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Abstract. In this article, we introduce pseudo-absolute values, which generalise usual
absolute values. Roughly speaking, a pseudo-absolute value on a field K is a map | · | :
K → [0, +∞] satisfying axioms similar to those of the usual absolute values. This notion
allows to include "pathological" absolute values one can encounter trying to incorporate the
analogy between Diophantine approximation and Nevanlinna theory in an Arakelov theoretic
framework. It turns out that the space of all pseudo-absolute values can be endowed with
a compact Hausdorff topology in a way similar to the Berkovich analytic spectrum of a
Banach ring. Moreover, we introduce both local and global notions of analytic spaces over
pseudo-valued fields and interpret them as analytic counterparts to Zariski-Riemann spaces.
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Introduction

Motivations and background.

Arakelov geometry, adelic curves. Let us start by stating the following guiding principle.
Given a field K, together with a distinguished set of absolute values satisfying a product
formula, one can perform Diophantine geometry. The first occurrence of this principle is the
case of global fields. A turning point in this philosophy is due to the seminal work of Arakelov
[Ara74], which led to the development of many arithmetic analogues over number fields of
classical tools in algebraic geometry. Moreover, several other instances of this principle have
been studied in the literature (e.g., trivially valued fields, finitely generated extensions of Q,
infinite algebraic extensions of Q).

In [CM19], Chen and Moriwaki introduced an Arakelov theory over an arbitrary field. The
central object of the theory is called an adelic curve. Namely, an adelic curve is the data
S = (K, (Ω, ν), (| · |ω)ω∈Ω), where K is a field, (Ω, ν) is a measure space and (| · |ω)ω∈Ω is a
family of absolute values on K. Moreover, an adelic curve S is called proper if a product
formula holds (see [CM19], §3 for more details).

Adelic curves arise naturally in various number-theoretic situations, and we mention some
of them.

(1) Any global field, including function fields of arbitrary characteristic, can be naturally
equipped with an adelic structure whose parameter space is the set of places of the
global field equipped with the discrete σ-algebra and the product formula is the usual
one.

(2) Any finitely generated extension of a base field can be equipped with an adelic
structure by choosing a polarisation of a birational model over the base field ([CM19],
§3.2.4). The parameter space is again equipped with the discrete σ-algebra.

(3) A natural example of an adelic structure whose parameter space is equipped with a
non-discrete is the arithmetic variant of bullet (2) above. These are adelic structures
on finitely generated extensions of Q and come from polarised arithmetic varieties
(loc. cit., §3.2.6).

(4) More generally, any countable field can be endowed with an adelic structure ([CM21],
§2.7).

The formalism of adelic curves allows one to study all these examples in uniformly.
Most tools arising in classical Arakelov geometry have a counterpart in the world of

adelic curves: e.g. geometry of numbers, arithmetic intersection theory, Hilbert-Samuel
formula [CM19, CM21, CM24]. However, these results hold for adelic curves such that
either the parameter space is equipped with the discrete σ-algebra or the underlying field is
countable. This observation is one of the motivation for this article, as we will explain in a
few paragraphs.

Nevanlinna theory and M -fields. Another instance of the guiding principle is encountered in
the analogy between Diophantine geometry and Nevanlinna theory. This analogy was first
observed by Osgood [Osg81] and further explored by Vojta in [Voj87]. Roughly speaking,
Nevanlinna theory can be seen as a generalisation of the fundamental theorem of algebra to
entire functions. It builds on two fundamental theorems. Through the analogy, the first one
corresponds to a suitable construction of a height function. The second one is seen as an
analogue of Roth’s theorem [Rot55].
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In [Gub97], Gubler introduced the notion of M-fields, with the idea of including Nevanlinna
theory in an Arakelov theoretic framework. More precisely, an M-field K is the data of a
field K together with a measure space (M,ν) and maps defined ν-almost everywhere

(v ∈M) 7→ |a|v ∈ R+

for all a ∈ K satisfying
(i) |a+ b|v ≤ |a|v + |b|v ν-ae,
(ii) |a · b|v = |a|v · |b|v ν-ae,
(iii) v 7→ log |c|v ∈ L1(M,ν) and |0|v = 0 ν-ae,

for all a, b ∈ K and c ∈ K∗. This definition is notably motivated by the following example in
Nevanlinna theory. Consider the fieldM(C) of meromorphic complex functions. Consider a
real number R > 0 and set MR := {z ∈ C : |z|∞ ≤ R} where the boundary {z ∈ C : |z|∞ =
R} is equipped with the Lebesgue measure and the open disc {z ∈ C : |z|∞ < R} is equipped
with a counting measure. For any f ∈M(C), consider the map

(z ∈MR) 7→
{
|f(z)|∞ if |z|∞ = R,

e− ord(f,z) if |z|∞ < R.

Note that the above map is well-defined everywhere except at poles of f on the circle of
radius R. Then one can check that we have a MR-fieldM(C).

Using M -fields, Gubler obtains the construction of a height function for fields of arithmetic
nature, including the above example and thus generalising Nevanlinna’s first main theorem.
Remark. Since the notions introduced above will not be further used in the following
presentation, we exposed them very succinctly. For the interested reader, a more detailed
exposition can be found in the introduction of [Séd24].
Goal. Let us list several objectives, questions and issues that led to the present paper.

(1) Broadly speaking, the goal is to obtain a framework in the spirit of adelic curves
allowing to both include Nevanlinna theory and study possibly uncountable fields of
arithmetic interest.

(2) In the case ofM -fields, it seems to be a complicated problem to obtain further results,
e.g. geometry of numbers. This is notably due to the fact that the "absolute values"
appearing are not well-defined everywhere.

(3) In the theory of adelic curves, the countability condition on the base field is imposed
by the fact that the parameter space is a measure space and various constructions for
adelic vector bundles thus force this countability assumption (cf. [CM19], §4 and §6).

(4) To address the two previous points, it is aimed to work with a topological parameter
space. To this purpose, the idea is to authorise "absolute values" with singularities.
These are the objects we introduce in this article.

(5) Equip our topological parameter space with extra analytic data to obtain meaningful
arithmetic applications using features in a similar spirit to the theory of global
Berkovich spaces initiated by [Poi07, Poi10, Poi13, LP24].

This article focuses on bullet (4) above and its content is to be seen as the local aspect
of my PhD thesis [Séd24]. The content of §8 and 10 will initiate the implementation of
bullet (5). The global aspects, namely bullets (1)-(3) (cf. Chapters II-IV in loc. cit.) will be
introduced in subsequent work. Since the tools we introduce next have an intrinsic interest,
we decided to publish them in an independent paper.
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Before moving on to the precise content of this paper, let us elaborate a bit more about
the idea of working with a topological parameter space instead of a measure space. First,
one can remark that the parameter spaces appearing in examples of adelic curves in [CM19]
come from a topological space. Second, using (sufficiently nice) topological space allows the
use of topological notions, e.g. neighbourhoods, convergence, (equi)continuity... Concerning
the latter notion, it is worth mentioning the works [Voj21, DZ25]. In these articles, the
authors address a generalisation of Roth theorem over a more general base than a number
field. In the first mentioned article, Vojta works over the aforementioned adelic structure
given by a polarised arithmetic variety. In the second paper, Dolce and Zucconi yield a class
of adelic curves over which the argument of Vojta can be extended. The main technical
difficulty encountered is to obtain an "equicontinuity property" relative to the adelic curve.
Although the authors work over a measure parameter space, such a property suggests some
underlying topological features of the parameter space. Although the current development
of our topological approach does not allow the analogue of such results, we hope that the
foundations presented in this paper will be helpful for the understanding of Diophantine
problems over more general base fields.

Content of the article. In this article, we introduce the notion of pseudo-absolute value.
Let K be a field. A pseudo-absolute value on K is a map | · | : K → [0,+∞] satisfying

(i) |1| = 1 and |0| = 0;
(ii) for all a, b ∈ K, |a+ b| ≤ |a|+ |b|;
(iii) for all a, b ∈ K such that {|a|, |b|} 6= {0,+∞}, |ab| = |a||b|.

This notion includes "pathological" absolute values that one encounters in the context of
Diophantine geometry or Nevanlinna theory, e.g. maps of the form (f ∈ Q(T )) 7→ |f(0)|∞ ∈
[0,+∞] or (f ∈M(C)) 7→ |f(z)|∞, for z ∈ C. Moreover, if | · | is a pseudo-absolute value on
a field K, then A|·| := {a ∈ K : |a| < +∞} is a valuation ring of K with maximal ideal is
m|·| := {a ∈ A : |a| = 0} and | · | induces a usual absolute value on the residue field A|·|/m|·|.
In other words, pseudo-absolute values are the composition of a general valuation with a
(possibly Archimedean) absolute value.

The first appearance of pseudo-absolute values in the literature seems to be in ([Wei51],
§9). What we call pseudo-absolute values are called absolute values. In this seminal work, he
describes pseudo-absolute values as the composition of a valuation and a residue absolute
value.

In [Tem11], Temkin studies Zariski-Riemann spaces in a relative context. The notion of
semi-valuation or Manis valuation is central in the valuative interpretation of these Zariski-
Riemann spaces. Pseudo-absolute values can be seen as variants of semi-valuations where
the residue valuation is allowed to be Archimedean. In this article, we only limit ourselves to
the classical case where the algebraic morphism is just the inclusion of the generic point of
an integral projective scheme. Nonetheless, more general versions should be studied using
this point of view.

More recently, this notion has appeared in the context of Ben Yaacov-Hrushovski’s
framework of globally valued fields. They obtain several related facts to those proved
in that article (cf. the independent work [BYDHS24] by Ben Yaacov-Destic-Hrushovski-
Szachniewicz). More details will be given in the following of this introduction.

Using this interpretation, we obtain results on the behaviour of pseudo-absolute values
with respect to extensions of the base field as well as some "Galois theoretic" results, namely,
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we describe the action of the Galois group on sets of extensions of pseudo-absolute values
(§3-4). It is also possible to complete a field equipped with a pseudo-absolute value (§5).
Note that in general, the completion is not canonical.

After that, we introduce the analogue of a normed vector space in the case where the base
field is equipped with a pseudo-absolute value (§6). The generalisation of a norm on a vector
space is called a pseudo-norm and the latter can be described as the data of a free module
over the underlying valuation ring of the pseudo-absolute value together with a usual norm
on the extension of scalars of this free module to the completion of the residue field. In this
context, it is possible to generalise the usual algebraic constructions that are performed over
normed vector spaces (e.g. subspaces, quotients, duals, tensor products, exterior products,
direct sums). This step is necessary in view of developing slope theory in the global context
(cf. [Séd24], Chapter 3).

The core of this article consists of exploring the analytic geometry of spaces of pseudo-
absolute values. First, note that pseudo-absolute values are intrinsically related to multi-
plicative semi-norm on a ring: indeed, if | · | is a pseudo-absolute value on a field K, then | · |
induces a multiplicative semi-norm on the valuation ring A|·| = {a ∈ K : |a| < +∞}. It is
possible to equip the space of pseudo-absolute values with a topology similar to that of the
Berkovich spectrum of a Banach ring [Ber90]. It turns out that the set of all pseudo-absolute
values on a field K behaves as the analytic spectrum of the Zariski-Riemann space of K,
namely the set of valuation rings of K, as suggested by the following result.
Theorem A. Let K be a field with prime subring k. Denote by MK the set of all pseudo-
absolute values on K. Then the topological space MK is non-empty, compact and Hausdorff.
Moreover, we have a specification map j : MK → ZR(K/k) which is continuous and open,
where ZR(K/k) denotes the Zariski-Riemann space of K/k equipped with the Zariski topology.

This will be proved in Theorem 7.1.2, except for the openness that is proven in Corollary
10.2.4. This shows that the space MK is a choice of compactification of the set of usual
absolute values over K and plays the role of an analytic spectrum, the corresponding algebraic
space being the Zariski-Riemann space of K.

In §8-10, we precise the idea of this "analytic Zariski-Riemann space" interpretation of
spaces of pseudo-absolute values.

In §8, we work locally, namely over a fixed pseudo-absolute value. Let v be a pseudo-
absolute value on a field K determining a valuation ring A and residue field κ which is
equipped with an absolute value. We denote by κ̂ the completion of κ w.r.t. this absolute
value. Let K ′/K be a field extension. By a projective sub-model of K ′/A, we mean an
integral projective A-scheme whose function field embeds in K ′. We can attach to such data
a model local analytic space, defined as the Berkovich analytification of the extension of
scalars to κ̂ of the special fibre of X , namely (X ⊗A κ̂)an. We then have the following result.
Theorem B (Theorem 8.2.4 and Corollary 8.2.6). Let v be a pseudo-absolute value on K
defining a valuation ring A with residue field κ. Assume that A is universally Japanese (cf.
Example 1.4.2). Let K ′/K be a field extension. LetMK′,v denote the set of all pseudo-absolute
values on K ′ extending v.

• We have a continuous map
MK′,v → ZR(K ′/A).

• We have a commutative diagram of topological spaces
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MK′,v lim←−X (X ⊗A κ̂)an

ZR(K ′/A) lim←−X X

∼=

∼=
,

where X runs over all projective sub-models of K ′/A.
• Assume that v is an absolute value and that K is countable. Then the subset of
absolute values is dense in MK′,v.

This result can be seen as an analytic counterpart to the usual algebraic description
of Zariski-Riemann spaces, namely the bottom homeomorphism in the above diagram. It
turns out that in the case where v is a usual absolute value, Theorem B can be viewed as a
birational counterpart to ([Got24], Theorem 1.2).

To give a global counterpart to Theorem B. Similarly to the local case, we first introduce
model analytic spaces. To do so, we have to specify an integral model of the base field,
which restricts the choice of relevant pseudo-absolute values. This leads to the notion of
integral structure (§9). Namely, an integral structure for a field K is a Prüfer Banach ring
(A, ‖ · ‖) with fraction field K. It turns out that the Berkovich spectrumM(A, ‖ · ‖A) can be
interpreted as a closed subset of MK . This notion allows in some cases to describe explicitly
some parts of spaces of pseudo-absolute values. The appearance of Prüfer domains in the
theory is not surprising since they play an important role in the theory of Zariski-Riemann
spaces. Namely they characterise the so-called affine subsets of Zariski-Riemann spaces (cf.
e.g. [Olb21]).

Note that, in general, spaces of pseud-absolute values are difficult to fully describe. Integral
structures can be easier to explicit and we obtain a new example of a Banach ring for which
we can explicit the Berkovich spectrum (topologically and sheaf-theoretically) over which we
can perform Berkovich analytic geometry (§9.4.3).

Using these integral structures, we define model global analytic spaces using the theory of
global Berkovich spaces introduced in [LP24] (§10). These spaces will be used notably in
the implementation of Nevanlinna theory in the global construction. We can now state the
global analogue of Theorem B.

Theorem C (Theorem 10.2.3 and Corollary 10.2.4). Let K ′/K be a field extension. Let
(A, ‖ · ‖A) be an integral structure for K such that (A, ‖ · ‖) is a geometric base ring ([LP24],
Définition 3.3.8), e.g. (Z, | · |) or Fp. Let V ′A denote the set of all pseudo-absolute values on
K ′ restricting to an element ofM(A, ‖ · ‖A).

• We have a continuous map

V ′A → ZR(K ′/A).

If (A, ‖ · ‖) is further assumed to be Dedekind analytic ([LP24], Définition 6.6.1),
then the map is open.
• We have a commutative diagram
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V ′A lim←−X X
an

ZR(K ′/A) lim←−X X

∼=

∼=
,

where X runs over all projective, finitely presented flat sub-models of K ′/A.
• Assume that K is countable. Then the set of absolute values is dense in MK .

In Corollary 10.2.4, we give a list of consequences of Theorem C that shed light on
the topological structure of spaces of pseudo-absolute values according to the context. In
particular, we obtain a description of the whole space of pseudo-absolute values over a field
as well as a description of the Archimedean part of the latter.

Future developments and relation with globally valued fields. We conclude the
introduction by making more precise the link between the results presented here and those in
[BYDHS24] and hinting at future developments. We have already mentioned that the authors
of loc. cit. also work with pseudo-absolute values. In particular, they obtain Theorem A
and (loc. cit., Propositions 1.5 and 1.6) is a special case of Theorem C. Although our proofs
are essentially the same, in this article, we aimed to give a systematic description of the
"Zariski-Riemann space" structure of spaces pseudo-absolute values over an arbitrary base.
This description will be used in the sequel of this paper (cf. [Séd25] or [Séd24]) and in further
developments where we will study the sheaf theoretic properties of spaces of pseudo-absolute
values.

In the aforementioned sequel, we will introduce topological adelic curves, which addresses
bullet (4) of this introduction. Note that in ([BYDHS24], Theorem 7.7), the authors prove
that over a countable field, GVFs and proper adelic curves are essentially equivalent, namely
that a GVF structure determines a measure on the space of absolute values yielding a proper
adelic curve structure. If the countability assumption is removed, their result says that
a GVF structure determines a measure on the space of pseudo-absolute values yielding a
proper topological adelic curve structure. The goal of developing tools in the topological
adelic curve world that could also be used in the GVF world is a motivation for developing
the systematic study of pseudo-absolute values. In the countable case, let us mention the
recent paper [DHS24] which allows to hope for fruitful applications of such ideas.

Finally, let us mention that the development of Arakelov geometric methods over an
uncountable field allows to make use of the ultraproduct construction via the GVF-topological
adelic curves correspondence. Such ultraproducts could be used to define GVF structures that
could formalise Diophantine approximation and Nevanlinna theory similarly ([BYDHS24],
Example 11.12). In subsequent work, we will make this idea more precise and give applications
in Nevanlinna theory.
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Conventions and notation

• All rings considered in this article are commutative with unit.
• Let A be a ring. We denote by Spm(A) the set of maximal ideals of A.
• By a local ring (A,m), we mean that A is a local ring and m is its maximal ideal. In
general, if A is a local ring, the maximal ideal of A is denoted by mA.
• By an algebraic function field K/k, we mean a finitely generated field extension K/k.
• Let A be a ring and let X → Spec(A) be a scheme over A. Let A → B be an
A-algebra. Then we denote X ⊗A B := X ×Spec(A) Spec(B).
• Let k be a field. We denote by | · |triv the trivial absolute value on k. If we have
an embedding k ↪→ C, we denote by | · |∞ the restriction of the usual Archimedean
absolute value on C.
• Let (k, | · |) be a valued field. Unless mentioned otherwise and when no confusion
may arise, we will denote by k̂ the completion of k w.r.t. | · |.
• Throughout this article, unless specified otherwise, all valuations are considered up
to equivalence.
• We assume the axiom of universes, which will allow taking inverse and direct limits
over collections.

1. Preliminaries

1.1. Valuation rings and Prüfer domains.

1.1.1. Rank, rational rank, composite valuations and Gauss valuations. Let V be a valuation
ring. We denote its value group by ΓV := Frac(V )×/V ×. Let V be a valuation ring with
fraction field K whose underlying valuation is denoted by v : K → ΓV ∪ {∞}.

• The rank of V is defined as the ordinal type of the totally ordered set of prime ideals
in V and is denoted by rank(V ).
• The rational rank of V is defined by rat. rank(V ) := dimQ(ΓV ⊗Z Q) ∈ N ∪ {∞}. In
general we have rank(V ) ≤ rat. rank(V ) ([Bou75], Chap. VI, §10.2, Proposition 3).

Let us start by recalling the construction of composite valuations, as it is reminiscent of
the main object of this article.

Construction 1.1.1. Let V be a valuation ring with fraction field K, value group Γ maximal
ideal m and associated valuation v : K → Γ ∪ {∞}. Let v be a valuation on the residue field
κ := V/m. Then ([Vaq06], Proposition 1.12) implies that

V ′ := {a ∈ V : v(a) ≥ 0}

is a valuation ring of K included in V . The valuation attached to V ′ is denoted by v′ := v ◦ v.
In that case, the residue field of V ′ equals the residue field of v. Moreover, we have the
equalities

rank(v′) = rank(v) + rank(v),
rat. rank(v′) = rat. rank(v) + rat. rank(v),
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as well as a short exact sequence of Abelian groups
0 −→ Γ −→ Γ′ −→ Γ −→ 0,

where Γ,Γ′ denote respectively the value groups of v, v′. In the particular case where Γ is
order isomorphic to Zn for some integer n ∈ N>0 (in that case rank(v) = n), then the above
short exact sequence splits and Γ′ is isomorphic to Γ× Γ equipped with the lexicographic
order.

Conversely, let (V ′,m′), (V,m) be valuation rings of K whose valuations, resp. residue
fields, are denoted respectively by v′, v and κ, κ′. Then m ∩ V ′ is a prime ideal of V ′ and
the quotient ring V ′ := V ′/(m ∩ V ′) is a valuation ring of κ. Denote by v the corresponding
valuation. Then we have the equality v′ = v ◦ v.

Definition 1.1.2. With the notation of Construction 1.1.1, the valuation v′ := v ◦ v called
the composite valuation with v and v.

Definition 1.1.3 (Gauss valuations). Let K be a field and x be transcendental over K. Let
v be a valuation of K with value group Γ1 and residue field κ. Fix an extension of totally
ordered Abelian groups ι : Γ1 ↪→ Γ2. Let a ∈ K and γ ∈ Γ2. Let P ∈ K[x] of degree n. Write

P =
n∑
i=0

ci(x− a)i,

where c0, ..., cn ∈ K, and set
va,γ(P ) := min

0≤i≤n
{v(ci) + iγ}.

For any P/Q ∈ K(X), where P,Q ∈ K[x] with Q 6= 0, set va,γ(P/Q) = va,γ(P ) − va,γ(Q).
Then va,γ : K(X) → Γ1 + Zγ defines a valuation of K(X) extending v. From ([Kuh04],
Lemma 3.10), if γ is non-torsion modulo Γ2, then va,γ has value group Γ1 + Zγ and residue
field κ. Otherwise, va,γ has value group Γ1 +Zγ and its residue field is a purely transcendental
extension of transcendence degree 1 of κ. Note that in both cases, va,γ is Abhyankar.

1.1.2. Connection to algebraic geometry : specialisation on a scheme. Valuation rings are
of particular importance in algebraic geometry. An illustration of this fact is the following
result.

Proposition 1.1.4 ([Sta23], Lemma 00PH). Let R be a Noetherian local domain which is
not a field. Let K := Frac(R). Let L/K be a finitely generated extension. Then there exists
a DVR V with fraction field L which dominates R.

Proposition 1.1.5. Let X be a locally Noetherian scheme and let x, x′ ∈ X be such that
x is a specialisation of x′, namely x ∈ {x′}. Then there exist a discrete valuation ring V
and a morphism Spec(V )→ X such that the generic point of Spec(V ) is mapped to x′ and
the closed point of Spec(V ) is mapped to x. Moreover, for any finitely generated extension
K/κ(x′) we may choose V such that the extension Frac(V )/κ(x′) is isomorphic to the given
extension K/κ(x′).

Proof. Let K/κ(x′) be a finitely generated extension, this induces ring morphisms OX,x →
κ(x′) → K. Now Proposition 1.1.4 yields the existence of a DVR V with fraction field
K which dominates OX,x. Therefore, the morphism OX,x → V yields the desired scheme
morphism Spec(V )→ X. �

https://stacks.math.columbia.edu/tag/00PH
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Roughly speaking, Proposition 1.1.5 implies the fact that any specialisation of a locally
Noetherian scheme can be encoded through a discrete valuation ring. In general, we have no
information on the extension of residue fields of the special points. The following result gives
a partial answer in this direction.

Proposition 1.1.6. Let X be a locally Noetherian integral scheme and let x ∈ X be a regular
point. Then there exists a valuation ring V dominating OX,x with residue field κ such that
Frac(V ) = K(X) and κ = κ(x).

Proof. Since x is regular, there exist a1, ..., ar ∈ OX,x whose images in mx/m
2
x are lin-

early independent over κ(x) such that the maximal ideal mx of OX,x is (a1, ..., ar). More-
over, for any i = 1, ..., r, the image of ai is an irreducible element of the regular ring
OX,x/(a1, ..., ai−1) which is a UFD, and thus is a prime element of OX,x/(a1, ..., ai−1). This
yields a prime divisor Di ⊂ Spec(OX,x/(a1, ..., ai−1)) and thus a discrete valuation vi of the
field Frac(OX,x/(a1, ..., ai−1)). We now define a valuation v : Frac(OX,x) ∼= K(X)→ Zrlex by
sending any f ∈ OX,x to (vi(f mod (a1, ..., ai−1)))1≤i≤r. Then the valuation ring V of v is
a rank r valuation ring of K(X) dominating OX,x with residue field κ(x). �

Proposition 1.1.7. Let X be a locally Noetherian integral scheme over a field K. Assume
that there exists a proper birational morphism π : X ′ → X of K-schemes such that X ′ is
smooth. Then, for any x ∈ X, there exists a valuation ring V dominating OX,x with residue
field κ such that Frac(R) = K(X) and κ/κ(x) is finite.

Proof. We may assume that x ∈ X is a closed point. Then, for any x′ ∈ π−1(X ′), x′ is a
closed regular point of X ′ and Proposition 1.1.6 yields a valuation ring V ⊂ K(X ′) ∼= K(X)
dominating OX′,x′ with residue field κ(x′). Since the extension κ(x′)/κ(x) is finite, we obtain
the desired property for V . �

Remark 1.1.8. In particular, Proposition 1.1.7 holds when the base field is of characteristic
zero (cf. [Hir64]).

1.1.3. Prüfer domains. Let A be an integral domain with fraction field K. A is said to be a
Prüfer domain if, for any prime ideal p ∈ Spec(A), the localisation Ap is a valuation ring.
There are many characterisations of Prüfer domains (see e.g. [FHP97], Theorem 1.1.1).

Proposition 1.1.9. Let A be a Prüfer domain with fraction field K.
(1) Let V be a valuation ring of K containing A, and denote by m the maximal ideal.

Then m ∩A is a prime ideal of A and V = Am∩A.
(2) Let L/K be an algebraic extension. Then the integral closure of A in L is a Prüfer

domain ([FS01], Chap. III, Theorem 1.2).
(3) An A-module is flat if and only if it is torsion-free ([Bou75], Chapitre VII, §2,

Exercices 12 et 14).
(4) A finitely generated A-module is projective if and only if it is torsion-free ([FS01],

Chapter V, Theorem 2.7).
(5) Assume that A is Bézout. Then any projective A-module is free ([FS01], Chapter VI,

Theorem 1.11).
(6) Let (Ai)i∈I be direct system of Prüfer domains with injective arrows. Then lim−→i∈I Ai

is a Prüfer domain ([FS01], Proposition 1.8).
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Proof. By definition, Am∩A = {a/b : a, b ∈ A and b /∈ m ∩A}. Thus Am∩A ⊂ Vm = V . Since
(m∩A) ⊂ m, the inclusion Am∩A → V is a local morphism of local rings whose fraction fields
are K. From the fact that Am∩A is a valuation ring, we get Am∩A = V . �

Example 1.1.10. (1) Any field is a Prüfer domain.
(2) Any Dedekind ring is Prüfer. Indeed, these are exactly the Noetherian Prüfer domains

since they are locally discrete valuation rings, i.e. Noetherian valuation rings. In
particular, the ring of integers of a number field is a Prüfer domain, and so is its
absolute integral closure (cf. Proposition 1.1.9 (2)).

(3) Let X be a (connected) Riemann surface. Then the ring O(X) of holomorphic
functions on X is a Prüfer domain (it is a Dedekind domain if X is compact and
the non-compact case follows from [Roy56], Proposition 1). Moreover, it is a Bézout
domain.

(4) Let C ⊂ U be a connected Stein subset of a connected non-compact Riemann surface
U , namely C has a basis of Stein open subset neighbourhoods in U . Denote A = O(C)
the ring of germs of holomorphic functions on C. It is an integral ring whose fraction
field K :=M(C) is the field of germs of meromorphic functions on C. Then A is
Prüfer. Indeed, for any Stein open set C ⊂ U ′ ⊂ U , O(U ′) is a Prüfer domain and
A = lim−→O(U ′), where U ′ runs over the open sets U ′ such that C ⊂ U ′ ⊂ U . Hence
Proposition 1.1.9 (6) implies that A is Prüfer.

1.2. Application to rings of holomorphic functions. In this subsection, we recall useful
algebraic properties of rings of holomorphic functions that are studied throughout this article.
As we will be interested in non-compact Riemann surfaces and Stein subsets of such, we
limit the exposition to the latter.

Proposition 1.2.1. Let X be a non-compact Riemann surface.
(1) Any finitely generated ideal of A := O(X) is principal. Furthermore, any such ideal

I ⊂ A is prime iff it is maximal iff any generator of I has exactly one zero, namely
I is the ideal of analytic functions vanishing at a point of X.

(2) If m is a maximal ideal of A, then m is principal iff m is the kernel of a C-algebra
morphism π : A→ C.

Proof. Let I = (f1, ..., fn) be a finitely generated ideal of A. Denote d := gcd(f1, ..., fn) ∈ A.
Then there exist e1, ..., en ∈ A such that d = e1f1 + · · ·+ enfn (cf. [Roy56], Proposition 1).
Therefore I = (d), i.e. I is principal. Then (1) is exactly Proposition 2 of [Roy56]. (2) is
Proposition 3 of [Roy56]. �

Proposition 1.2.2. Let X be a non-compact Riemann surface. Denote by A the ring of
holomorphic functions and by K the fraction field of A. Let | · | be an absolute value on K
such that A ⊂ {f ∈ K : |f | ≤ 1}. Then | · | is either trivial or there exists z ∈ X such that
| · | is equivalent to an absolute value of the form e− ord(·,z).

Proof. Let | · | be such an absolute value, it is necessarily non-Archimedean. Denote by V
the valuation ring of V and by m the maximal ideal. The hypothesis ensures that A ⊂ V .
Then p := m ∩ A ∈ Spec(A) and Ap is a valuation ring of K and the injection Ap → V is
local. Therefore, we have Ap = V .

Now assume that p does not contain any mz, for z ∈ X, and is not (0). Let us show
that any element f in p has an infinite number of zeros. Assume that f has a finite
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number of zeros z1, ..., zn. By hypothesis on p, there exist f1, ..., fn ∈ p such that, for all
i = 1, ..., n, fi /∈ mzi . Thus gcd(f, f1, ..., fn) = 1 ∈ p, which gives a contradiction. Let
N = {f ∈ A : f has a finite number of zeros}, it is a multiplicative subset of A. From
([Gil72], §13, Exercise 21), we get that the localisation AN is a ring whose complete integral
closure is K. By the above remark, we have an inclusion AN ⊂ Ap. Let S denote the
complete integral closure of Ap. Then K ⊂ S ⊂ K and thus Ap is not completely integrally
closed. Then ([FS01], Chapter II, Exercise 1.12) implies that Ap is a valuation of rank greater
than 1. This contradicts the fact that Ap is the valuation ring of an absolute value on K.

Therefore either p is (0) or there exists z ∈ X such that mz ⊂ p. In the first case, we
get V = Ap = K and | · | is trivial. In the second case, let z ∈ X such that mz ⊂ p. Then
we have an inclusion Amz ⊂ Ap of rank 1 valuation rings with fraction field K. Therefore
Ap = Amz and | · | is equivalent to the absolute value e− ord(·,z). �

Remark 1.2.3. Propositions 1.2.1 and 1.2.2 hold in the case of a compact Riemann surface
due to the Noetherianity of its ring of holomorphic functions and the description of absolute
values on a transcendence degree one extension of the trivial absolute value.

We now describe prime ideals of A = O(C), the ring of entire functions on C. For any
entire function f ∈ A, denote by Z(f) the set of zeroes of f . For any ideal I ⊂ A, if⋂
f∈I Z(f) 6= ∅, I is called fixed. Otherwise, the ideal I is called free.

Proposition 1.2.4. Let p be a prime ideal of A.
(1) If p is fixed, it is maximal and of the form mz := {f ∈ A : f(z) = 0} for some z ∈ C.
(2) If p is a free maximal ideal, then Ap is a valuation ring of rank at least 2ℵ1.
(3) If p is free, it is contained in a unique (free) maximal ideal m and

p∗ :=
⋂
n>0

mk

is the largest non-maximal prime ideal contained in m. Moreover, for any f ∈ p, f
has an infinite number of zeroes.

(4) If p is free and m is the unique maximal ideal containing p, then A/p is a valuation
ring whose maximal ideal m/p is principal.

(5) Assume that p is free. Then A/p is a complete DVR iff p = p∗.

Proof. (1), (2) and (3) follow from ([Hen52], §3, Theorems 1-5). (4) is (loc. cit., Theorem 6)
and (5) is (loc. cit., Theorems 7 and 8). �

Remark 1.2.5. More generally, by looking at the proof of Proposition 1.2.4, one can prove
that the same conclusions as the above proposition hold by replacing A by the ring of global
analytic functions on a non-compact Riemann surface.

Let X be a complex analytic space. Denote by OX its structure sheaf. Let A ⊂ X be any
subset. Then the space of germs of analytic functions on A is

Γ(A,OX) := lim−→
U⊇A

Γ(U,OX),

where U runs over the open subset of X containing A. Conditions on A to study algebraic
properties of Γ(A,OX) can be found in [Fri67, All68, Siu69, Dal74].
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Proposition 1.2.6. Let R > 0 and let D(R) denote the closed disc of radius R in C. Then
the ring O(D(R)) of germs of holomorphic functions on D(R) is a principal ideal domain
(hence a Dedekind domain).

Proof. The fact that O(D(R)) is Noetherian is a consequence of ([Fri67], Théorème I.9), see
also ([Siu69], Theorem 1). O(D(R)) is a unique factorisation domain by ([Dal74], Corollary
to Theorem 1). Now Example 1.1.10 (4) implies that O(D(R)) is a Noetherian Prüfer domain,
hence is Dedekind. Moreover, a Dedekind unique factorisation domain is a principal ideal
domain. �

Proposition 1.2.7. Let R > 0 and let D(R) denote the closed disc of radius R in C. Then
the maximal ideals of the ring O(D(R)) of germs of holomorphic functions on D(R) are of
the form mz := {f ∈ O(D(R)) : f(z) = 0}, for some z ∈ D(R).

Proof. For any R′ > R, let D(R′) denote the open disc of radius R′ and AR′ := O(D(R′))
the ring of holomorphic functions on D(R′). Then we have an isomorphism

O(D(R)) ∼= lim−→
R′>R

AR′ ,

where, for any R < R′′ < R′, we consider the inclusion AR′ ⊂ AR′′ . It follows that we have
an isomorphism of schemes

Spec(O(D(R))) ∼= lim←−
R′>R

Spec(AR′).

Let p = (pR′)R′>R ∈ Spec(O(D(R))) be a non-zero prime ideal, namely, for any R′ > R,
pR′ ∈ Spec(AR′) and, for any R < R′′ < R′, pR′′ ∩ AR′ = pR′ . Let us prove that, for any
R < R′, pR′ is fixed. Assume that pR′ is free and non-zero for some R < R′. Let f ∈ pR′r{0}.
Then Proposition 1.2.4 (3) together with Remark 1.2.5 imply that f has an infinite number of
zeroes written as a sequence (an)n≥0. Discreteness of (an)n≥0 yields |an| →n→+∞= R′. Now
for any R < R′′ < R′, pR′′ is free. Thus the restriction of f to AR′′ yields a non-zero element
of pR′′ , which has an infinite number of zeroes in D(R′′) thus accumulating at the boundary
of D(R′′) which is included in the interior of D(R′). Hence we get a contradiction. Therefore,
for any R < R′, pR′ is fixed and corresponds to some mzR′ := {f ∈ AR′ : f(zR′) = 0} for some
zR′ ∈ D(R′). Since (pR′)R′>R is a projective system, we obtain that there exits z ∈ D(R)
such that, for any R < R′, we have zR′ = z. Conversely, for any z ∈ D(R), mz is a maximal
ideal of O(D(R)). �

1.3. Models over a Prüfer domain. Throughout this paragraph, we fix a Prüfer domain
A with fraction field K.

Let X → Spec(K) be a separated K-scheme of finite type. By a model of X over A, we
mean a separated A-scheme X → Spec(A) of finite type such that the generic fibre of X is
isomorphic to X. A model X of X over A is respectively called projective, flat, coherent, if
the structural morphism X → Spec(A) is projective, flat, of finite presentation. Note that if
X is a projective model of X, then X is projective.

If A is a valuation ring with residue field κ, we denote by Xs := X ⊗A κ the special fibre
of X . In general, for any y ∈ Spec(A), we denote Xy := X ⊗A Ay and by Xy,s the special
fibre of Xy.
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Let L be an invertible OX -module. By a model (X ,L) of (X,L) over A we mean the data
of a model X of X over A together with an invertible OX -module L whose restriction to the
generic fibre X isomorphic to L. A model (X ,L) of (X,L) over L is respectively called flat,
coherent, if the corresponding model X of X over A is so. If A is a valuation ring, we denote
by Ls the restriction of L to the special fibre Xs. In general, for any y ∈ Spec(A), we denote
by Ly the pullback of L to Xy and by Ly,s the restriction of Ly to the special fibre of Xy.

Proposition 1.3.1. Let L be a line bundle on a projective K-scheme X. Then there exists
a model of (X,L) over A.

Proof. First, assume that L is very ample. Denote by ι : X ↪→ PnK a corresponding closed
immersion. Let X denote the schematic closure of X in PnA. Then X → Spec(A) is a model
of X over A and the pullback L of OPnA yields a model (X ,L) of (X,L) over A.

In the general case, write L = L1 − L2 as a difference of very ample line bundles. The
above case ensures the existence of a model (Xi,Li) of (X,Li) for i = 1, 2. Let X denote the
schematic closure of X in X1×Spec(A)X2, it is a model of X over A. Then set L := p∗1L1−p∗2L2,
where pi : X → Xi denote the i-th projection. �

Remark 1.3.2. The projectivity assumption in Proposition 1.3.1 is superfluous: one could
only assume that the K-scheme X is proper. Indeed Nagata’s compactification theorem
furnishes a model X of X over A and one can extend L to a coherent sheaf on X which can
be made flat by Raynaud-Gruson’s flattening theorem ([RG71], Théorème I.5.2.2). We do
not detail the proof since we only consider the projective case in this article and refer to
([GM19], §2.1) for the interested reader.

Proposition 1.3.3. We assume that A is a valuation ring with residue field κ. Let X →
Spec(K) be a projective K-scheme and L be an invertible OX-module. Let (X ,L) be a
projective model of (X,L) over A.

(1) There exists a flat projective model (X ′,L′) of (X,L) such that L′ = L|X ′ and the
special fibres of X ′ and X coincide.

(2) There exists a coherent projective model (X ′,L′) of (X,L) such that
(i) X is a closed subscheme of X ′;
(ii) the special fibres of X ′ and X coincide;
(iii) L′X = L.

(3) Assume that the restriction of L to every fibre of X → Spec(A) is ample. Then L is
ample.

Proof. Let OX ,tors denote the torsion part of OX as an OSpec(A)-module. Then the closed
subscheme X ′ of X defined by the ideal sheaf OX ,tors is a projective model of X with special
fibre X ′ ×Spec(A) Spec(κ) ∼= X ×Spec(A) Spec(κ). Moreover, the morphism X ′ → Spec(A) is
flat since OX ′ is torsion free (cf. Proposition 1.1.9 (3)). By setting L′|X ′ , we conclude the
proof of (1).

(2) is ([CM21], Lemma 3.2.17), by noting that the proof does not use the fact that the
rank of the valuation ring is less than 1.

Let us prove (3). Let (X ′,L′) be a model such that conditions (i)-(iii) of (2) hold. Since
X ′ → Spec(A) is a proper and finitely presented and L′ is ample along the fibres, ([Gro65],
Corollaire (9.6.4)) gives the ampleness of L′. Thus L = L′X is ample. �
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Proposition 1.3.4. Let X → Spec(K) be a projective K-scheme and L be an invertible
OX-module. Let (X ,L) be a projective model of (X,L) over A.

(1) We have an isomorphism H0(X,L) ∼= H0(X ,L)⊗A K.
(2) Assume that (X ,L) is a flat model. Then the following hold.

(i) H0(X ,L) is a flat A-module.
(ii) Let y ∈ Spec(A), denote by Xy the fibre of X → Spec(A) over p and by Ly the

restriction of Ly. Then we have an injection H0(X ,L)⊗A κ ↪→ H0(Xy,Ly).
(3) Assume that (X ,L) is a coherent model. Then H0(X ,L) is a finitely generated

A-module.
(4) Assume that (X ,L) is a flat and coherent model. Then H0(X ,L) is a projective

A-module of finite type. In particular, if A is Bézout, then H0(X ,L) is a free module
of finite rank.

Proof. (1) Since A → K is flat and X → Spec(A) is qcqs, (1) follows from the flat base
change theorem ([GW10], Corollary 12.8).
(2.i) Since X → Spec(A) is flat, we obtain that H0(X ,L) is a torsion-free A-module. Now

Proposition 1.1.9 (3) implies that H0(X ,L) is a flat A-module.
(2.ii) We first treat the case where A is a valuation ring with maximal ideal m and residue

field κ. As f : X → Spec(A) is a flat, we have an exact sequence of OX -modules

0 f?m⊗ L L Ls 0

and thus an injection H0(X ,L)/H0(X ,L ⊗ f∗m) ↪→ H0(Xs,Ls). Now m is a torsion-
free A-module, hence is flat. By the projection formula ([GW23], Proposition 22.81),
H0(X ,L ⊗ f∗m) ∼= mH0(X ,L). As H0(X ,L) is a flat A-module we have

H0(X ,L)⊗A κ ∼= H0(X ,L)/mH0(X ,L) ↪→ H0(Xs,Ls).

We finally treat the general case. Let y ∈ Spec(A) and denote by py the corresponding
prime ideal of A. Then Apy is a valuation ring and (X ⊗A Apy ,L ⊗A Apy) is a flat model of
(X,L) over Apy whose special fibre coincides with Xs. As A→ Apy is flat, the previous case
combined with the flat base change theorem yields

H0(X ,L)⊗A κ ∼= (H0(X ,L)⊗A Apy)⊗Apy
κ ∼= H0(X ⊗A Apy ,L ⊗A Apy)⊗Apy

κ ↪→ H0(Xy,Ly),

which gives the conclusion.
(3) First mention that Prüfer domains and valuation domains are stably coherent, namely

any polynomial algebra with finitely many indeterminates over a Prüfer domain is coherent
(cf. [Gla89], Theorem 7.3.3 and Corollary 7.3.4). Since X → Spec(A) is projective and
of finite presentation, ([Ull95], Theorem 3.5) implies that H0(X ,L) is a finitely generated
A-module.
(4) Finally, (4) is a consequence of (2.i) and (3) together with Proposition 1.1.9 (4)-(5). �

1.4. Zariski-Riemann spaces. Let K be a field and let k be a subring of K (we do not
necessarily assume that k is a domain with quotient field K). Define the Zariski-Riemann
space of K/k, denoted by ZR(K/k) as the set of valuation rings of K containing k. The
set ZR(K/k) is equipped with a topology. It is defined as follows. For any sub-k-algebra
A ⊂ K of finite type, let E(A) denote the set of valuation rings on ZR(K/k) containing A.
Then the sets E(A), where A runs over the set of sub-k-algebra of finite type of K, form
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a basis for a topology on ZR(K/k), it is called the Zariski topology. There is a centre map
ZR(K/k)→ Spec(k) sending any V ∈ ZR(K/k) to mV ∩ k.

1.4.1. (Sub)-models. By a projective sub-model X of K/k, we mean a projective integral
k-scheme X whose function field K(X) embeds in K. Equivalently, a projective sub-model
of K/k is a factorisation Spec(K) → X → Spec(k), where the first arrow is schematically
dominant and the second is projective, i.e. a Spec(K)-modification of Spec(k) in the
terminology of [Tem11]. We define the domination relation between projective sub-models of
K/k as follows. Let X,Y be two projective sub-models of K/k. We say that Y dominates X
if there exists a k-morphism of schemes Y → X compatible with the schematically dominant
maps Spec(K)→ X and Spec(K)→ Y . The category of projective sub-models is cofiltered:
indeed given two projective sub-models Spec(K) → X1 → Spec(k), Spec(K) → X2 →
Spec(k), let X be the Zariski closure of Spec(K) in X1 ×Spec(A) X2, this is a projective
sub-model of K/k dominating both X1 and X2.

By a projective model of K/k, we mean a projective sub-model X of K/k such whose
function field is isomorphic to K. The full subcategory of projective sub-models of K/k is
cofiltered and its morphisms are birational morphisms. Let us give a criterion of existence
for projective models. Since we will consider possibly non-Noetherian domains, we need the
following definition. An integral domain k is called Japanese if its integral closure in any
finite extension of its fraction field is a finite k-algebra. Moreover, we say that k is universally
Japanese if any finite k-algebra that is an integral domain is Japanese. In the literature,
universally Japanese Noetherian domains are called Nagata ([Sta23], Definition 032R), this
notion includes most of the rings coming from algebraic geometry.

Proposition 1.4.1. Assume that k is a universally Japanese integral domain. Then projec-
tive models of K/k exist iff K/Frac(k) is finitely generated.

Proof. By definition, a projective model K/k is a projective morphism X → Spec(k) with
K(X) ∼= K, thus the field extension K/Frac(k) is finitely generated. Conversely, there exists
x1, ..., xn ∈ K such that K/Frac(k)(x1, ..., xn) is algebraic. Let X denote the normalisation
of Pnk in Spec(K). Since k is universally Japanese, the morphism X → Pnk is finite and X is
a projective model of K/k. �

The condition of being universally Japanese can be a bit more pathological in the non-
Noetherian setting. Let us list a few examples that will cover the cases of application of
interest for us.

Example 1.4.2. The following integral domains are universally Japanese (cf. [Sta23],
Proposition 0335 and [Lyu25], Theorem 7).

(1) Nagata rings, e.g. fields, Dedekind domain of characteristic zero, Noetherian complete
local rings and finite type ring extensions of such.

(2) A valuation ring of characteristic zero with divisible value group.
(3) The absolute integral closure of a Prüfer domain.

1.4.2. Zariski-Riemann spaces as projective limits of sub-models. By the valuative criterion
of properness, for any V ∈ ZR(K/k), for any projective sub-model X of K/k, there exists
a unique ξV ∈ X such that V dominates OX,ξV . This defines a map ZR(K/k)→ X which
is compatible with the domination relation. Hence we have a map d : V ∈ ZR(K/k) →
(d(V ))X ∈ lim←−X X, where X runs over the projective sub-models of K/k. Moreover, one can

https://stacks.math.columbia.edu/tag/032R
https://stacks.math.columbia.edu/tag/0335
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define a structure sheaf on ZR(K/k). For any open subset U ⊂ ZR(K/k), define OZR(K/k)(U)
to be the intersection of the valuation rings V ∈ U . This defines a sheaf of rings on ZR(K/k)
such that (ZR(K/k),OZR(K/k)) is a locally ringed space and the previously defined map d is
a morphism of locally ringed spaces.

Theorem 1.4.3. (1) The domination map d defined above is a homeomorphism.
(2) Let V ∈ ZR(K/k). Then V is the union of the local rings OX,d(V )X , where X runs

over the collection of projective sub-models of K/k.
(3) The map d defined above is an isomorphism of locally ringed spaces.
Moreover, in the case where k is universally Japanese and K/Frac(k) is finitely generated,

the conditions (1)-(3) hold for the map d′ : (V ∈ ZR(K/k)→ (d(V ))X ∈ lim←−X X, where X
runs over the projective models of K/k.

Proof. The first three assertions are a consequence of ([Tem11], Corollary 3.4.7). For the
remaining one, it suffices to remark that the full subcategory of projective models K/k is
cofinal in the category of projective sub-models of K/k. �

1.5. Berkovich spaces.

1.5.1. Banach rings. Recall that a Banach ring is a pair (A, ‖ · ‖A), where A is a ring and
‖ · ‖A is a (sub-multiplicative) norm on A such that A is a complete metric space. To such
Banach ring, Berkovich associated its analytic spectrum M(A, ‖ · ‖A) defined as the set of
all multiplicative semi-norms on A which are bounded from above by ‖ · ‖. This space is
equipped with the pointwise convergence topology and is a non-empty compact Hausdorff
space ([Ber90], Theorem 1.2.1).

Example 1.5.1. (1) Let (K, | · |) be a complete valued fields. Then (K, | · |) is a Banach
ring and the corresponding analytic spectrum is a one-point space.

(2) Let K be a field, let | · |, be a non-trivial absolute value on K. Denote by | · |triv the
trivial absolute value on K. Then ‖·‖hyb := max{|· |, | · |triv} is a norm on K such that
(K, ‖ · ‖hyb) is a Banach ring. The norm ‖ · ‖hyb is called the hybrid norm associated
to | · |. The corresponding analytic spectrumM(K, ‖ · ‖hyb) is homeomorphic to [0, 1]
via

(ε ∈ [0, 1]) 7→ | · |ε ∈M(K, ‖ · ‖hyb),

where | · |0 := | · |triv.
(3) The construction of (2) can be generalised to the case of a ring. Let A be an

arbitrary ring, let ‖ · ‖ be any norm on A. Denote by ‖ · ‖triv the trivial norm
on A, namely ‖0‖triv := 0 and for any a ∈ A r {0}, we have ‖a‖triv := 1. Define
‖ · ‖hyb := max{‖ · ‖, ‖ · ‖triv}. Then ‖ · ‖hyb is a Banach norm on A. In this article,
such a norm is called a hybrid norm and the corresponding normed ring is called a
hybrid ring.

Definition 1.5.2. Let (A, ‖ · ‖) be a Banach ring. We define the spectral semi-norm on A by

‖ · ‖sn : A −→ R≥0
f 7−→ infk∈N× ‖fk‖

1
k .
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Theorem 1.3.1 of [Ber90] yields, for all f ∈ A, the equality ‖f‖sp = maxx∈M(A) |f(x)|. The
norm ‖ · ‖ is called uniform, and that (A, ‖ · ‖)is a uniform Banach ring, if ‖ · ‖ is equivalent
to the spectral semi-norm. In that case, ‖ · ‖sp is a norm and we have a homeomorphism

M(A, ‖ · ‖) ∼=M(A, ‖ · ‖sp)

induced by the identity on A. In practice, unless explicitly mentioned, when a ring A is
equipped with a uniform norm, we always assume that the norm is the spectral norm.

Proposition-Definition 1.5.3. Let (A, ‖ · |) be a Banach ring. For any compact subset
V ⊂ X :=M(A, ‖ · ‖), let

SV := {a ∈ A : ∀x ∈ V, |a|x 6= 0}, K(V ) := S−1
V A.

K(V ) is called the set of rational functions without poles on V . Define a sheaf of rings OX
as follows. For any open subset U ⊂ X. Denote by OX(U) the set of maps

f : U →
⊔
x∈U

κ̂(x)

such that
(1) for any x ∈ U , f(x) ∈ κ̂(x);
(2) for any x ∈ U , there exist a compact neighbourhood V of x in U and a sequence

(fi)i∈N of non-singular rational functions on V such that ‖f|V − fi‖V →i→+∞ 0.
Then OX defines a sheaf of rings on X such that (X,OX) is a locally ringed space.

Proof. We refer to ([Ber90], Definition 1.5.1) and ([LP24], Définition 1.2.11 and Lemme
1.2.14). �

1.5.2. Analytification in the sense of Berkovich: completely valued field case. In this para-
graph, we fix a completely valued field (k, | · |).

Let X be a k-scheme. Its analytification in the sense of Berkovich, denoted by Xan, is
defined in the following way: a point x ∈ Xan is the data (p, | · |x) where p ∈ X and | · |x
is an absolute value on κ(x) extending the absolute value on k. Xan can be endowed with
the Zariski topology: namely the coarsest topology on Xan such that the first projection
j : Xan → X is continuous. There exists a finer topology on Xan, called the Berkovich
topology: it is the initial topology on Xan with respect to the family defined by j : Xan → X
and the applications

|f |· : Uan −→ R≥0,
x 7−→ |f |x,

where Uan is of the form Uan := j−1(U), with U a Zariski open subset of X, and f ∈ OX(U).
Endowed with this topology, Xan is a locally compact topological space. There are GAGA
type results: namely, X is separated, resp. proper iff Xan is Hausdorff, resp. compact
Hausdorff. If X is a scheme of finite type, Xan can be endowed with a sheaf of analytic
functions.

Let L be a line bundle on X. A metric on L is a family ϕ := (| · |ϕ(x))x∈Xan , where

∀x ∈ Xan, | · |ϕ(x) : L(x) := L⊗OX κ̂(x)→ R≥0
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is a norm on the κ̂(x)-vector space L(x). The metric ϕ is called continuous if for all U ⊂ X
open and for all s ∈ H0(U,L), the map |s|ϕ : Uan → R≥0 is continuous with respect to the
Berkovich topology.

Let ϕ be a continuous metric on a line bundle L. Let

∀s ∈ H0(X,L), ‖s‖ϕ := sup
x∈Xan

|s|ϕ(x) ∈ R≥0,

it defines a seminorm on H0(X,L). Moreover, if X is reduced then ‖ · ‖ϕ defines a norm on
H0(X,L). In general ([CM19], Proposition 2.1.16) implies that if a section s ∈ H0(X,L)
satisfies ‖s‖ϕ = 0, then there exists an integer n ≥ 1 such that s⊗n = 0.

1.5.3. Analytification in the sense of Berkovich: global case. We now briefly recall the global
counterpart of the last paragraph. The relevant class of base global analytic objects are
the so-called geometric base rings (cf. [LP24], Définition 3.3.8 for more details). This class
includes many usual examples of Banach rings studied in analytic geometry (e.g. rings of
integers of number fields, hybrid fields, discretely valued Dedekind rings).

Let (A, ‖ · ‖) be a Banach ring. In ([LP24], Chapitre 2), the authors define the category of
analytic spaces over (A, ‖ · ‖), which is denoted by (A, ‖ · ‖)-an.

Theorem 1.5.4 ([LP24], Corollaire 4.1.3, Lemme 6.5.1 and Proposition 6.5.3). Let (A, ‖ · ‖)
be a geometric base ring. Let X → Spec(A) be an A-scheme which is locally of finite
presentation. Then the functor

ΦX : (A, ‖ · ‖)−an −→ Sets
Y 7−→ Hom(Y,X )

is representable. The (A, ‖ · ‖)-analytic space which represents ΦX is called the analytification
of X and is denoted by X an. Moreover, if X is projective, then X an is a compact Hausdorff
topological space.

2. Pseudo-absolute values

In this section, we introduce the main object of this paper: pseudo-absolute values.

2.1. Definitions.

Definition 2.1.1. Let K be a field. A pseudo-absolute value on K is any map | · | : K →
[0,+∞] such that the following conditions hold:

(i) |1| = 1 and |0| = 0;
(ii) for all a, b ∈ K, |a+ b| ≤ |a|+ |b|;
(iii) for all a, b ∈ K such that {|a|, |b|} 6= {0,+∞}, |ab| = |a||b|.

The set of all pseudo-absolute values on K is denoted by MK .

Proposition 2.1.2. Let | · | be a pseudo-absolute value on a field K. Then A|·| := {a ∈ K :
|a| 6= +∞} is a valuation ring of K with maximal ideal m|·| := {a ∈ A : |a| = 0}. Further,
| · | induces a multiplicative semi-norm on A|·| with kernel m|·|.

Proof. From (i), (ii), A|·| and m|·| are Abelian subgroups of K. From (i), (iii), A|·| is an
integral subring of K and m|·| ⊂ A|·| is an ideal.
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We show that A|·| is a valuation ring of K. It is enough to treat the A|·| 6= K case. Let
x ∈ K rA|·|. If |x−1| = +∞, (iii) yield 1 = |1| = |x · x−1| = +∞, contradicting (i). Hence
|x−1| 6= +∞, i.e. x−1 ∈ A|·|.

We now prove that m|·| is the maximal ideal of A|·|. Let a ∈ A|·|/m|·| r {0} and fix a
representative a ∈ A|·| of a. Then a ∈ A×|·| and a

−1 is a representative of a. Hence m|·| is the
maximal ideal of A|·|. The last statement is a direct consequence of (i)− (iii). �

Notation 2.1.3. Let K be a field.
(1) Let | · | be a pseudo-absolute value on K. We call

– A|·| the finiteness ring of | · |;
– m|·| the kernel of | · |;
– κv := A|·|/m|·| the residue field of v.
– v|·| : K → Γv|·| ∪ {∞} the underlying valuation of | · |.

(2) By "let (|·|, A,m, κ) be a pseudo-absolute value", we mean that |·| is a pseudo-absolute
value on K with finiteness ring A, kernel m, residue field κ.

(3) By abuse of notation, by "let v be a pseudo-absolute value" on K, we mean the
pseudo-absolute value (| · |v, Av,mv, κv).

(4) By abuse of notation, if v is a pseudo-absolute value on K, we denote by v : K →
Γv ∪ {∞} the underlying valuation of | · |v.

(5) Let v be a pseudo-absolute value on K. The map | · |v : K → [0,+∞] is uniquely
determined by the residue absolute value on the residue field κv, namely the absolute
value defined by |̃x|v := |x| for all x ∈ κv, where xv denotes any representative of x
in Av. By abuse of notation, we shall denote by | · |v the residue absolute value. We
denote by κ̂v the completed residue field, namely the completion of κv with respect
to the residue absolute value

Remark 2.1.4. The construction of Proposition 2.1.2 can be reversed. Let A be a valuation
ring of a field K with maximal ideal m. Let | · | be a multiplicative semi-norm on A. Then
| · | can be extended to K by setting |x| =∞ if x ∈ K rA. Then | · | : K → [0,+∞] defines
a pseudo-absolute value on K with finiteness ring A and kernel m.

In the following, we shall implicitly use Remark 2.1.4 and we shall often describe a
pseudo-absolute value by specifying the finiteness ring and the residue absolute value.
Definition 2.1.5. Let v be a pseudo-absolute value on a field K.

(1) The rank of v is defined as the rank of the finiteness ring Av. It is denoted by rank(v).
(2) Likewise, the rational rank of v is defined as the rational rank of the finiteness ring

Av. It is denoted by rat. rank(v).
(3) v is respectively called Archimedean, non-Archimedean, residually trivial if the residue

absolute value is Archimedean, non-Archimedean, trivial.
Remark 2.1.6. The notion of pseudo-absolute value is related to the notion of composite
valuations (cf. Definition 1.1.2). Indeed, a non-Archimedean pseudo-absolute value on a
field K is nothing else that the data of a valuation v of K with a specified decomposition
v = v′ ◦ v, where v′ is a (general) valuation of K and v is a rank one valuation of the residue
field of v′. Likewise, an Archimedean pseudo-absolute value on K is the "composition" of a
valuation of K with an Archimedean absolute value. Roughly speaking, a pseudo-absolute
value can be seen as the composition of a valuation with a "real valuation".
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2.2. Example of pseudo-absolute values.

Example 2.2.1. (1) Any usual absolute value | · | on a field K defines a pseudo-absolute
value with finiteness ring K and trivial underlying valuation.

(2) Let z ∈ P1
C and ε ∈]0, 1]. Denote by | · |∞ the usual absolute value on C. Then the

map
| · |z,ε : C(T ) −→ [0,+∞]

P 7−→ |P (z)|ε∞
defines a pseudo-absolute value on C(T ) denoted by vz,ε,∞, where P (∞) ∈ P1

C denotes
the evaluation in 0 of Q(T ) := P (1/T ). Its finiteness ring is Az := {f ∈ C(T ) :
ord(f, z) ≥ 0}, its kernel is mz := {f ∈ C(T ) : ord(f, z) > 0}, and its residue field is
C endowed with the absolute value | · |ε∞.

(3) Let K =M(U) be the field of meromorphic functions on a non-compact Riemann
surface U and denote by O(U) the ring of analytic functions on U . Then O(U) is a
Prüfer domain (cf. §1.1.3). Let z ∈ U , then the localisation Az := O(U)mz of O(U)
at the maximal ideal of functions on U vanishing in z is a valuation ring of K with
residue field C. For all ε ∈]0, 1], let vz,ε,∞ ∈MK be the pseudo-absolute value on K
with valuation ring Az and residue absolute value | · |ε∞.

(4) Let K = Q(T ) and let t ∈ [0, 1] such that e2iπt ∈ Q. Denote by mt the ideal of
Q[T ] generated by the minimal polynomial of e2iπt. For all ε ∈]0, 1], let vt,ε,∞ be the
pseudo-absolute value on K defined by

∀P ∈ Q[T ]mt , |P |t,ε,∞ := |P (e2πit)|∞,

where | · |∞ denotes the usual absolute value on C.
(5) Let K be a field and (A,m) be a valuation ring of K. Then there is a residually trivial
pseudo-absolute value vA,triv whose finiteness ring is (A,m) and the residue absolute value is
the trivial absolute value on A/m. Conversely, all residually trivial pseudo-absolute values
arise this way.

2.3. Extension of pseudo-absolute values.

Definition 2.3.1. Let K ′/K be a field extension. Let v = (| · |, A,m, κ), resp. v′ =
(| · |′, A′,m′, κ′), be a pseudo-absolute value on K, resp. on K ′. If |x|′ = |x| for all x ∈ K, we
say that | · |′ extends (alternatively is above) | · |. In that case, we use the notation v′|v.

Proposition 2.3.2. Let K ′/K be a field extension. Let v = (| · |, A,m, κ), resp. v′ =
(| · |′, A′,m′, κ′), be a pseudo-absolute value on K, resp. on K ′. Assume that v′|v. Then

(i) A′ is an extension of A, namely there is an injective local morphism A→ A′;
(ii) the residue absolute value of | · |′ extends the one of | · |.

Conversely, given any extension A → A′ of valuation rings (of K and K ′ respectively)
endowed with multiplicative semi-norms with kernel the maximal ideal satisfying (ii), the
induced pseudo-absolute value on K ′ extends the induced pseudo-absolute value on K.

Proof. The first statement is a direct consequence of Definition 2.3.1. Let v′ = (| · |′, A′,m′, κ′),
resp. v = (| · |, A,m, κ), denote the induced pseudo-absolute value on K ′, resp. on K. Then
(ii) yields |x|′ = |x| for all x ∈ A. If x ∈ K rA, then |x|′ = +∞ (otherwise x ∈ A′ ∩K = A).
Hence the conclusion. �
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Let SVF be the category defined as follows. An object of SVF is a field endowed with a
pseudo-absolute value and morphisms in SVF are given by the extensions of pseudo-absolute
values. Let VR be the category with objects valuation rings endowed with multiplicative
semi-norms with kernel the maximal ideal and with morphisms the extensions satisfying
conditions (i), (ii) of Proposition 2.3.2.
Proposition 2.3.3. The categories SVF and VR are equivalent.
Proof. It is a consequence of Remark 2.1.4 (2) combined with Proposition 2.3.2. �

Remark 2.3.4. Proposition 2.3.3 allows to safely treat extensions of pseudo-absolute values
in the context of the category VR

3. Algebraic extensions of pseudo-absolute values

In this section, we study extensions of pseudo-absolute values with respect to algebraic
extensions of the base field. We first treat the separable case (§3.1). Then we extend the
results to arbitrary finite extensions (§3.2). Finally, we introduce elementary Galois theory
of pseudo-absolute values (§3.3).

3.1. Finite separable extension. In this subsection, we fix a finite separable extension
K ′/K and a pseudo-absolute value v on K. We study extensions of v to L. Let A′ be the
integral closure of Av in K. ([Bou75], Chap. VI, §1.3, Théorème 3) implies that A′ is the
intersection of all the extensions of Av to L.
Lemma 3.1.1. A′ is a semi-local ring.
Proof. Let m′ be a maximal ideal A′. One the one hand, we have m′ ∩Av = m and A′ is a
Prüfer domain (cf. Proposition 1.1.9 (2)). Hence A′m is an extension of Av to L. On the
other hand, the set of extensions of Av to L is finite. Whence A′ is semi-local. �

For any mw in the fibre of m′v of the morphism Spec(A′)→ Spec(Av), let A′w := (A′)mw
the localisation in m′w. From ([Bou75], Chap. VI, §8.6, Proposition 6), extensions of Av to
L are of the form A′w, for w as above. For any such extension Av → A′w, we have a finite
extension κv → κw of residue fields.
Proposition 3.1.2. There is a bijective correspondence between the set of pseudo-absolute
values on L above v and the set of extensions of the residue absolute value of v with respect
to extensions of the form κv → κw, where w runs over the set of maximal ideals of A′.
Furthermore, we have the equality∑

mw∈Spm(A′)

1
| Spm(A′)|

∑
i|v

[κ̂w,i : κ̂v]s
[κw : κv]s

= 1, (1)

where, for all mw ∈ Spm(A′), i runs over the set of extensions of the residue absolute value
of | · |v to κw and κ̂w,i denotes the completion of κw for any such absolute value.
Proof. Remark 2.1.4 gives the first assertion. We first assume that, for all mw ∈ Spm(A′),
the extension κv → κw is separable. Then ([Bou75], Ch.V §8.5 Proposition 5) yields (1). In
the case where κv → κw is not separable, denote by κs

v the separable closure of κv inside κw.
For any i|v, ([CM19], Lemma 3.4.2) allows to identify the completion κs

v with the separable
closure of κ̂v inside κ̂wi. Since we have an identification of the set of extensions of v to κw
with the set of extensions of κv to κs

v, (1) is obtained from the previous case. �
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3.2. Arbitrary finite extension. In this subsection, we fix a finite extension L/K. Let
K ′ denote the separable closure of K inside L. Then L/K ′ is a purely inseparable finite
extension and we denote by q its degree. Therefore, for all x ∈ L, we have xq ∈ K ′.

Proposition 3.2.1. Let v′ = (| · |′, A′,m′, κ′) be a pseudo-absolute value on K ′. Then
AL := {x ∈ L : xq ∈ A′} is the unique valuation ring of L extending A′. Its maximal ideal
is mL := {x ∈ AL : xq ∈ m′}. Moreover, the residue field extension κ′ → AL/mL is purely
inseparable and finite.

Proof. Let v′ : K ′ → Γ be the underlying valuation of A′. Then (x ∈ L) 7→ (1/q)v′(xq) is the
unique extension of ν to L. The corresponding valuation ring is AL = {x ∈ L : xq ∈ A′} and
its maximal ideal is mL = {x ∈ L : xq ∈ m′}. Let a ∈ AL/mL and a ∈ AL be a representative.
Then aq ∈ A′ and represents aq ∈ κ′. Hence the conclusion. �

Corollary 3.2.2. Let v be a pseudo-absolute value K. Then the set of extensions of v to L
is in bijection with the set of extensions of v on K ′ described in Proposition 3.1.2.

3.3. Galois theory of pseudo-absolute values. Throughout this subsection, we fix a
field K.

Proposition 3.3.1. Let L/K be an algebraic extension. For all x ∈ ML, for all τ ∈
Aut(L/K), the map

| · |τ(x) : L −→ [0,+∞]
a 7−→ |τ(a)|x

defines a pseudo-absolute value on L denoted by x ◦ τ . This construction defines a right
action of Aut(L/K) on ML.

Proof. Let x ∈ML and τ ∈ Aut(L/K). Let us show that | · |τ(x) defines a pseudo-absolute
value on L. Let a, b ∈ L, by linearity of τ , we have

|a+ b|τ(x) = |τ(a) + τ(b)|x ≤ |a|τ(x) + |b|τ(x)

as well as |0|τ(x) = 0 and |1|τ(x) = 1. Assume that {|a|τ(x), |b|τ(x)} 6= {0,+∞}. Then

|ab|τ(x) = |τ(a)τ(b)|x = |τ(a)|x|τ(b)|x = |a|τ(x)|b|τ(x).

Hence | · |τ(x) ∈ML. �

Lemma 3.3.2. Let L/K be a (possibly infinite) Galois extension with Galois group G. Let
B denote the integral closure of A in L. Then G acts on B and acts transitively on the set
of maximal ideals of B.

Proof. First, G acts on B since G stabilises A. Furthermore, we have inclusions A ⊂ BG ⊂
K = LG and elements of BG are integral over A. Hence A = BG as A is integrally closed.
When L/K is finite, ([Sta23], Lemma 0BRI) gives the conclusion. In the general case, note
that the set of maximal ideals of B is in bijection with the set of extensions of A to L. Hence
any maximal ideal of B is mapped to m via the morphism Spec(B)→ Spec(A). We conclude
by using ([Sta23], Lemma 0BRK). �

We shall use the following crucial result.

https://stacks.math.columbia.edu/tag/0BRI
https://stacks.math.columbia.edu/tag/0BRK
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Proposition 3.3.3 (([Efr06], Corollary 15.2.5), ([Sta23], Lemma 0BRK). Let L/K be a
normal extension. Let A′ be an extension of A on L and denote by m′ its maximal ideal and
κ′ its residue field. Then the extension κ′/κ is normal and the canonical homomorphism
{σ ∈ Aut(L/K) : σ(m′) = m′} → Aut(κ′/κ) is surjective.

Proposition 3.3.4. Let v = (| · |, A,m, κ) be a pseudo-absolute value on K. Assume that
the residue field κ is perfect. Let L/K be a Galois extension with Galois group G. Denote by
ML,v the set of extensions of v to L. Then G acts transitively on ML,v.

Proof. First, remark that G acts on ML,v as G stabilises K. Let w1 = (| · |1, A1,m1), w2 =
(| · |2, A2,m2) ∈ML,v and denote by B the integral closure of A in L. Lemma 3.3.2 gives the
existence of σ ∈ G such that σ(m1 ∩B) = m2 ∩B. Hence the map

| · |σ : L −→ [0,+∞]
a 7−→ |σ(a)|2

defines an element of ML,v with finiteness ring A1 and residue absolute | · |σ. Proposition
3.3.3 implies that the extension κ1 := (A1/m1)/κ is Galois. Hence there exists τ ∈ Aut(κ1/κ)
such that, for all a ∈ κ1, |a|1 = |a|σ ([Neu99], Chapter II, Proposition 9.1). Furthermore,
there exists τ ∈ G lifting τ and such that τ(m1) = m1. We then have

|a|1 = |σ(τ(a))|2
for all a ∈ K, i.e. v1 = στ(v2). �

Proposition 3.3.5. Let v be a pseudo-absolute value on K. Assume that κv is perfect and
trivially valued if char(κv) > 0. Let L/K be a Galois extension. Let c ∈ Asv (the integral
closure of Av inside Ks). Let P = T d +a1T

d−1 + · · ·+ad ∈ Av[T ] be the minimal polynomial
of c over K and let L be the field of decomposition of P . Let Oc := {α1, ..., αd} denote the
orbit of c under the action of the Galois group of L/K. We fix a choice w0 := (| · |0, B0,m0, κ0)
of a pseudo-absolute value on L above v. Then

max
1≤j≤d

|αj |0 = max
w|v
|c|w = lim sup

N→∞

∣∣∣∣∣∣
d∑
j=1

αNj

∣∣∣∣∣∣
1
N

v

.

Proof. As L/K is Galois, Proposition 3.3.4 yields the first equality. We now prove the
second equality. The char(k) > 0 case being trivial, we assume that char(k) = 0. Let B
denote the integral closure of Av in L. Then Lemma 3.3.2 combined with the fundamental
theorem of symmetric polynomials yield, for all j ∈ {1, ..., d}, αj ∈ B and

∑d
j=1 α

N
j ∈ Av.

From §3.1, B is a Prüfer semi-local ring and denote by m1, ...,mr its maximal ideals and
respectively (B1,m1, κ1), ..., (Br,mr, κr) the corresponding localisations. For all i ∈ {1, ..., r},
for all j ∈ {1, ..., d}, denote by αj(i) ∈ κi the image of αj in κi. Then αj(i) is a root of the
minimal polynomial of c(i) over κv, hence it is separable over κv. Hence, for all i ∈ {1, ..., r},
for all integer N > 0, the image of

∑d
j=1 α

N
j ∈ Av in κi is of the form∑

j∈Ji
nj(αj(i))N ,

where Ji ⊂ {1, ..., d} is of cardinality di := [κi : κv] such that for all j 6= j′ ∈ Ji, αj(i) 6= αj′
(i)

and for all j ∈ J , nj is a non-zero integer in κv. Fixing an extension | · |i of | · |v to κi, we

https://stacks.math.columbia.edu/tag/0BRK
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have

max
w∈Ei

|c|w = max
j∈Ji
|αj(i)|i = lim sup

N→∞

∣∣∣∣∣∣
∑
j∈Ji

nj(αj(i))N
∣∣∣∣∣∣

1
N

i

=

∣∣∣∣∣∣
∑
j∈Ji

nj(αj(i))N
∣∣∣∣∣∣

1
N

v

= lim sup
N→∞

∣∣∣∣∣∣
d∑
j=1

αNj

∣∣∣∣∣∣
1
N

v

,

where Ei denotes the set of extensions (in the sense of usual absolute values) on |·|v to κi. The
first equality comes from Proposition 3.3.4 (cf. κi/κv is Galois). The second equality comes
from Lemma 3.3.6 below. Finally, the fact that, for all integer N > 0,

∑
j∈Ji nj(αj

(i))N ∈ κv
(as a symmetric functions of roots of P (i), the image of P in κv) provides the third and
last equalities. We can then conclude the proof using the description given in Proposition
3.1.2. �

Lemma 3.3.6. Let F be a field endowed with a (usual) absolute value | · |. We fix an
extension of | · | to F again denoted by | · |. Let {α1, ..., αd} be a family of pairwise distinct
separable elements of F and let {n1, ..., nd} be a family of non-zero integers. Then

max
j∈{1,...,d}

|αj | = lim sup
N→+∞

∣∣∣∣∣∣
d∑
j=1

njα
N
j

∣∣∣∣∣∣
1
N

.

Proof. The proof of ([CM19], Lemma 3.3.5) can be adapted mutatis mutandis replacing the
αj ’s by the njαj ’s. �

4. Transcendental extensions of pseudo-absolute values

Throughout this section, we fix a field K. We will address the problem of extending
pseudo-absolute values on K to transcendental extensions. Given study of transcendental
extensions of valuations, this is a quite complicated problem (cf. e.g. [Mac36, Vaq06]).
Therefore, we will mostly give specific, yet important, examples of such extensions.

4.1. Purely transcendental extension of degree 1 and usual absolute value case.
Throughout this subsection, let K ′ = K(X), where X is transcendental over K and let v be
a usual absolute value on K.

Let v′ = (| · |′, A′,m′, κ′) be an extension of v to K ′. Then by ([Bou75], Chap VI, §10.3,
Corollaires 1-3), we have rank(v′) ∈ {0, 1}.

For the rank(v′) = 0 case, v′ is an absolute value on K ′ extending v.
If rank(v) = 1, then ([Bou75], Chap VI, §10.3, Corollaires 1-3) yields tr. deg(κ′/K) = 0

and v′ is Abhyankar, thus A′ is a discrete valuation ring and there exists a closed point
x ∈ P1

K such that A′ = {f ∈ K ′ : ord(f, z) ≥ 0}. The residue absolute value of v′ is an
extension on v to the algebraic extension κ′/K.

From the above description, we get the following result.

Proposition 4.1.1. Assume that K is complete with respect to the absolute value v and
denote by MK′,v the set of extensions of v to K ′. Then we have a homeomorphism.

MK′,v
∼= P1,an

K ,

where P1,an
K denotes the Berkovich analytification of P1

K (cf. §1.5.2).
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Proof. From what is written above, we have a bijection MK′,v → P1,an
K . It is continuous by

definition of the topologies and thus we can conclude by compactness of MK′,v and P1,an
K . �

4.2. Composition with a valuation. Let K ′/K be a field extension. Let v = (| · |, V ,m, κ)
be a pseudo-absolute value on K. Let V ′ be a valuation ring with fraction field K ′ with
residue field K, denote by v′ the associated valuation of K ′. For any a ∈ V ′, denote by a
the image of a in K. Then V := {a ∈ V ′ : a ∈ V }. The results of §1.1.1 imply that V is a
valuation ring of K ′ with residue field κ.

Definition 4.2.1. Using the above construction together with Remark 2.1.4, we obtain a
pseudo-absolute value v on K ′ which is denoted by v = v′ ◦ v. v is called the composite
pseudo-absolute value with v′ and v.

Lemma 4.2.2. We use the above notation. Assume that K is a subfield of K ′. Then the
pseudo-absolute value v is an extension of v to K ′.

Proof. Since K ′/K is an extension, we have a section K → V ′ → K. Thus, for any a ∈ K,
we have |a|v = |a|. �

4.3. Extension by generalisation. Assume that K ′/K is an extension of algebraic func-
tions fields, namely K ′/K is finitely generated. Let X → Spec(K) be a K-variety with
function field K(X) ∼= K ′, namely a model of K ′/K. Let x ∈ X be a non-singular point.
Then Proposition 1.1.6 implies that there exists a valuation v of K ′/K with valuation ring V
dominating OX,x and residue field isomorphic to κ(x). Let vx be a pseudo-absolute value on
κ(x). Using Definition 4.2.1, we obtain a pseudo-absolute value vx = v ◦ vx on K ′. Moreover,
if κ(x) is a subfield of K ′, Lemma 4.2.2 implies that vx is an extension of vx to K ′. Note
that this is the case when x is a regular rational point.

Definition 4.3.1. We use the above notation. The pseudo-absolute value vx is called the
extension by generalisation (alternatively the extension through specialisation) of vx to K
w.r.t. the valuation ring V .

5. Completion of pseudo-valued fields

Let K be a field and v be a pseudo-absolute value on K with residue field κ. The goal of
this section is to construct a pseudo-absolute value (possibly on an extension of K) which
extends v and whose residue field is κ̂, the completion of κ w.r.t. the residue absolute value.
We make use of the notion of "gonflement" introduced by Bourbaki and which we recall (§5.1).
Then we introduce (non-canonical) completion of a field with respect to a pseudo-absolute
value (§5.2).

5.1. Gonflement of a local ring. We will use results from ([Bou75], Chap. IX, Appendice
2) we now recall.

Definition 5.1.1. Let (A,m) be a local ring with residue field κ. An A-algebra A′ is called
an elementary gonflement (gonflement élémentaire in French) of A if either A′ is isomorphic
to the A-algebra A]X[:= A[X]mA[X] or there exists a monic polynomial P ∈ A[X], whose
reduction in κ[X] is irreducible, such that A′ is isomorphic to the A-algebra A[X]/(P ).
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Lemma 5.1.2. Let A be a local ring and ι : A → A′ be an elementary gonflement of A.
Then A′ is local. We denote respectively by κ, κ′ the residue fields of A,A′. Moreover, the
following assertions hold.

(1) The morphism ι is flat, injective and local.
(2) The residue field extension κ′/κ is generated by a single element.
(3) The maximal ideal of A generates the maximal ideal of A′.
(4) If A is Noetherian, then so is A′.
(5) If A is a valuation ring, then so is A′ and the value groups of A and A′ are equal. In

particular, if A is a DVR then so is A′.

Proof. We first consider the case where ι is finite, i.e. A′ ∼= A[X]/(P ), where P ∈ A[X] has
irreducible reduction P in κ[X]. Let m denote the maximal ideal of A. Since A′/mA′ ∼=
κ[X]/(P ), mA′ is a maximal ideal of A′. Let p be a maximal ideal of A′. Since ι : A→ A′

is finite, p ∩ A = m and thus mA′ ⊂ p hence p = mA′, i.e. A′ is local. The residue field
extension is generated by the class of X in κ′. We now prove (5). Assume that A is a
valuation ring and denote by v : A → Γ the corresponding valuation. We assume that
the valuation is trivial (i.e. A is not a field), otherwise the assertion is trivial itself. Since
P ∈ A[X] has irreducible image in κ[X], it is irreducible in A[X]. Indeed, if we could write
P = f · g, where f, g ∈ A[X] are non-constant polynomials, then either f or g has coefficients
in m and thus P ∈ m[X], which contradicts P is monic since A is not a field. Now P is
monic and irreducible in A[X] and A is integrally closed. Therefore P is irreducible in K[X],
where K denotes the fraction field of A. Thus A′ is an integral domain with quotient field
K ′ := K[X]/(P ) which is a finite extension of K. Now define the map v′ : A[X]→ Γ sending
adX

d + · · · a0 ∈ A[X] to min0≤i≤d v(ai). This defines a valuation on K(X) and A[X] is
contained in the valuation ring A]X[ (cf. Definition 1.1.3). Since P is monic, v(P ) = 0 and
v′ induces a map v′ : A′ → Γ. It is straightforward to check that v′ defines a valuation on A′,
which is non-negative on A′. Therefore, if V ′ denotes the valuation ring of K ′ of the valuation
v′, we have A′ ⊂ V ′. Assume that there exists a′ ∈ V ′ which does not belong to A′. Choose a
representative adXd + · · · a0 ∈ K[X] of a′. By hypothesis, v′(a′) = min0≤i≤d v(ai) ≥ 0. Since
a′ /∈ A′, there exists an index j ∈ {0, ..., d} such that v(aj) = min0≤i≤d v(ai) and aj /∈ A.
Thus 0 ≤ v(a′) = v(aj) < 0, yielding a contradiction. Finally, A′ is a valuation ring. Using
(4), we obtain the final part of (5).

If ι is not finite, namely A′ ∼= A]X[, since mA[X] is a prime ideal in A[X], A′ is local.
Then (1)-(4) follow directly from the definition. (5) follows from the following claim.

Claim 5.1.3. If A is a valuation ring, then A]X[ is the valuation ring of the Gauss valuation
v0,0 (cf. Definition 1.1.3).

Proof. Let F = P/Q be a non-zero element of K(X), where P,Q ∈ A[X] are coprime
polynomials. Assume that both P and Q belong to mA[X]. Then we can write P = aP1 and
Q = bQ1, where P1, Q1 ∈ A[X] are coprime and a, b ∈ m are non-zero. Since A is a valuation
ring, either a|b or b|a, which contradicts the fact that P and Q are coprime. Thus A]X[ is a
valuation ring of K(X).

Denote by (V,mV ) the valuation ring of the Gauss valuation v0,0 on K(X). By definition
of the Gauss valuation, we have A[X] ⊂ V and mV ∩ A[X] = mA[X]. Thus the canonical
morphism A]X[→ V is local and therefore V = A]X[ since A]X[ is a valuation ring. �

�
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Definition 5.1.4. Let A be a local ring. An A-algebra A′ is called a gonflement of A if
there exist a well-ordered set Λ with a greatest element ω together with an increasing family
(A′λ)λ∈Λ (w.r.t. inclusion) such that the following conditions hold:

(i) for any λ ∈ Λ, Aλ is a local ring and A′ = A′ω;
(ii) let α be the least element of Λ, then A′α is isomorphic to A;
(iii) let ν ∈ Λ r {α}, let Sν := {λ ∈ Λ : λ < v}. If Sν has a greatest element µ, then A′v

is an elementary gonflement of A′µ. Otherwise, then A′ν =
⋃
λ∈Sν

A′λ.

Proposition 5.1.5. Let A be a local ring and let A→ A′ be a gonflement.
(1) A′ is a local ring and mA′ = mAA

′.
(2) The ring extension A→ A′ is faithfully flat.
(3) Assume that A is Noetherian. Then A′ is Noetherian and dim(A′) = dim(A).

Moreover, if A is regular, then A′ is regular.
(4) If A is a DVR, then A′ is a DVR. Moreover, the maximal ideal of A′ is generated by

any generator of the maximal ideal of A.
(5) If A is a valuation ring, then A′ is a valuation ring. Moreover, the value groups of A

and A′ are equal.

Proof. (1)-(3) are ([Bou75], Chap. IX, Appendice 2, Proposition 2 et Corollaire). (4) follows
from (1) and (3) together with the fact that discrete valuation rings are exactly regular rings
of dimension 1.

Let us prove (5). Let A be a valuation ring with value group Γ. Let A′ = (A′λ)λ∈Λ be a
gonflement of A, where Λ is a well-ordered set. Denote respectively by α, ω the least and
greatest elements of Λ, namely A = Aα and A′ = Aω. Let

Λ′ := {λ ∈ Λ : Aλ is a valuation ring with value group Γ}.

Assume that Λ r Λ′ 6= ∅. Since Λ is well-ordered, there exists a least element ν ∈ Λ′. Let
Sν := {λ ∈ Λ : λ < ν}. Note that α < ν and Sν ⊂ Λ′.

If Sν has a greatest element µ, then Aν is an elementary gonflement of Aµ and we obtain
a contradiction using Lemma 5.1.2 (5).

Now assume that Sν does not have a greatest element. Then Aν =
⋃
λ∈Sν

A′λ. Note that,

for any λ ≤ λ′, the morphism Aλ → Aλ′ is injective and local, thus Aν is a direct limit of
Prüfer rings with injective arrows and is thus Prüfer (Prop 1.1.9 (6)). Hence Aν is a local
Prüfer domain, i.e. a valuation ring. Since Sν ⊂ Λ′, we deduce that the value group of Aν is
Γ, providing a contradiction. �

Theorem 5.1.6 ([Bou75], Chap. IX, Appendice 2, Corollaire du Théorème 1). Let A be a
local ring with residue field κ. Let κ′/κ be a field extension. Then there exists a gonflement
A→ B such that the field extension κ′/κ is isomorphic to the field extension κB/κ, where
κB denotes the residue field of B.

5.2. Completion.

Definition 5.2.1. Let K be a field and v = (| · |, A,m, κ) be a pseudo-absolute value on K.
We say that K is complete w.r.t. v if the following conditions hold.

(i) The finiteness ring A′ is Henselian.
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(ii) The residue field κ′ is complete w.r.t. the residue absolute value induced by v′.

Proposition 5.2.2. Let K be a field and v = (| · |, A,m, κ) be a pseudo-absolute value on K.
Assume that K is complete w.r.t. v. Then for any algebraic extension K ′/K, there exists a
unique extension v′|v to K ′.

Proof. Let K ′/K be an algebraic extension. Since A is Henselian, the underlying valuation
of v extends uniquely to K ′, denote by A′ the corresponding valuation ring of K ′. Let κ′
denote the residue field of A′. Then κ′/κ is an algebraic extension and, since κ is complete,
the residue absolute value of v extends uniquely to κ′. �

Definition 5.2.3. Let K be a field and v = (| · |, A,m, κ) be a pseudo-absolute value on K.
Let K ′/K be field extension and v′ = (| · |′, A′,m′, κ′) ∈MK′ be a pseudo-absolute value on
K ′ extending v. We say that the extension v′|v is complete if K ′ is complete w.r.t. v′.

The following proposition allows to construct complete pseudo-valued fields.

Proposition 5.2.4. Let K be a field and v = (| · |, A,m, κ) be a pseudo-absolute value on
K. Denote by κ̂ the completion of κ w.r.t. the residue absolute value induced by v. Then
there exist a field extension K̂/K and a pseudo-absolute value v̂ ∈M

K̂
extending v such that

v̂|v is complete (Definition 5.2.3).

Proof. Theorem 5.1.6 implies that there exists a gonflement A→ A′ such that A′ has residue
field κ̂. Moreover, Proposition 5.1.5 (5) implies that A′ is a valuation ring with same value
group as A. Now consider Â := (A′)h the Henselisation of A′. Then ([Sta23], Section 0BSK)
implies that Â is a valuation ring extending A′ with same value group as A′ and A. Moreover,
its residue field is κ̂. Let K̂ := Frac(Â). Then Â is a Henselian valuation ring of K̂ and by
considering the unique extension of the residue absolute value induced by v on κ to κ̂, we
obtain a pseudo-absolute value v̂ on K̂. The extension v̂|v is complete by construction. �

Remark 5.2.5. The completion construction given by Proposition 5.2.4 is unfortunately
non-canonical in the following sense: it depends on the choice of a good order on the
completion of the residue field ([Bou75], Chap. IX, Appendice 2, Exemple 1)). A priori,
different choices of such orders may lead to different completions.

6. Pseudo-norms

In this section, we introduce the analogue of a normed vector space when the base field is
equipped with a pseudo-absolute value. Throughout this section, we fix a field K.

6.1. Definitions.

Definition 6.1.1. Let E be a finite-dimensional vector space over K of dimension d. For
any pseudo-absolute value v = (| · |v, Av,mv, κv) ∈MK , we call pseudo-norm on E in v any
map ‖ · ‖v : E → [0,+∞] such that the following conditions hold:

(i) ‖0‖v = 0 and there exists a basis (e1, ..., ed) of E such that ‖e1‖v, · · · , ‖ed‖v ∈ R>0;
(ii) for any (λ, x) ∈ K ×E such that {|λ|v, ‖x‖v} 6= {0,+∞}, we have ‖λx‖v = |λ|v‖x‖v;
(iii) for any x, y ∈ E, ‖x+ y‖v ≤ ‖x‖v + ‖y‖v.

Under these conditions, (E, ‖ · ‖v) is called a pseudo-normed vector space in v. Moreover, a
basis satisfying condition (i) is called adapted to ‖ · ‖v.

https://stacks.math.columbia.edu/tag/0BSK


30 ANTOINE SÉDILLOT

Remark 6.1.2. In [Séd24], pseudo-norms are called local pseudo-norms. Since in this article
we only focus on local aspects, we decided to remove the qualification "local" to ease the
reading.

Proposition 6.1.3. Let (E, ‖ · ‖v) be pseudo-normed finite-dimensional K-vector space in
v ∈ MK . Let d := dimK(E) and let (e1, ..., ed) be a basis of E which is adapted to ‖ · ‖v.
Then the following assertions hold.

(1) E‖·‖v := {x ∈ E : ‖x‖v < +∞} is the restriction of scalars of
⊕d

i=1K · ei to Av.
Moreover, E‖·‖v is free Av-module of rank d.

(2) N‖·‖v := {x ∈ E : ‖x‖v = 0} is an Av-submodule of E‖·‖v and we have the equality
N‖·‖v = mvE‖·‖v .

(3) ‖ · ‖v induces a norm on the κ̂v-vector space

Ê‖·‖v := E‖·‖v ⊗Av κ̂v ∼=
(
E‖·‖v/mvE‖·‖v

)
⊗κv κ̂v.

Proof. Proof of (1): The defining properties of ‖ · ‖v directly imply that E‖·‖v is an Av-
module. Let a ∈ Av r {0} and x ∈ E‖·‖v such that ax = 0. Since Av is integral, the inclusion
E‖·‖v ⊂ E implies that ax = 0 in E, thus x is torsion E and x = 0. Hence E‖·‖v is a
torsion-free Av-module. Proposition 1.1.9 (5) implies that it suffices to prove that E‖·‖v is
finitely generated.

Let us show by induction on n that, for any x ∈ E‖·‖v , there is no linear combination
x = x1e1 + · · ·+ xded, where x1, ..., xd ∈ K, such that |{i ∈ {1, ..., d} : xi ∈ K r Av}| = n.
We first assume that n = 1. Let x = x1e1 + · · · + xded ∈ E‖·‖v , where x1, ..., xd ∈ K, such
that |{i ∈ {1, ..., d} : xi ∈ K r Av}| = 1. By symmetry, we may assume that xd /∈ Av. On
the one hand, we have ‖xded‖v = +∞ and thus xded /∈ E‖·‖v . On the other hand, we have

xded = x− x1e1 − · · · − xd−1ed−1 ∈ E‖·‖v .
Hence a contradiction. Assume that n > 1 and that the property is satisfied for k = 1, ..., n−1.
Let x = x1e1 + · · · + xded ∈ E‖·‖v , where x1, ..., xd ∈ K, such that |{i ∈ {1, ..., d} : xi ∈
K r Av}| = n. By symmetry, we may assume that x1, ..., xn /∈ Av and xn+1, ..., xd ∈ Av.
Since x−1

n ∈ Av, we have

x−1
n x1e1 + · · ·+ x−1

n xn−1en−1 = x−1
n x− en − x−1

n xn+1en+1 − · · · − x−1
n xded ∈ E‖·‖v .

The induction hypothesis yields a contradiction. Consequently, for any decomposition
x1e1 + · · ·+ xded ∈ E‖·‖v , we have x1, ..., xd ∈ Av. Hence E‖·‖v is of finite type.
Proof of (2): The defining properties of | · ‖v show that N‖·‖v is an Av-submodule of

E‖·‖v . Moreover, we clearly have an inclusion mvE‖·‖v ⊂ N‖·‖v .
To prove the inverse inclusion, we show by induction on n ≥ 1 that, for any x ∈ N‖·‖v ,

there is no linear combination x = x1e1 + · · · + xded, where x1, ..., xd ∈ Av, such that
|{i ∈ {1, ..., d} : xi /∈ mv}| = n. We first assume that n = 1. Let x = x1e1 + · · ·+xded ∈ E‖·‖v ,
where x1, ..., xd ∈ Av, such that |{i ∈ {1, ..., d} : xi /∈ mv}| = 1. By symmetry, we may
assume that xd /∈ mv. On the one hand, we have ‖xded‖v 6= 0, and thus xded /∈ N‖·‖v . On
the other hand, we have

xded = x− x1e1 − · · · − xd−1ed−1 ∈ N‖·‖v .
Hence a contradiction. Assume that n > 1 and that the property is satisfied for k = 1, ..., n−1.
Let x = x1e1 + · · · + xded ∈ N‖·‖v , where x1, ..., xd ∈ Av, such that |{i ∈ {1, ..., d} : xi /∈
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mv}| = n. By symmetry, we may assume that x1, ..., xn /∈ mv and xn+1, ..., xd ∈ mv. Since
x−1
n ∈ Av, we have

x−1
n x1e1 + · · ·+ x−1

n xn−1en−1 = x−1
n x− en − x−1

n xn+1en+1 − · · · − x−1
n xded ∈ N‖·‖v .

The induction hypothesis yields a contradiction. Consequently, for any decomposition
x1e1 + · · ·+ xded ∈ N‖·‖v , we have x1, ..., xd ∈ mv.

Let x = x1e1 + · · · + xded ∈ N‖·‖v , where x1, ..., xd ∈ mv, let δ := gcd(x1, ..., xd) ∈ mv.
Then we have x = δx′, where x′ ∈ E‖·‖v . Hence N‖·‖v ⊂ mvE‖·‖v . This concludes the proof of
(2).

Proof of (3): By definition, Ê‖·‖v is the extension of scalars of E‖·‖v via the morphism
Av → κ̂v. Thus we have an isomorphism of κ̂v-modules Ê‖·‖v ∼=

(
E‖·‖v/mvE‖·‖v

)
⊗κv κ̂v.

Furthermore, (1) and (2) imply that the restriction ‖ · ‖v|Av induce a norm on Ê‖·‖v. �

Notation 6.1.4. Let (E, ‖ · ‖v) be pseudo-normed finite-dimensional K-vector space in
v = (| · |v, Av,mv, κv) ∈MK .

(1) In analogy with Notation 2.1.3, we call
– E‖·‖v := {x ∈ E : ‖x‖v <∞} the finiteness module of ‖ · ‖v;
– N‖·‖v := {x ∈ E : ‖x‖v = 0} the kernel of ‖ · ‖v;
– Ê‖·‖v := E‖·‖v ⊗Av κ̂v the residue vector space of ‖ · ‖v. By abuse of notation, we

denote by ‖ · ‖v the induced norm on Ê‖·‖v , called the residue norm of ‖ · ‖v.
(2) By "let (‖ · ‖, E , N, Ê) be a pseudo-norm on the K-vector space E in v", we mean

that ‖ · ‖ is a pseudo-norm on K in v with finiteness module E , kernel N and residue
vector space Ê.

(3) By abuse of notation, by "let ‖ · ‖v be a pseudo-norm on E in v", we mean the
pseudo-norm (‖ · ‖v, Ev, Nv, Êv).

In fact, in analogy with the case of pseudo-valued fields, a pseudo-normed vector space is
determined by the objects defined in Notation 6.1.4. More precisely, let

• v = (| · |v, Av,mv, κv) ∈MK ;
• Ev be a free Av-module of rank d < +∞;
• ‖ · ‖∧v be a norm on Êv := Ev ⊗Av κ̂v.

Define the map

‖ · ‖v : Ev −→ R≥0
a 7−→ ‖a‖∧v

Then Nv := {x ∈ E : ‖x‖v = 0} = mvEv. By lifting to Ev a basis of Êv, we get a basis
(e1, ..., ed) of Ev such that ‖ei‖v > 0 for all i = 1, ..., d. Then we can extend ‖ · ‖v to
E := Ev ⊗Av K by setting ‖x‖v = +∞ if x /∈ Ev.

Proposition 6.1.5. We use the same notation as above. Then ‖ · ‖v is a pseudo-norm in v
on E. Moreover, this construction is inverse to the one in Proposition 6.1.3.

Proof. By construction of ‖ · ‖v, we have ‖0‖v = 0. We can see (e1, ..., ed) as a basis of E
such that 0 < ‖ei‖v < +∞ for all i = 1, ..., d. Hence ‖ · ‖v satisfies condition (i) of Definition
6.1.1.
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Let (λ, x) ∈ K × E such that {|λ|v, ‖x‖v} 6= {0,+∞}. We distinguish three cases. First,
assume that |λ|v 6= +∞ 6= ‖x‖v. Then by definition of ‖ · ‖v on Ev, we have ‖λx‖v = |λ|v‖x‖v.
If now ‖x‖ = +∞, i.e. x ∈ E r Ev, then |λ|v 6= 0, i.e. λ ∈ K rmv, hence λx ∈ E r Ev and
‖λx‖v = +∞ = |λ|v‖x‖v. Finally, if |λ|v = +∞, i.e. λ ∈ K r Av, then we have ‖x‖ 6= 0,
i.e x ∈ E r mvEv, hence λx ∈ E r Ev and ‖λx‖v = +∞ = |λ|v‖x‖v. Thus ‖ · ‖v satisfies
condition (ii) of Definition 6.1.1.

Since ‖ · ‖∧v is a norm on Êv, for any x, y ∈ Ev, we have ‖x+ y‖v ≤ ‖x‖v + ‖y‖v. Then the
triangle inequality for ‖ · ‖v on E follows from the fact that +∞ is the maximal element of
[0,+∞].

From the construction, we directly see that it provides an inverse to the one in Proposition
6.1.3. �

Remark 6.1.6. Similarly to the case of pseudo-valued fields, we can use Proposition 6.1.5
to define properties of pseudo-normed vector spaces from the corresponding property of the
residue norm. For instance, a pseudo-norm on a vector space is called ultrametric if so is its
residue norm.

To study restrictions and quotients for pseudo-norms, we will make use of the following
lemma.

Lemma 6.1.7. Let (E, (‖ · ‖v, Ev, Nv, Êv)) be pseudo-normed finite-dimensional K-vector
space in v = (| · |v, Av,mv, κv) ∈ MK . Let (e1, .., ed) be a basis of E such that, for all
i = 1, .., d, we have ei ∈ Ev r Nv, i.e. ‖ei‖v ∈ R>0. Let (e′1, ..., e′d) be another basis of E.
Then, for all i ∈ {1, ..., d}, there exists λi ∈ K such that λie′i ∈ Ev rNv.

Proof. We fix i ∈ {1, ..., d}. Then there exist a(i)
1 , ..., a

(i)
d ∈ K such that e′i =

∑d
j=1 a

(i)
j ej . By

symmetry, we may assume that (a(i)
1 )−1a

(i)
j ∈ Av for all j = 1, ..., d. Then, for all j = 1, ..., d,

we have (a(i)
1 )−1e′i ∈ Ev. Furthermore, writing

(a(i)
1 )−1e′i = e1 + (a(i)

1 )−1a
(i)
2 e2 + · · ·+ (a(i)

1 )−1a
(i)
d ed,

we deduce (a(i)
1 )−1e′i /∈ Nv = mvEv. �

Remark 6.1.8. Lemma 6.1.7 shows that any basis of a pseudo-normed vector space (E, ‖·‖v)
can be scaled so that it is adapted in the sense of Definition 6.1.1. In particular, Definition
6.1.1 remains unchanged if one puts the condition

(1’) For any basis (e1, ..., ed) of E, there exists a family (λ1, ..., λd) ∈ Kd such that
‖λiei‖v ∈ R>0 for all i = 1, ..., d

instead of condition (1).

6.2. Algebraic constructions for pseudo-norms. We now extend the usual algebraic
construction for normed vector spaces in our context (cf. e.g. [CM19], §1.1 for more details).

Definition 6.2.1. (1) Let (E, ‖ · ‖v) be a pseudo-normed finite-dimensional K-vector
space over K in v ∈MK . Let F ⊂ E be a vector subspace of E. Let (e1, ..., er) be a
basis of F enlarged in a basis (e1, ..., er, er+1, ..., ed) of E. Lemma 6.1.7 ensures that
we may assume that, for all i = 1, ..., d, we have ei ∈ Ev rmv. Then the restriction
restriction of ‖ · ‖v to F is a pseudo-norm in v on F called the restriction of ‖ · ‖v to
F . By abuse of notation, unless explicitly mentioned, we denote this pseudo-norm by
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‖ · ‖v. Moreover, the finiteness module of ‖ · ‖v (the pseudo-norm on F ), denoted by
Fv, has (e1, ..., er) as a basis.

(2) Let (E, ‖ · ‖v) be a pseudo-normed finite-dimensional K-vector space in v ∈ MK .
Let F ⊂ E be a vector subspace of E. Let (e1, ..., er) be a basis of F enlarged in a
basis (e1, ..., er, er+1, ..., ed) of E. Lemma 6.1.7 ensures that we may assume that, for
all i = 1, ..., d, we have ei ∈ Ev r mv. Using the same notation as in (1), Ev/Fv is
a free Av-module of rank d − r and is spanned by er+1, ..., ed. On the κ̂v-quotient
vector space Êv/F̂v, we consider the quotient norm induced by the residue norm of
‖ · ‖v. Then Proposition 6.1.5 yields a pseudo-norm in v on E/F , called the quotient
pseudo-norm and denoted by ‖ · ‖E/F,v. Moreover, we have

∀x ∈ E/F, ‖x‖E/F,v = inf
x∈π−1({x})

‖x‖v,

where π : E → E/F denotes the canonical quotient map.
(3) Let (E, ‖ · ‖v) be a pseudo-normed finite-dimensional K-vector space in v ∈MK . Le
E∨v := HomAv(Ev, Av), it is a free Av-module of rank dimK(E). We denote by ‖ · ‖∧v,∗
the dual norm on (Êv)∨ of the residue norm ‖ · ‖∧v of ‖ · ‖v. Then Proposition 6.1.5
yields a pseudo-norm in v on E∨ ∼= E∨v ⊗Av K, called the dual pseudo-norm of ‖ · ‖v
and denoted by ‖ · ‖v,∗. Furthermore, we have

∀ϕ ∈ E∨, ‖ϕ‖v,∗ = sup
x∈EvrmvEv

|ϕ(x)|v
‖x‖v

.

(4) Let (E, ‖ · ‖v) and (E′, ‖ · ‖′v) be two pseudo-normed finite-dimensional K-vector
spaces in v =∈MK . The data of Ev ⊗Av E ′v and respectively of the π-tensor product
and the ε-tensor product norms on Êv ⊗κ̂v Ê

′
v induce pseudo-norms in v on E⊗K E′

respectively called the π-tensor product and the ε-tensor product pseudo-norms.
(5) Let i ≥ 1 be an integer. (E, ‖ · ‖v) be a pseudo-normed finite-dimensional K-vector

space over K in v ∈ MK . We define the ithπ-exterior power pseudo-norm ‖ · ‖v,Λiπ
of ‖ · ‖v on ΛiE is defined as the quotient norm of the π-tensor product norm of
‖ · ‖v on E⊗i. Likewise, the ithε-exterior power pseudo-norm ‖ · ‖v,Λiε of ‖ · ‖v on
ΛiE is defined the quotient norm of the ε-tensor product norm of ‖ · ‖v on E⊗i. In
the i = dimk(E) case, the ithπ-exterior power norm on ΛiE = det(E) is called the
determinant pseudo-norm of ‖ · ‖v and we denote it by ‖ · ‖v,det.

Proposition 6.2.2. Let (E, (‖ · ‖v, Ev, Nv, Êv)) be a pseudo-normed finite-dimensional K-
vector space in v = (| · |v, Av,mv, κv) ∈MK . Let G be a quotient of E and denote by ‖ · ‖G,v
the quotient pseudo-norm on G. Then the dual pseudo-norm ‖ · ‖G,v,∗ on G∨ identifies with
the restriction of the pseudo-norm ‖ · ‖v,∗ on E∨ to G∨.

Proof. Let Gv denote the finiteness module of ‖ · ‖G, it is a quotient of Ev. Thus we have an
inclusion of duals G∨v ↪→ E∨v . The latter are respectively the finiteness modules of ‖ · ‖G,v,∗
and ‖ · ‖v,∗. To conclude the proof, it is enough to show

∀ϕ ∈ G∨v rmvG∨v , ‖ϕ‖G,∗ = ‖ϕ‖v∗.

This is obtained by lifting the corresponding assertion ([CM19], Proposition 1.1.20) for the
residue norms. �
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Proposition 6.2.3. Let (E, ‖ · ‖v) be a pseudo-normed finite-dimensional K-vector space in
v ∈MK Then the inequality

‖ · ‖v,∗∗ ≤ ‖ · ‖v

holds, where ‖ · ‖v,∗∗ denotes the dual pseudo-norm of ‖ · ‖v,∗ on E∨∨ ∼= E. Moreover, if
either v is Archimedean, or if v is non-Archimedean and the pseudo-norm ‖ · ‖v is ultrametric,
then we have

‖ · ‖v,∗∗ = ‖ · ‖v

Proof. Definition 6.2.1 (3) ensures that, for any x ∈ Ev rmvEv, for any ϕ ∈ E∨v , we have

|ϕ(x)|v ≤ ‖ϕ‖v,∗ · ‖x‖v.

Hence, for any x ∈ Ev rmvEv, we have

‖x‖v,∗∗ = sup
ϕ∈E∨v rmvE∨v

|ϕ(x)|v
‖ϕ‖v,∗

≤ ‖x‖v.

Note the, for any x ∈ mvEv, for any ϕ ∈ E∨v , we have ϕ(x) ∈ mv, i.e. |ϕ(x)|v = 0, and thus
‖x‖v,∗∗ = ‖x‖∗ = 0. This concludes the proof of the first statement.

Now assume that the pseudo-absolute value v is either Archimedean or v is non-Archimedean
and the pseudo-norm ‖ · ‖v is ultrametric. Then Proposition 1.1.18 and Corollary 1.2.12 of
[CM19] give

∀x ∈ Êv, ‖x‖∧v,∗∗ = ‖x‖∧v .

Thus we obtain

∀ = x ∈ Ev, ‖x‖v,∗∗ = ‖x‖v.

To conclude the proof, it suffices to see that, for any x ∈ E r Ev, we have ‖x‖v,∗∗ = +∞. Let
(e1, ..., er) a basis of E which is adapted to ‖ · ‖v. Then (e∨1 , ..., e∨r ) is a basis of E∨ which is
adapted to ‖ · ‖v,∗. Let x = x1e1 + · · ·+ xrer ∈ E r Ev. By symmetry, we may assume that
x1 ∈ K rAv. By definition,

‖x‖v,∗∗ = sup
ϕ∈E∨v rmvE∨v

|ϕ(x)|v
‖ϕ‖v,∗

.

Take ϕ = e∨1 ∈ E∨v r mvE∨v . Then |ϕ(x)|v = |x1|v = +∞ and ‖ϕ‖v,∗ ∈ R>0. Therefore
‖x‖v,∗∗ = +∞. �

We now generalise the Hadamard inequality to the pseudo-norm case.

Proposition 6.2.4. Let (E, ‖ · ‖v) be a pseudo-normed finite-dimensional K-vector space in
v ∈MK . Let (e1, .., er) be a basis of E which is adapted to ‖ · ‖v, namely, for all i = 1, .., r,
we have ei ∈ Ev rNv, i.e. ‖ei‖v ∈ R>0. Then, for any η ∈ det(E), we have the equality

‖η‖v,det = inf {‖x1‖v · · · ‖xr‖v : x1, ..., xr ∈ Ev and η = x1 ∧ · · · ∧ xr} .

Proof. We may assume that η 6= 0. Let η0 = e1 ∧ · · · ∧ er. From the construction of tensor
product and quotient pseudo-norms above, we obtain that ‖η0‖v,det ∈ R>0. Since det(E) is
of dimension 1, there exists a ∈ K such that η = aη0. We first consider the ‖η‖v,det ∈ R>0
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case. Then there exist x1, ..., xr ∈ Ev such that η = x1 ∧ · · · ∧ xr. From the definition of
‖ · ‖v,det, we directly obtain

‖η‖v,det ≤ ‖x1‖v · · · ‖xr‖v.
We assume that a ∈ Av rmv, namely ‖η‖v,det ∈ R>0. Since ‖η‖v,det is computed from the
residue norm on Êv, the classical Hadamard inequality implies that

‖η‖v,det = inf {‖x1‖v · · · ‖xr‖v : x1, ..., xr ∈ Ev and η = x1 ∧ · · · ∧ xr} .
Now assume that a ∈ mv, then η = (ae1) ∧ · · · ∧ er and

‖η‖v,det = ‖ae1‖v · · · ‖er‖ = 0,
hence we obtain the Hadamard equality.

Finally, we treat the a ∈ K r Av case. Now ‖η‖v,det = +∞. Moreover, there is no
possible decomposition η = x1 ∧ · · · ∧ xr, where x1, ..., xr ∈ Ev (otherwise we would have
‖η‖v,det < +∞). Thus the RHS desired equality is inf(∅) = +∞. �

7. Global space of pseudo-absolute values

We now define various notions of global spaces of pseudo-absolute values on a given field.
Such spaces will contain all the relevant pseudo-absolute values in the context of topological
adelic curves. Throughout this section, we fix a field K.

7.1. Definitions.

Definition 7.1.1. Recall that we denote by MK the set of pseudo-absolute values on K.
By definition, we have an inclusion

MK ⊂
∏
a∈K

[0,+∞]

of sets. We equip MK with the subspace topology induced by the product topology of the
RHS above, where each [0,+∞] is endowed with the one-point compactification topology
induced by the Euclidean topology on [0,+∞[. This is the coarsest topology making the
evaluation maps |a|· : MK → [0,+∞] continuous.

Theorem 7.1.2. MK is a non-empty, compact Hausdorff topological space.

Proof. MK contains the trivial absolute value on K and is thus non-empty. Moreover, by
Tychonoff theorem,

∏
a∈K [0,+∞] is a compact Hausdorff space and thus MK is Hausdorff

and remains to prove that the space MK is defined by closed conditions w.r.t. the pointwise
convergence topology.

Let I be a directed set and let (| · |i)i∈I be a generalised sequence in MK which converges
to | · | : K → [0,+∞]. We prove that | · | is a pseudo-absolute value on K. By definition of
the pointwise convergence topology, for all a ∈ K, we have a generalised sequence (|a|i)i∈I
in [0,+∞] which converges to |a|. Hence |1| = limi∈I |1|i = 1 and |0| = limi∈I |0|i = 0. Let
a, b ∈ K. For all i ∈ I, we have |a+ b|i ≤ |a|i + |b|i, hence

|a+ b| = lim
i∈I
|a+ b|i ≤ lim

i∈I
|a|i + lim

i∈I
|b|i = |a|+ |b|.

Finally, if a, b ∈ K are such that {|a|, |b|} 6= {0,+∞}, then there exists i0 ∈ I such that
∀i ∈ I, i ≥ i0 ⇒ {|a|i, |b|i} 6= {0,+∞} ⇒ |ab|i = |a|i|b|i.
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Whence

|ab| = lim
i∈I,i≥i0

|ab|i = lim
i∈I,i≥i0

|a|i|b|i = lim
i∈I
|a|i lim

i∈I
|b|i = |a||b|.

�

Definition 7.1.3. Let L/K be a field extension. There is a restriction map πL/K : ML →
MK . It is continuous (by definition of the topologies of ML and MK), surjective, and proper
(cf. Proposition 7.1.2).

Notation 7.1.4. Let K be a field. We introduce the following notation.
• MK,∞ denotes the set of Archimedean pseudo-absolute values on K.
• MK,um denotes the set of ultrametric pseudo-absolute values on K.
• MK,sn denotes the set of pseudo-absolute on K values whose kernel is non-zero.
• MK,triv denotes the set of pseudo-absolute values on K whose residual absolute value
is trivial.
• MK,disc denotes the set of discrete pseudo-absolute values, namely the set of pseudo-
absolute values on K that correspond either to a discrete non-Archimedean absolute
value on K or to a pseudo-absolute value whose finiteness ring is a discrete valuation
ring that is not a field.

7.2. Examples.

7.2.1. Number fields. Let K be a number field and OK be its ring of integers endowed with
the norm

‖ · ‖∞ := max
σ↪→C

| · |σ,

where σ runs over the set of embeddings of K in C.

Proposition 7.2.1. MK is homeomorphic toM(OK , ‖ · ‖∞), the analytic spectrum in the
sense of Berkovich of the Banach ring (OK , ‖ · ‖∞).

Proof. Let | · | : K → [0,+∞] be a pseudo-absolute value on K which is not an absolute
value. Denote by A its finiteness ring. Then A corresponds to a non-trivial valuation of K
and is thus of rank 1. Therefore, by Ostrowski theorem, it corresponds to some prime ideal
p ∈ Spec(OK). The residue field of A being finite, the residue absolute value induced by
| · | needs to be trivial. Therefore the restriction of | · | to OK corresponds to the extremal
point of the branch associated with p ∈ Spec(OK) in the analytic spectrumM(OK , ‖ · ‖∞),
namely the map

(a ∈ OK) 7→ 0 if a ∈ p,
1 if a /∈ p.

Conversely, any extremal point ofM(OK , ‖ · ‖∞) gives rise to a pseudo-absolute value on K
which is not an absolute value. These constructions are inverse to each other. The remaining
points ofM(OK , ‖ · ‖∞) correspond directly to absolute values on K. Therefore we obtain a
bijection ϕ : MK →M(OK , ‖ · ‖∞) which is continuous by definition of the topologies of MK

andM(OK , ‖ · ‖∞). We can conclude the proof as MK ,M(OK , ‖ · ‖∞) are both compact
Hausdorff. �
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7.2.2. Function fields over C. Let us describe the Archimedean part of the space of pseudo-
absolute values of a complex function field of transcendence degree 1.

Proposition 7.2.2. Let K = C(T ). We have a homeomorphism

MK,∞ ∼= P1(C)×]0, 1].

Proof. Let v = (| · |, A,m) ∈MK,∞. Then A is a non trivial valuation ring of C(T ) and thus
is of the form

A := {f ∈ K : ord(f, z) ≥ 0}

for some z ∈ C ∪ {∞}. Then the residue field A/m is C endowed with an Archimedean
absolute value, necessarily of the form | · |ε∞ where ε ∈]0, 1]. Hence v = vz,ε,∞, where z ∈ P1(C)
(using the notation of Example 2.2.1 (2)). Thus we have a bijection ϕ : Mk,∞ → P1(C)×]0, 1].
To show that ϕ is continuous, it suffices to prove that its composition with the maps
π1 : P1(C)×]0, 1]→ P1(C) and π2 : P1(C)×]0, 1]→]0, 1] are continuous. We have

π1 ◦ ϕ : Mk,∞ −→ P1(C)
vz,ε,∞ 7−→ z

.

It is continuous by definition of the analytic topology on P1(C). π2 ◦ ϕ : | · |x ∈ MK,∞ 7→
log(|2(x)|)/ log(2) ∈]0, 1] is also continuous. Furthermore, for all f ∈ K, the map

| · |ϕ−1(·) : P1(C)×]0, 1] −→ [0,+∞]
(z, ε) 7−→ |f(z)|ε

is continuous. Hence ϕ is a homeomorphism. �

Remark 7.2.3. (1) The ultrametric part of MC(T ) does not admit an easy description.
This is due to the fact that the valuative structure of C(T ) can be very wild if one
does not impose any kind of continuity condition. This question will be addressed by
introducing the notion of integral structure (cf. Proposition 9.4.1).

(2) As pointed out by the referee, studying the Archimedean part of the space of pseudo-
absolute value on a function field of higher transcendence degree is a natural direction
to investigate. For instance, in the case of a complex function field of two variables
K = C(T1, T2), a description of the valuation rings of K that are trivial on C is
given in [Zar39, CZ97]. A pseudo-absolute value v ∈MK,∞ has finiteness ring whose
residue field is C. Therefore, its underlying valuation must be of type (ii)-(iv) in the
terminology of ([CZ97], first Theorem of §3). This gives a set-theoretic description
of MK,∞. Nonetheless, finding a topological description from this approach seems
to be a quite challenging problem. Indeed, the pseudo-absolute belonging to MK,∞
correspond, roughly speaking, to branches of algebraic or analytic curves in some
model of K over C. This is a first hint that the topology of MK,∞ should be of
"Zariski-Riemann fashion". In Corollary 10.2.4 (2.c), we will give such a topological
description for general function fields over C.

7.3. Connection to Zariski-Riemann spaces. Let K be a field with prime subring k.
The construction of the Zariski-Riemann space ZR(K/k) was recalled in §1.4. Then there is
a map j : MK → ZR(K/k) mapping a pseudo-absolute value v ∈MK to its finiteness ring
Av ∈ ZR(K/k). The map j is called the specification map.
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Proposition 7.3.1. The specification map j : MK → ZR(K/k) is continuous, where
ZR(K/k) is equipped with the Zariski topology.

Proof. Let a1, ..., ar be elements of K. Let U := {V ∈ ZR(K/k) : a1, ...., ar ∈ V } be a basic
open subset of ZR(K/k). Then we have

j−1(U) =
r⋂
i=1
{v ∈MK : |ai|v ∈ [0,+∞[},

which is open. �

Remark 7.3.2. In the next sections, we will be able to tell more about the specification
map: namely j is open and the generic fibre, i.e. the subspace of absolute values, is dense in
K if K is countable.

8. Local analytic spaces

In §3, we gave a description of the behaviour of pseudo-absolute values w.r.t. algebraic
extension of the base field. In view of §4, the transcendental case is much more complicated.
In this section, we precise the connection with Zariski-Riemann spaces introduced in §7.3
in view of Theorem 1.4.3 to give a description of arbitrary extensions of pseudo-absolute
values. More precisely, the set of extensions of a given pseudo-absolute value to an arbitrary
field extension admits a natural description as a projective limit of Berkovich analytifications
given by sub-models over the finiteness ring. We start this section by defining these analytic
spaces that we call (sub)-model analytic spaces (§8.1). We then prove the announced "Zariski-
Riemann type" description (Theorem 8.2.4). We conclude the section by relating local
(sub)-model analytic spaces and "Zariski-Riemann type" spaces (§8.3).

Throughout this section, we fix a field K and a pseudo-absolute v = (| · |, A,m, κ) ∈MK ,
namely | · | : K → [0,+∞] is a pseudo-absolute value with finiteness ring A, kernel m and
residue field κ.

8.1. Local (sub-)model analytic space. Let X → Spec(K) be a K-scheme, which is
assumed to be projective for simplicity. Assume that we have a projective model X of X
over A (cf. §1.3). The special fibre Xs := X ×Spec(A) Spec(κ) is now a projective κ-scheme.
Denote by κ̂ the completion of κ w.r.t. the residue absolute value on κ induced by the
pseudo-absolute value v. We call X̂s := Xs ×Spec(κ) Spec(κ̂) the completed special fibre of
the model X . Now X̂ is a projective κ̂-scheme and κ̂ is a completely (real-)valued field.
Henceforth, we can construct the Berkovich analytic space X̂s

an attached to X̂s.

Definition 8.1.1. With the above notation, the space X̂s
an is called the local model analytic

space attached to X w.r.t. the projective model X over v. Note that if v is a usual absolute
value on K, i.e. when A = K = κ, X ∼= X and the corresponding local analytic space is just
(X ⊗K K̂)an.

In order to perform Arakelov geometry in the global setting over pseudo-absolute valued
field, we will use the local model analytic spaces from Definition 8.1.1. Using the classical
theory of Berkovich analytic spaces, we can adapt the usual notion of metric on a line bundle.

Definition 8.1.2. Let X be a projective scheme over Spec(K) and let L be an invertible
OX -module. We call local model pseudo-metric in v on L the data ((X ,L), ϕ) where:
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(1) (X ,L) is a flat projective model of (X,L) over A (cf. §1.3), with special fibre Xs and
completed special fibre X̂s;

(2) ϕ is a metric on L̂s, where L̂s is the pullback of L to completed special fibre X̂s.
A local model pseudo-metric ((X ,L), ϕ) on L is called continuous if the metric ϕ is so. In the
case where X is fixed, by "let (L, ϕ) be a local pseudo-metric on L", we mean that ((X ,L), ϕ)
is a local model pseudo-metric on L which is denoted by (L, ϕ).

Let X be a projective scheme over Spec(K) and let L be an invertible OX -module. Let
((X ,L), ϕ) be a local model-pseudo metric in v on L. The attached local model analytic space
(X ⊗A κ̂)an is a compact Hausdorff topological space and the metric ϕ defines a supremum
seminorm on the κ̂-vector space of global sections H0(X̂s, L̂s) defined by

∀s ∈ H0(X̂s, L̂s), ‖s‖ϕ := sup
x∈Xan

v

|s|ϕ(x) ∈ R≥0.

Assume that the model (X ,L) is flat, coherent and that the special fibre Xs is geometrically
reduced. Then Proposition 1.3.4 implies that H0(X ,L) is a free A-module of finite rank.
Since Xs is reduced, ([CM19], Proposition 2.1.16 (1)) implies that the seminorm ‖ · ‖ϕ is a
norm on H0(X̂s, L̂s). Proposition 1.3.4 (2.ii) implies that H0(X ,L)⊗A κ is a vector subspace
of H0(Xs,Ls). Thus ‖ · ‖ϕ induces a norm on H0(X ,L)⊗A κ̂ and Proposition 6.1.5 implies
that we can lift ‖ · ‖ϕ to a pseudo-norm in v on H0(X,L), which is again denoted by ‖ · ‖ϕ
by abuse of notation.

Now we assume that the model (X ,L) is flat and coherent. We denote by (X̂s)red
the reduced scheme structure on X̂s and by (L̂s)red the restriction of L̂s to (X̂s)red. Then
([CM19], Proposition 2.1.16) implies that the kernel of the supremum semi-norm onH0(X̂s, L̂s)
coincides with the kernel of the natural map H0(X̂s, L̂s)→ H0((X̂s)red, (L̂s)red). Moreover,
if s ∈ H0((X̂s)red, (L̂s)red) lies in the kernel of the supremum seminorm ‖ · ‖ϕ, there exists
some integer n ≥ 1 such that s⊗n = 0.

Lemma 8.1.3. Assume that the valuation ring A is non trivial. Let s ∈ H0(X ,L) be a
global section such that ‖s|Xs‖ϕ = 0. Then s ∈ mH0(X ,L).

Proof. The above paragraph implies that if ‖s|Xs‖|ϕ = 0, then there exists some integer
n ≥ 1 such that s⊗n|Xs = 0. Let X = ∪ki=1Ui be an open covering, where Ui = Spec(Ai) for
i = 1, ..., k, and such that L|Ui ∼= OUi . Then for any i = 1, ..., k, there exists ai ∈ Ai such that
s|Ui = aiei, where ei denotes a generator of L|Ui . Therefore, for any i = 1, ..., k, ani ∈ mAi,
hence ai ∈ mAi. By glueing, we obtain s ∈ H0(X ,mL) ∼= mH0(X ,L). �

Therefore, we can lift the supremum seminorm ‖ · ‖ϕ on H0(X̂s, L̂s) to a pseudo-norm on
H0(X,L). This construction is summarised in the following definition.

Definition 8.1.4. Assume that X is geometrically reduced if A = K. Let L be a line bundle
on X. Let (X ,L) be a flat and coherent projective model of (X,L) over A. Let (L, ϕ) be a
local pseudo-metric on L. The pseudo-norm ‖ · ‖ϕ in v on H0(X,L) is called the supremum
pseudo-norm attached to ((X ,L), ϕ). Its finiteness module is H0(X ,L) and its kernel is
mH0(X ,L). In particular, if A = K (i.e. v is a usual absolute value on K), then ‖ · ‖ϕ
corresponds to a norm in the classical sense.
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8.2. Zariski-Riemann local analytic space. We now give an analytic local analogue of
Theorem 1.4.3. We assume that the finiteness ring A is universally Japanese (cf. Example
1.4.2). Let K ′/K be an arbitrary field extension. Since A is universally Japanese, Proposition
1.4.1 ensures that there projective sub-models of K ′/A exist.
Definition 8.2.1. The Zariski-Riemann local analytic space attached to K ′ above v is the
set MK′,v of pseudo-absolute values of K ′ extending v on K. In other terms, MK′,v is the
fibre of v via the projection πK′/K : MK′ → MK . MK′,v is equipped with the subspace
topology induced by the topology on MK′ defined in §7. Proposition 7.1.2 implies that MK′,v

is compact Hausdorff.
Consider the Zariski-Riemann space ZR(K ′/A) (cf. §1.4). We have a specification mor-

phism j : MK′,v → ZR(K ′/A) mapping any v′ ∈MK′,v to its finiteness ring.
Lemma 8.2.2. The specification morphism j : MK′,v → ZR(K ′/A) is continuous, where
ZR(K ′/A) is endowed with the Zariski topology.
Proof. Let a ∈ K ′ and U := {A′ ∈ ZR(K ′/A) : a ∈ A′} be a basic open set of ZR(K ′/A).
By definition, j−1(U) is the set of pseudo absolute values v′ on K ′ extending v and with
finiteness ring containing a. Thus we see that j−1(U) = |a|−1

· ([0,+∞[). Since [0,+∞[ is an
open subset of [0,+∞], j−1(U) is open by definition of the topology on MK′,v. �

Let X be an arbitrary projective sub-model of K ′ over the valuation ring A. Denote by
X̂s the local model analytic space attached to X . Note that in the case where v is a usual
absolute value, X is a projective model of K ′/K and X̂s = (X ⊗K K̂)an.

Let v′ = (| · |′, A′,m′, κ′) ∈MK′,v. We have a commutative diagram

Spec(K ′) X

Spec(A′) Spec(A)

.

By valuative criterion of properness, there exists a unique morphism of schemes Spec(A′)→ X
factorising Spec(K ′) → X . Denote by p the image of the closed point of Spec(A′) in
Xs. By considering the restriction of the residue absolute value of v′ to κ(p), we obtain
an absolute value on κ(p) extending the residue absolute value of v. Therefore we have
successive valued field extensions κ′/κ(p)/κ. Denote by p̂ the κ̂(p)-point of X̂s induced by
Spec(κ̂(p)) → Spec(κ(p)). Then we have extensions κ̂′/κ̂(p)/κ̂ of completely valued fields.
Thus we obtain a point x ∈ X̂s

an. Finally, we have obtained a map redX : MK′,v → X̂s
an

such that the diagram
MK′,v ZR(K ′/A)

X̂s
an

Xs

redX

commutes, where the horizontal maps are the specification morphisms and the right vertical
map is the center map defined by the valuative criterion of properness.
Proposition 8.2.3. Let X be a projective sub-model of K ′/A. Then the map redX : MK′,v →
X̂s

an is continuous.
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Proof. Denote by k : X̂s
an
→ X̂s the specification morphism, by j : X̂s → Xs the extension

of scalars and by i : Xs → X the closed immersion. Let us first prove that the composition
f := i ◦ ◦j ◦ k ◦ redX : MK′,v → X is continuous. Let U = Spec(B) be an open affine subset
of X . By definition, we have

f−1(U) = {| · |′ ∈MK′,v : B ⊂ A|·|′}.
Let x1, ..., xr denote generators of B as an A-algebra. Then we have

f−1(U) := {| · |′ ∈MK′,v : max
i=1,...,r

|xi|′ < +∞},

which is an open subset ofMK′v . Thus f is continuous, hence so is j ◦k◦redX . Since j is open,
k◦redX is continuous. Let Spec(B̂) be an affine open subset of X̂s. Let f̃ ∈ B̂. By construction
of redX and by definition of the topology on MK′,s, the map |f |· : red−1

X (Spec(B̂)an)→ R≥0
is continuous. By definition of the topology of X̂s

an, the map redX is continuous. �

In view of results of §1.4, we now study the compatibility of the above reduction maps
w.r.t. the domination relation between sub-models.

Let X ,Y be two projective sub-models of K ′/A. Assume that we have a morphism of
schemes f : Y → X . f induces a morphism fs : Ŷs → X̂s between the special fibres and the
corresponding analytification fan

s : Ŷs
an
→ X̂s

an. By uniqueness of the maps Spec(A′)→ X ,
Spec(A′)→ Y from the valuative criterion of properness, we have a factorisation

MK′,v

Ŷs
an

X̂s
an

redY
redX

fan
s

.

Denote by M the collection of all projective sub-models of K ′/A. Then M is an inverse
system of locally ringed spaces which induces an inverse system of locally ringed spaces
(X̂s

an)X∈M. The above construction shows that the reduction maps are compatible with this
projective system. Therefore we obtain a commutative diagram

MK′,v ZR(K ′/A)

lim←−X X̂s
an lim←−X X

red

j

∼= , (2)

where the right hand side arrow is a homeomorphism by Theorem 1.4.3.

Theorem 8.2.4. We use the above notation. The map red : MK′,v → lim←−X∈M X̂s
an is a

homeomorphism. Moreover, if K ′/K is finitely generated, red induces a homeomorphism
MK′,v → lim←−X∈M′ X̂s

an, whereM′ denotes the collection of all projective models of K ′/A.

Proof. Note that from Proposition 8.2.3, the map red is continuous. Since MK′,v and
lim←−X∈M X̂s

an are both compact Hausdorff, it suffices to prove that red is bijective.
We first prove that red : MK′,v → lim←−X∈M X̂s

an is injective. Let v′1, v′2 ∈ MK′,v be such
that red(v′1) = red(v′2). (2) implies that the finiteness rings of v′1 and v′2 are equal. We denote
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this valuation ring by A′ and by κ′ its residue field. Denote respectively by | · |′1, | · |′2 the
residue absolute values on κ′ induced by v′1, v′2. Now Theorem 1.4.3 (2) implies that

A′ =
⋃
X∈M

OX ,xA′,X ,

where, for any X ∈ M, xA′,X denotes the centre of A′ on X . Since morphisms between
models are dominant morphisms of integral schemes, any morphism of models X ′ → X in
M induces an injective morphism of local rings OX ,xA′,X → OX ′,xA′,X′ . Therefore ([Bou75],
Chap. IX, Appendice 1, Proposition 1) implies that A′ = lim−→X∈MOX ,xA′,X and that

κ′ =
⋃
X∈M

κ(xA′,X ). (3)

Now | · |′1 and | · |′2 are absolute values on κ′ such that, for any X ∈M, their restrictions to
κ(xV ′,X ) are equal. Thus (3) implies that | · |′1 is equal to | · |′2, which shows the injectivity of
red.

Let us now prove the surjectivity of red. Let x = (xX = (pX , | · |xX ))X∈M be an element of
lim←−X∈M X̂s

an. Then by Theorem 1.4.3, the colimit of local rings lim−→X∈MOX ,pX is a valuation
ring of K ′ over A. Moreover, the residue field κ′ of A′ is the union of the κ(pX )’s. These
fields are equipped with an absolute value by construction and this data defines an absolute
value on the residue field κ′, thus defining a pseudo-absolute value v′ = (| · |′, A′,m′, κ′) on K
extending v. By construction red(v′) = x. �

Remark 8.2.5. In view of Definition 8.2.1 and Lemma 8.2.2, we see that the definition
of local analytic space is birational. Roughly speaking, the "algebraic part" is a certain
Zariski-Riemann space instead of a scheme in the classical case.

Corollary 8.2.6. We use the same notation as above. Assume that v is an absolute value
and that K ′ is countable. Then the set of absolute values extending v on K ′ is dense in
MK′,v.

Proof. In our case, sub-models of K ′/A are integral projective K-schemes whose function
field embeds in K ′. The set of absolute values in MK′,v is by definition the intersection⋂

a∈(K′)×
{|a| < +∞}.

Note that MK′,v is a Baire space. Since K ′ is countable, it suffices to prove that the set
Ua := {|a| < +∞} is dense in MK′,v for all non-zero a ∈ K ′. Let a ∈ (K ′)×. By Theorem
8.2.4, it suffices to prove that, for any projective sub-model X of K ′/K such that a ∈ κ(X )
and for any open subset U ⊂ (X ⊗K K̂)an, we have Ua∩ red−1

X (U) 6= ∅. Let X be a projective
sub-model of K ′/K. Then the generic fibre of (X ⊗K K̂)an → X⊗K K̂ is dense in (X ⊗K K̂)an

(cf. [Ber90], Corollary 3.4.5 and Theorem 3.5.1). Thus there exists x ∈ U whose image in X
is the generic point. Now choosing an element v′ in MK′,v such that redX (v′) = x, we obtain
a pseudo-absolute value | · |′ on K ′ which belongs to Ua ∩ red−1

X (U). �

8.3. Local Zariski-Riemann analytic space associated with a scheme. We conclude
this section by saying a few words about the analytic geometry over a pseudo-valued field
allowed by Theorem 8.2.4. The general picture is as follows. Let K be a field equipped with
a pseudo-absolute value v. We want to associate to any K-scheme X which is locally of finite
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type a topological space Xan
v which enjoys sufficiently nice properties (e.g. locally compact

Hausdorff) and which can be equipped with a sheaf of analytic functions. Morally, this
space encodes all the relevant arithmetic data at v. We again assume that A is universally
Japanese.

8.3.1. Naive attempt. Let X → Spec(K) be a K-scheme, one could try mimic directly
constructions of Berkovich analytic spaces by replacing absolute values and norms by pseudo-
absolute values and pseudo-norms. This naive construction is the following.

Let f : X → Spec(K) be a K-scheme. The naive local analytic space Xan,naive
v attached

to X over v is defined as the set of pairs x = (p, | · |x), where p ∈ X is a scheme point
and | · |x ∈ Mκ(p) is a pseudo-absolute value on the residue field κ(p) of p such that the
restriction of | · |x to K is | · |v. There is a specification morphism jnaive

v : Xan,naive
v → X

sending any x = (p, | · |x) ∈ Xan,naive
v to p. For any Zariski open subset U ⊂ X, let

Uan,naive
v := (jnaive

v )−1(U). For such U , any regular function f ∈ OX(U) defines a map
|f |· : Uan,naive

v → [0,+∞] by sending any point x ∈ Xan to |f(j(x))|x.
We now equip Xan,naive

v with the coarsest topology making j together with the maps |f |·,
for any Zariski open subset U ⊂ X and any f ∈ OX(U).

Proposition 8.3.1. Assume that X is a K-variety. Then the space Xan,naive
v is not Haus-

dorff.

Proof. Let p ∈ X be a regular closed point. Let vx = (| · |x, Ax,mx, κx) ∈ Mκ(p) be a
pseudo-absolute value. Proposition 1.1.6 yields the existence of a valuation ring V of K(X)
dominating OX,p with residue field κ(p). Then consider the extension by generalisation of
vx to MK induced by V (cf. Definition 4.3.1), we denote it by v′x = (| · |′x, A′x,m′x, κx). Let
U ⊂ X be an open Zariski neighbourhood of p, let f ∈ OX(U) be a regular function. By
definition of v′x and since f ∈ OX,p ⊂ V , we have

|f |′x = |f(p)|x.

Therefore, any open neighbourhood V ⊂ Xan
v of x = (p, vx) contains (η, v′x), where η denotes

the generic point of X. This implies that Xan
v is not Hausdorff. �

8.3.2. Definition. In view of Proposition 8.3.1, one has to refine the definition of the local
analytic space associated with a scheme by only allowing only pseudo-absolute values on the
residue field of generic points of irreducible components extending v.

Definition 8.3.2. Let X be a projective K-variety. Denote K ′ := κ(X). Define the
Zariski-Riemann local analytic space associated with X by

Xan
v := lim←−

X∈MX

X̂s
an
,

whereMX denotes the sub collection ofM consisting of projective models of K ′/A with
generic fibre isomorphic to X. This is a compact Hausdorff space.

Let X be a projective K-variety. We can link the space Xan
v above with the space Xan,naive

v

as follows. For any X ∈ MX , using the valuative criterion of properness, we define a
continuous map

redX,X : Xan,naive
v → X̂s

an
,
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in a similar fashion redX : MK′,v → X̂s
an was constructed. This construction is compatible

with respect to maps between elements ofMX and thus induces a map
redX : H → Xan

v .

Proposition 8.3.3. Let X be a projective K-variety. Denote K ′ := κ(X). Then Xan
v is

homeomorphic to the quotient of Xan,naive
v by the equivalence relation ∼ defined by

∀x, y ∈ Xan,naive
v , x ∼ y ⇔ redX(x) = redX(y).

Proof. By definition of ∼, redX factorises via a continuous map Xan,naive
v / ∼→ Xan

v . More-
over, the natural map MK′,v → Xan

v is a continuous surjective map between compact
Hausdorff spaces, and henceforth a quotient. Thus the continuous injection MK′,v → Xan

induces a continuous map i : Xan
v → Xan,naive

v / ∼. Then redX ◦i is the identity on Xan
v and

thus i is a homeomorphism. �

Remark 8.3.4. (1) If v is a usual absolute value, and X is a projective K-variety, then
Xan
v corresponds to the usual Berkovich analytification (X ⊗K K̂v)an.

(2) Proposition 8.3.3 illustrates a feature of spaces of pseudo-absolute values which are
reminiscent of adic spaces. For such spaces, the topological structure is by essence
much more algebraic and specialisation procedures can be studied to prove that,
under suitable conditions, the maximal Hausdorff quotient of an adic space is a
Berkovich space.

(3) In subsequent work, we will make use of these Zariski-Riemann local analytic spaces
for which the description as a projective limit allows to define a sheaf of analytic
functions.

9. Integral structures

In general, spaces of pseudo-absolute values might be "too big" for performing a suitably
well-behaved analytic geometry. For instance, the space of (pseudo-)absolute values on C
already contains a lot of p-adic absolute values that one would not want to include, at least
at first glance. To remedy the situation, we limit the space of pseudo-absolute values in
our space by imposing some continuity condition. This gives rise to the notion of integral
structure which can be interpreted as affine subsets of our spaces of pseudo-absolute values.
As a guideline for the reader who might be frightened by the technical content of this section,
let us say that §9.1-9.3 consist of fundamental results that allow to explicit Berkovich spectra
that topologically embed in spaces of pseudo-absolute values. In §7.2, we describe precisely
some examples of integral structure coming from Nevanlinna theory. The main example to
focus on is found in §9.4.3. We make a full description of the Berkovich spectrum associated
with the ring of holomorphic functions on a closed complex disc, equipped with a hybrid
norm (Example 9.2.1 (4)), as a locally ringed space. We also prove that the underlying
Banach ring is a geometric base ring ([LP24], Définition 3.3.8). This gives a new example of
such Banach rings that allow the employment of the machinery in loc. cit. and will be used
to formalise Nevanlinna theory in our framework.

Throughout this section, we fix a field K.

9.1. Definition of integral structures.

Definition 9.1.1. An integral structure for K is the data (A, ‖ · ‖A) where:
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(i) A is an integral subdomain of K with fraction field K;
(ii) A is Prüfer;
(iii) ‖ · ‖A is a Banach norm on A.

When no confusion may arise, we use the notation A for an integral structure (A, ‖ · ‖A).

Remark 9.1.2. Denote by k the prime subring of K. Let (A, ‖ · ‖A) be an integral structure
for K. The latter can be interpreted through the Zariski-Riemann space associated with
K, namely the set ZR(K/k) of valuation rings of K. As A is integrally closed ([Gil72],
Chapter IV), it is the intersection of all its valuation overrings ([Bou75], Chapter VI, §1.3
Corollaire 2). Note that any valuation overring of A is of the form Ap for some p ∈ Spec(A)
(cf. Proposition 1.1.9 (1)). Hence we have

A =
⋂

p∈Spec(A)
Ap.

Let X ⊂ ZR(K/k) be the subset such that A =
⋂
V ∈X V . We have a characterisation of such

subsets X in terms of affine subsets of ZR(K/k) (cf. [Olb21], Theorem 6.2). Let us also
mention that Olberding has done extensive work in these directions [Olb08, Olb10, Olb11].

The notion of integral structure allows to define refined versions of MK .

Definition 9.1.3. Let K be a field equipped with an integral structure (A, ‖ · ‖A). The
global space of pseudo-absolute values relative to the integral structure A is defined as

VK,A := {| · | ∈MK : | · ||A ≤ ‖ · ‖A},
and is equipped with the topology induced by that of MK .

Notation 9.1.4. Let K be a field. Let (A, ‖ · ‖A) be an integral structure for K. Denote by
V the associated global space of pseudo-absolute values. We introduce the following notation.

• V∞ := MK,∞ ∩ V denotes the set of Archimedean pseudo-absolute values of V .
• Vum := MK,um ∩ V denotes the set of ultrametric pseudo-absolute values of V .
• Vsn := MK,sn ∩ V denotes the set of pseudo-absolute of V values whose kernel is
non-zero.
• Vtriv := MK,triv ∩ V denotes the set of pseudo-absolute values of V whose residual
absolute value is trivial.
• Vdisc := MK,disc∩V denotes the set of discrete pseudo-absolute values, namely the set
of pseudo-absolute values of V that correspond either to a discrete non-Archimedean
absolute value on K or to a pseudo-absolute value whose finiteness ring is a discrete
valuation ring that is not a field.

Proposition 9.1.5. With the notation of Definition 9.1.3, V is a non-empty compact
Hausdorff topological space.

Proof. There is a natural map f : VK,A → M(A), where M(A) denotes the Berkovich
analytic spectrum of (A, ‖ · ‖A), which is given by restricting elements of VK,A to A. By
definition of the topologies, f is continuous. Let x ∈M(A) and denote by px ∈ Spec(A) its
kernel. Since A is Prüfer, the localisation Apx is a valuation ring of K on which x defines a
multiplicative semi-norm. Therefore, every element ofM(A) induces an element of VK,A.
This construction provides an inverse of f that is a continuous function. The conclusion
follows from ([Ber90], Theorem 1.2.1). �
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Remark 9.1.6. The above proof shows that V is homeomorphic toM(A).

Proposition 9.1.7. Let (A, ‖ · ‖) be an integral structure for K and denote by V be the
associated global space of pseudo-absolute values. We assume that V∞ 6= ∅. Recall that we
denote by | · |∞ the usual absolute value on Q. Let ε : V∞ →]0, 1] be the function mapping
x ∈ V∞ to the unique ε(x) ∈]0, 1] such that the residual absolute value on κx induces the
absolute value | · |ε(x)

∞ on Q. Then, by extending the definition of ε to V by setting ε(x) := 0
if x ∈ Vum, ε is a continuous function on V .

Proof. From the assumption that Ω∞ 6= ∅, K has characteristic zero. By definition of ε, for
any x ∈ V∞, we have ε(x) = log |2|x/ log 2. It follows that for any x ∈ V , we have

ε(x) = max{0, log |2|x}
log 2 .

Since log |2|· is continuous on V , we deduce the continuity of the function ε. �

To study the topology of global spaces of pseudo-absolute values, we make use of the
constructions in ([Poi10], §1.3).

Notation 9.1.8. Let (A, ‖ · ‖) be an integral structure for K and denote V :=M(A). For
any x ∈ V , we define the interval

Ix := {ε ∈ R>0 : ∀f ∈ A, |f |εx ≤ |f |}.
For any ε ∈ Ix, we can then show that | · |εx defines an element of V that we denote by xε. In
the case where Ix has 0 as a lower bound, we can extend this definition to ε = 0 by defining
x0 as the pseudo-absolute value on K defined by

| · |0x : A −→ R≥0

f 7−→
{

0 if |f |x = 0,
1 if |f |x 6= 1.

9.2. Examples of integral structures.

Example 9.2.1. (1) Let ‖ · ‖ be any Banach norm on K. Then (K, ‖ · ‖) is an integral
structure for K. This is the case when K is either a complete valued field or a hybrid
field, namely the norm ‖ · ‖ is of the form ‖ · ‖ = max{| · |, | · |triv}, where | · | denotes
a non-trivial absolute value on K.

(2) Let K be a number field with ring of integers OK . The latter is a Prüfer domain (cf.
Example 1.1.10 (2)) with fraction field K. Let ‖ · ‖∞ := maxσ↪→C | · |σ, where σ runs
over the set of embeddings of K into C. Then (OK , ‖ · ‖∞) is an integral structure
for K.

(3) Let U be a non-compact Riemann surface and K := M(U) denote its field of
meromorphic functions. Then the ring of holomorphic functions A := O(U) is a
Prüfer domain (cf. Example 1.1.10 (3)) with fraction field K. Let C ⊂ U be a
compact subset. Then define a norm on A as follows.

∀f ∈ A, ‖f‖C,hyb := max{‖f‖C , ‖f‖triv},
where ‖ · ‖C denotes the supremum norm on C and ‖ · ‖triv denotes the trivial norm
on A. Then (A, ‖ · ‖C,hyb) is a Banach ring and thus (A, ‖ · ‖C,hyb) is an integral
structure for K.
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(4) Let R > 0 and let D(R) denote the complex closed disc of radius R. We denote
respectively by A = O(D(R)) and K =M(D(R)) the ring of germs of holomorphic
functions and the field of germs of meromorphic functions on D(R). Then A is
a principal ideal domain with field of fractions K (cf. Example 1.1.10 (4) and
Proposition 1.2.6) and a Prüfer domain. Let ‖ · ‖R denote the supremum norm on
D(R) and define ‖ · ‖R,hyb := max{‖ · ‖R, | · |triv}, where |‖ · ‖triv denotes the trivial
norm on A. Then (A, ‖ · ‖R,hyb) is a Banach ring and (A, ‖ · ‖R,hyb) defines an integral
structure for K.

9.3. Tame global spaces of pseudo-absolute values. The following definition is moti-
vated by the explicit study of global spaces of pseudo-absolute values we shall consider in
the context of Nevanlinna theory.

Definition 9.3.1. Let (A, ‖ · ‖) be an integral structure on K and denote V :=M(A). V is
called tame if the following conditions are satisfied:

(i) vtriv ∈ V ;
(ii) for any x ∈ Vum and any f ∈ A, the inequality

|f |x ≤ 1
is satisfied;

(iii) (A, ‖ · ‖) is a uniform Banach ring (cf. Definition 1.5.2).

Example 9.3.2. The spectra of Example 9.2.1 are tame spaces. This is immediate in the
case of the spectrum of the ring of integers of a number field. Let us show this fact in the case
of the hybrid spectrum of the ring of analytic functions on a non-compact Riemann surface.
We use the notation of Example 9.2.1 (3). Let x ∈ Vum r Vsn. Then for all f ∈ Ar {0}, we
have |f |x ≤ ‖f‖A = max{‖f‖C , 1}. For all a ∈ C, we have |af |x = |f |x (since the restriction
of | · |x to C is necessarily trivial). By choosing a of sufficiently small modulus, we obtain
‖af‖C ≤ 1 and the inequality

|f |x ≤ |af |x ≤ ‖af‖A = 1.
In §9.4.2, we will see that the norm ‖ · ‖A is uniform.

The following proposition ensures that the notion of tame space is compatible with algebraic
extensions of the field of fractions, which is fundamental in what follows.

Proposition 9.3.3. Let (A, ‖ · ‖) be an integral structure on K and assume that V :=M(A)
is tame. Let L/K be an algebraic extension and let B denote the integral closure of A in L.
Then B can be equipped with a norm ‖ · ‖B such that

(1) (B, ‖ · ‖B) is a Banach ring;
(2) VL :=M(B) is a tame space;
(3) the inclusion morphism (A, ‖ · ‖)→ (B, ‖ · ‖B) is an isometry.

Moreover, VL is "universal" in the following sense. If v ∈ML is such that its restriction to
A belongs to V , then v ∈ VL.

Proof. Case 1: the extension L/K is finite and Galois. Let us show the existence of
‖ · ‖B. First note that B is a Prüfer domain (cf. Proposition 1.1.9 (2)). Define the set

E := {| · | : | · | is a multiplicative seminorm on B and | · ||A ∈ V }.
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Let us show that the application
‖ · ‖B : B −→ R≥0

b 7−→ supx∈E |b(x)|
defines a Banach norm on B. Let b ∈ B r {0}, we a priori have ‖b‖B ∈ [1,+∞] (since the
trivial absolute value belongs to E). To show that ‖b‖B < +∞, we will use the following
lemma.

Lemma 9.3.4. Let b ∈ B and denote by P = (T − α1) · · · (T − αd) ∈ A[T ] its minimal
polynomial over K. Then there exists a constant M > 0 such that

∀v ∈ V, ∃N0 ≥ 0, ∀N > 0,

∣∣∣∣∣∣
d∑
j=1

αNj

∣∣∣∣∣∣
v

≤ dN+N0MN . (4)

Proof. Write P = adT
d + · · · + a0 and denote M := max0≤i≤n ‖ai‖.. We fix v = (| ·

|v, Av,mv, κv) ∈ V . For any integer N > 1, define λN :=
∑d
j=1 α

N
j and

Λ := max
1≤j≤d

|λj |v.

Let N0 > 0 be an integer such that Λ ≤ dN0 . Let us show by induction on N that (4) holds
for all N > 0. Let N be an integer. Assume first that N ≤ d. Then we have

|λN | ≤ Λ ≤ dN0+NMN ,

The second inequality comes from M ≥ 1 (since vtriv ∈ V ). We now assume that N > d and
that (4) holds for any N ′ < N . Then, from Newton identities, we have

λN =
N−1∑

k=N−d
(−1)N−1+kaN−kλk,

where
aj :=

∑
1≤n1<···<nj≤d

αn1 · · ·αnj

for any j ∈ {1, ..., d}. Note that for all j ∈ {1, ..., d}, aj is a coefficient of P (up to sign).
Hence |aj | ≤M . Then the induction hypothesis yields

|λN |v ≤ dM max
N−d≤k≤N−1

dk+N0Mk ≤ dN+N0MN .

Hence the conclusion. �

We are now able to show ‖b‖B < +∞. Let {α1, ..., αd} be the Galois orbit of b. Fix an
arbitrary pseudo-absolute value v ∈ V . Proposition 3.3.5 and Lemma 9.3.4 give the existence
of M > 0 such that

max
w|v
|b|w = lim sup

N→+∞

∣∣∣∣∣∣
d∑
j=1

αNj

∣∣∣∣∣∣
1
N

v

≤ dM.

Since both d and M are independent on v, we have ‖b‖B ≤ dM < +∞. It is immediate
to see that ‖ · ‖B defines a norm on B. Since the trivial absolute value on L belongs to E,
the topology on B induced by ‖ · ‖B is discrete. In particular, (B, ‖ · ‖B) is a Banach ring.
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Furthermore, for any a ∈ A, we have ‖a‖B = ‖a‖. Hence we have an isometric embedding
(A, ‖ · ‖)→ (B, ‖ · ‖B). This concludes the proof of (1) and (3).

We now show that VL := M(B) is a tame space. Note that VL contains the trivial
absolute value. Let x = (| · |x, Bx,mx) ∈ VL,um. Let f ∈ B whose Galois orbit is denoted by
{α1, ..., αd}. Let us show that |f |x ≤ 1. Let v = (| · |v, Av,mv) := πL/K(x) ∈ V denote the
restriction of x to K. Then Lemma 3.3.6 yields

|f |x ≤ max
x′∈π−1

L/K
(v)
|f |x′ = lim sup

N→+∞

∣∣∣∣∣∣
d∑
j=1

αNj

∣∣∣∣∣∣
1
N

v

≤ 1,

The last inequality comes from the fact that, for any j ∈ {1, ..., d}, for any N > 0,
∑d
j=1 α

N
j ∈

A. Finally, ([Ber90], Theorem 1.3.1) implies that the norm ‖ · ‖B is uniform and VL is tame.
Case 2: the extension L/K is finite separable. Let L′/L/K be the normal closure

of L/K and denote by B′ the integral closure of A in L′, which is equal to the integral
closure of B in L′. From the finite Galois case, there exists a norm ‖ · ‖B′ on B′ such that
(B′, ‖ · ‖B′) (1)-(3) hold. Since B is a subring of B′, the restriction of ‖ · ‖B′ to B, denoted by
‖ · ‖B, induces the discrete topology B, hence is a Banach norm. We also have an isometric
embedding (A, ‖ · ‖)→ (B, ‖ · ‖B) andM(B) is tame.
Case 3: the extension L/K is infinite and separable. Let EL/K denote the set of

finite sub-extensions of L/K. EL/K is a directed set with respect to the inclusion relation
and we have

L =
⋃

K′∈EL/K

K ′ and B =
⋃

K′∈EL/K

AK′ ,

where, for all K ′ ∈ EL/K , AK′ denotes the integral closure of A in K ′. For any K ′ ∈ EL/K ,
we denote by ‖ · ‖AK′ the norm on AK′ constructed in the finite case. If K ′′/K ′/K are
sub-extensions in EL/K , we have the compatibilities

(AK′′ , ‖ · ‖AK′′ ) (AK′ , ‖ · ‖AK′ )

(A, ‖ · ‖)

ιK′/K

where the arrows are the isometric embeddings previously constructed. Thus we have a
filtered direct system (AK′ , ‖ · ‖AK′ )K′∈EL/K of Banach A-algebras whose arrows are isometric
embeddings. One can prove that the direct limit of this direct system exists in Ban≤1

A−alg
and using the fact that all AK′ are discrete its underlying set can be identified with B. B
is Prüfer (cf. Proposition 1.1.9 (2)). Thus we have an integral structure (B, ‖ · ‖B) on L.
Let us show that VL :=M(B) ∼= lim←−K′∈EL/KM(AK′) is tame. From the description of VL
as an inverse limit, we see that VL contains the trivial absolute value and that the norm
‖ · ‖B is uniform. Moreover, by definition of ‖ · ‖B, for any f ∈ B, for any x ∈ VL,um, we have
|f(x)| ≤ 1.
Case 4: general case. Let K ′/K be the separable closure of K in L and let q denote

the degree of the purely inseparable extension L/K ′. From the latter case, we have a norm
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‖ · ‖A′ on A′, the integral closure of A in K ′, satisfying (1)-(3). Define a map
‖ · ‖B : (b ∈ B) 7→ ‖bq‖A′ ∈ R≥0.

Then ‖ · ‖B is a norm on B satisfying (1)-(3).
To conclude the proof of the proposition, it remains to show that VL is "universal". Let

v ∈ML and denote by Bv its finiteness ring. As a valuation ring of L containing A, it is an
overring of B. By construction of ‖ · ‖B, we have |b|v ≤ ‖b‖B for all b ∈ B, i.e. v ∈ VL. �

The following propositions ensure that the ultrametric part of global spaces of pseudo-
absolute values arising from integral structures enjoys sufficiently nice properties.

Proposition 9.3.5. Let (A, ‖ · ‖) be an integral structure on K and assume that V :=M(A)
is tame. Let x ∈ Vum r Vsn, i.e. an ultrametric absolute value on K, and assume that x is
non-trivial. Then, for all ε ∈ [0,+∞[, xε ∈ V . Furthermore, the pseudo-absolute value on K
is defined by

| · |∞x : A −→ R≥0

f 7−→
{

0 if |f |x < 1,
1 if |f |x = 1,

belongs to V . We denote it by x∞.

Proof. As V is tame, we have x0 = vtriv ∈ V . For any ε ∈ R>0, xε is an ultrametric and
nontrivial absolute value on K. For any f ∈ A, we have |f |x ≤ 1 and thus |f |εx ≤ 1. Therefore
xε ∈ V (since 1 ≤ ‖f‖). For any f ∈ A, we have |f |∞x ≤ |f |x ≤ 1 ≤ ‖f‖. Hence x∞ ∈ V . �

Proposition 9.3.6. Let (A, | · |) be an integral structure for K and assume that V :=M(A)
is tame. Let x ∈ Vum r Vsn and assume that x is nontrivial. Then the map

x· : [0,+∞] −→ V
ε 7−→ xε

induces a homeomorphism onto its image.

Proof. Proposition 9.3.5 implies that the map x· is well-defined. Since for any f ∈ A, the
map

ϕf : [0,+∞] −→ R≥0
ε 7−→ |f |εx

is continuous, x· is continuous. Thus x· is a continuous bijection between compact Hausdorff
spaces, and consequently a homeomorphism. �

The following definition allows to get rid of pseudo-absolute values whose finiteness ring is
of rank greater than 1.

Definition 9.3.7. A pseudo-absolute value x ∈MK with finiteness ring Ax is called of rank
at most 1 if Ax is a valuation ring of rank ≤ 1.

Let (A, ‖ · ‖) be an integral structure for K and denote V =M(A). We define
V≤1 := {x ∈ V : x is of rank at most 1}.

Then V≤1 is a topological subspace of V , with the subset topology.

Proposition 9.3.8. Let (A, ‖ ·‖) be an integral structure for K and assume that V :=M(A)
is tame. Let x = (| · |x, Ax,mx, κx) ∈ Vsn ∩ V≤1. Then the following assertions hold.
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(1) The residue absolute value on κx is either Archimedean or trivial.
(2) Further assume that x ∈ Vum. Then there exists v ∈ V≤1 such that x = v∞ (cf.

Proposition 9.3.5).

Proof. We first show (1). Let x = (| · |x, Ax,mx, κx) ∈ Vsn ∩ V≤1 and assume x is ultrametric.
Since V is tame, for any a ∈ A, we have |a|x ≤ 1. Furthermore, the canonical homomorphism
A→ κx is surjective. Hence, for any a ∈ κx, we have |a|x ≤ 1, i.e. κx is the valuation ring of
the residue absolute value of x, i.e. x is residually trivial.

We now prove (2). Let x = (| · |x, Ax,mx) ∈ Vsn ∩ V≤1 be ultrametric. From (1), κx is
trivially valued. Let v be a valuation (necessarily of rank 1) on K with valuation ring Ax
and denote by | · |v the corresponding absolute value on K. Note that, since x, vtriv ∈ V , we
have A ⊂ Ax and, for any a ∈ A, |a|v ≤ 1 ≤ ‖a‖. Hence v ∈ V≤1 and x = v∞. �

Remark 9.3.9. With the notation of Proposition 9.3.8, we have the set-theoretic description
of Vum,≤1 as ⊔

v∈P
[0,+∞]/ ∼,

where:
• P denotes the set of equivalence classes of nontrivial ultrametric absolute values on
K;
• for any v ∈ P, [0,+∞] denotes the branch introduced in Proposition 9.3.6;
• ∼ denotes the equivalence relation which identifies the extremity 0 of each branch.

Proposition 9.3.10. We use the notation of Remark 9.3.9. Assume that A is Dedekind.
Then the bijection

Vum = Vum,≤1 ∼=
⊔
v∈P

[0,+∞]/ ∼

is a homeomorphism.

Proof. This follows directly from the description of the Berkovich analytic spectrum of a
trivially valued Dedekind ring (e.g. [LP24], Example 1.1.17). �

9.4. Examples. We can explicitly describe global spaces of pseudo-absolute values for
various examples.

9.4.1. Function field over C. Let K = C(T ). Let R > 0. Denote by ‖ · ‖R the supremum
norm of polynomial functions on the closed disc D(R) of radius R. Let ‖ · ‖ denote the
hybrid norm ‖ · ‖ := max{‖ · ‖triv, ‖ · ‖R}, where ‖ · ‖triv denotes the trivial norm on C[T ].
Then (C[T ], ‖ · ‖) defines an integral structure for K. We describe the associated global space
of pseudo-absolute values VR.

Proposition 9.4.1. We use the same notation as above.
(1) We have homeomorphisms

VR,∞ ∼= D(R)×]0, 1], VR,um ∼= P1,triv
C ∩ {|T | ≤ 1},

where P1,triv
C is the Berkovich analytic space associated with P1

C, where C is trivially
valued.

(2) VR,∞ is dense in VR
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Proof. (1) Let ϕ be the map mapping (z, ε) ∈ D(R)×]0, 1] to vz,ε,∞ ∈ MK . First let us
prove that ϕ has image contained in VR,∞. For this purpose, it suffices to show that, for any
(z, ε) ∈ D(R)×]0, 1], we have

∀P ∈ C[T ], |P (z)|ε∞ ≤ ‖P‖.

Let (z, ε) ∈ D(R)×]0, 1] and fix an arbitrary non-zero polynomial P ∈ C[T ]. First assume
that |P (z)|∞ ≤ 1. Then |P (z)|ε∞ ≤ 1 = ‖P‖triv ≤ ‖P‖. Now assume that |P (z)|∞ > 1. Then
we have the inequalities

1 < |P (z)|ε∞ < |P (z)|∞ ≤ ‖P‖R = ‖P‖.
Therefore ϕ has image contained in VR,∞.

Let us now prove that ϕ has exactly image VR,∞. We first consider the case where z /∈ D(R)
and ε = 1. Then if P (T ) := T + 1 ∈ C[T ], we have{

|P (z)|∞ = |z|∞ + 1 > 1 = ‖P‖triv,
|P (z)|∞ = |z|∞ + 1 > R+ 1 = ‖P‖R.

Therefore vz,1,∞ /∈ VR,∞.
Now let z /∈ D(R) and ε ∈]0, 1[. Then we construct a polynomial Q ∈ C[T ] such that

|Q(z)|ε∞ > ‖Q‖. For any a ∈ R>0, denote

Pa(T ) := T

a
∈ C[T ].

Then for any a > 0, we have ‖Pa‖R = R/a and

|Pa(z)|ε∞ > ‖Pa‖ ⇔
{ |z|ε∞

aε > 1 = ‖Pa‖triv,
|z|ε∞
aε > R

a = ‖Pa‖R.
Let u : (a ∈]0, |z|∞[) 7→ R/a1−ε. Then u is a continuous function. Note that

R < |z|∞ ⇔ lim
a→|z|−∞

u(a) = R

|z|1−ε∞
< |z|ε∞.

Moreover, for any a ∈]0, |z|∞[, we have
|Pa(z)|ε∞ > ‖P‖R ⇔ u(a) < |z|ε∞.

Since lima→|z|−∞ u(a) < |z|ε∞, by continuity, there exists a ∈]0, |z|∞[ such that u(a) < |z|ε∞
and we denote Q := Pa. From what precedes, we have |Q(z)|ε∞ > ‖Q‖, thus vz,ε,∞ /∈ VR,∞.

Combining the two above paragraphs, ϕ defines a bijection between D(R)×]0, 1] and VR,∞.
It is a homeomorphism by definition of the topologies of its domain and codomain.

We now prove the second homeomorphism. Let | · | ∈ VR,um. As | · ||C[T ] ≤ 1, we
deduce that the restriction of | · | is the trivial absolute value. We distinguish two cases.
The first one is the case where | · | is a usual absolute value. Then | · | is of the form
| · |z,c,um : f ∈ K 7→ exp(−c ord(f, z)) ∈ R>0, where z ∈ C ∪ {∞} and c ≥ 0 (using the
conventions ord(·,∞) = −deg(·) and | · |z,0,um = | · |triv for all z ∈ C∪{∞}). The second case
is when | · | has a non-zero kernel. Then there exists z ∈ C ∪ {∞} such that | · | = | · |z,∞,um,
where

| · |z,∞,um : C[T ](T−z) −→ R≥0

f 7−→
{

0 if f(z) = 0,
1 if f(z) 6= 0.
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Thus | · | can be identified with an element of P1,triv
C . Moreover, the condition | · ||C[T ] ≤ 1

implies that | · | can be identified with an element of P1,triv
C ∩ {|T | ≤ 1}, this yields a map

ψ : VR,um → P1,triv
C ∩{|T | ≤ 1} which is continuous by definition of the topologies. Conversely,

by definition, any element x ∈ P1,triv
C ∩ {|T | ≤ 1} gives rise to a ultrametric pseudo-absolute

value | · | ∈MK,um. As x ∈ {|T | ≤ 1}, we deduce | · ||C[T ] ≤ 1 ≤ ‖ · ‖ and therefore | · | ∈ VR,um.
This construction yields an inverse to ψ. To conclude, it suffices to remark that VR,um
compact Hausdorff and that A1,triv

C ∩ {|T | ≤ 1} is Hausdorff.
(2) We refer to the proof of Proposition 9.4.7 (2). �

Remark 9.4.2. The notion of integral structure allows to characterise the ultrametric part
of our space of pseudo-absolute values. This addresses the issue mentioned in Remark 7.2.3
(1).

9.4.2. Nevanlinna theory: open disc. A motivation for this work is to study problems arising
from Nevanlinna theory. We start by studying the Berkovich spectrum associated with the
integral structure of Example 9.2.1 (3) over the ring of holomorphic functions on a closed
disc. Although the description of the whole space cannot be made explicit, its study will be
useful for the closed disc case (§9.4.3).

Let 0 < R′ ≤ +∞ and let KR′ := M(D(R′)) be the field of meromorphic functions on
D(R′) := {z ∈ C : |z|∞ < R′}, where D(+∞) = C. Let R′ < R and denote by ‖ · ‖R the
restriction to O(D(R′)) of the hybrid norm on the disc D(R) (cf. Example 9.2.1 (3)). Then
(O(D(R′)), ‖ · ‖R) defines an integral structure for K. Denote by VR,R′ the corresponding
global space of pseudo-absolute values. In what follows, we explicitly describe VR,R′,≤1.

Proposition 9.4.3. Let v = (| · |, A,m, κ) ∈ VR,R′,∞. Then there exist z ∈ D(R) and ε ∈]0, 1]
such that v = vz,ε,∞ (cf. Example 2.2.1 (3)). Furthermore, we have a homeomorphism
VR,R′,∞ ∼= D(R)×]0, 1] which maps any vz,ε,∞ ∈ VR,R′,∞ to (z, ε) ∈ D(R)×]0, 1].

Proof. Recall that | · |∞ denotes the usual complex Archimedean value. Note that, since
v ∈ VR,R′ , we have an inclusion O(D(R′)) ⊂ A. In particular, C is a subfield of A and
thus C ⊂ A×. We have arrows C ⊂ A× � κ and an extension C → κ. Since v induces an
Archimedean absolute value on κ, the Gelfand-Mazur theorem ([Bou75], Chapitre VI, §6, no

4, Théorème 1) ensures that κ = C and that there exists ε ∈]0, 1] such that | · | = | · |ε∞ on κ.
From the inclusion C ↪→ O(D(R′))× we deduce that the C-algebra morphism O(D(R′))→

C is surjective whose kernel is the maximal ideal m′ := m∩O(D(R′)) ofO(D(R′)). Proposition
1.2.1 implies that m′ is principal and that there exists z ∈ D(R′) such that m′ is the set of
functions in O(D(R′)) vanishing in z. Thus v corresponds to the map (f ∈ O(D(R′))) 7→
|f(z)|ε∞ ∈ [0,+∞]. The condition v ∈ VR,R′ ensures that z ∈ D(R). Hence the conclusion of
the proof of the first statement of the proposition.

For any v ∈ VR,R′,∞, denote by z(v) the unique z ∈ D(R) such that x = vz(v),ε(v),∞. Let
ϕ : VR,R′,∞ → D(R)×]0, 1] be the map mapping any v ∈ VR,R′,∞ to (z(v), ε(v)) ∈ D(R)×]0, 1].
Then ϕ is bijective. Let us show ϕ is a homeomorphism. To show that ϕ is continuous,
it is enough to show that so are the induced maps ε : v ∈ VR,R′,∞ 7→ ε(v) ∈]0, 1] and
z : v ∈ VR,R′,∞ 7→ z(v) ∈ D(R). The first map is continuous (cf. 9.1.7). The map z is equal
to the composition VR,R′,∞ → VR,∞ → D(R), where VR,∞ is the Archimedean part described
in Proposition 9.4.1. It remains to prove that ϕ−1 is continuous. For this purpose, it suffices
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to show that, for any f ∈ O(D(R′)), the map

|f | ◦ ϕ−1 : D(R)×]0, 1] −→ R+
(z, ε) 7−→ |f(z)|ε∞

is continuous. This fact being certainly true, concludes the proof. �

Remark 9.4.4. Let K =M(U) denote the field of meromorphic functions on a (connected)
non-compact Riemann surface U . On can adapt the above proof to describe the Archimedean
pseudo-absolute values on K: they are the pseudo-absolute values of the form (f ∈ K) 7→
|f(z)|ε∞ ∈ [0,+∞], for some z ∈ U and ε ∈]0, 1].

We now study the ultrametric pseudo-absolute values in VR,R′ . We first exhibit some
of them. For any z ∈ D(R′) and c > 0, denote by vz,c,um the absolute value | · |z,c,um :
(f ∈ KR′) 7→ exp(−c ord(f, z)) ∈ R>0 (it is an element VR,R′ since for all f ∈ O(D(R′)), we
have |f |z,c,um ≤ 1). Example 2.2.1 (4) provides, for any z ∈ D(R′), a pseudo-absolute value
vz,∞,um defined by

| · |z,∞,um : Az −→ R≥0

f 7−→
{

0 if f ∈ mz,
1 if f /∈ mz,

where Az and mz denote respectively the set of elements of KR′ without pole and vanishing
in z. Finally, for any z ∈ D(R′), we denote by vz,0,um the trivial absolute value on KR′ .

Proposition 9.4.5. VR,R′,≤1,um is the set of pseudo-absolute values v on K such that there
exist z ∈ D(R′) and c ∈ [0,+∞] such that v = vz,c,um.

Proof. Let v ∈ VR,R′,≤1. We first assume that v ∈ VR,R′ r VR,R′,sn, i.e. v is a usual absolute
value on K. Let A ⊂ K denote the valuation ring of v. We have the inclusion O(D(R′)) ⊂ A
since v ∈ VR,R′ . Moreover, v is a valuation of rank 1, hence v is either trivial or equivalent
to the valuation ord(·, z), for some z ∈ D(R′) (cf. Proposition 1.2.2). Thus there exist
z ∈ D(R′) and c ∈ R+ such that v = vz,c,um.

We now assume that v ∈ VR,R′,sn,um. Since VR,R′ is tame (Définition 9.3.1) and, for any
v ∈ VR,R′,≤1,sn, we have κ(v) = C and a surjection O(D(R′)) → κ(v), Proposition 9.3.8
ensures that v is of the form vz,∞,um, for some z ∈ D(R′). �

Proposition 9.4.6. We have homomorphisms VR,R′,∞ ∼= D(R′)×]0, 1] and

VR,R′,≤1,um ∼=
⊔
v∈P

[0,+∞]/ ∼,

with the notation of Remark 9.3.9.

Proof. This is a consequence of Propositions 9.4.3 and 9.4.5. The only part needing a
justification is the fact that the nontrivial ultrametric absolute values of KR′ are discrete.
This comes from the first part of the proof of Proposition 9.4.5. �

9.4.3. Nevanlinna theory: compact disc. We now make use of the previous example to make
an explicit description of the integral structure from Example 9.2.1 (4). We also give a
description of the structure sheaf of the corresponding Berkovich spectrum and show that
the underlying Banach ring is a geometric base ring in the sense of [LP24], so that Berkovich
analytic geometry can be performed over such a Banach ring. This gives a new explicit
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example of Berkovich space where the Archimedean points interact with the ultrametric ones
in a less standard way.

Let R > 0 and denote by KR :=M(D(R)) the field of (germs) of meromorphic functions
on the closed disc D(R) := {z ∈ C : |z|∞ ≤ R}. Let AR = O(D(R)) denote the ring of
(germs of holomorphic functions on D(R)). Equip A with the hybrid norm ‖ · ‖R,hyb (cf.
Example 9.2.1 (4)). Then (AR, ‖ · ‖R,hyb) is an integral structure for KR. We now describe
the corresponding global space of pseudo-absolute values VR.

Firstly, VR,∞ ∼= D(R)×]0, 1] where (z, ε) ∈ D(R)×]0, 1] is mapped to the pseudo-absolute
value vz,ε,∞ defined in Example 2.2.1 (3) (see also Proposition 9.4.3).

We now describe VR,um. By Propositions 1.2.6 and 1.2.7, a non-trivial ultrametric absolute
value in VR,um is given by a valuation ord(·, z) for some z ∈ D(R). Hence it is of the form
| · |z,c,um : (f ∈ KR) 7→ exp(−c ord(f, z)) ∈ R>0 for some c > 0 and z ∈ D(R). The remaining
elements of VR,um are of the form

| · |z,∞,um : O(D(R))(T−z) −→ R≥0

f 7−→
{

0 if f ∈ (T − z),
1 if f /∈ (T − z),

for some z ∈ D(R)
Proposition 9.4.7. (1) We have homeomorphisms

VR,∞ ∼= D(R)×]0, 1], VR,um ∼=
⊔

z∈D(R)

[0,+∞]/ ∼,

where ∼ denotes the equivalence relation which identifies the extremity 0 of each
branch.

(2) VR,∞ is dense in VR.
Proof. The homeomorphisms in (1) follow from the above paragraphs together with Proposi-
tion 9.3.10.

We now prove (2). Let (vn)n≥0 be a sequence in VR,∞ converging to some v ∈ VR. (1)
implies that, for any integer n ≥ 0, vn = vzn,εn,∞, for some zn ∈ D(R) and εn ∈]0, 1]. By
compactness of D(R) and [0, 1], up to extracting subsequences, we may assume that there
exists (z, ε) ∈ D(R) × [0, 1] such that limn→+∞ zn = z and limn→+∞ εn = ε. Let us prove
that v = vz,ε,∞ if ε > 0 and that there exists c ∈ [0,∞] such that v = vz,c,um if ε = 0.

We first assume that ε > 0. Since |2|v > 1, v is Archimedean. Moreover, |(T − z)|v =
limn→+∞ |zn − z|εn∞ = 0. Thus (T − z) belongs to the kernel of v and v is of the form vz,ε′,∞,
for some ε′ ∈]0, 1]. |2|v = 2ε = 2ε′ yields ε = ε′.

We now consider the ε = 0 case. Thus |2|v = 1 and v is ultrametric. Consider the
sequence u = (εn log |zn − z|∞)n≥0. Up to extracting a subsequence, we may assume that
u converges to −c ∈ [−∞, 0]. Let us prove that v = vz,c,um. By hypothesis, we have
|(T − z)|v = e−c (with the convention e−∞ = 0). Moreover, for any z′ 6= z in D(R), we have
|(T − z′)| = limn→+∞ |zn − z′|εn∞ = 1. From the aforementioned description of VR,um, we see
that v = vz,c,um. �

Remark 9.4.8. The above example shows that the subspace of absolute values need not be
open, discrete or dense in the space of pseudo-absolute values. However, we will show that
density holds if K is countable (Corollary 10.2.4).
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Now that we have a set-theoretic description of the space VR, we can fully describe its
topology. Let us define the center map z : VRrvtriv → D(R) defined by mapping an element
v ∈ VR r {vtriv} to the unique z(v) ∈ D(R) such that v = vz(v),ε,∞ for some ε ∈]0, 1]or
v = vz(v),c,um for some c ∈]0,∞].

Proposition 9.4.9. Let v ∈ VR. Define the following set Bv.
(1) If v = vz,ε,∞ ∈ VR,∞, where (z, ε) ∈ D(R)×]0, 1],

Bv :=
{
U

(z,ε)
k,l :=

({
z′ ∈ D(R) : |z′ − z|∞ <

1
k

}
∩D(R)

)
×
]
ε− 1

l
, ε+ 1

l

[
: 0� k, l ∈ N>0

}
if ε < 1 and

Bv :=
{
U

(z,1)
k,l :=

({
z′ ∈ D(R) : |z′ − z|∞ <

1
k

}
∩D(R)

)
×]ε− 1

l
, 1] : 0� k, l ∈ N>0

}
if ε = 1.

(2) If v = vz,c,um, for (z, c) ∈ D(R)× [0,∞],
(a) if c =∞,

Bv :=
{
U

(z,∞)
k :=

{
|T − z| < 1

k

}
∩
{
ε(·) < 1

k

}
: k ∈ N>0

}
;

(b) if c ∈ R>0,

Bv :=
{
U

(z,c)
k :=

{
e−c − 1

k
< |T − z| < e−c + 1

k

}
: k ∈ N>0

}
;

(c) if v = vtriv,

Bv :=
{
U triv
S,k :=

⋂
z∈S

{
|T − z| > 1− 1

k

}
: k ∈ N>0 and S ⊂ D(R) finite

}
.

Then Bv defines a basis of neighbourhood of v in VR.

Proof. Proof of (1): This is a direct consequence of the fact that we have a homeomorphism
VR ∼= D(R)×]0, 1].
Proof of (2.a): For any k ∈ N>0, U (∞)

k is open by definition of the topology of VR.
Note that v ∈ U

(∞)
k iff v = vz,c,um with c > log k or v = vz′,ε′,∞ with ε′ < 1/k and

ε′ log |z′ − z|∞ < − log k. Thus from the description in the proof of Proposition 9.4.7, it
follows that Bv is a basis of neighbourhood of v.
Proof of (2.b): As in case (2.a), for any k ∈ N>0, U (c)

k is open and v ∈ U (c)
k iff v = vz,c′,um

with |e−c − ec′ | < 1/k or v = vz′,ε′,∞ with ||z′ − z|ε′∞ − e−c| < 1/k. Thus from the description
in the proof of Proposition 9.4.7, it follows that Bv is a basis of neighbourhood of v.
Proof of (2.c): Let k ∈ N>0 and S ⊂ D(R) be a finite subset. Then U triv

S,k is an
open neighbourhood of vtriv. Moreover, the intersection of the U triv

S,k ’s is vtriv. Indeed, a
multiplicative semi-norm in the intersection must have kernel zero and thus belongs to VR.
Thus this point is vtriv from the description of the open neighbourhoods of vtriv in VR,um. �

Proposition 9.4.10. Let v ∈ VR. The stalks of the structure sheaf OR of VR have the
following description.

(1) If v = vz,ε,∞ ∈ VR,∞, where (z, ε) ∈ D(R)×]0, 1], then OR,v identifies with OC,z, the
ring of germs of holomorphic functions at z.
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(2) If v = vz,c,um, for (z, c) ∈ D(R)× [0,∞], then OR,v identifies with:
(a) OC,z, the ring of germs of holomorphic functions at z, if c =∞;
(b) MC,z, the ring of germs of meromorphic functions at z, if 0 < c <∞;
(c) M(D(R)), the field of meromorphic functions on D(R), if c = 0.

Proof. Proof of (1): Let (z, ε) ∈ D(R)×]0, 1]. Let f ∈ OC,z be a germ of holomorphic
functions at v. By definition, there exists an open subset U ⊂ D(R′), where R < R′, such that
f is holomorphic on U . Then there exist a compact neighbourhood V of v in U and a sequence
(fi)i≥0 of rational functions without poles on V such that ‖f|V ∩D(R) − fi‖V ∩D(R) →i→+∞ 0.
Set Ua,b := (U ∩D(R))×]a, b], where 0 < a < ε ≤ b ≤ 1 and Va,b := (V ∩D(R))×]a, b]. Define

fa,b : Ua,b −→
⊔

(z′,ε′)∈Ua,b

(C, | · |ε′∞),

(z′, ε′) 7−→ f(z′).

Similarly, for all i ≥ 0, set

fi,a,b : Ua,b −→
⊔

(z′,ε′)∈Ua,b

(C, | · |ε′∞),

(z′, ε′) 7−→ fi(z′),

this is an element of K(Va,b). Using the equivalence of norms on C, we see that

‖fa,b|Va,b − fi,a,b‖Va,b = sup
(z′,ε′)∈Va,b

|f(z′)− fi(z′)|ε
′
∞ →i→+∞ 0.

Thus fa,b defines an analytic function on a neighbourhood of vz,ε,∞ which gives a ring
homomorphism OC,z → OR,vz,ε,∞ .

Conversely, let g ∈ OR,vz,ε,∞ . We may assume that g is defined by fa,b ∈ OR(Ua,b) on
a neighbourhood of the form Ua,b := U×]a, b] ⊂ D(R)×]0, 1], where U ⊂ D(R) is an open
subset and 0 < a < ε ≤ b ≤ 1. By definition, there exists a compact neighbourhood Va,b of
vz,ε,∞ in Ua,b and a sequence (fi,a,b)i≥0 of meromorphic functions on D(R) without poles
on Va,b such that ‖fa,b|Va,b − fi,a,b‖Va,b →i→+∞= 0. Define f : (z′ ∈ U) → fa,b(z′, ε)C and
fi,a,b : (z′ ∈ V ) 7→ fi,a,b(z′, ε) ∈ C for i ≥ 0, where V denote the first projection of Va,b. Then
using again the equivalence of norms on C, we obtain that f is on V a uniform limit of
meromorphic functions without poles, hence is holomorphic. This construction defines a ring
homomorphism OR,vz,ε,∞ → OC,z which is inverse to the previous one.
Proof of (2.a): Assume that v = vz,∞,um. Consider the Berkovich spectrumM(O(D(R)), ‖·

‖triv). This is the spectrum of a trivially valued Dedekind ring which identifies as VR,um by
Proposition 9.4.7. The stalk of the structure sheaf ofM(O(D(R)), ‖ · ‖triv) at v identifies
with the ring of power series C[[T − z]]. The inclusionM(O(D(R)), ‖ · ‖triv) ⊂ VR and the
construction of the structure sheaf yields an inclusion OR,v ⊂ C[[T − z]] of rings. Assume
that f ∈ C[[T − z]] is a convergent power series that defines a germ of holomorphic functions
at z defined on a ball of radius r < 1 around z. Let k ∈ N>0 such that 1/k < r and consider
U

(z,∞)
k = {|T − z| < 1/k} ∩ {ε(·) < 1/k} ⊂ VR from Proposition 9.4.9. This is an open

neighbourhood of v such that U (z,∞)
k ∩ VR,um is contained in the branch associated with z.
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Moreover, (z′, ε′) ∈ D(R)×]0, 1] belongs to U (z,∞)
k iff |z′ − z|ε∞ < r. Thus we can define

fk : U
(z,∞)
k −→

⊔
v′∈U(z,∞)

k

κ̂(v′)

v′ 7−→
{

f if v′ ∈ V
V

(z,∞)
k

R,um,

f(z′) if v′ = vz′,ε′,∞ ∈ VR,∞.

Then fk defines an element of OR(U (z,∞)
k ) and thus an element of OR,v. Moreover, OC,z ⊂

OR,v.
Conversely, assume that f ∈ C[[T − z]] is not convergent around z. If it would correspond

to a stalk in OR,v, we could find some k ∈ N>0 such that f is defined on U
(z,∞)
k . But

vz,1/2k,∞ ∈ U
(z,∞)
k and considering the stalk at this point, f corresponds to a convergent

power series at z by (1). This gives a contradiction.
Proof of (2.b): Assume that v = vz,c,um, where c ∈ R>0. By the same argument as in case

(2.a), we have an inclusion of rings OR,v ⊂ C((T − z)). Consider the open neighbourhoods
U

(z,c)
k = {e−c − 1/k < |T − z| < e−c + 1/k}, where k ∈ N>0 from Proposition 9.4.9. Let

f ∈ C((T − z)) correspond to a germ of meromorphic functions at z. Then on a complex
neighbourhood of z, f defines a meromorphic function that is holomorphic everywhere except
possibly at z. Then there exists k ∈ N>0 such that U (z,c)

k contains only Archimedean points
of the form vz′,ε′,∞ such that f defines a germ of holomorphic functions at z′. Thus

fk : U
(z,c)
k −→

⊔
v′∈U(z,c)

k

κ̂(v′)

v′ 7−→
{

f if v′ ∈ VR,um,
f(z′) if v′ = vz′,ε′,∞ ∈ VR,∞

defines an element in OR(U (z,c)
k ) and the stalk in OR,v. Moreover,MC,z ⊂ OR,v.

Conversely, assume that f ∈ C((T − z)) does not define a germ of meromorphic functions
at z and corresponds to a stalk in OR,v. Then we could find an integer k ∈ N>0 such
that f defines an analytic function on U (z,c)

k . Then for all (z′, ε′) ∈ D(R)×]0, 1] such that
|ε log |z′ − z|∞ + c| < 1/k, vz′,ε′,∞ ∈ U

(z,c)
k and considering stalks, f would define a germ in

OC,z′ . Since z′ can be chosen to describe a complex open ball around z, f would define a germ
of meromorphic functions at z, which gives a contradiction. This means that OR,v ⊂MC,z
and therefore OR,v =MC,z.
Proof of (2.c): By the same argument as in the last two cases we have an inclusion

OR,v ⊂ M(D(R)). Let f ∈ M(D(R)). Let S denote the finite set of poles of f . Then for
any k ∈ N>0, define

fk : U trivS,k −→
⊔

v′∈Utriv
S,k

κ̂(v′)

v′ 7−→
{

f if v′ ∈ VR,um,
f(z′) if v′ = vz′,ε′,∞ ∈ VR,∞.

This is an element of OR(U triv
S,k ). This gives the inverse inclusionM(D(R)) ⊂ OR,v. �
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We conclude this section by proving that the Banach ring (O(D(R)), ‖ · ‖R,hyb) is a
geometric base ring in the sense of ([LP24], Definition 3.3.8). This implies that one can
perform Berkovich geometry over such a Banach ring.

Proposition 9.4.11. Let v ∈ VR and consider the basis of neighbourhood Bv introduced
in Proposition 9.4.9. Then Bv is a fine basis of path-connected neighbourhoods of v whose
closure is spectrally convex.

Proof. Let v ∈ VR. The fact that Bv is fine is straightforward from the definition of the
neighbourhoods.
Proof of path connectedness: The result is clear if v ∈ VR,∞.
Assume that v = vz,∞,um for some z ∈ D(R) and let k ∈ N>0. Note that U (z,∞)

k ∩VR,um and
U

(z,∞)
k ∩ VR,∞ are both path connected. Let 0 < ε < 1/k, then (t ∈ [0, 1]) 7→ vz,ε,∞ ∈ U (v,∞)

k ,
where vz,ε,∞ := vz,∞,um is a path between v and vz,ε,∞. Thus U (z,∞)

k is path connected.
Now assume that v = vz,c,um, where (z, c) ∈ D(R) × R>0. Let k ∈ N>0 such that

e−c − 1/k > 0. Again U
(z,c)
k ∩ VR,um and U

(z,c)
k ∩ VR,∞ are both path connected. Let

vz′,ε′,∞ ∈ U
(z,c)
k , where (z′, ε′) ∈ D(R)×]0, 1]. Let ε(0) := 0 and for any t ∈]0, 1], set

ε(t) :=
log(e−c + 1

k ) + log((e−c − 1
k ))

2(log(t) + log |z′ − z|∞) .

Then (t ∈ [0, 1]) 7→ vtz′+(1−t)z,ε(t),∞ defines a continuous path in U
(z,c)
k between v and

vz′,ε(1),∞. Therefore we can construct a continuous path between v and vz′,ε′,∞.
Finally, assume that v = vtriv and let k ∈ N>0 and S ⊂ D(R) be finite. Again U triv

S,k ∩VR,um
and U triv

S,k ∩ VR,∞ are both path connected. We may assume that there exists a complex disc
around 0 of radius r ≤ 1 which does not intersect S. Let z /∈ S such that 0 < |z|∞ ≤ 1.
Then (t ∈ [0, 1]) 7→ vtz,t|z|∞,∞, where v0,0,∞ := vtriv, is a continuous path between vtriv and
vz,|z|∞,∞ in U triv

S,k . Thus U triv
S,k is path connected.

Proof of spectral convexity: We prove the spectral convexity only for v = vz,∞,um,
where z ∈ D(R), the other case are treated similarly. Let k ∈ N>0. By direct inspection, we
have

V
(z,∞)
k := U

(z,∞)
k =

{
|T − z| ≤ 1

k

}
∩
{
ε(·) ≤ 1

k

}
.

Thus we see that V (z,∞)
k is pro-rational in the sense of ([LP24], Définition 1.3.1). Thus it is

spectrally convex (loc. cit., Théorème 1.3.7). �

Proposition 9.4.12. The Banach ring (O(D(R)), ‖ · ‖R,hyb) is a geometric base ring.

Proof. The proof is in two steps: the first one is that VR satisfies the analytic continuation
principle and the second one is the proof that (O(D(R)), ‖ · ‖R,hyb) basic.
Proof of analytic continuation: Let v ∈ VR and U an open neighbourhood of v. Let

f ∈ OR(U) such that the stalk of f at v is non-zero in OR,v. Let us prove that there
exists an open neighbourhood V in Bv such that f yields non-zero elements of all the stalks
OR,v′ , where v′ ∈ V . If v ∈ VR,∞, this is a consequence of usual analytic continuation. If
v ∈ VR,um is of the form vz,c,um, where (z, c) ∈ D(R)× [0,∞]. If c =∞, then a stalk of f at
v corresponds to a germ of holomorphic function at z. In the proof of Proposition 9.4.10, we
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described an analytic function on some U (z,∞)
k giving f|U(z,∞)

k

. All the corresponding stalks
are non-zero. We argue similarly in the cases c ∈ R>0 and v = vtriv.
Proof of basicity: By Proposition 9.4.11, we have to prove that for any v ∈ VR, the

stalk OR,v is either a strong field or a strong DVR ([LP24], Définition 1.6.15). By (loc. cit.,
Remarque 1.6.16), the analytic continuation implies that we only have to show that OR,v
is a strong DVR, where v = vz,∞,um or v = vz,ε,∞ for some (z, ε) ∈ D(R)×]0, 1]. In that
case the maximal ideal mR,v is generated by T − z. Let U be a compact neighbourhood
of v. Let V be the closure of an element in Bv such that V is contained in the interior of
U . We have to show that there exists a family KV,U of positive constants such that for any
f = g(T − z) ∈ mR,v that is defined on U and V , we have

‖g‖V ≤ KV,U‖f‖U .

Let us treat the Archimedean and ultrametric cases separately.
Assume that v = vz,ε,∞, where (z, c) ∈ D(R) × [0,∞]. Assume that V = U

(z,ε)
k,l , where

k, l ∈ N>0 big enough. By Schwarz Lemma, for any (z′, ε′) ∈ U (z,ε)
k,l , we have

|g(z′)|ε′∞ ≤ ‖f‖ε
′

D(z,1/k)∩D(R) ≤ ‖f‖V ≤ ‖f‖U .

Thus KV,U = 1 is a suitable choice.
Assume that v = vz,∞,um, where z ∈ D(R). Assume that V = U

(z,∞)
k , where k ∈ N>0.

Schwarz Lemma again yields

sup
v′∈V ∩VR,∞

|g(v′)| ≤ sup
v′∈V ∩VR,∞

|f(v′)| ≤ sup
v′∈U∩VR,∞

|f(v′)|.

Now by definition of U (z,∞)
k ∩ VR,um, we have

sup
v′∈V ∩VR,um

|g(v′)| = e−
1
k

ord(g,z) = e
1
k sup
v′∈V ∩VR,um

|f(v′)| ≤ e
1
k sup
v′∈U∩VR,um

|f(v′)|.

Therefore KV,U := e
1
k is a suitable choice. �

10. Global analytic spaces

We now give alternative approaches to global analytic spaces. This is a global counterpart
to §8. More precisely, we give an analogue of the Zariski-Riemann description of spaces of
pseudo-absolute extending pseudo-absolute values coming from an integral structure. As an
application, we describe the full space of pseudo-absolute values on a field as an analytic
Zariski-Riemann space over the prime ring. We also obtain the density of the set of absolute
values in the countable case. Throughout this section, we fix a field K.

10.1. Model global analytic space. In this subsection, we assume that we have an integral
structure (A, ‖ · ‖) for K (Definition 9.1.1). We denote by V :=M(A, ‖ · ‖) the corresponding
global space of pseudo-absolute value. We will make heavy use of the theory developed by
Lemanissier-Poineau in [LP24].

We assume that (A, ‖ · ‖) is a geometric base ring (cf. §1.5.3) and that A is universally
Japanese (cf. Example 1.4.2). Let X → Spec(K) be a projective K-scheme and let X →
Spec(A) be a projective model of X over A. Assume that X is a coherent model, namely
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X → Spec(A) is finitely presented. Then one can consider the A-analytic space associated
with X , denoted by X an

(A,‖·‖), or X
an when no confusion may arise (cf. §1.5.3).

Definition 10.1.1. With the above notation, the A-analytic space X an is called the global
model analytic space attached to the model X . It is a compact Hausdorff topological space
([LP24], Lemme 6.5.1 and Proposition 6.5.3).

From now on, we fix a coherent model X of X over A and denote by Xan the associated
global analytic space. The global analytic space X comes with two maps of locally ringed
spaces p : X an → V := M(A) and j : X an → X . In this thesis, we will only use the
topological properties of analytic spaces.

Let v = (| · |v, Av,mv, κv) ∈ V . Then Xv := X ⊗A Av is a coherent model of X , which is
flat if X is flat itself. Thus (Xv ⊗A κ̂v)an is a local model analytic space in v of X in the
sense of Definition 8.1.1.
Proposition 10.1.2 ([LP24], Proposition 4.5.3). We have a homeomorphism

(Xv ⊗A κ̂v)an ∼= p−1(v).

10.2. General global analytic space. We now try to introduce a general approach to
global analytic spaces. Let K ′/K be a field extension. Intuitively, the global analytic space
attached to any sub-model X of K ′/K should be a fibration overMK whose fibres correspond
to the local analytic spaces attached to X. For the same reasons that were explained in
Proposition 8.3.1, an approach mimicking directly Berkovich spaces is not suitable if one
wants to obtain Hausdorff spaces.

10.2.1. Global analytic space associated with a sub-model. As in the previous subsection, we
fix an integral structure (A, ‖ · ‖) for K and we assume that (A, ‖ · ‖) is a geometric base
ring and that A is universally Japanese.
Definition 10.2.1. Let K ′/K be an algebraic function field and X be a projective sub-model
of K ′/K. The global analytic space attached to X is defined to be

Xan
(A,‖·‖) := lim←−

X
X an

(A,‖·‖),

where X runs over the projective sub-models of K ′/A that are flat and coherent and whose
generic fibre is isomorphic to X. This is a compact Hausdorff space.
10.2.2. Zariski-Riemann global analytic space. We keep the same notation as in the above
paragraph. Denote by V ′(A,‖·‖), or V

′
A if no confusion may arise, the subset of MK′ consisting

of all pseudo-absolute values on K ′ extending a pseudo-absolute belonging toM(A, ‖ · ‖).
There is a specification map V ′A → ZR(K ′/A) which is continuous by a similar argument to
Lemma 8.2.2.

Theorem 1.4.3 (1) gives a homeomorphism
ZR(K ′/A) ∼= lim←−

X
X , (5)

where X runs over the projective models of K ′/A. Let us prove that the isomorphism (5)
has a counterpart in our context.
Lemma 10.2.2. Let X be a projective sub-model of K ′/A. Then there exists a flat and
coherent projective model X ′ of K ′/A dominating X .
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Proof. Consider the sheaf of ideals (OX )tor of OX as an OSpec(A)-module. Then let X ′
denote the closed subscheme of X defined by (OX )tor. It is a projective sub-model of K ′/A.
Moreover, since OX /(OX )tor is a torsion-free OSpec(A), hence X ′ → Spec(A) is flat. By the
flattening theorem of Raynaud-Gruson ([RG71], Corollaire 3.4.7), X ′ is also coherent. �

By Lemma 10.2.2, we see that any two projective sub-models of K ′/A are dominated by a
flat and coherent projective sub-model of K ′/A. Therefore we have a homeomorphism

ZR(K ′/A) ∼= lim←−
X
X ,

where X runs over the flat and coherent projective models of K ′/A. We will now prove an
analytic analogue of this homeomorphism.

Let X be a flat and coherent projective model of K ′/A and set X an := X an
(A,‖·‖). Let

v′ = (| · |′, A′,m′, κ′) ∈ V ′A. Denote by v the restriction of v′ to K and let Xv := X ⊗A Av.
Then the construction of the map redXv : MK′,v → X̂v

an := (Xv ⊗Av κ̂v)an in §8.2 yields a
point x ∈ X̂v

an. Let π : X an →M(A, ‖ · ‖) denote the structural morphism. By Proposition
10.1.2, we have a homeomorphism X an

v
∼= p−1(v). Thus we obtain a map redX : V ′A → X an.

Moreover the arguments in §8.2 adapt mutatis mutandis to show that the construction of the
maps redX is compatible with the domination relation between projective models of K ′/A,
so that we obtain a commutative diagram

V ′A ZR(K ′/A)

lim←−X∈MK′/A
X an lim←−X∈MK′/A

X
red

j

∼= ,

whereMK′/A denotes the collection of flat and coherent projective models of K ′/A.

Theorem 10.2.3. We use the above notation. The map red : V ′A → lim←−X∈MX
an is a

homeomorphism. Moreover, if K ′/K is finitely generated, one can only consider the projective
models of K ′/A in the projective limit above.

Proof. First note that the arguments in the proof of Proposition 8.2.3 adapt directly in our
setting to obtain the continuity of the map redX , for any X ∈M, and thus the continuity of
red. By compactness of V ′A and lim←−X X

an, it suffices to prove that red is bijective.
For the injectivity of red, the elements in the proof of Theorem 8.2.4 adapt mutatis

mutandis (using Theorem 1.4.3 (2) and ([Bou75], Chap. IX, Appendice 1, Proposition 1)).
The surjectivity of red is given by Theorem 8.2.4 and Proposition 10.1.2. �

We list several consequences of Theorem 10.2.3.

Corollary 10.2.4. We use the same notation as above.
(1) We have a homeomorphism

V ′(A,‖·‖)
∼= lim←−

X

Xan
(A,‖·‖),

where X runs over the projective sub-models of K ′/K.
(2) Assume that K is of characteristic zero. The following assertion hold.
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(a) MK is homeomorphic to lim←−X∈MK/Z
X an, where Z is equipped with the Banach

norm | · |∞.
(b) MK,∞ is homeomorphic to (lim←−X∈MK/Q

X(C)/ ∼)×]0, 1], where ∼ denotes the
complex conjugation.

(c) Assume that K is a finitely generated extension of C. Then MK,∞ is home-
omorphic to (lim←−X X(C))×]0, 1], where X runs over the projective models of
K/C.

(3) Assume that K is of characteristic p > 0. ThenMK is homeomorphic to lim←−X∈MK/Fp
X an,

where Fp is equipped with the trivial norm.
(4) Assume that (A, ‖ · ‖) is Dedekind analytic ([LP24], Définition 6.6.1), e.g. if A is the

prime ring of K ′. Then the specification morphism j : V ′(A,‖·‖) → ZR(K ′/A) is open.
(5) Assume that K is countable. Then the set of absolute values on K is dense in MK .

Proof. (1) is clear from Theorem 10.2.3 and (2.a), (3) follow directly from the cases (Z, ‖ · ‖)
and (Fp, ‖ · ‖triv).

To prove (2.b), we set (A, ‖ · ‖) := (Q,max{| · |triv, | · |∞}). Using the description of hybrid
analytifications (cf. e.g. [Poi25]), Theorems 8.2.4 and 10.2.3 yield homeomorphisms

MK,∞ = V ′(A,‖·‖) rMK,|·|triv
∼= lim←−

X∈MK/Q

(Xan
(A,‖·‖) rXan

(Q,|·|triv)) ∼=

 lim←−
X∈MK/Q

X(C)/ ∼

×]0, 1].

(2.c) is proved similarly.
(4) follows from Theorem 10.2.3 combined with the fact that for any X ∈MK/A, the map

X an →M(A, ‖ · ‖) is open ([LP24], Propositions 6.4.1 and 6.6.10).
The proof of (5) goes along the same lines as the one of Corollary 8.2.6. Note that the

positive characteristic case is Corollary 8.2.6. In the characteristic zero case, since K is
countable and MK is a Baire space, it suffices to prove that, for all a ∈ K, Ua := {|a| < +∞}
is dense in MK . By Theorem 10.2.3, it suffices to prove that, for any projective sub-model X
inMK/Z such that a ∈ κ(X ) and for any open subset U ⊂ X an, we have Ua ∩ red−1

X (U) 6= ∅.
This is a consequence of the following claim.

Claim 10.2.5. Let X be a projective sub-model inMK/Z. Then for any Zariski-open subset
V ⊂ X , V an is dense in X an.

Proof. Let U ⊂ X an be an open subset. Since X an → M(Z, | · |∞) is open, there exists
x = (p, | · |x) ∈ U such that | · |x|Q is a non-trivial absolute value on Q. Denote by X an

Q,x the
Berkovich analytification of X ⊗Z Qx. Then, as mentioned in the proof of Corollary 8.2.6,
the preimage of V ⊗Z Q in X an

Q,x is dense in X an
Q,x. Thus V an ∩ U 6= ∅. �

�
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