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Meanders and arc systems
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A closed meander is a smooth simple closed curve in the plane transversally
intersecting the horizontal line.

According to S. Lando and A. Zvonkin the notion “meander” was suggested by

V. Arnold though meanders were studied already by H. Poincaré.

Meanders appear in various contexts, in particular in physics (P. Di Francesco,
O. Golinelli, E. Guitter).



Meanders and arc systems
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.

Compactifying the plane (left picture) with one point at infinity, or gluing

together arc systems on the two discs (right picture) we get an ordered pair of

smooth simple transversally intersecting closed curves on the sphere.



Meanders versus multicurves
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It is much easier to count arc systems (for example, arc systems sharing the

same reduced dual tree). However, this does not simplify counting meanders

since identifying a pair of arc systems with the same number of arcs by the

common equator, we sometimes get a meander and sometimes — a curve with

several connected components

Attaching arc systems on a pair of hemispheres along the common equator we

might get a single simple closed curve (as on the left picture) or a multicurve
with several connected components (as on the right picture).
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Asymptotic frequency of meanders
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Consider arc system with the same number n ≤ N of arcs on a labeled pair of

oriented discs having Ttop and Tbottom as reduced dual trees. We draw Ttop on

the northern hemisphere and Tbottom on the southern hemisphere. There are

2n ways to identify isometrically the two hemispheres into the sphere in such

way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.
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Consider arc system with the same number n ≤ N of arcs on a labeled pair of

oriented discs having Ttop and Tbottom as reduced dual trees. We draw Ttop on

the northern hemisphere and Tbottom on the southern hemisphere. There are

2n ways to identify isometrically the two hemispheres into the sphere in such

way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.

Question. What is the asymptotics of the quantity

pconnected(Ttop, Tbottom;N) as N → +∞?

Does it behave like N−α? Like exp(−βN)? Describe how α (respectively β)

depend on Ttop, Tbottom.
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Consider arc system with the same number n ≤ N of arcs on a labeled pair of

oriented discs having Ttop and Tbottom as reduced dual trees. We draw Ttop on

the northern hemisphere and Tbottom on the southern hemisphere. There are

2n ways to identify isometrically the two hemispheres into the sphere in such

way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.

Answer (V. Delecroix, E. Goujard, P. Zograf, A. Zorich). For any pair of trees

Ttop, Tbottom the quantity pconnected(Ttop, Tbottom;N) admits a strictly

positive limit as N → +∞.
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Consider arc system with the same number n ≤ N of arcs on a labeled pair of

oriented discs having Ttop and Tbottom as reduced dual trees. We draw Ttop on

the northern hemisphere and Tbottom on the southern hemisphere. There are

2n ways to identify isometrically the two hemispheres into the sphere in such

way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.

Example. The fact that this asymptotic frequency is nonzero is already

unexpected. For example, the following asymptotic frequency equals:

lim
N→+∞

pconnected( , , N) = 280
π6 ≈ 0.291245
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Consider arc system with the same number n ≤ N of arcs on a labeled pair of

oriented discs having Ttop and Tbottom as reduced dual trees. We draw Ttop on

the northern hemisphere and Tbottom on the southern hemisphere. There are

2n ways to identify isometrically the two hemispheres into the sphere in such

way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich). This ratio has a limit

as N → +∞ which depends only on the vertex type ν = [1ν12ν23ν3 . . . ] of

the graph Tbottom ⊔ Ttop, where νj encodes the total number of vertices of
valence j+2 in Tbottom ⊔Ttop for j ∈ N. The limit is given by closed formula.



Fixing the number of vertices of valence one
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Theorem. Let p ≥ 4. The frequency pconnected(p;N) of meanders obtained

by all possible identifications of all arc systems with at most N arcs

represented by all possible pairs of plane trees having the total number p of

leaves (vertices of valence one) has the following limit:

lim
N→+∞

pconnected(p;N) = p1(Q(1p−4,−1p)) =

=
cyl1(Q(1p−4,−1p))

VolQ(1p−4,−1p)
=

1

2

(
2

π2

)p−3

·

(
2p− 4

p− 2

)

.



Meanders with and without maximal arc

7 / 35

These two meanders have 5 minimal arcs (“pimples”) each.

Meander with a maximal arc (“rainbow”) Meander without maximal arc
contributes to M+

5 (N) contributes to M−
5 (N)

Let M+
p (N) and M−

p (N) be the numbers of closed meanders respectively

with and without maximal arc (“rainbow”) and having at most 2N crossings with
the horizontal line and exactly p minimal arcs (“pimples”). We consider p as a

parameter and we study the leading terms of the asymptotics of M+
p (N) and

M−
p (N) as N → +∞.



Counting formulae for meanders
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Theorem. For any fixed p the numbers M+
p (N) and M−

p (N) of closed

meanders with p minimal arcs (pimples) and with at most 2N crossings have

the following asymtotics as N → +∞:

M+
p (N) = 2(p+ 1) ·

cyl1,1
(
Q(1p−3,−1p+1)

)

(p+ 1)! (p− 3)!
·
N2p−4

4p− 8
+ o(N2p−4) =

=
2

p! (p− 3)!

(
2

π2

)p−2

·

(
2p− 2

p− 1

)2

·
N2p−4

4p− 8
+ o(N2p−4) .

M−
p (N) =

2 cyl1,1
(
Q(0, 1p−4,−1p)

)

p! (p− 4)!
·
N2p−5

4p− 10
+ o(N2p−5) =

=
4

p! (p− 4)!

(
2

π2

)p−3

·

(
2p− 4

p− 2

)2

·
N2p−5

4p− 10
+ o(N2p−5) .

Note that M+
p (N) grows as N2p−4 while M−

p (N) grows as N2p−5.
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Very flat surfaces: construction from a polygon
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Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v1

~v2

~v3

~v4

and another one constructed from the same vectors taken in another order.
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Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v4

~v3

~v2

~v1

and another one constructed from the same vectors taken in another order.



Very flat surfaces: construction from a polygon
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Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

and another one constructed from the same vectors taken in another order. If

we are lucky enough the two broken lines do not intersect and form a polygon.



Very flat surfaces: construction from a polygon
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~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

Identifying the corresponding pairs of sides by parallel translations we get a

closed surface endowed with a flat metric.



Polygonal patterns of the same translation surface
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=



Holomorphic 1-form associated to a flat structure
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Consider the natural coordinate z in the complex plane, where lives the

polygon. In this coordinate the parallel translations which we use to identify the

sides of the polygon are represented as z′ = z + const.

Since this correspondence is holomorphic, our flat surface S with punctured

conical points inherits the complex structure. This complex structure extends to

the punctured points.

Consider now a holomorphic 1-form dz in the complex plane. The coordinate z
is not globally defined on the surface S. However, since the changes of local

coordinates are defined as z′ = z + const, we see that dz = dz′. Thus, the

holomorphic 1-form dz on C defines a holomorphic 1-form ω on S which in
local coordinates has the form ω = dz.

The form ω has zeroes exactly at those points of S where the flat structure has

conical singularities.
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Period coordinates, volume element, and unit hyperboloid
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑
mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C

ω ∧ ω̄ =

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where

r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the
volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on the hyperboloid H1 and d = dimC H(m1, . . . ,mn).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian or quadratic differentials is finite.
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Counting volume by counting integer points in a large cone
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X1 H1

ν1-volume of a domain X1 in a unit hyperboloid H1 is related to ν-volume of a

cone C(X1) = {r · S|S ∈ X1, r ≤ 1} over X1 as ν1(X1) = 2d · ν(C(X1)).
To count volume of the cone C(X1) one can take a small grid and count the

number of lattice points inside it.
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X1 H1

ν1-volume of a domain X1 in a unit hyperboloid H1 is related to ν-volume of a

cone C(X1) = {r · S|S ∈ X1, r ≤ 1} over X1 as ν1(X1) = 2d · ν(C(X1)).
To count volume of the cone C(X1) one can take a small grid and count the

number of lattice points inside it. Counting points of the 1
N

-grid in the cone
C(X1) = {r · S|S ∈ X1, r ≤ 1} is the same as counting integer points in the

larger proportionally rescaled cone CN (X1) = {r · S|S ∈ X1, r ≤ N}.



Integer points as square-tiled surfaces
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = R
2/(Z⊕ iZ) ramified over a single point:

S ∋ P 7→

(∫ P

P1

ω mod Z ⊕ iZ

)

∈ T, where P1 is a zero of ω .

The ramification points of the cover are exactly the

zeroes of ω.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = R
2/(Z⊕ iZ) ramified over a single point:

S ∋ P 7→

(∫ P

P1

ω mod Z ⊕ iZ

)

∈ T, where P1 is a zero of ω .

The ramification points of the cover are exactly the

zeroes of ω.

Integer points in the strata Q(d1, . . . , dn) of quadratic

differentials are represented by analogous “pillowcase

covers” over CP1 branched at four points.

Thus, counting volumes of the strata is similar to count-

ing analogs of Hurwitz numbers.



Computation of volumes
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Theorem (A. Eskin, A. Okounkov, R. Pandharipande). For every connected

component Hc(d1, . . . , dn) of every stratum, the generating function
∞∑

N=1

qN
∑

N-square-tiled
surfaces S

1

|Aut(S)|

is a quasimodular form. Volume VolHc(d1, . . . , dn) of every connected

component of every stratum is a rational multiple p
q
· π2g of π2g, where g is the

genus.

A. Eskin implemented this theorem to an algorithm allowing to compute p
q

for all
strata up to genus 10 and for some strata (like the principal one) up to genus

200. Based on these calculations we developed a conjecture on a very simple

asymptotic formula for volumes in large genera.

D. Chen, M. Möller, D. Zagier have recently constructed more general

generation function, which englobes all genera at once. In particular, they can
compute the volume of the principal stratum up to genus 2000 and prove our

conjecture with Eskin on large genus volume asymptotics of the principal

stratum.
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Masur–Veech volume in genus zero
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ; conjectured by M. Kontsevich
about 2003) The volume of any stratum Q(d1, . . . , dk) of meromorphic

quadratic differentials with at most simple poles on CP1 (i.e. when

di ∈ {−1 ; 0} ∪ N for i = 1, . . . , k, and
∑k

i=1 di = −4) is equal to

VolQ(d1, . . . , dk) = 2π ·
k∏

i=1

v(di) .

Volumes as asymptotics of certain very special Hurwitz numbers.
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Cylinder decomposition of a square-tiled surface
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Contribution of k-cylinder square-tiled surfaces to VolH(3, 1)
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← the only quantity which is easy to compute
0.19 ≈ p1(H(3, 1)) =

3 ζ(7)

16 ζ(6)

0.47 ≈ p2(H(3, 1)) =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

16 ζ(6)

0.30 ≈ p3(H(3, 1)) =
1

32 ζ(6)

(

12 ζ(6)− 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5)− 250 ζ(1, 6)− 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4)− 52 ζ(2, 5) + 6 ζ(3, 3)− 82 ζ(3, 4)

+ 6 ζ(4, 2)− 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5)− 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3)− 120 ζ(1, 4, 2)− 54 ζ(2, 1, 4)− 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2)− 88 ζ(3, 1, 3)− 34 ζ(3, 2, 2)− 48 ζ(4, 1, 2)

)

0.04 ≈ p4(H(3, 1)) =
ζ(2)

8 ζ(6)

(

ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)

.



Equidistribution Theorems
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Theorem. The asymptotic proportion pk(L) of square-tiled surfaces tiled with

tiny ε× ε-squares and having exactly k maximal horizontal cylinders among all

such square-tiled surfaces living inside an open set B ⊂ L in a stratum L of

Abelian or quadratic differentials does not depend on B.

Let ck(L) be the contribution of horizontally k-cylinder square-tiled surfaces
(pillowcase covers) to the Masur–Veech volume of the stratum L, so that

c1(L) + c2(L) + · · · = VolL, and pk(L) = ck(L)/Vol(L). Let

ck,j(L) be the contribution of horizontally k-cylinder and vertically j-cylinder ones.

Theorem. There is no correlation between statistics of the number of

horizontal and vertical maximal cylinders:

ck(L)

Vol(L)
=
ckj(L)

cj(L)
.

This formula is an asymptotic formula! Proof: Moore ergodicity theorem.
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Experimental evaluation of volumes
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The Equidistribution Theorem allows to compute approximate values of

volumes experimentally. Choose some ball B (or some box) in the stratum.

Consider a sufficiently small grid in it and collect statistics of frequency p1(B)
of 1-cylinder square-tiled surfaces (pillow-case covers) in our grid in B.

Now compute the absolute contribution c1(L) of all 1-cylinder square-tiled
surfaces to VolL; it is easier than for k-cylinder ones with k > 2. By the

Equidistribution Theorem, the volume of the ambient stratum is VolL = c1(L)
p1(L)

.

The statistics p1(H) can be, actually, collected using interval exchanges, which

simplifies the experiment. Approximate values of volumes were extremely

useful in debugging numerous normalization factors in rigorous answers in the

implementation by E. Goujard of the method of Eskin–Okounkov.
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How to count meanders
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Step 1. There is a natural one-to-one correspondence between transverse

connected pairs of multicurves on an oriented sphere and pillowcase covers,

where the square tiling is given by the graph dual to the graph formed by the

pair of multicurves.

Step 2. Pairs of arc systems glued along common equator correspond to

square-tiled surfaces having single horizontal cylinder of height 1. Meanders

correspond to square-tiled surfaces having single horizontal cylinder and single
vertical one; both of height one. So we can apply the formula

cyl1,1(Q) = cyl21(Q)/Vol(Q), where cyl1(Q) is easy to compute and

Vol(Q) in genus zero is given by an explicit formula.

Step 3. Fixing the number of minimal arcs (“pimples”) we fix the number of

simple poles p of the quadratic differential. All but negligible part of the

corresponding square-tiled surfaces live in the only stratum Q(1p−4,−1p) of
the maximal dimension.
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Volume polynomials

26 / 35

Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b
2
1, . . . , b

2
n) of degree 3g − 3 + n

in variables b21, . . . , b
2
n:

Ng,n(b
2
1, . . . , b

2
n) :=

∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n
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|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

The polynomial Ng,n(b
2
1, . . . , b

2
n) coincides with the top homogeneous part of

the Mirzakhani’s volume polynomial 1
2Vg,n(b

2
1, . . . , b

2
n) providing the

Weil–Petersson volume of the moduli space of bordered Riemann surfaces.



Volume polynomials

26 / 35

Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the
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n) :=

∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Define the formal operation Z on monomials as

Z :
n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extend it to symmetric polynomials in bi by linearity.
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b1
1
2 · 1 · b1 ·N1,2(b1, b1)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·

·N1,1(b2)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·

·N0,3(b2, b3, b3)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·

·N0,3(b1, b2, b3)
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) = 1

2 · b1
(

1
384(2b

2
1)(2b

2
1)
)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) = 1
4 · b1

(
1
48b

2
1

) (
1
48b

2
1

)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2) = 1

8 · b1b2 ·
(
1
4(2b

2
1 + 2b22)

)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·

·N1,1(b2) = 1
4 · b1b2 ·

(
1
)
·
(

1
48b

2
2

)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·

·N0,3(b2, b3, b3) = 1
16 · b1b2b3 · (1) · (1)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·

·N0,3(b1, b2, b3) = 1
24 · b1b2b3 · (1) · (1)



Volume of Q2
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b1
1

192 · b51
Z
7−→ 1

192 ·
(
5! · ζ(6)

)
= 1

1512 · π
6

b1

1
9216 · b

5
1

Z
7−→ 1

9216 ·
(
5! · ζ(6)

)
= 1

72576 · π
6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z
7−→ 1

16 · 2
(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

720 · π
6

b1
b2

1
192 · b1b

3
2

Z
7−→ 1

192 ·
(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

17280 · π
6

b1
b2

b3
1
16b1b2b3

Z
7−→ 1

16 ·
(
1! · ζ(2)

)3
= 1

3456 · π
6

b1
b2

b3
1
24b1b2b3

Z
7−→ 1

24 ·
(
1! · ζ(2)

)3
= 1

5184 · π
6

VolQ2 =
128
5 ·

(
1

1512 +
1

72576 +
1

720 +
1

17280 +
1

3456 +
1

5184

)
· π6 = 1

15π
6 .
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Encoding surfaces with simple curves by weighted graphs
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b1 b1
0

b1 b1
1 0

b1
b2

b1
b2

0 0

b1
b2

b1 b20

0



Volume of the “unit ball” in the cotangent space to Mg,n
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Theorem. The Masur–Veech volume VolQg,n of the moduli space of

meromorphic quadratic differentials with n simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
·

1

|AutΓ|
·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.

Remark. The Weil–Peterson volume of Mg,n corresponds to the constant

term of the volume polynomial Ng,n(L) when the lengths of all boundary

components are contracted to zero. To compute the Masur–Veech volume we

use the top homogeneous parts of volume polynomials, that is we use them
opposite regime when the lengths of all boundary components tend to infinity.

VolQg is computed by Mirzakhani (up to the factor in red); for VolQg,n — by Delecroix, Goujard, Zograf, Zorich by different method.
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Graph of hyperbolic and flat geodesic multicurve
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2γ1

γ2

γ3

2γ4

Square-tiled surface in Q0,7 in the middle; topological picture of its waist

geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on the left and the associated

decorated dual graph Γ on the right.
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2γ1

γ2

γ3

2γ4

g = 0

g = 0

g = 0

g = 0

g = 0

2
1

1

2

Square-tiled surface in Q0,7 in the middle; topological picture of its waist

geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on the left and the associated

decorated dual graph Γ on the right.



Frequencies of hyperbolic and flat simple closed geodesics
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Theorem (M. Mirzakhani, 2008). The asymptotic frequency of simple closed

hyperbolic geodesics of fixed topological type does not depend on the choice of

particular hyperbolic metric).

Example (M. Mirzakhani, 2008; confirmed experimentally by M. Bell and S. Schleimer)

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
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Theorem (M. Mirzakhani, 2008). The asymptotic frequency of simple closed

hyperbolic geodesics of fixed topological type does not depend on the choice of

particular hyperbolic metric).

Example (M. Mirzakhani, 2008; confirmed experimentally by M. Bell and S. Schleimer)

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3

Theorem (Delecroix, Goujard, Zograf, Zorich, 2017). For any topological class Γ
of simple closed multicurves considered up to homeomorphisms of a surface Sg,n,

the associated Mirzakhani’s asymptotic frequency c(Γ) of simple closed

hyperbolic multicurves of type Γ on any hyperbolic surface X ∈ Mg,n

coincides with the asymptotic frequency of simple closed flat geodesic
multicurves of type Γ represented by square-tiled surfaces in Qg,n.
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