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Multicurves
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Consider a finite collection of pairwise nonintersecting essential simple closed

curves γ1, . . . , γk on a smooth surface Sg.n of genus g with n punctures.

For any hyperbolic metric X on Sg,n and for any simple closed curve γi there
exists a unique geodesic representative in the free homotopy class of γi.

Fact. For any hyperbolic metric X and any collection γ1, . . . , γk of pairwise

non-intersecting simple closed curves, their geodesic representatives do not
self-intersect and do not pairwise intersect either.
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We can consider formal linear combinations γ :=
∑k

i=1 aiγi of such simple

closed curves with positive coefficients. When all coefficients ai are integer

(respectively rational), we call such γ integral (respectively rational) multicurve.

In the presence of a hyperbolic metric X we define the hyperbolic length of a
multicurve γ as ℓγ(X) :=

∑k
i=1 aiℓX(γi), where ℓX(γi) is the hyperbolic

length of the simple closed geodesic in the free homotopy class of γi.

We say that two multicurves γ, ρ have the same topological type [γ] = [ρ] if

and only if they belong to the same orbit of the mapping class group:

ρ ∈ Modg,n ·γ.
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Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymtotocs:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).
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hyperbolic surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymtotocs:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to

the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (M. Mirzakhani, 2008); confirmed experimentally in 2017 by M. Bell

and S. Schleimer; confirmed in 2017 by more implicit computer experiment of

V. Delecroix and by relating it to Masur–Veech volume.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

In this sense one can say that for any hyperbolic metric X on a sphere with 6
cusps, a long simple closed geodesic separates the cusps as (3 + 3) with

probability 4
7 and as (2 + 4) with probability 3

7 .

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.
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Multicurves on a surface of genus two and their frequencies
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The picture below illustrates all possible types of primitive multicurves on a

surface of genus two without punctures; the fractions give their frequencies.
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In genus 3 there are already 41 types of multicurves, and this number grows

very fast when genus g grows.

To figure out a typical shape of a multicurve let us focus on the basic properties

of a multicurve.
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The picture below illustrates all possible types of primitive multicurves on a

surface of genus two without punctures; the fractions give their frequencies.
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Question 1. With what probability a random multicurve chops a surface Sg into

j = 1, 2, . . . , 2g − 2 connected components? Does a random simple closed

geodesic separate the surface or not?

Question 2. With what probability a random multicurve has k = 1, 2, . . . , 3g − 3
(primitive) connected components? How often simple closed curves show up?

General Question. Describe a typical multicurve on a surface of large genus.
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Question 1. With what probability a random multicurve chops a surface Sg into

j = 1, 2, . . . , 2g − 2 connected components? Does a random simple closed

geodesic separate the surface or not?

We regroup the multicurves in genus g = 2 so that the multicurves on the left

do not separate the surface and the ones on the right separate the surface into

two components; the tables give the frequencies.

248

315
≈ 0.79

67

315
≈ 0.21
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Question 1. With what probability a random multicurve chops a surface Sg into

j = 1, 2, . . . , 2g − 2 connected components? Does a random simple closed

geodesic separate the surface or not?

We regroup the multicurves in genus g = 2 so that the multicurves on the left

do not separate the surface and the ones on the right separate the surface into

two components; the tables give the frequencies.

Non-separating versus separating simple closed curves on a surface of genus

g = 2 have the following frequencies:

48

49
≈ 0.98

1

49
≈ 0.02
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Question 1. With what probability a random multicurve chops a surface Sg into

j = 1, 2, . . . , 2g − 2 connected components? Does a random simple closed

geodesic separate the surface or not?

The frequencies of multicurves which separate a surface of genus g = 3 into

1, 2, 3, 4 components are

1 component 2 components 3 components 4 components

4984269952

5827696875

2150659384

17483090625

7152596

366778125

115927

52396875

0.855 0.123 0.0195 0.0022

and the frequencies of non-separating versus separating simple closed curves are

1776

1781
≈ 0.997

5

1781
≈ 0.003



Random simple closed curve (almost) never separates
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Theorem. A random simple closed curve on a surface of large genus does

not separate the surface. Namely, the probability that it separates decays

exponentially with the rate 4−g: the ratio of frequencies of non-separating over

separating simple closed geodesics on a closed surface of genus g satisfies:

lim
g→+∞

1

g
log

c(γnon−sep, g)

c(γsep, g)
= log 4
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not separate the surface. Namely, the probability that it separates decays

exponentially with the rate 4−g: the ratio of frequencies of non-separating over

separating simple closed geodesics on a closed surface of genus g satisfies:

lim
g→+∞

1

g
log

c(γnon−sep, g)

c(γsep, g)
= log 4

Idea of the proof. Frequencies of separating simple closed curves are

expressed in terms of the intersection numbers which admit closed expression:
∫

Mg,1

ψ3g−2
1 =

1

24g g!
.

Frequencies of non-separating simple closed curves are expressed in terms of
∫

Mg,2

ψk
1ψ

3g−1−k
2

for which we obtain large genus asymptotics uniform for all k in fixed genus g.



Conjecture on non-separation
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Conjecture. A randomly chosen multicurve on a surface of large genus does

not separate the surface. (The sum of frequencies of all multicurves different

from the following ones rapidly tends to zero as the genus grows.)

Γ1

Γ2

Γ3

. . . . . .

Γg



Why it is a conjecture and not just a guess?..
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• Compute exact values of frequencies of the distinguished multicurves Γk and

record the corresponding statistics (graph in red).

• Pass from all multicurves to all square-tiled surfaces and to the Masur–Veech

volume of the moduli space of holomorphic quadratic differentials Qg.

(Élise Goujard would, probably, tell more about it in her talk on Wednesday.)
• Relate them to frequencies of interval exchange transformations having

k = 1, . . . , 3g − 3 “cylinders”.

• Collect statistics of the latter frequencies using computer experiments (graph

in blue). The resulting statistics approaches the first one as genus grows:

2 4 6 8 10 12

0.05

0.10

0.15

0.20

0.25

0.30

Distribution of all
multicurves
in genus g = 9 is in blue;

Distribution of c(Γk, g) is in red.
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Number of connected components of a random multicurve
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Conditional to the Connectedness Conjecture, the original question

Question 1. With what probability a random multicurve has

k = 1, 2, . . . , 3g − 3 (primitive) connected components? How often simple
closed curves show up?

reduces in large genera to the following much more concrete problem:

Problem. Find the distribution of c(Γk, g) for k = 1, . . . , g. Find c(Γ1, g).



Number of connected components of a random multicurve
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2 4 6 8 10 12

0.05

0.10

0.15

0.20

0.25

Poisson distribution with λ=(log(3g-3)+γ)/2

Cylinder contribution

Genus g = 26

Conjecture. The distribution of c(Γk, g) tends to the Poisson distribution λk−1e−λ

(k−1)!

with parameter λ = log(3g−3)+γ

2 , where γ ≈ 0.577 is the Euler constant.

Conjectural asymptotics of the Masur–Veech volume: VolQg ∼
√

2
π
·
(

8
3

)4g−4
.

Conditional Theorem. Conditional to conjecture on volume asymptotics one has:

c(Γ1, g) ∼
1√

3g − 3
=

(

dimQg

2

)− 1

2

.



Summary: conjectural shape of a random multicurve
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Overall Conjecture. A randomly chosen multicurve on a surface of large

genus g has one of the following shapes:

Γ1

Γ2

. . . . . .

Γ2 log g

• Usually it has about 1 + log(3g−3)+γ

2 connected components. It has more

than 2 log(g) components exceptionally rarely.

• The distribution of frequencies of the number of components of a random

multicurve very slowly tends to the normal distribution with mean

λ = log(3g−3)+γ

2 and with variance λ.
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Arc systems and braids on surfaces

16 / 38

Arc system with two bigons Braid

Arc system. Consider a smooth surface with two boundary components. Draw
N non selfintersecting and non pairwise intersecting strands on the surface

placing all endpoints at the boundary in such way that there are N endpoints at

one component and N endpoints at the other.

Braid. If the surface is connected, we can let all the strands go from one

component to another. These kind of braids mimic gradient flow from one

regular level of a Morse function on a surface to another regular level.



Arc systems and braids on surfaces: count
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Problem. Find the asymptotic number of arc systems/braids on a surface Sg,n
of genus g with n boundary components with (at most) N ≫ 1 strands.

All but negligible amount of arc systems/braids chop the surface Sg,n into

polygons. Most of the polygons are 4-gons, but there are several 2-gons,

6-gons, 8-gons etc (for braids — 8-gons, 12-gons, etc). More restrictive count
specifies exact numbers of these unusual polygons.

Bigons require their own convention: there are separate counts for arc systems

• without bigons; • with exactly/(at most) p bigons; • with no restrictions on bigons.

(Our methods do not work for the count with no restrictions on bigons.)



Ribbon graph and arc system are the same objects
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Lemma. Arc systems (resp. braids) are into one-to-one correspondence with
integer metric ribbon graphs (resp. orientable metric ribbon graphs).

Proof. A metric ribbon graph associated to an arc system is just a dual graph.

Each polygon in which the strands subdivide the surface defines a vertex of the

dual graph; two vertices are joined by an edge if the corresponding polygons
share a common strand. The dual graph admits a natural embedding into the

surface which induces the ribbon graph structure.

An arc system asssociated to an integer metric ribbon graph is the collection of

segments transversally crossing the edges of the ribbon graph at all
half-integer points.



Kontsevich’s count of metric ribbon graphs
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Let (d1, . . . , dn) be an ordered partition of 3g − 3 + n into a sum of

nonnegative integers. Define the homogeneous polynomial Ng,n of degree

3g − 3 + n in variables b1, . . . , bn in the following way:

Ng,n(b1, . . . , bn) :=
1

25g−6+2n

∑

|d|=3g−3+n

〈ψd1
1 . . . ψdn

n 〉
d1! · · · dn!

b2d11 · · · b2dnn ,

where
〈ψd1

1 . . . ψdn
n 〉 :=

∫

Mg,n

ψd1
1 . . . ψdn

n .

Theorem (Kontsevich). Let
∑n

i=1 bi be even. The weighted count of genus

g connected trivalent metric ribbon graphs Γ with integer edges and with n
labeled boundary components of lengths b1, . . . , bn satisfies:

∑

Γ∈Rg,n

1

|Aut(Γ)| NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms

This Theorem is a part of Kontsevich’s proof of Witten’s conjecture.



From arc systems and braids to multicurves
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Identifying pairs of boundary components in a way which matches the
endpoints of the strands on each side we get a multicurve on a closed surface.

Question 1. With what probability the resulting multicurve chops the surface

into j = 1, 2, . . . , 2g − 2 connected components?

Question 2. With what probability the resulting multicurve has k = 1, 2, . . . , 3g − 3
(primitive) connected components? How often simple closed curves show up?

General Question. Describe a typical multicurve obtained under this construction

• when genus g becomes very large and there are no bigons;
• genus g is fixed and the number p of bigons becomes very large.
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Identifying pairs of boundary components in a way which matches the
endpoints of the strands on each side we get a multicurve on a closed surface.

Question 1. With what probability the resulting multicurve chops the surface

into j = 1, 2, . . . , 2g − 2 connected components?

Question 2. With what probability the resulting multicurve has k = 1, 2, . . . , 3g − 3
(primitive) connected components? How often simple closed curves show up?

Theorem. The corresponding probabilities are exactly the same as the

frequencies of “unconditional” multicurves considered before. They depend
only on the parameters g and p of the resulting surface Sg,p.



Matching arc systems on a pair of disc
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The problem is quite meaningful even for a pair of arc systems on a pair of

discs. Depending on the twist chosen to identify a pair of arc systems we get a

multicurve with one or several connected components.

Fix the numbers of bigons p1 ≥ 2 and p2 ≥ 2 on each of the discs.

Theorem. The frequency P1(p1, p2;N) of simple closed curves obtained by

all possible identifications of all arc systems with at most N arcs and having p1
bigons on one disc and with p2 bigons on the other disc has the following limit:

lim
N→+∞

P1(p1, p2;N) =
1

2

(

2

π2

)p−3

·
(

2p− 4

p− 2

)

where p = p1 + p2 .
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The problem is quite meaningful even for a pair of arc systems on a pair of

discs. Depending on the twist chosen to identify a pair of arc systems we get a

multicurve with one or several connected components.

Fix the numbers of bigons p1 ≥ 2 and p2 ≥ 2 on each of the discs.

Theorem. The frequency P1(p1, p2;N) of simple closed curves obtained by

all possible identifications of all arc systems with at most N arcs and having p1
bigons on one disc and with p2 bigons on the other disc has the following limit:

lim
N→+∞

P1(2, 4;N) = P1(3, 3;N) =
280

π6
≈ 0.291245



Application: count of meanders
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A closed meander is a smooth simple closed curve in the plane transversally
intersecting the horizontal line. The notion “meander” was suggested by Arnold

though meanders were studied already by Poincaré. They appear in various

contexts, in particular in physics (P. Di Francesco, O. Golinelli, E. Guitter).
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A closed meander is a smooth simple closed curve in the plane transversally
intersecting the horizontal line. The notion “meander” was suggested by Arnold

though meanders were studied already by Poincaré. They appear in various

contexts, in particular in physics (P. Di Francesco, O. Golinelli, E. Guitter).

Each meander defines a pair of arc systems on a disc. It is easy to count arc

systems on a disc. Thus, the frequency of connected curves (versus

multicurves) obtained after gluing a pair of arc systems provides us with the

asymptotic count of meanders with fixed number p of bigons.

Maryam’s colloquium in Berkeley
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Cylinder decomposition of a square-tiled surface
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Equidistribution and Non-correlation Theorems
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Theorem. The asymptotic proportion pk(L) of square-tiled surfaces tiled with

tiny ε× ε-squares and having exactly k maximal horizontal cylinders among all

such square-tiled surfaces living inside an open set B ⊂ L in a stratum L of

Abelian or quadratic differentials does not depend on B.

Let ck(L) be the contribution of horizontally k-cylinder square-tiled surfaces
(pillowcase covers) to the Masur–Veech volume of the stratum L, so that

c1(L) + c2(L) + · · · = VolL, and pk(L) = ck(L)/Vol(L). Let

ck,j(L) be the contribution of horizontally k-cylinder and vertically j-cylinder ones.

Theorem. There is no correlation between statistics of the number of

horizontal and vertical maximal cylinders:

ck(L)
Vol(L) =

ckj(L)
cj(L)

.

This formula is an asymptotic formula! Proof: Moore ergodicity theorem.
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How to count meanders
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Step 1. There is a natural one-to-one correspondence between transverse

connected pairs of multicurves on an oriented sphere and pillowcase covers,

where the square tiling is given by the graph dual to the graph formed by the

pair of multicurves.

Step 2. Pairs of arc systems glued along common equator correspond to

square-tiled surfaces having single horizontal cylinder of height 1. Meanders

correspond to square-tiled surfaces having single horizontal cylinder and single

vertical one; both of height one. So we can apply the formula c1,1(Q) =
c2
1
(Q)

Vol(Q) ,

where c1(Q) is easy to compute and Vol(Q) in genus zero is given by an

explicit formula (obtained after 15 years of work of Athreya–Eskin–Zorich).

Step 3. Fixing the number of minimal arcs (“pimples”) we fix the number of
simple poles p of the quadratic differential. All but negligible part of the

corresponding square-tiled surfaces live in the only stratum Q(1p−4,−1p) of

the maximal dimension.
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where the square tiling is given by the graph dual to the graph formed by the

pair of multicurves.

Step 2. Pairs of arc systems glued along common equator correspond to

square-tiled surfaces having single horizontal cylinder of height 1. Meanders

correspond to square-tiled surfaces having single horizontal cylinder and single

vertical one; both of height one. So we can apply the formula c1,1(Q) =
c2
1
(Q)

Vol(Q) ,

where c1(Q) is easy to compute and Vol(Q) in genus zero is given by an

explicit formula (obtained after 15 years of work of Athreya–Eskin–Zorich).

Step 3. Fixing the number of minimal arcs (“pimples”) we fix the number of
simple poles p of the quadratic differential. All but negligible part of the

corresponding square-tiled surfaces live in the only stratum Q(1p−4,−1p) of

the maximal dimension.
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General philosophy
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• Pairs of transverse multicurves correspond to square-tiled surfaces. Thus,

count of all pairs of transverse multicurves is equivalent to count of

Masur–Veech volumes.

• Count of arc systems, braids, ribbon graphs, pairs: simple closed curve plus

transverse multicurve, one-cylinder square-tiled surfaces is another group of

(somehow equivalent) problems, which usually admits a more efficient solution.

• Consider the following three counting problems:

1. count of all square-tiled surfaces (i.e. Masur–Veech volume Vol);
2. count of horizontally one-cylinder square-tiled surfaces (i.e. c1);

3. count of horizontally and vertically square-tiled surfaces (i.e. c1,1).

By non-correlation, c1,1 =
c21
Vol

. Count of c1 usually admits a relatively efficient

solution. Hence, as soon as we know the appropriate Masur–Veech volume,

we know c1,1, and hence we can count meanders, pairs of transverse simple
closed curves etc.



Pairs of transverse multicurves
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Exercise. For each of the two pairs of transverse multicurves answer to the
following questions:

• Does this pair of multicurves chop the surface into polygons?

• If so, is the associated quare-tiled surface a translation surface (Abelian

differential) or a half-translation surface (quadratic differential)?

• In which stratum lives the corresponding square-tiled surface?
• Describe its horizontal and vertical cylinder decomposition.
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Pairs of positively intersecting multicurves
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Picture created by Jian JiangQuestions.

• With what probability a random square-tiled translation surface has

k = 1, 2, . . . , 3g − 3 maximal horizontal cylinders? How often it has a single

horizontal cylinder?

• How strongly these quantities depend on the ambient stratum? On the
genus?

• Do we get the same distribution as for random square-tiled quadratic

differentials (random multicurves)?

• What is the shape of a random square-tiled surface of large genus?



Contribution of k-cylinder square-tiled surfaces to VolH(3, 1)
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← the only quantity which is easy to compute
0.19 ≈ P1(H(3, 1)) =

3 ζ(7)

16 ζ(6)

0.47 ≈ P2(H(3, 1)) =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

16 ζ(6)

0.30 ≈ P3(H(3, 1)) =
1

32 ζ(6)

(

12 ζ(6)− 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5)− 250 ζ(1, 6)− 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4)− 52 ζ(2, 5) + 6 ζ(3, 3)− 82 ζ(3, 4)

+ 6 ζ(4, 2)− 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5)− 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3)− 120 ζ(1, 4, 2)− 54 ζ(2, 1, 4)− 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2)− 88 ζ(3, 1, 3)− 34 ζ(3, 2, 2)− 48 ζ(4, 1, 2)

)

0.04 ≈ P4(H(3, 1)) =
ζ(2)

8 ζ(6)

(

ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)

.



State of the art
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We know the similar distribution of frequencies of square-tiled surfaces with

respect to the number of horizontal cylinders only for several low-dimensional

strata. However, we have a conjecture on this distribution for large genera

based on extensive numerical experiments.

Conjecture. The distribution of square-tiled surfaces by the number k of

maximal horizontal cylinders tends to the Poisson distribution λk−1e−λ

(k−1)! with

parameter λ = log(d) + γ, where γ ≈ 0.577 is the Euler constant. Here

d = dimCH is the dimension of the ambient stratum.

According to this conjecture a random translation square-tiled surface has
about log d+ 1 + γ cylinders and very rarely more that 3 log d cylinders.

Remark. Conjecturally, the distribution is the same for all strata (except

hyperelliptic components) in different genera but of the same dimension.

Remark. The parameter λ in the analogous conjectural distribution for

Q(1, . . . , 1) is different. It is
log d

2 + γ

2
, where d = dimQ(1, . . . , 1).



Count of 1-cylinder square-tiled surfaces
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We have rather comprehensive information about Masur–Veech volumes of

strata of Abelian differentials. Namely, in all low genera we know them explicitly.

In higher genera the volume of the principal stratum H(1, . . . , 1) can be

computed exactly up to very high genus. When g → +∞ it can be computed

approximately with arbitrary precision by the work of Chen–Möller–Zagier. Less
precise but universal formula for all strata proving our conjecture with Eskin

VolH(m1, . . . ,mn) ∼
4

(m1 + 1) . . . (mn + 1)
.

was recently proved by Aggarwal.

By the general philosophy, to compute braids, frequencies of simple closed

curves, numbers of pairs of positively intersecting simple closed curves, etc in

this context, one has to compute contribution of 1-cylinder square-tiled

surfaces. As in the previous cases, this problem admits a solution.



Counting braids and positive meanders
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Theorem. The relative contribution p1(H(m1, . . . ,mn)) of 1-cylinder

square-tiled surfaces to the Masur–Veech volume VolH(m1, . . . ,mn) is of

the order 1
d

, where d = dimH(m1, . . . ,mn).

In particular, the probability to get a connected curve from a braid on a surface

of genus g is of the order 1
4g .

Pairs of positively intersecting transverse simple closed curves have frequency
1

16g2
among all positively intersecting pairs of multicurves.
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1-cylinder surface as a pair of permutations
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X1

X2

X3

X4

X5

X6

X7

X8

X1

1 2 3 4 5 6 7 8

4 3 2 5 8 7 6 1

0 0

✲✝
✞ ☎

✆

✲✞
✝ ✆

☎

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8
4 → 3 → 2 → 5 → 8 → 7 → 6 → 1

cbot · c−1
top = (1, 3)(2, 4)(5, 7)(6, 8)



Frobenius formula
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The count of 1-cylinder N -square-tiled surfaces in the stratum H(m1, . . . ,mn)
is reduced to the count of solutions of the following equation for permutations:

(N − cycle) · (N − cycle) = product of cycles of lengths d1 + 1, . . . , dn + 1

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

Theorem. The absolute contribution c1(H(m1, . . . ,mn)) of 1-cylinder

square-tiled surfaces to the Masur–Veech volume VolH(m1, . . . ,mn) equals

c1 =
2

(d− 1)!
·
∏

k

1

(k + 1)µk
·
d−2
∑

j=0

j! (n− 1− j)!χj(ν) .

Here d = dimH(m1, . . . ,mn); ν ∈ Sn is any permutation with decomposition
into cycles of lengths (m1 + 1), . . . , (mn + 1); µi is the number of zeroes of

order i, i.e. the multiplicity of the entry i in the multiset {m1, . . . ,mn}.
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The count of 1-cylinder N -square-tiled surfaces in the stratum H(m1, . . . ,mn)
is reduced to the count of solutions of the following equation for permutations:

(N − cycle) · (N − cycle) = product of cycles of lengths d1 + 1, . . . , dn + 1

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

Theorem. The absolute contribution c1(H(m1, . . . ,mn)) of 1-cylinder

square-tiled surfaces to the Masur–Veech volume VolH(m1, . . . ,mn)
satisfies the following bounds:

1

d+ 1
· 4

(m1 + 1) . . . (mn + 1)
≤ c1(H) ≤ 1

d− 10
29

· 4

(m1 + 1) . . . (mn + 1)

We were able to replace the formula in characters by this much more efficient

estimate using the results of Zagier.



Count of one-cylinder square-tiled surfaces: answers
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For permutations ν representing the principal and the minimal strata the

characters χj(ν) admit easier computation which leads to the following

formulae:

c1(H(12g−2)) =
1

4g − 2
· 4

22g−2

c1(H(2g − 2)) =
1

2g
· 4

2g − 1
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For permutations ν representing the principal and the minimal strata the

characters χj(ν) admit easier computation which leads to the following

formulae:

c1(H(12g−2)) =
ζ(4g − 3)

4g − 2
· 4

22g−2
≈ 1

d
·VolH(12g−2)

c1(H(2g − 2)) =
ζ(2g)

2g
· 4

2g − 1
≈ 1

d
·VolH(2g − 2)

We get an extra factor ζ(d) if we count the contribution of 1-cylinder

square-tiled surfaces having arbitrary number of bands of squares (i.e. any

height of the cylinder). However, ζ(d) is very close to 1 for d≫ 1, so this gives

almost the same count.

We use results of Chen–Möller–Zagier and independent results of Aggarwal

and Sauvaget for volume asymptotics.
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