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Simple closed curves and simple closed geodesics
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Any smooth orientable surface of genus g ≥ 2 admits a metric of constant

negative curvature (usually chosen to be −1), called hyperbolic metric.

Allowing to metric to have several singularities (cusps), one can construct a

hyperbolic metric also on a sphere and on a torus.

A smooth closed curve on a surface is called simple if it does not have

self-intersections. Suppose that we have a simple closed curve γ on a

hyperbolic surface (possibly with cusps). Suppose that the curve is essential,

that is not contractible to a small curve encircling some disc or some cusp.
Interpreting our curve as an elastic loop, let it slide along the surface to contract

to the shortest shape in our hyperbolic metric. We get a closed geodesic, which

remains to be smooth non self-intersecting curve.

Fact. For any hyperbolic metric and any essential simple closed curve on a

surface, there exists a unique geodesic representative in the free homotopy

class of the curve; it is realized by a simple closed geodesic.

Speaking of a “free homotopy class” we puncture the surface at all cusps so
that curves do not traverse cusps along continuous deformations.
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Let us say that two simple closed curves on a smooth surface have the same

topological type if there is a diffeomorphism of the surface sending one curve to

another. It immediately follows from the classification theorem of surfaces that

there is a finite number of topological types of simple closed curves. For

example, if the surface does not have punctures, all simple closed curves which
do not separate the surface into two pieces, belong to the same class. Indeed:

the classification theorem implies that cutting the surface open along such two

simple closed curves we get two diffeomorphic surfaces with two boundary

components. A little extra effort allows to build a diffeomorphism of the initial

closed surface to itself sending the first curve to the second.

The group of all diffeomorphisms of a closed smooth orientable surface of

genus g quotient over diffeomorphisms homotopic to identity is called the
mapping class group and is denoted by Modg. When the surface has n
marked points (punctures) we require that diffeomorphism sends marked points

to marked points; the corresponding mapping class group is denoted Modg,n.
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Consider a configuration of four distinct points on the Riemann sphere CP1.

Using appropriate holomorphic automorphism of CP1 we can send three out of

four points to 0, 1 and ∞. There is no more freedom: any further holomorphic

automorphism of CP1 fixing 0, 1 and ∞ is already the identity transformation.

The remaining point serves as a complex parameter in the space M0,4 of
configurations of four distinct points on CP1 (up to a holomorphic diffeomorphism).
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points we change the shape of the corresponding hyperbolic surface.
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Similarly, we can consider the moduli space M0,n of spheres with n cusps.

The space Mg,n of configurations of n distinct points on a smooth closed
orientable Riemann surface of genus g > 0 is even richer. While the sphere

admits only one complex structure, a surface of genus g ≥ 2 admits complex

(3g − 3)-dimensional family of complex structures. As in the case of the

Riemann sphere, complex structures on a smooth surface with marked points

are in natural bijection with hyperbolic metrics of constant negative curvature
with cusps at the marked points. For genus g ≥ 2 one can let n = 0 and

consider the space Mg = Mg,0 of hyperbolic surfaces without cusps.
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Multicurves
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Consider now several pairwise nonintersecting essential simple closed curves

γ1, . . . , γk on a smooth surface Sg,n of genus g with n punctures. We have

seen that in the presence of a hyperbolic metric X on Sg,n the simple closed

curves become simple closed geodesics.

Fact. For any hyperbolic metric X the simple closed geodesics representing

γ1, . . . , γk do not have pairwise intersections.

We can consider formal linear combinations γ :=
∑k

i=1 aiγi of such simple

closed curves with positive coefficients. When all coefficients ai are integer

(respectively rational), we call such γ integral (respectively rational) multicurve.

In the presence of a hyperbolic metric X we define the hyperbolic length of a

multicurve γ as ℓγ(X) :=
∑k

i=1 aiℓX(γi), where ℓX(γi) is the hyperbolic

length of the simple closed geodesic in the free homotopy class of γi.

Denote by sX(L, γ) the number of simple closed geodesic multicurves on X
of topological type [γ] and of hyperbolic length at most L.
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Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n one has

sX(L, γ) ∼ B(X) ·
c(γ)

bg,n
· L6g−6+2n as L→ +∞ .

Here the quantity B(X) depends only on the hyperbolic metric X (and would

be specified later); bg,n is a global constant depending only on g and n (and

would be specified later); c(γ) depends only on the topological type of γ (and

would be computed shortly).
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would be computed shortly).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to
the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (M. Mirzakhani (2008); confirmed experimentally in 2017 by M. Bell

and S. Schleimer); confirmed in 2017 by more implicit computer experiment of

V. Delecroix and by other means.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.
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Bordered hyperbolic surfaces
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Cutting a hyperbolic surface by several pairwise disjoint simple closed

geodesics we get one or several bordered hyperbolic surfaces with geodesic

boundary components. Denote by Mg,n(b1, . . . , bn) the moduli space of

hyperbolic surfaces of genus g with n geodesic boundary components of

lengths b1, . . . , bn. By convention, the zero value bi = 0 corresponds to a cusp.

Topologically, a hyperbolic pair of pants P ∈ M0,3(b1, b2, b3) is a sphere with

three holes. For any triple of nonnegative numbers (b1, b2, b3) ∈ R
3
+ there

exists a unique hyperbolic pair of pants P (b1, b2, b3) with geodesic boundaries

of given lengths (assuming that the boundary components of P are numbered).

Two geodesic boundary components γ1, γ2 of any hyperbolic pair of pants P
can be joined by a single geodesic segment ν1,2 orthogonal to both γ1 and γ2.

Thus, every geodesic boundary component γ of any hyperbolic pair of pants

might be endowed with a canonical distinguished point.
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Two hyperbolic pairs of pants P ′(b′1, b
′
2, ℓ) and P ′′(b′′1, b

′′
2, ℓ) sharing the same

length ℓ > 0 of one of the geodesic boundary components can be glued
together. The hyperbolic metric on the resulting hyperbolic surface Y is

perfectly smooth and the common geodesic boundary of P ′ and P ′′ becomes

a simple closed geodesic γ on Y .

P ′ τ

γ

P ′′

Each geodesic boundary component of any pair of pants is endowed with a

distinguished point. These distinguished points record how the pairs of pants
P ′ and P ′′ are twisted with respect to each other. Hyperbolic surfaces Y (τ)
corresponding to different values of the twist parameter τ in the range [0, ℓ[ are

generically not isometric.
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P ′ and P ′′ are twisted with respect to each other. Hyperbolic surfaces Y (τ)
corresponding to different values of the twist parameter τ in the range [0, ℓ[ are

generically not isometric.
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Any hyperbolic surface X of genus g with n geodesic boundary components

admits a decomposition in hyperbolic pairs of pants glued along simple closed

geodesics γ1, . . . , γ3g−3+n. Lengths ℓγi(X) of the resulting simple closed

geodesics γi involved in pants decomposition of X and twists τγi(X) along

them serve as local Fenchel–Nielsen coordinates in Mg,n(b1, . . . , bn).
By the work of W. Goldman Mg,n(b1, . . . , bn) carries a natural closed

non-degenerate 2-form ωWP called the Weil–Petersson symplectic form.

S. Wolpert proved that ωWP has particularly simple expression in Fenchel–

Nielsen coordinates. No matter what pants decomposition we chose, we get

ωWP =

3g−3+n
∑

i=1

dℓγi ∧ dτγi .

The wedge power ωn of a symplectic form on a manifold M2n of real
dimension 2n defines a volume form on M2n. The volume Vg,n(b1, . . . , bn) of

the moduli space Mg,n(b1, . . . , bn) with respect to the volume form
1

(3g−3+n)! ω
3g−3+n
WP is called the Weil–Petersson volume of the moduli space

Mg,n(b1, . . . , bn); it is known to be finite.
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Averaging the counting function: statement of results
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We are interested in counting the number sX(L, γ) of simple closed geodesic

multicurves on X ∈ Mg,n of topological type [γ] and of hyperbolic length at
most L. Following Mirzakhani, we shall count first the average of the quantity

sX(L, γ) over Mg,n with respect to the Weil–Petersson volume element:

P (L, γ) :=

∫

Mg,n

sX(L, γ) dX .

Theorem (M. Mirzakhani, 2008). The average number P (L, γ) of closed

geodesic multicurves of topological type [γ] and of hyperbolic length at most L
is a polynomial in L of degree 6g − 6 + 2n. The leading coefficient of this

polynomial
cγ := lim

L→+∞

P (L, γ)

L6g−6+2n

is expressed in terms of the Weil–Petersson volumes of the associated moduli
space of bordered hyperbolic surfaces, or, more precisely, in terms of the

appropriate characteristic numbers of the form
∫

Mgi,ni

ψd1
1 . . . ψ

dni
ni where d1 + · · ·+ dni

= 3gi − 3 + ni .
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Consider the cover Mγ
1,1 over M1,1 where the point of the cover Mγ

1,1 is a
hyperbolic surface X endowed with a distinguished simple closed geodesic α.

The fiber of the cover can be identified with Mod1,1 ·[γ], where γ is a essential

simple closed curve on a once punctured torus.

twist τ where 0 ≤ τ < ℓX(α)
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Consider the cover Mγ
1,1 over M1,1 where the point of the cover Mγ

1,1 is a
hyperbolic surface X endowed with a distinguished simple closed geodesic α.

The fiber of the cover can be identified with Mod1,1 ·[γ], where γ is a essential

simple closed curve on a once punctured torus.

twist τ where 0 ≤ τ < ℓX(α)

The cover Mγ
1,1 admits global coordinates. Namely, given (X,α) ∈ Mγ

1,1 cut

X open along the closed geodesic α. We get a hyperbolic pair of pants
P (l, l, 0); two geodesic boundary components of it have the same length

l = ℓX(α) and the third boundary component is the cusp. Reciprocally, from

any hyperbolic pair of pants P (l, l, 0) we can glue a hyperbolic surface X
endowed with a distinguished simple closed geodesic α. Constructing X from

the pair of pants P (l, l, 0) we have to chose the value of the twist parameter τ
in the interval [0, l[, where l = ℓX(α) is the length of the geodesic boundary.



Integration over M1,1
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Mirzakhani observed that having a continuous function fγ(X) on M1,1 of the form

fγ(X) =
∑

[α]∈Mod1,1 ·[γ]

f(ℓX(α))

we can integrate it over M1,1 as follows

∫

M1,1

∑

[α]∈Mod1,1 ·[γ]

f(ℓα(X)) dX =

∫

Mγ
1,1

f(ℓα(X)) dl dτ =

=

∫ ∞

0
f(l)

∫ l

0
dl dτ =

∫ ∞

0
f(l) l dl .
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f(l)

∫ l

0
dl dτ =

∫ ∞

0
f(l) l dl .

Note that our counting function sX(L, γ) is exactly of this form with f = χ([0, L]).
In this particular case we get

P (L, γ) :=

∫

M1,1

sX(L, γ) dX =

∫ ∞

0
χ([0, L]) l dl =

∫ L

0
ℓdℓ =

L2

2
.
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Let γ be a nonseparating simple closed curve on Sg. Consider the analogous

cover Mγ
g over Mg where the point of the cover is a hyperbolic surface X

endowed with a distinguished simple closed geodesic α. Cutting X open along

α we get a bordered hyperbolic surface Y (l, l) in Mg−1,n+2(l, l), where

l = ℓX(α).
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∑

[α]∈Modg ·[γ]
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∑
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over Mg as before:
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∫
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sX(L, γ) dX =

∫
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g
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=
1

2

∫ L

0

∫ l

0

∫

Mg−1,2(l,l)
dY dl dτ =

1

2

∫ L

0
VolWP

(

Mg−1,2(l, l)
)

l dl .
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dY dl dτ =

1

2

∫ L

0
VolWP

(

Mg−1,2(l, l)
)

l dl .

Mirzakhani proved that VolWP

(

Mg−1,2(l, l)
)

is an explicit polynomial in l of

degree 6(g − 1)− 6 + 2 · 2, so P (L, γ) is a polynomial of degree 6g − 6.
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Train tracks carrying simple closed curves
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.

1

2

2

4 6

3

We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.

1
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4 6
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We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.

Note that the two weights in red uniquely determine all other weights.



Four basic train tracks on S0,4
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.

Conclusion: there are four types of simple closed curves in S0,4, depending on

which of each of the two pairs of arcs they use in the middle square. This is the

same as saying that any simple closed curve in is carried by one of the

following four train tracks:



Space of multicurves
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x
y

x
y

xy x y

The four train tracks τ1, τ2, τ3, τ4 give four coordinate charts on the set of

isotopy classes of simple closed curves in S0,4. Each coordinate patch

corresponding to a train track τi is given by the weights (x, y) of two chosen

edges of τi. If we allow the coordinates x and y to be arbitrary nonnegative

real numbers, then we obtain for each τi a closed quadrant in R
2. Arbitrary

points in this quadrant are measured train tracks.



Space of multicurves
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0
y

0
y

xy x y

Weight zero on an edge of a train track tells that such edge can be deleted.
This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. The integral points in this R2

correspond to isotopy classes of multicurves in S0,4.
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Weight zero on an edge of a train track tells that such edge can be deleted.

This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. The integral points in this R2

correspond to isotopy classes of multicurves in S0,4.



Thurston measure on MLg,n
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Similar considerations applied to a smooth surface Sg,n lead to analogous

space MLg,n. Up to now we did not use hyperbolic metric on Sg,n. In the

presence of a hyperbolic metric, integral points of MLg,n can be interpreted
as simple closed geodesic multicurves. Moreover: all other points also get

geometric realization as measured geodesic laminations — disjoint unions of

non self-intersecting infinite geodesics.

Train track charts define piecewise linear structure on MLg,n. “Integral lattice”
MLg,n(Z) provides canonical normalization of the corresponding volume form

µTh in which the fundamental domain of the lattice has unit volume. Integral

points in MLg,n are in a one-to-one correspondence with the set of integral

multi-curves, so the piecewise-linear action of Modg,n on MLg,n preserves

the “integral lattice” MLg,n(Z), and, hence, preserves the measure µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just

Thurston measure rescaled by some constant factor.
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non self-intersecting infinite geodesics.

Train track charts define piecewise linear structure on MLg,n. “Integral lattice”
MLg,n(Z) provides canonical normalization of the corresponding volume form

µTh in which the fundamental domain of the lattice has unit volume. Integral

points in MLg,n are in a one-to-one correspondence with the set of integral

multi-curves, so the piecewise-linear action of Modg,n on MLg,n preserves

the “integral lattice” MLg,n(Z), and, hence, preserves the measure µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just

Thurston measure rescaled by some constant factor.
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Choose some integral multicurve γ, say, a simple closed curve on Sg,n. The

subset Oγ := Modg,n ·γ can be seen as an analog of a “sublattice” in MLg,n(Z).
The insight of Mirzakhani was to realize that replacing the discrete set MLg,n(Z)
with the subset Oγ we get a new measure on MLg,n which is proportional to the

Thurston measure µTh with coefficient depending only on the homotopy type of γ.
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More formally: the Thurston measure of a subset B ⊂ MLg,n is defined as

µTh(B) := lim
t→+∞

card{tB ∩MLg,n(Z)}

t6g−6+2n
.

Mirzakhani defines a new measure µγ as

µγ(B) := lim
t→+∞

card{tB ∩ Oγ}

t6g−6+2n
.

Clearly, for any B we have µγ(B) ≤ µTh(B) since Oγ ⊂ MLg,n(Z), so µγ
belongs to the Lebesgue measure class. By construction µγ is

Modg,n-invariant. Ergodicity of µTh implies that µγ = kγ · µTh where
kγ = const .



Length function and unit ball
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The hyperbolic length ℓγ(X) of a simple closed geodesic γ on a hyperbolic

surface X ∈ Tg,n determines a real analytic function on the Teichmüller space.

One can extend the length function to simple closed multicurves

ℓ∑ aiγi =
∑

aiℓ(γi)(X) by linearity. By homogeneity and continuity the

length function can be further extended to MLg,n. By construction
ℓt·λ(X) = t · ℓλ(X). (Ask S. Kerckhoff for details: that’s his results.)

Notations. Each hyperbolic metric X defines its own “unit ball” BX in MLg,n:

BX := {λ ∈ MLg,n | ℓλ(X) ≤ 1} .

By definition of µTh, the Thurston volume of the unit ball is equal to the
normalized number of integral points in a “ball of radius L” associated to X :

µTh(BX) = lim
L→+∞

card{λ ∈ MLg,n(Z) | ℓλ(X) ≤ L}

L6g−6+2n
.

Denote by bg,n :=

∫

Mg,b

µTh(B(X)) dX the average volume of unit balls .
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Recall that sX(L, γ) denotes the number of simple closed geodesic multicurves

on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .

Finally, Mirzakhani computes the scaling factor kγ is computed as follows:

kγ · bg,n =

∫

Mg,n

kγ · µTh(B(X)) dX =

∫

Mg,n

µγ(B(X)) dX =

=

∫

Mg,n

lim
L→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
dX =

∫

Mg,n

lim
L→+∞

sX(L, γ)

L6g−6+2n
dX =

= lim
L→+∞

1

L6g−6+2n

∫

Mg,n

sX(L, γ) dX = lim
L→+∞

P (L, γ)

L6g−6+2n
dX = c(γ) ,

so kγ = c(γ)/bg,n. Interchanging the integral and the limit we used the

estimate of Mirzahani sX (L,γ)
L6g−6+2n ≤ F (X), where F is integrable over Mg,n.
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Recall that

bg,n :=

∫

Mg,b

µTh(B(X)) dX

denotes the average volume of “unit balls” measured in Thurston measure.

Theorem (M. Mirzakhani, 2008). The quantity bg,n admits explicit expression
as a weighted sum of all c(γ) over (a finite collection) of all topological types

[γ] of multicurves.
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Recall that

bg,n :=

∫

Mg,b

µTh(B(X)) dX

denotes the average volume of “unit balls” measured in Thurston measure.

Theorem (M. Mirzakhani, 2008). The quantity bg,n admits explicit expression
as a weighted sum of all c(γ) over (a finite collection) of all topological types

[γ] of multicurves.

Theorem (M. Mirzakhani, 2008).

bg = VolMV Qg = VolMV Q(14g−4) ,

where VolMV is appropriately normalized Masur–Veech volume.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z., 2017).

bg,n = VolMV Qg,n = VolMV Q(14g−4+n,−1n) .
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Theorem (M. Mirzakhani, 2008). Weil–Petersson volume of the moduli space

of boarded hyperbolic surfaces is a polynomial in lengths of boundary

components b21, . . . , b
2
n. Its term of top degree 3g − 3 + n has the form:

VolWP

(

Mg,n

)

(b21, . . . , b
2
n) =

2

25g−6+2n

∑

|d|=3g−3+n

〈ψd1
1 . . . ψdn

n 〉

d1! . . . dn!
b2d1 . . . b2dn +

+(terms of lower degree). Here 〈ψd1
1 . . . ψdn

n 〉 :=

∫

Mg,n

ψd1
1 . . . ψdn

n .

Example: M1,1M1,1M1,1. Here 3g − 3 + n = 1; 5g − 6 + 2n = 1; 〈ψ1
1〉 =

1
24 , so

VolWP

(

M1,1

)

(b21) =
2

21
〈ψ1〉

1!
b2·11 + lower terms =

1

24
b21+ lower terms .

Example: M1,2M1,2M1,2.
Here 3g − 3 + n = 2; 5g − 6 + 2n = 3; 〈ψ2

1〉 = 〈ψ1ψ2〉 = 〈ψ2
2〉 =

1
24 .

VolWP

(

M1,2

)

(b21, b
2
2) =

2

23

(

〈ψ2
1〉

2! 0!
b2·21 +

〈ψ1ψ2〉

1! 1!
b2·11 b2·12 +

〈ψ2
2〉

0! 2!
b2·22

)

+· · ·

=
1

192
(b41 + 2b21b

2
2 + b42) + lower terms .
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Hyperbolic and flat geodesic multicurves

33 / 36

Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a

hyperbolic surface in M0,7.

2γ1

γ2

γ3

2γ4

Right picture represents the same multicurve this time realized as the union of

the waist curves of horizontal cylinders of a square-tiled surface of the same

genus, where cusps of the hyperbolic surface are in the one-to-one

correspondence with the conical points having cone angle π (i.e. with the
simple poles of the corresponding quadratic differential). The weights of

individual connected components γi are recorded by the heights of the cylinders.
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Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a

hyperbolic surface in M0,7.

2γ1

γ2

γ3

2γ4

Right picture represents the same multicurve this time realized as the union of

the waist curves of horizontal cylinders of a square-tiled surface of the same

genus, where cusps of the hyperbolic surface are in the one-to-one

correspondence with the conical points having cone angle π (i.e. with the
simple poles of the corresponding quadratic differential). The weights of

individual connected components γi are recorded by the heights of the cylinders.

Clearly, there are plenty of square-tiled surface realizing this multicurve.
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Theorem (M. Mirzakhani, 2008). The asymptotic frequency of simple closed

hyperbolic geodesics of fixed topological type does not depend on the choice of

particular hyperbolic metric.

Example 1 (M. Mirzakhani; confirmed experimentally by M. Bell and S. Schleimer)

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
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Theorem (M. Mirzakhani, 2008). The asymptotic frequency of simple closed

hyperbolic geodesics of fixed topological type does not depend on the choice of

particular hyperbolic metric.

Example 1 (M. Mirzakhani; confirmed experimentally by M. Bell and S. Schleimer)

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3

Theorem (Delecroix, Goujard, Zograf, Zorich, 2018). For any topological class Γ
of simple closed multicurves considered up to homeomorphisms of a surface Sg,n,

the associated Mirzakhani’s asymptotic frequency c(Γ) of simple closed
hyperbolic multicurves of type Γ on any hyperbolic surface X ∈ Mg,n

coincides with the asymptotic frequency of simple closed flat geodesic

multicurves of type Γ represented by associated square-tiled surfaces.

——————————————————————–



Separating versus non-separating. Large genus asymptotic .
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Example 2 (M. Mirzakhani, 2008). Genus two; no cusps.

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

6
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Example 2 (M. Mirzakhani, 2008). Genus two; no cusps.

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

24

after correction of a tiny bug in the calculation of Mirzakhani.
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Example 2 (M. Mirzakhani, 2008). Genus two; no cusps.

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48

after further correction of another trickier bug in the calculation of Mirzakhani.

Confirmed by crosscheck with Masur–Veech volume of Q2 computed by

E. Goujard using the method of Eskin–Okounkov. Confirmed by calculation of

M. Kazarian; by independent computer experiment of V. Delecroix; by extremely

heavy and elaborate recent experiment of M. Bell; also nailed by C. Ball.
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Example 2 (M. Mirzakhani, 2008). Genus two; no cusps.

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48

after further correction of another trickier bug in the calculation of Mirzakhani.

Confirmed by crosscheck with Masur–Veech volume of Q2 computed by

E. Goujard using the method of Eskin–Okounkov. Confirmed by calculation of

M. Kazarian; by independent computer experiment of V. Delecroix; by extremely

heavy and elaborate recent experiment of M. Bell; also nailed by C. Ball.

Question. Which simple closed geodesics are more frequent on a closed

hyperbolic surface of large genus: separating or not? What is the asymptotics

of the ratio of their frequencies? Does this ratio stabilize when genus grows?
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Example 2 (M. Mirzakhani, 2008). Genus two; no cusps.

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48

after further correction of another trickier bug in the calculation of Mirzakhani.

Confirmed by crosscheck with Masur–Veech volume of Q2 computed by

E. Goujard using the method of Eskin–Okounkov. Confirmed by calculation of

M. Kazarian; by independent computer experiment of V. Delecroix; by extremely

heavy and elaborate recent experiment of M. Bell; also nailed by C. Ball.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich, 2018–).

lim
L→+∞

Number of separating simple closed geodesics(L)

Number of non-separating simple closed geodesics(L)
∼

1

4g

Random simple closed geodesic on a closed hyperbolic surface of large genus

separates the surface extremely rarely !
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