between v and v, ¢ . Thus U,EZ’OO) is path connected.

Now assume that v = v, cum, where (z,¢) € D(R) x Ryg. Let £k € N5 such that
e ¢—1/k > 0. Again U,gz’c) N Veum and U,EZ7C) N Vr are both path connected. Let
Uy o o0 € U,gz’c), where (2/,¢') € D(R)x]0,1]. Let €(0) := 0 and for any ¢ €]0, 1], set

 log(e™ + %) +log((e ¢ — %))

e(t) = 2(log(t) +log |2" — 2|eo)

Then (t € [0,1]) = Vpry(1—t)ze(t),00 defines a continuous path in Uéz’c) between v and
U e(1),00- Lherefore we can construct a continuous path between v and v,/ ¢/ .

Finally, assume that v = vy, and let k € N5g and S C D(R) be finite. Again Ufgf}g’ NVR,um
and Ug}fv N VR« are both path connected. We may assume that there exists a complex disc
around 0 of radius r < 1 which does not intersect S. Let z ¢ S such that 0 < |z|e < 1.
Then (¢ € [0, 1]) = Vg 4]2].0 00, Where V00,00 1= Variv, is a continuous path between gy and
Vs [2]o,00 10 UEY. Thus U} is path connected.

Proof of spectral convexity: We prove the spectral convexity only for v = v, o um,
where z € W, the other case are treated similarly. Let k € N-(. By direct inspection, we
have

Z,00 zZ,00 1 1
e . & ):{|Tz\§k}ﬁ{e(-)§k}.

Thus we see that V, ) i3 pro-rational in the sense of ([LP24], Définition 1.3.1). Thus it is
spectrally convex (loc. cit., Théoréme 1.3.7). (]

Proposition 9.4.12. The Banach ring (O(D(R)), || - |

Rhyb) 8 a geometric base ring.

Proof. The proof is in two steps: the first one is that Vg satisfies the analytic continuation
principle and the second one is the proof that (O(D(R)), || - || r,nyb) basic.

Proof of analytic continuation: Let v € Vg and U an open neighbourhood of v. Let
f € ORr(U) such that the stalk of f at v is non-zero in Og,. Let us prove that there
exists an open neighbourhood V' in B, such that f yields non-zero elements of all the stalks
OR,v, where v € V. If v € VR «, this is a consequence of usual analytic continuation. If
v € VRum is of the form v, . um, where (z,¢) € D(R) x [0,00]. If ¢ = oo, then a stalk of f at
v corresponds to a germ of holomorphic function at z. In the proof of Proposition [9.4.10, we
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)

described an analytic function on some U kz’oo giving flU(z,oo). All the corresponding stalks
k

are non-zero. We argue similarly in the cases ¢ € Ryg and v = vgiy.

Proof of basicity: By Proposition [9.4.11] we have to prove that for any v € Vg, the
stalk Op,, is either a strong field or a strong DVR ([LP24], Définition 1.6.15). By (loc. cit.,
Remarque 1.6.16), the analytic continuation implies that we only have to show that Og,
is a strong DVR, where v = v, oo,um OF U = ¥, ¢ 0 for some (z,€) € D(R)x]0,1]. In that
case the maximal ideal mpg, is generated by 7' — 2. Let U be a compact neighbourhood
of v. Let V be the closure of an element in B, such that V is contained in the interior of
U. We have to show that there exists a family Ky y of positive constants such that for any
f=9(T —z) € mp, that is defined on U and V', we have

lgllv < Kvollfllo-

Let us treat the Archimedean and ultrametric cases separately.

Assume that v = v, o0, where (z,¢) € D(R) x [0,00]. Assume that V = U,gfl’ﬁ), where

k,l € N5g big enough. By Schwarz Lemma, for any (2/,¢') € U,Sl’e), we have

91 < 11— < 1 < 1l
Thus Ky, = 1 is a suitable choice.

Assume that v = v, oo um, Where z € D(R). Assume that V = Ukz’oo), where k € Nyg.
Schwarz Lemma again yields

sup  Jg(o)| < sup  f()] < sup (V)]

UIGVQVRQO UIGVQVRQO U’EUQVRQO
Now by definition of U, ,E,Z’OO) N VR,.um, we have

sup ()| = e 70 =t sup  [f(V)|<eb  sup  |F(V)].
’UIEVF-\IVRyum ’U/EVQVR,um ’UIEUPIVRyum

Therefore Ky := e¥ is a suitable choice. O

10. GLOBAL ANALYTIC SPACES

We now give alternative approaches to global analytic spaces. This is a global counterpart
to More precisely, we give an analogue of the Zariski-Riemann description of spaces of
pseudo-absolute extending pseudo-absolute values coming from an integral structure. As an
application, we describe the full space of pseudo-absolute values on a field as an analytic
Zariski-Riemann space over the prime ring. We also obtain the density of the set of absolute
values in the countable case. Throughout this section, we fix a field K.

10.1. Model global analytic space. In this subsection, we assume that we have an integral
structure (A4, || -||) for K (Definition [9.1.1). We denote by V := M(A, ||-||) the corresponding
global space of pseudo-absolute value. We will make heavy use of the theory developed by
Lemanissier-Poineau in [LP24].

We assume that (4, || - ||) is a geometric base ring (cf. and that A is universally
Japanese (cf. Example :1.4.2;. Let X — Spec(K) be a projective K-scheme and let X —
Spec(A) be a projective model of X over A. Assume that X is a coherent model, namely




PSEUDO-ABSOLUTE VALUES: FOUNDATIONS 61

X — Spec(A) is finitely presented. Then one can consider the A-analytic space associated
N an an 3 3 &
with X', denoted by X(A7||~H)’ or X*" when no confusion may arise (cf. .

Definition 10.1.1. With the above notation, the A-analytic space A?" is called the global
model analytic space attached to the model X. It is a compact Hausdorff topological space
([LP24], Lemme 6.5.1 and Proposition 6.5.3).

From now on, we fix a coherent model X of X over A and denote by X?" the associated
global analytic space. The global analytic space X comes with two maps of locally ringed
spaces p : X* — V := M(A) and j : X*™ — X. In this thesis, we will only use the
topological properties of analytic spaces.

Let v = (|- o, Ay, My, Ky) € V. Then X, := X ®4 A, is a coherent model of X, which is
flat if X' is flat itself. Thus (X, ®4 k,)*" is a local model analytic space in v of X in the
sense of Definition

Proposition 10.1.2 (|[LP24], Proposition 4.5.3). We have a homeomorphism
(X, @4 )™ = p~H(v),

10.2. General global analytic space. We now try to introduce a general approach to
global analytic spaces. Let K'/K be a field extension. Intuitively, the global analytic space
attached to any sub-model X of K’/K should be a fibration over My whose fibres correspond
to the local analytic spaces attached to X. For the same reasons that were explained in
Proposition an approach mimicking directly Berkovich spaces is not suitable if one
wants to obtain Hausdorff spaces.

10.2.1. Global analytic space associated with a sub-model. As in the previous subsection, we
fix an integral structure (A4, || -||) for K and we assume that (A4, || -||) is a geometric base
ring and that A is universally Japanese.

Definition 10.2.1. Let K’/K be an algebraic function field and X be a projective sub-model
of K'/K. The global analytic space attached to X is defined to be

XA = &%ﬂXﬁn-H)v

where X runs over the projective sub-models of K’/A that are flat and coherent and whose
generic fibre is isomorphic to X. This is a compact Hausdorff space.

10.2.2. Zariski- Riemann global analytic space. We keep the same notation as in the above
paragraph. Denote by V(’ Ay O V7 if no confusion may arise, the subset of My consisting

of all pseudo-absolute values on K’ extending a pseudo-absolute belonging to M(A, || - ||)-
There is a specification map V) — ZR(K’/A) which is continuous by a similar argument to

Lemma [82.21
Theorem [1.4.3] (1) gives a homeomorphism

ZR(K'/A) = lim X, (5)
X

where X runs over the projective models of K’/A. Let us prove that the isomorphism
has a counterpart in our context.

Lemma 10.2.2. Let X be a projective sub-model of K'/A. Then there exists a flat and
coherent projective model X' of K'/A dominating X .
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Proof. Consider the sheaf of ideals (Ox)tor of Oy as an OSpec( A)-module. Then let X’
denote the closed subscheme of X defined by (Ox)tor- It is a projective sub-model of K'/A.
Moreover, since Ox /(Ox )ior is a torsion-free Ogpec(a), hence X’ — Spec(A) is flat. By the
flattening theorem of Raynaud-Gruson ([RGT1], Corollaire 3.4.7), X’ is also coherent.  [J

By Lemma [10.2.2) we see that any two projective sub-models of K’'/A are dominated by a
flat and coherent projective sub-model of K’/A. Therefore we have a homeomorphism

ZR(K'/A) = lim X
(K'/A) i

where X runs over the flat and coherent projective models of K’/A. We will now prove an
analytic analogue of this homeomorphism.

Let X be a flat and coherent projective model of K'/A and set X" := X("“‘X,”.”). Let
o' = (||, A,w', k") € V. Denote by v the restriction of v’ to K and let X, := X @4 A,.
Then the construction of the map redy, : Mg/, — /'/\,’:,an = (X, ®a, Ky)™™ in yields a
point zeX,” Let m:x™m M(A,] - ||) denote the structural morphism. By Proposition
we have a homeomorphlsm an o p=1(y). Thus we obtain a map redy : Vi — X,
Moreover the arguments in adapt mutatis mutandis to show that the construction of the
maps redy is compatible With the domination relation between projective models of K'/A,
so that we obtain a commutative diagram

V) 7 ZR(K'/A)

redi lg )
. an .
@XGMK,/A X @XGMK,/A X

where Mg, 4 denotes the collection of flat and coherent projective models of K "/A.

Theorem 10.2.3. We use the above notation. The map red : V} — fm, o A s a

homeomorphism. Moreover, if K' /K is finitely generated, one can only consider the projective
models of K'/A in the projective limit above.

Proof. First note that the arguments in the proof of Proposition adapt directly in our
setting to obtain the continuity of the map redy, for any X € M, and thus the continuity of
red. By compactness of V) and lim ¥ X2" it suffices to prove that red is bijective.
For the injectivity of red, the elements in the proof of Theorem adapt mutatis
mutandis (using Theorem [1.4.3] (2) and ([Bou75|, Chap. IX, Appendice 1, Proposition 1)).
The surjectivity of red is given by Theorem and Proposition O

We list several consequences of Theorem

Corollary 10.2.4. We use the same notation as above.

(1) We have a homeomorphism
Viagp = B X3,

where X runs over the projective sub-models of K'/ K.
(2) Assume that K is of characteristic zero. The following assertion hold.



PSEUDO-ABSOLUTE VALUES: FOUNDATIONS 63

(a) Mg is homeomorphic to @XGM ) X2 where Z is equipped with the Banach
K/Z

norm |+ |oo-

(b) Mk, is homeomorphic to (@XEMK/Q X(C)/ ~)x]0,1], where ~ denotes the
complex conjugation.

(c) Assume that K is a finitely generated extension of C. Then M ~ is home-
omorphic to (@XX(C))X]O, 1], where X runs over the projective models of
K/C.

(3) Assume that K is of characteristic p > 0. Then M is homeomorphic to @XGM ) X
K/Fp

where Fy, is equipped with the trivial norm.
(4) Assume that (A, || -||) is Dedekind analytic ([LP24], Définition 6.6.1), e.g. if A is the
prime ring of K'. Then the specification morphism j : V(,AH'II) — ZR(K'/A) is open.
(5) Assume that K is countable. Then the set of absolute values on K is dense in M.

Proof. (1) is clear from Theorem [10.2.3|and (2.a), (3) follow directly from the cases (Z, || - ||)
and (Fp, || - [liriv)-

To prove (2.b), we set (4, | - ||) :== (Q, max{| - |triv, | - |oo}). Using the description of hybrid
analytifications (cf. e.g. [P0i25]), Theorems |8.2.4] and [10.2.3| yield homeomorphisms

Mroo = Viajy > Micuy = 30 (XE > X o) = ( o X(€)/ N) A
XGMK/@ XEMK/Q
(2.c) is proved similarly.

(4) follows from Theorem combined with the fact that for any X € M4, the map
xam — M(A, |- is open (|[LP24], Propositions 6.4.1 and 6.6.10).

The proof of (5) goes along the same lines as the one of Corollary Note that the
positive characteristic case is Corollary In the characteristic zero case, since K is
countable and M is a Baire space, it suffices to prove that, for all a € K, U, := {|a| < 400}
is dense in M. By Theorem it suffices to prove that, for any projective sub-model X
in Mz such that a € k(X) and for any open subset U C X*", we have U, N red;(l(U) % .
This is a consequence of the following claim.

Claim 10.2.5. Let X' be a projective sub-model in My 7. Then for any Zariski-open subset
V C X, V3 is dense in X?".

Proof. Let U C X®" be an open subset. Since X*" — M(Z,| - |~) is open, there exists
z = (p,|-[+) € U such that |- [ is a non-trivial absolute value on Q. Denote by Ag", the
Berkovich analytification of X ®7 Q.. Then, as mentioned in the proof of Corollary

the preimage of V ®z Q in AG', is dense in &G, Thus V¥ NU # . O
O
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