
1 / 37

Random square-tiled surfaces, Masur-Veech volumes and mea nders

Anton Zorich

(after a joint work with V. Delecroix, E. Goujard and P. Zograf)

Field Theory, Geometry and Statistical Mechanics
in honor of Alexander Gorsky and Senya Shlosman

Independent University of Moscow and Poncelet Center

October 21, 2021



Formula for the Masur–Veech
volume of the moduli space of

quadratic differentials

Formula for the
Masur–Veech volume

• Intersection numbers

• Recursive relations

• Asymptotics

• Volume polynomials

• Ribbon graphs

• Kontsevich’s count of
metric ribbon graphs

• Stable graphs

• Surface
decompositions
• Associated
polynomials

• Volume of Q2

• Volume of Qg,n

Mirzakhani’s count of
closed geodesics

Random multicurves:
genus two

Random square-tiled
surfaces

Meanders count

2 / 37



Intersection numbers (Witten–Kontsevich correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth

complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complex dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.
The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n
determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=
∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional
quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich;

alternative proofs belong to A. Okounkov and R. Pandharipande, to

M. Mirzakhani, to M. Kazarian and S. Lando (and there are more).
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Recursive relations
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Initial data: 〈τ30 〉 = 1, 〈τ1〉 = 1
24 .

String equation:

〈τ0τd1 . . . τdn〉g,n+1 = 〈τd1−1 . . . τdn〉g,n + · · ·+ 〈τd1 . . . τdn−1〉g,n .

Dilaton equation:

〈τ1τd1 . . . τdn〉g,n+1 = (2g − 2 + n)〈τd1 . . . τdn〉g,n .
Virasoro constraints (in Dijkgraaf–Verlinde–Verlinde form; k ≥ 1):

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

[
n∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g

+
1

2

∑

r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn〉g−1

+
1

2

∑

r+s=k−1
r,s≥0

(2r+1)!!(2s+1)!!
∑

{1,...,n}=I
∐

J

〈τr
∏

i∈I
τdi〉g′〈τs

∏

i∈J
τdi〉g−g′

]

.



Uniform large genus asymptotics
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We stated in August 2019 a conjecture which was proved by Amol Aggarwal

already in April 2020.

Theorem (Aggarwal). The following uniform asymptotic formula is valid:

∫

Mg,n

ψd1
1 . . . ψdn

n =

=
1

24g
· (6g − 5 + 2n)!

g! (3g − 3 + n)!
· d1! . . . dn!

(2d1 + 1)! · · · (2dn + 1)!
·
(
1 + ε(d)

)
,

where ε(d) = O
(

1 + (n+log g)2

g

)

uniformly for all n = o(
√
g) and all

partitions d, d1 + · · ·+ dn = 3g − 3 + n, as g → +∞.



Volume polynomials
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n
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1

25g−6+2n d!

∫

Mg,n

ψd1
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n

Up to a numerical factor, the polynomial Ng,n(b1, . . . , bn) coincides with the

top homogeneous part of the Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn)
providing the Weil–Petersson volume of the moduli space of bordered Riemann

surfaces:

V top
g,n (b) = 22g−3+n ·Ng,n(b) .
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Mg,n
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Define the formal operation Z on monomials as

Z :
n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extend it to symmetric polynomials in bi by linearity.



Trivalent ribbon graphs
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This trivalent ribbon graph defines an orientable surface of genus g = 1 with
n = 2 boundary components. If we assigned lengths to all edges of the core

graph, each boundary component gets induced length, namely, the sum of the

lengths of the edges which it follow.

Note, however, that in general, fixing a genus g, a number n of boundary
components and integer lengths b1, . . . , bn of boundary components, we get

plenty of trivalent integral metric ribbon graphs associated to such data. The

Theorem of Kontsevich counts them.



Kontsevich’s count of metric ribbon graphs
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Theorem (M. Kontsevich; in this form — P. Norbury). Consider a collection

of positive integers b1, . . . , bn such that
∑n

i=1 bi is even. The weighted count

of genus g connected trivalent metric ribbon graphs Γ with integer edges and

with n labeled boundary components of lengths b1, . . . , bn is equal to

Ng,n(b1, . . . , bn) up to the lower order terms:

∑

Γ∈Rg,n

1

|Aut(Γ)| NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denote the set of (nonisomorphic) trivalent ribbon graphs Γ of

genus g and with n boundary components.

This Theorem is an important part of Kontsevich’s proof of Witten’s conjecture.



Stable graph associated to a square-tiled surface
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders.
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders. The

associated stable graph Γ is the dual graph to the multicurve. The vertices of Γ
are in the natural bijection with metric ribbon graphs given by components of

S \ γ. The edges are in the bijection with the waist curves γi of the cylinders.

The marked points are encoded by “legs” — half-edges of the dual graph.



10 / 37

b1
1
2 · 1 · b1 ·N1,2(b1, b1) b1 1

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) b1
1 1

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2)

b1 b2
0

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2)

b1 b2
0 1

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3)

b1 b2
b30 0

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3)

b1 b2 b3

0

0
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) = 1

2 · b1
(

1
384(2b

2
1)(2b

2
1)
)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) = 1
4 · b1

(
1
48b

2
1

) (
1
48b

2
1

)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2) = 1

8 · b1b2 ·
(
1
4(2b

2
1 + 2b22)

)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2) = 1

4 · b1b2 ·
(
1
)
·
(

1
48b

2
2

)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3) = 1

16 · b1b2b3 · (1) · (1)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3) = 1

24 · b1b2b3 · (1) · (1)



Volume of Q2
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b1
1

192 · b51
Z7−→ 1

192 ·
(
5! · ζ(6)

)
= 1

1512 · π6

b1

1
9216 · b51

Z7−→ 1
9216 ·

(
5! · ζ(6)

)
= 1

72576 · π6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z7−→ 1
16 · 2

(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

720 · π6

b1
b2

1
192 · b1b32

Z7−→ 1
192 ·

(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

17280 · π6

b1
b2

b3
1
16b1b2b3

Z7−→ 1
16 ·

(
1! · ζ(2)

)3
= 1

3456 · π6

b1
b2

b3
1
24b1b2b3

Z7−→ 1
24 ·

(
1! · ζ(2)

)3
= 1

5184 · π6

VolQ2 =
128
5 ·

(
1

1512 +
1

72576 +
1

720 +
1

17280 +
1

3456 +
1

5184

)
· π6 = 1

15π
6 .

These contributions to VolQ2 are proportional to Mirzakhani’s frequencies of corresponding multicurves.
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Volume of Qg,n
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Theorem (Delecroix, Goujard, Zograf, Zorich). The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
· 1

|AutΓ| ·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.
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Remark. The Weil–Petersson volume of Mg,n corresponds to the constant

term of the volume polynomial Ng,n(L) when the lengths of all boundary

components are contracted to zero. To compute the Masur–Veech volume we
use the top homogeneous parts of volume polynomials; i.e. we use them in the

opposite regime when the lengths of all boundary components tend to infinity.
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Frequencies of multicurves
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Theorem (M. Mirzakhani, 2008). For any integral multi-curve γ and any

hyperbolic surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).
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Theorem (M. Mirzakhani, 2008). For any integral multi-curve γ and any

hyperbolic surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to

the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.



Example
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (M. Mirzakhani, 2008) ; confirmed experimentally in 2017 by M. Bell;

confirmed in 2017 by more implicit computer experiment of V. Delecroix and by

relating it to Masur–Veech volume.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a
hyperbolic surface in M0,7. Right picture represents the same multicurve this

time realized as the union of the waist curves of horizontal cylinders of a

square-tiled surface of the same genus, where cusps of the hyperbolic surface

are in the one-to-one correspondence with the conical points having cone

angle π (i.e. with the simple poles of the corresponding quadratic differential).
The weights of individual connected components γi are recorded by the

heights of the cylinders. Clearly, there are plenty of square-tiled surface

realizing this multicurve.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich, 201 8). For any

topological class γ of simple closed multicurves considered up to

homeomorphisms of a surface Sg,n, the associated Mirzakhani’s asymptotic

frequency c(γ) of hyperbolic multicurves coincides with the asymptotic
frequency of simple closed flat geodesic multicurves of type γ represented by

associated square-tiled surfaces.

Remark. Francisco Arana Herrera recently found an alternative proof of this
result. His proof uses more geometric approach.

Singular layers and ribbon graphs
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What shape has a random simple closed multicurve?
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Picture from a book of Danny Calegari

Questions.

• Which simple closed geodesics are more frequent: separating or

non-separating?

Take a random (non-primitive) multicurve γ = m1γ1 + · · ·+mkγk. Consider

the associated reduced multicurve γreduced = γ1 + · · ·+ γk.

• With what probability that γreduced slices the surface into 1, ..., 2g − 2
connected components?

• With what probability γreduced has k = 1, 2, . . . , 3g − 3 primitive connected

components γ1, . . . , γk?



Separating versus non-separating simple closed curves in g = 2
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

6



Separating versus non-separating simple closed curves in g = 2

20 / 37

Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

24

after correction of a tiny bug in Mirzakhani’s calculation.
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48

after further correction of another trickier bug in Mirzakhani’s calculation.
Confirmed by crosscheck with Masur–Veech volume of Q2 computed by

E. Goujard using the method of Eskin–Okounkov. Confirmed by calculation of

M. Kazarian; by independent computer experiment of V. Delecroix; by

extremely heavy and elaborate recent experiment of M. Bell. Most recently it

was independently confirmed by V. Erlandsson, K. Rafi, J. Souto and by

A. Wright by methods independent of ours.



Multicurves on a surface of genus two and their frequencies
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The picture below illustrates all topological types of primitive multicurves on a

surface of genus two without punctures; the fractions give frequencies of

non-primitive multicurves γ having a reduced multicurve γreduced of the

corresponding type.

16

63

8

15

1

9

1

189

1

45

2

27

In genus 3 there are already 41 types of multicurves, in genus 4 there are 378
types, in genus 5 there are 4554 types and this number grows faster than

exponentially when genus g grows. It becomes pointless to produce tables: we

need to extract a reasonable sub-collection of most common types which

ideally, carry all Thurston’s measure when g → +∞.
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Shape of a random square-tiled surface of large genus?
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Questions.

• With what probability a random square-tiled surface S of genus g has
1, 2, 3, . . . singular horizontal leaves (in blue on the right picture)?

• With what probability a random square-tiled surface S of genus g has

Kg(S) = 1, 2, 3, . . . , 3g − 3 maximal horizontal cylinders (represented by red

waist curves on the left picture)?

• What are the typical heights h1, . . . , hk of the cylinders?

• What is the shape of a random square-tiled surface of large genus?



Shape of a random multicurve (random square-tiled surface)
on a surface of large genus in simple words
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Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). The reduced

multicurve γreduced = γ1 + · · ·+ γk associated to a random integral

multicurve m1γ1 + . . .mkγk separates the surface with probability which
tends to zero as genus g grows. For large g, γreduced has about (log g)/2
components and has one of the following topological types

0.09 log(g) components

. . . . . . . . . . . .

0.62 log(g) components

P

(

0.09 log g < Kg(γ) < 0.62 log g
)

= 1−O
(

(log g)24g−1/4
)

.

A random square-tiled surface (without conical points of angle π) of large genus
has about log(g)

2 cylinders, and all its conical points sit at the same level.
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Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). A random integer

multicurve m1γ1 + · · ·+mkγk with bounded number k of primitive

components is reduced (i.e., m1 = · · · = mk = 1) with probability which
tends to 1 as g → +∞. In other terms, if we consider a random square-tiled

surface with at most K cylinders, the heights of all cylinders would be very

likely equal to 1 for g ≫ 1.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). A general random

integer multicurve m1γ1 + · · ·+mkγk is reduced (i.e., m1 = · · · = mk = 1)

with probability which tends to
√
2
2 as genus grows. More generally, all weights

m1, . . .mk of a random multicurve are bounded from above by an integer m

with probability which tends to
√

m
m+1 as g → +∞.

In other words, for more 70% of square-tiled surfaces of large genus, the

heights of all cylinders are equal to 1.

However, the mean value of m1 + ...+mk is infinite in any genus g.
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Main Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). As g grows, the

probability distribution pg rapidly becomes, basically, indistinguishable from the
distribution of the number of cycles in a (very explicitly nonuniform) random

permutation. In particular, for any k ∈ N the difference of the k-th moments of

the two distributions is of the order O(g−1).

Actually, we have an explicit asymptotic formula for all cumulants. For example

E(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2 + o(1) ,

V(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2− 3

4
ζ(2) + o(1) ,

where γ = 0.5772 . . . denotes the Euler–Mascheroni constant.

Let λ3g−3 = log(6g − 6)/2. We have uniformly in 0 ≤ k ≤ 1.233 · λ3g−3

P
(
Kg(γ) = k+1

)
= e−λ3g−3 ·

λk3g−3

k!
·





√
π

2Γ
(

1 + k
2λ3g−3

) +O

(
k

(log g)2

)


 .
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Meanders and arc systems
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A closed meander is a smooth simple closed curve in the plane transversally
intersecting the horizontal line.

According to S. Lando and A. Zvonkin the notion “meander” was suggested by

V. Arnold though meanders were studied already by H. Poincaré.

Meanders appear in various contexts, in particular in mathematics, physics and
biology.



Meanders and arc systems
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Conjecture (P. Di Francesco, O. Golinelli, E. Guitter, 1997 ). The number of
meanders with 2N crossings is asymptotic to

const ·R2N ·Nα ,

where R2 ≈ 12.26 (value is due to I. Jensen) and α = −29+
√
145

12 .
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.

Compactifying the plane (left picture) with one point at infinity, or gluing

together arc systems on the two discs (right picture) we get an ordered pair of

smooth simple transversally intersecting closed curves on the sphere.

Combinatorial passport



Meanders versus multicurves
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It is much easier to count arc systems (for example, arc systems sharing the

same reduced dual tree). However, this does not simplify counting meanders

since identifying a pair of arc systems with the same number of arcs by the

common equator, we sometimes get a meander and sometimes — a

multicurve, i.e. a curve with several connected components.

Attaching arc systems on a pair of hemispheres along the common equator we

might get a single simple closed curve (as on the left picture) or a multicurve
with several connected components (as on the right picture).
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Fix any connected planar tree TNorth on the northern hemisphere and any

connected planar tree TSouth on the southern hemisphere, each tree having no

vertices of valence 2. Consider all possible pairs of arc systems with the same

number n ≤ N of arcs having TNorth and TSouth as reduced dual trees. There

are 2n ways to identify isometrically the two hemispheres into the sphere in
such way that the endpoints of the arcs match. Consider all possible triples

(n-arc system of type TNorth ; n-arc system of type TSouth ; identification)

as described above for all n ≤ N . Define

Pconnected(TNorth , TSouth ;N) :=
number of triples giving rise to meanders

total number of different triples
.
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Question. What is the asymptotic probability

Pconnected(TNorth , TSouth ;N) ∼ ? as N → +∞

to get a meander (i.e. a connected curve) by a random gluing of a random pair

of arc systems as above with n ≤ N arcs?
Does it behave like N−α? Like exp(−βN)? If so, describe how α

(respectively β) depend on TNorth , TSouth .
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Question. What is the asymptotic probability

Pconnected(TNorth , TSouth ;N) ∼ ? as N → +∞

to get a meander (i.e. a connected curve) by a random gluing of a random pair

of arc systems as above with n ≤ N arcs?
Does it behave like N−α? Like exp(−βN)? If so, describe how α

(respectively β) depend on TNorth , TSouth .

Theorem. For any pair of trees TNorth , TSouth the quantity

Pconnected(TNorth , TSouth ;N) admits a strictly positive limit as N → +∞.

We have an explicit formula for this limit in terms of the total number of vertices

of valence 1, 3, 4, . . . of the two trees.

I have to confess that the fact that this asymptotic frequency is nonzero was

unexpected to me.



Asymptotic frequency of meanders
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Theorem. Let pNorth , pSouth ≥ 2. Let p = pNorth + pSouth . The frequency

Pconnected(pNorth , pSouth ;N) of meanders obtained by all possible

identifications of all arc systems with at most N arcs represented by all

possible pairs of plane trees having pNorth , pSouth of leaves (vertices of
valence one) has the following limit:

lim
N→+∞

Pconnected(pNorth , pSouth ;N) =
1

2

(
2

π2

)p−3

·
(
2p− 4

p− 2

)

.

Example. lim
N→+∞

Pconnected( , , N) =

= lim
N→+∞

Pconnected( , , N) = 280
π6 ≈ 0.291245 .



Meanders with and without maximal arc
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These two meanders have 5 minimal arcs (“pimples”) each.

Meander with a maximal arc (“rainbow”) Meander without maximal arc
contributes to M+

5 (N) contributes to M−
5 (N)

Let M+
p (N) and M−

p (N) be the numbers of closed meanders respectively

with and without maximal arc (“rainbow”) and having at most 2N crossings with
the horizontal line and exactly p minimal arcs (“pimples”). We consider p as a

parameter and we study the leading terms of the asymptotics of M+
p (N) and

M−
p (N) as N → +∞.



Counting formulae for meanders
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Theorem. For any fixed p the numbers M+
p (N) and M−

p (N) of closed

meanders with p minimal arcs (pimples) and with at most 2N crossings have

the following asymtotics as N → +∞:

M+
p (N) =

2

p! (p− 3)!

(
2

π2

)p−2

·
(
2p− 2

p− 1

)2

· N
2p−4

4p− 8
+ o(N2p−4) .

M−
p (N) =

4

p! (p− 4)!

(
2

π2

)p−3

·
(
2p− 4

p− 2

)2

· N
2p−5

4p− 10
+ o(N2p−5) .

Note that M+
p (N) grows as N2p−4 while M−

p (N) grows as N2p−5.
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere.
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horizontal multicurve.
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere. Consider the maximal collection of horizontal
lines passing through the centers of the squares. Color them in red. This is the

horizontal multicurve. Consider the maximal collection of vertical lines

passing through the centers of the squares. Color them in blue. This is the

vertical multicurve. Reciprocally, any transverse connected pair of multicurves

on a sphere defines a square-tiling given by the graph dual to the graph formed

by the pair of multicurves.



Horizontal and vertical foliations are not correlated
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Let ck(L) be the contribution of horizontally k-cylinder square-tiled surfaces

(pillowcase covers) to the Masur–Veech volume of the stratum L, so that

c1(L) + c2(L) + · · · = VolL, and pk(L) = ck(L)/Vol(L). Let

ck,j(L) be the contribution of horizontally k-cylinder and vertically j-cylinder ones.

Theorem. There is no correlation between statistics of the number of
horizontal and vertical maximal cylinders:

ck(L)
Vol(L) =

ckj(L)
cj(L)

.



How we count meanders
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A pair of transverse multicurves associated to a square-tiled surface is

orientable if and only if the square-tiled surface is Abelian. Thus, the count of

positively intersecting pairs of transverse multicurves in genus g corresponds to

the count of Abelian square-tiled surfaces in genus g, i.e. to the evaluation of

the Masur–Veech volumes of the corresponding moduli space of Abelian
differentials. In this way we get the asymptotics c+(g) ·N4g−3 and the

constant c+1 (g) for the count of positively intersecting multicurves.

Pairs (simple closed curve, transverse multicurve) correspond to square-tiled

surfaces having single horizontal band of squares. We found a way to count
such square-tiled surfaces both in the Abelian and in the quadratic case and to

evaluate the constants c1(g, p) and c+1 (g) in the corresponding asymptotics

c1(g, p) ·N6g−6+2p and c+1 (g) ·N4g−3 respectively.

Meanders correspond to square-tiled surfaces having single horizontal and

single vertical band of squares. We apply our non-correlation theorem to get

c1,1(g, p) =
c21(g, p)

c(g, p)
and c+1,1(g) =

(
c+1 (g)

)2

c+(g)
.
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