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Arnold’s problem
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2002-8. The (C,B,A)-permutation of the set {1, 2, . . . , n} transports to the

last place the subset A = {1, 2, . . . , a} preceded by the transported set

B = {a+ 1, . . . , a+ b} while the starting position is occupied by

C = {a+ b+ 1, . . . , n}.

Some of these (n− 1)(n− 2)/2 permutations permute cyclically (like the

addition of a constant to the residues mod n), and some of these cyclic

permutations are transitive (like the addition of the constant 1).

Find the proportion of both the cyclic and the transitive cyclic permutations

among the (C,B,A) -permutations for large n.

More generally, starting from a permutation of k elements, one defines a
permutation of the set {1, . . . , n} from its decomposition into k segments

{ai + 1, ai+1 − 1}. The problem is to study the statistics of the Young

diagrams formed by the cycle lengths of the resulting permutations, for the case

of large n and random decompositions of n into k parts.



Example of a non-cyclic (C,B,A)-permutation
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1 2 3 4 5 6 7 8 9 10 11

Let us chop the interval X = [0, n[ into three subintervals

XA = [0, a[, XB = [a+ 1, a+ b[, and XC = [a+ b+ 1, n[.
In our example A = {1, 2}, B = {3, 4, 5, 6}, C = {7, 8, 9, 10, 11}.



Example of a non-cyclic (C,B,A)-permutation
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1 2 3 4 5 6 7 8 9 10 11

7 8 9 10 11 3 4 5 6 1 2

The decomposition a (C,B,A)-permutation into disjoint cycles can be studied

through the interval exchange transformation placing the subintervals in the

order XC , XB, XA and mapping the resulting interval to the original interval

X by isometry.



Example of a non-cyclic (C,B,A)-permutation
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1 2 3 4 5 6 7 8 9 10 11

It is convenient to use a suspension over the interval exchange transformation

to study its orbits. We get

1 7→ 10
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1 2 3 4 5 6 7 8 9 10 11

It is convenient to use a suspension over the interval exchange transformation

to study its orbits. We get

1 7→ 10 7→ 4
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1 2 3 4 5 6 7 8 9 10 11

It is convenient to use a suspension over the interval exchange transformation

to study its orbits. We get

1 7→ 10 7→ 4 7→ 7



Example of a non-cyclic (C,B,A)-permutation

4 / 39

1 2 3 4 5 6 7 8 9 10 11

It is convenient to use a suspension over the interval exchange transformation

to study its orbits. We get

1 7→ 10 7→ 4 7→ 7 7→
and the first cycle closes up.
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1 2 3 4 5 6 7 8 9 10 11

It is convenient to use a suspension over the interval exchange transformation

to study its orbits. We get

1 7→ 10 7→ 4 7→ 7 7→
and the first cycle closes up.



Example of a non-cyclic (C,B,A)-permutation
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1 2 3 4 5 6 7 8 9 10 11

In a similar way we get the complete cyclic decomposition of our permutation:

(1, 10, 4, 7)(2, 11, 5, 8)(3, 6, 9) .

We considered the example, where |A| = 2, |B| = 4, |C| = 5, and observed

that the resulting (C,B,A)-permutation is not “cyclic” in the sense of Arnold
(and, hence, also non transitive).



Example of a cyclic but nontransitive (C,B,A)-permutation
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1 2 3 4 5 6 7 8 9 10

Choosing |A| = 2, |B| = 4, |C| = 4 we get the following cyclic decomposition

of the resulting (C,B,A)-permutation:

(1, 9, 3, 5, 7)(2, 10, 4, 6, 8)
Forgetting the ordering in the two cycles, we get two unordered sets

{1, 3, 5, 7, 9} ⊔ {2, 4, 6, 8, 10} ,
which mimic orbits of a cyclic permutation (as when adding the constant 2).

However, since there are two distinct orbits and not a single orbit, this

permutation is “cyclic” but not “transitive” in the sense of Arnold.



Example of a transitive (C,B,A)-permutation
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1 2 3 4 5 6 7 8 9 10 11

Choosing |A| = 2, |B| = 5, |C| = 4 we get the following cyclic decomposition

of the resulting (C,B,A)-permutation:

(1, 10, 3, 5, 7, 9, 2, 11, 4, 6, 8)
Our permutation acts transitively on the set {1, . . . , 11}. This permutation is

“transitive” in the sense of Arnold.



Suspension flow on the flat torus
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1 2 3 4 5 6 7 8 9 10 11

Let us look a bit more attentively at the suspension flow over the interval
exchange transformation on the resulting flat surface.



Suspension flow on the flat torus
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1 2 3 4 5 6 7 8 9 10 11

Let us look a bit more attentively at the suspension flow over the interval
exchange transformation on the resulting flat surface. For this we modify the

polygonal pattern of the surface by cutting a triangle on the right and placing it

on the left.



Suspension flow on the flat torus
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1 2 3 4 5 6 7 8

8 9 10 11

Let us look a bit more attentively at the suspension flow over the interval
exchange transformation on the resulting flat surface. For this we modify the

polygonal pattern of the surface by cutting a triangle on the right and placing it

on the left.



Suspension flow on the flat torus
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1 2 3 4 5 6 7 8

8 9 10 11

And then we chop and paste one more triangle



Suspension flow on the flat torus
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1 2 3 4 5 6 7 8

8 9 10 11

And then we chop and paste one more triangle



Suspension flow on the flat torus
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1 2 3 4 5 6 7 8

8 9 10 11

Placing the vertices of the suspension at the points of the lattice Z ⊕ Z ⊂ R2,

we get the completely periodic vertical flow on a flat torus with integral sides.



Suspension flow on the flat torus
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1 2 3

10 11

4 5 6

7 8 9It is convenient to represent the torus

as a cylinder filled with closed vertical
trajectories with twisted identification

of the vertical boundary circles. We re-

cover once again the decomposition of

our permutation into disjoint cycles:

(1, 10, 4, 7)(2, 11, 5, 8)(3, 6, 9) .

In this case it is non-cyclic, because

the endpoints of the interval belong to
distinct vertical leaves.



Suspension flow on the flat torus
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1 2

9 10

3 4

5 6

7 8

The picture on the right illustrates the

vertical flow on the torus correspond-
ing to the second permutation, having

the cyclic structure

(1, 9, 3, 5, 7)(2, 10, 4, 6, 8) .

In this case of cyclic but non-transitive

permutation both endpoints of the in-

terval belong to the same vertical leaf,

but the torus is composed of several
(in our case two) vertical bands of

squares.



Suspension flow on the flat torus
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1

10

3

5

7

9

2

11

4

6

8

The last picture illustrates the verti-

cal flow on the torus corresponding to
the transitive permutation, having the

cyclic structure

(1, 10, 3, 5, 7, 9, 2, 11, 4, 6, 8) .

In this case the torus is composed

of a single vertical band of squares.

Both endpoints of the interval under

exchange necessarily belong to the
same vertical leaf.



Interval exchange as the first return map
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Directional flow on a torus. The first return map of a segment to itself is an
interval exchange transformation of three subintervals unless the endpoints of

the interval accidentally belong to the same trajectory, in which case we get an

interval exchange transformation of two subintervals.



Count of square-tiled tori with two marked points
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Let us count the number of square-tiled tori with two labeled marked points

located at a pair of corners of the squares assuming that the tori are tiled by at

most N ≫ 1 squares. Cutting our flat torus by a vertical waist curve we get a

cylinder with a waist curve of length w ∈ N and a distance between

boundaries h ∈ N. The number of squares in the tiling equals w · h.

t

w

h

t



Count of square-tiled tori with two marked points

12 / 39

We can glue a torus from a cylinder with some integer twist t. Making an

appropriate Dehn twist along the waist curve we can reduce the value of the

twist t to one of the values 0, 1, . . . , w − 1. Fixing the integer perimeter w and

height h of a cylinder we get w square-tiled tori. There are (w · h− 1) ways to

place two labeled marked points at a pair of distinct corners of squares.

t

w

h

t

Number of such tori tiled with at most N squares =
∑

w,h∈N
w·h≤N

w(w · h− 1) ≈

∑

h∈N

∑

w∈N

w≤N

h

w2h ≈
∑

h∈N

1

3
·

(

N

h

)3

· h =
N3

3

∑

h∈N

1

h2
=

N3

3
· ζ(2) =

N3

3
·
π2

6
.



Count when the two marked points are at the same leaf
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We can perform a similar count in the case when both marked points belong to

the same vertical leaf and when the number h of circular vertical bands of

squares is fixed. Now, in addition to the choice of the twist parameter

t ∈ {0, 1, . . . , w − 1} there are (w − 1) ways to place two labeled marked

points at the vertical leaf of length w.

t

w

h

t

The count of the number of tori as above tiled with at most N squares gives

∑

w∈N
w·h≤N

w(w − 1) ≈
∑

w∈N

w≤N

h

w2 ≈
1

3
·

(

N

h

)3

=
N3

3
·
1

h3
.



Asymptotic proportions
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Unexpectedly, the restricted count gives the same order of magnitude N3.

We conclude that the proportion p1;h(N) of square-tiled tori tiled with at most

N squares satisfying the extra conditions:

— they have exactly h vertical circular bands;
— they have both marked points on the same vertical leaf

satisfies lim
N→∞

p1;k(N) =
1

h3
1

ζ(2)
=

1

h3
6

π2
.

In particular,
lim

N→∞
p1;1(N) =

6

π2
.

Denote by ptr(N) the proportion of transitive permutations among all

(C,B,A)-permutations of at most N elements.

Theorem (I. Pak, A. Redlich, 2008)

lim
n→+∞

ptr(N) =
6

π2
.

In the next section we will see that the equality between the two limits is not a

coincidence and we will give a complete answer to Arnold’s problem.
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Canonical suspension over an interval exchange
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Consider an interval exchange transformation (iet) T = (π, λ) of n
subintervals, where T chops the interval [0, λ1 + · · ·+ λn[ into n consecutive

subintervals of lengths λ1, . . . , λn and places them on X preserving the

orientation in the order π−1(1), . . . , π−1(n) without gaps or overlaps.

We always assume that T does not send consecutive intervals to consecutive

intervals, that is π(j + 1) 6= π(j) + 1 for j = 1, . . . , n− 1. (This condition is

slightly weaker than the standard nondegeneracy condition of an iet). We also

assume that π does not have nontrivial invariant subsets of the form {1, ..., k}
(otherwise T acts independently on two disjoint intervals).



Canonical suspension over an interval exchange
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Consider a broken line in the plane formed from vectors ~Vj = (λj , π(j)− j)
and another broken line starting from the same point and composed from the

same vectors now placed in the order π−1(1), . . . , π−1(n) (as subintervals
under exchange). Identifying the corresponding pairs of sides of the resulting

polygon by parallel translations, we get a flat surface. The vertical flow on this

surface realizes a suspension flow over the initial interval exchange. By

convention, we mark the two points of the surface coming from the two vertices

of the polygon corresponding to the endpoints of the broken lines.



Example of suspension
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1 2 3 4 5 6 7 8

~V1

~V2
~V3

~V4

~V4

~V3
~V2

~V1

Suspension over an interval exchange transformation T (π, λ) with parameters

π−1 =

(

1 2 3 4
4 3 2 1

)

λ = (2, 2, 3, 1) .

The associated interval exchange permutation has the form

τ−1 =

(

1 2 3 4 5 6 7 8
8 5 6 7 3 4 1 2

)

.

Vectors ~Vj = (λj, π(j)− j) of the canonical suspension have coordinates

~V1 = (2, 3) ~V2 = (2, 1) ~V3 = (3,−1) ~V4 = (1,−3) .



Bands of periodic trajectories

19 / 39

Definition. We say that cycles C1 and C2 of a permutation τ belong to the

same band, if one can chose k1 ∈ C1 and k2 ∈ C2 such that

τ (j)(k2) = τ (j)(k1) + 1 or τ (j)(k2) = τ (j)(k1)− 1 for all j ∈ Z

and we consider the minimal equivalence relation induced by this property.

The permutation (1, 10, 4, 7)(2, 11, 5, 8)(3, 6, 9) has two bands of cycles,

where the cycles (1, 10, 4, 7) and (2, 11, 5, 8) belong to the same band. The

permutation (1, 9, 3, 5, 7)(2, 10, 4, 6, 8) has a single band of cycles.

We have seen that a (C,B,A)-permutation has a single band of cycles if and

only if it is “cyclic” in the sense of Arnold; it has two band of cycles otherwise.

Important Observation. Consider a permutation τ associated to an integer

interval exchange transformation (π, λ), where λ ∈ Nn. The number of bands
of cycles of τ coincides with the number of maximal cylinders of the vertical

suspension flow on the associated flat surface. (By convention, we mark the

points on the surface (possibly a single point) corresponding to the endpoints of

the interval if they are nonsingular points of the flat metric.)



Why “bands of cycles” and not just cycles?

20 / 39

Fix a permutation π and consider statistics of the number of cycles of a random

interval exchange permutation τ(λ, π) associated to an integer interval

exchange transformation T (λ, π) of the interval [0, N [ as N → ∞. By

“integer” interval exchange we call one with λ ∈ Nd, where d = Card(π).

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich, 202 2). For any

permutation π the mean value of the number of cycles of a random interval

exchange permutation τ(λ, π) is infinite.

For any stratum of Abelian differentials, the mean value of the number of
vertical (horizontal) bands of squares of a random square-tiled surface in this

stratum is infinite.

Remark. Note that for numerous separatrix diagrams, the corresponding mean

value for square-tiled surfaces representing these particular diagrams is finite!

The above Theorem explains why an adequate interpretation of Arnold’s

problem (the most general question about Young diagrams) suggests to

consider bands of cycles and not cycles themselves.



Enhanced solution of Arnold’s problem
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Let π be a non degenerate irreducible permutation. Let Hcomp(m1, . . . ,mn)
be a connected component of a stratum of Abelian differentials ambient for the

canonical suspension over an interval exchange with a permutation π.

Let d = Cardπ be the number of elements in π.

Let VolHcomp(m1, . . . ,mn) and Volk H
comp(m1, . . . ,mn) be respectively

the Masur–Veech volume of the component and the contribution of k-cylinder

square-tiled surfaces to this volume.

Let U be an open bounded set in Rd
+. Denote by tU the set obtained from U

by dilation with coefficient t ∈ R. Denote by IET (π, U, ε) and by

IETk(π, U, ε) respectively the number of (π, λ)-integral interval exchange

transformations such that λ ∈ Nd ∩ 1
ε
U and the number of those of them,

which have exactly k bands of periodic vertical trajectories.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich, 202 0) For any
π, U, k as above one has

lim
ε→+0

IETk(π, I, ε)

IET (π, I, ε)
=

Volk H
comp(m1, . . . ,mn)

VolHcomp(m1, . . . ,mn)
.



Explicit answers for low
dimensional strata
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Volume computation for H(2)
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1

3

∑

p1,p2,p3,h∈N
(p1+p2+p3)h≤N

(p1 + p2 + p3) ≈
N4

24
· ζ(4)

p1

p2p3

p1
p2

p1

∑

p1,p2,h1,h2

p1h1+(p1+p2)h2≤N

p1(p1 + p2)

=
N4

24

[

2 · ζ(1, 3) + ζ(2, 2)
]

=
N4

24
·
5

4
· ζ(4)

VolH(2) = lim
N→∞

2 · 4

N4
·(Number of all surfaces) =

3

4
ζ(4) =

π4

120



Answer to Arnold’s problem for permutations of 4 elements
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• The asymptotic proportion of transitive permutations among all

(4, 3, 2, 1)-permutations equals
4

9ζ(4)
=

40

π4
.

• The asymptotic proportion of “cyclic” permutations (in Arnold’s sense, i.e. of

1-band permutations in our terminology) among all (4, 3, 2, 1)-permutations

equals 4
9 .

• The proportion of 2-band permutations is 5
9 . The larger number of bands is

not realizable for (4, 3, 2, 1)-permutations.

• Permutations (2, 4, 1, 3), (2, 4, 3, 1), (3, 1, 4, 2), (3, 2, 4, 1), (4, 1, 3, 2),
(4, 2, 1, 3), (4, 3, 2, 1) in the Rauzy class of H(2) share the same proportions.

• All the remaining permutations of 4 elements are either degenerate or
reducible.

• A random square-tiled surface in the stratum H(2) has a single maximal

vertical cylinder with probability 4
9 and two maximal cylinders with probability 5

9 .



Multiple zeta-values

25 / 39

Define

ζ(s1, s2, . . . , sk) =
∑

n1,...,nk≥1

1

ns1
1 (n1 + n2)s2 . . . (n1 + · · ·+ nk)sk

.

Multiple zeta-values (MZV) are values of ζ(s1, s2, . . . , sk) at positive integers

sj ∈ N, where sk ≥ 2. For example

ζ(2) =
π2

6
; ζ(4) =

π4

90
; . . . ζ(2n) =

p

q
π2n, where p, q ∈ N .

Conjecturally π, ζ(3), ζ(5), . . . are algebraically independent over Q.

Multiple zeta values satisfy numerous relations. The ones, which we used,
namely

ζ(1, 3) =
1

4
ζ(4); ζ(2, 2) =

3

4
ζ(4) ,

were already known to L. Euler.



Contributions Volk H(3, 1) of k-cylinder surfaces to VolH(3, 1)
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Vol1H(3, 1) =
ζ(7)

15

Vol2H(3, 1) =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

45

Vol3H(3, 1) =
1

90

(

12 ζ(6)− 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5)− 250 ζ(1, 6)− 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4)− 52 ζ(2, 5) + 6 ζ(3, 3)− 82 ζ(3, 4)

+ 6 ζ(4, 2)− 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5)− 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3)− 120 ζ(1, 4, 2)− 54 ζ(2, 1, 4)− 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2)− 88 ζ(3, 1, 3)− 34 ζ(3, 2, 2)− 48 ζ(4, 1, 2)

)

Vol4H(3, 1) =
2ζ(2)

45

(

ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)

.



After simplification
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Multiple zeta values satisfy numerous relations. After simplification (which is

now accessible through a SAGE package) we get

Vol1H(3, 1) = 1/15 · ζ(7)

Vol2H(3, 1) = –7/135 · ζ(1, 6) + 1/135 · ζ(2, 5) + 23/135 · ζ(7)

Vol3H(3, 1) = –2/15 · ζ(1, 6)− 2/45 · ζ(2, 5) + 1/5 · ζ(6)− 4/45 · ζ(7)

Vol4(H(3, 1) = 5/27 · ζ(1, 6) + 1/27 · ζ(2, 5) + 7/45 · ζ(6)− 4/27 · ζ(7)

Conjecturally, multiple zeta values involved in these simplified expressions are

linearly independent over rational numbers. However, the total contribution is a
rational multiple of π2g in accordance with the general result by A. Eskin and

A. Okounkov, 2001:

VolH(3, 1) = Vol1H(3, 1) + · · ·+Vol4H(3, 1) =
16

45
ζ(6) =

16

42525
π6



Conjecture on Delecroix sums
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Conjecture (V. Delecroix, A. Zorich). For any connected component of any

stratum H(m1, . . . ,mn) of Abelian differentials and for any positive integer k,

the contribution Volk H
comp(m1, . . . ,mn) of k-cylinder square-tiled surfaces

to the Masur-Veech volume of the component of the stratum is a is a linear

combination of multiple zeta values with rational coefficients.

For k = 1 this fact is elementary; for k = 2 it is relatively easy to prove; for
k = 3 it is already a nontrivial theorem due to B. Allombert and V. Delecroix.

These three rigorous results valid for all strata combined with further direct

computations in small genera strongly corroborate to the conjecture.

This (conjectural) form of contribution of k-cylinder square-tiled surfaces
indicates that they might have geometric meaning which we do not understand

yet. It is a great challenge to interpret these contributions as certain periods

and relate them to cycles in the moduli space. The arithmetic properties of the

“Delecroix sums” which appear as contributions of individual separatrix

diagrams to the Masur-Veech volumes are interesting by themselves.
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Vol5(H(2, 1, 1)) =
1

1260
·
(

10ζ(2)ζ(4)−30ζ(2)ζ(5)+77ζ(6)+20ζ(2)ζ(6)−231ζ(7)

+ 154ζ(8) + 40ζ(3)ζ(1, 2) + 64ζ(2)ζ(1, 3) + 32ζ(3)ζ(1, 3)

− 24ζ(4)ζ(1, 3) + 138ζ(2)ζ(1, 4)− 96ζ(3)ζ(1, 4)− 326ζ(1, 5)

− 240ζ(2)ζ(1, 5)− 1650ζ(1, 6) + 2736ζ(1, 7) + 17ζ(2)ζ(2, 2)

+ 32ζ(3)ζ(2, 2)− 12ζ(4)ζ(2, 2) + 27ζ(2)ζ(2, 3)

− 56ζ(3)ζ(2, 3) + 26ζ(2, 4)− 54ζ(2)ζ(2, 4)− 805ζ(2, 5)

+ 1146ζ(2, 6)− 14ζ(2)ζ(3, 2)− 12ζ(3)ζ(3, 2) + 54ζ(3, 3)

+ 16ζ(2)ζ(3, 3)− 407ζ(3, 4) + 524ζ(3, 5) + 96ζ(4, 2)

+ 12ζ(2)ζ(4, 2)− 268ζ(4, 3) + 234ζ(4, 4)− 272ζ(5, 2)

+ 176ζ(5, 3) + 160ζ(6, 2) + 108ζ(1, 1, 4)− 468ζ(1, 1, 5)

+ 240ζ(1, 1, 6)− 22ζ(1, 2, 3)− 558ζ(1, 2, 4) + 576ζ(1, 2, 5)

− 42ζ(1, 3, 2)− 304ζ(1, 3, 3) + 336ζ(1, 3, 4)− 258ζ(1, 4, 2)

+ 264ζ(1, 4, 3) + 336ζ(1, 5, 2) + 6ζ(2, 1, 3)− 282ζ(2, 1, 4)

+ 336ζ(2, 1, 5) + 27ζ(2, 2, 2)− 454ζ(2, 2, 3) + 432ζ(2, 2, 4)

− 365ζ(2, 3, 2) + 400ζ(2, 3, 3) + 330ζ(2, 4, 2)− 40ζ(3, 1, 2)

− 116ζ(3, 1, 3) + 120ζ(3, 1, 4)− 240ζ(3, 2, 2) + 244ζ(3, 2, 3)

+ 192ζ(3, 3, 2) + 48ζ(4, 1, 3) + 108ζ(4, 2, 2)
)



After simplification
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After simplification (which is now accessible through a SAGE package) we get

Vol1 H(2, 1, 1) = 7/180 · ζ(8)

Vol2 H(2, 1, 1) = −2/63 · ζ(1, 7) + 1/63 · ζ(2, 6) + 1/36 · ζ(7) + 59/756 · ζ(8)

Vol3 H(2, 1, 1) = 8/63 · ζ(1, 1, 6)− 1/378 · ζ(1, 6)− 26/63 · ζ(1, 7)

+ 61/3780 · ζ(2, 5)− 4/63 · ζ(2, 6) + 953/3780 · ζ(7)− 1213/7560 · ζ(8)

Vol4 H(2, 1, 1) = −16/63 · ζ(1, 1, 6)− 365/756 · ζ(1, 6) + 58/63 · ζ(1, 7)

− 187/1890 · ζ(2, 5) + 5/63 · ζ(2, 6) + 1/18 · ζ(6) + 983/3780 · ζ(7)− 83/280 · ζ(8)

Vol5 H(2, 1, 1) = 8/63 · ζ(1, 1, 6) + 367/756 · ζ(1, 6)− 10/21 · ζ(1, 7)

+ 313/3780 · ζ(2, 5)− 2/63 · ζ(2, 6) + 7/36 · ζ(6)− 2041/3780 · ζ(7) + 257/756 · ζ(8)

VolH(2, 1, 1) = 1/4 · ζ(6)

Conjecturally, multiple zeta values involved in these simplified expressions are

linearly independent over rational numbers. Once again, the total contribution is

a rational multiple of π2g in accordance with the general result by A. Eskin and
A. Okounkov, 2001:

VolH(2, 1, 1) = Vol1H(2, 1, 1) + · · ·+Vol5H(2, 1, 1) =
1

4
ζ(6) =

π6

3780
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The moduli space of Abelian differentials Hg is the space of pairs (Riemann

surface, holomorphic 1-form on it) considered up to a natural quotient. The

moduli space of Abelian differentials Hg is a total space of a holomorphic

vector bundle over the moduli space Mg of Riemann surfaces with a fiber Cg .

The space Hg is stratified by degrees of zeroes of holomorphic one forms. A

stratum H(m1, . . . ,mn), where m1 + · · ·+mn = 2g − 2, in general does
not fiber over Mg. For example, the dimension of the smallest stratum (of the

one, for which all zeroes have merged to a single zero of degree 2g − 2) is

much less than the dimension of Mg : such a differential cannot be found on a

general Riemann surface:

2g − 1 = dimPH(2g − 2) < dimMg = 3g − 3 for g > 2 .
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Connected components of strata provide natural ergodic components of the

Teichmüller flow, which explains importance of classification of components for

problems of dynamics.

For every hyperelliptic Riemann surface it is easy to construct 2g + 2
holomorphic 1-forms having a single zero of maximal multiplicity 2g − 2 at one

of the 2g+2 Weierstrass points. For each Weierstrass point the corresponding

1-form is defined up to a multiplicative constant. An elementary dimension

count shows that the resulting hyperelliptic locus in the stratum H(2g − 2) has

the dimension of the stratum, and, hence, forms a connected component of it.

Proof. We first construct a meromorphic quadratic differential q on CP1 having

a single zero of degree 2g − 3 and 2g + 1 simple poles. Location of the zero

and of the poles defines q up to a multiplicative constant. We can choose freely

a configuration of 2g+2 points. A modular transformation sends three points to

0, 1,∞, which leaves 2g free parameters. The quadratic differential induced on
the double cover ramified at all zeroes and poles of q is a square of a globally

defined holomorphic 1-form in Hhyp(2g− 2). Thus, dimHhyp(2g− 2) = 2g.

The ambient stratum has the same dimension dimH(2g − 2) = 2g.
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Connected components of strata provide natural ergodic components of the

Teichmüller flow, which explains importance of classification of components for

problems of dynamics.

For every hyperelliptic Riemann surface it is easy to construct 2g + 2
holomorphic 1-forms having a single zero of maximal multiplicity 2g − 2 at one

of the 2g+2 Weierstrass points. For each Weierstrass point the corresponding

1-form is defined up to a multiplicative constant. An elementary dimension

count shows that the resulting hyperelliptic locus in the stratum H(2g − 2) has

the dimension of the stratum, and, hence, forms a connected component of it.

A similar dimension count shows that the hyperelliptic locus has full dimension

in exactly one other stratum, namely, in H(g − 1, g − 1). The two zeroes of

any holomorphic differential in the hyperelliptic component Hhyp(g − 1, g − 1)
are in involution. The complementary hyperelliptic locus, for which the two

zeroes are fixed by the involution, has complex codimension 1.
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If multiplicities (orders) of all zeroes of a holomorphic 1-form ω are even, ω
carries odd or even spin-structure. It is defined as the parity of the dimension of

the linear system corresponding to the divisor 1
2K(ω). Deformations of the pair

(Riemann surface, holomorphic 1-form) inside the ambient stratum make

change this dimension. However, by independent results of M. Atiyah and
D. Mumford, the jumps of dimension are always even. Thus, the parity of the

spin-structure depends only on the connected component of the ambient

stratum H(2k1, . . . , 2kn).

Merging several zeroes of even degrees of the holomorphic 1-form into a single

zero by a continuous deformation we again get a 1-form with zeroes of even

degrees. Results of M. Atiyah and D. Mumford imply that it would define the

same parity of the spin structure as the original 1-form.

Another way to define the parity of the spin-structure uses the flat metric
inherited from the holomorhic 1-form and the induced Gauss map on smooth

representatives of a basis of cycles on the Riemann surface.
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Consider a simple smooth closed path ρ on a flat surface avoiding conical

singularities. At any point of the surfaces we know where is the “direction to the

North”. Hence, at any point z = ρ(t) we can apply a compass and measure

the direction of the tangent vector ż. Moving along ρ we make the tangent

vector turn in the compass.
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Consider a simple smooth closed path ρ on a flat surface avoiding conical

singularities. At any point of the surfaces we know where is the “direction to the

North”. Hence, at any point z = ρ(t) we can apply a compass and measure

the direction of the tangent vector ż. Moving along ρ we make the tangent

vector turn in the compass.

We get a map G(ρ) : S1 → S1 from the parameterized closed path to the
circumference of the compass. This map is called the Gauss map.

We define the index ind(ρ) of the path ρ as a degree of the corresponding
Gauss map (or, in other words as the algebraic number of turns of the tangent

vector around the compass) taken modulo 2.

ind(ρ) = degG(ρ) mod 2
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It is easy to see that ind(ρ) does not depend on parametrization. Moreover, it

does not change under small deformations of the path.

Exercise. If a conical point P has a cone angle which is an odd multiple of 2π,
then bypassing P on one side or on the other we get the same ind(ρ).
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It is easy to see that ind(ρ) does not depend on parametrization. Moreover, it

does not change under small deformations of the path.

Exercise. If a conical point P has a cone angle which is an odd multiple of 2π,
then bypassing P on one side or on the other we get the same ind(ρ).

Consider a collection of simple closed smooth paths a1, b1, . . . , ag, bg
representing a symplectic basis of homology H1(S,Z/2Z). We define a parity

of the spin-structure of a flat surface S ∈ H(2d1, . . . , 2dn) as

φ(S) =
∑g

i=1 (ind(ai) + 1) (ind(bi) + 1) mod 2

Exercise. Compute a parity of the spin structure for a flat torus.
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Theorem (M. Kontsevich, A. Zorich) General case: g ≥ 4.

• The stratum H(2g − 2) has three connected components: the hyperelliptic

one, Hhyp(2g − 2), and two other components: Heven(2g − 2) and

Hodd(2g − 2) corresponding to even and odd spin structures.
• The stratum H(2l, 2l), l ≥ 2 has three connected components: the

hyperelliptic one, Hhyp(2l, 2l), and two other components: Heven(2l, 2l) and

Hodd(2l, 2l).
• All the other strata of the form H(2l1, . . . , 2ln), where all li ≥ 1, have two

connected components: Heven(2l1, . . . , 2ln) and Hodd(2l1, . . . , 2ln),
corresponding to even and odd spin structures.
• The strata H(2l − 1, 2l − 1), l ≥ 2, have two connected components; one

of them, Hhyp(2l − 1, 2l − 1), is hyperelliptic; the other one,

Hnonhyp(2l − 1, 2l − 1), is not.

• All other strata of Abelian differentials on complex curves of genera g ≥ 4
are nonempty and connected.



Classification Theorem: low genera
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The theorem below shows that in genera g = 2, 3 some components are

missing with respect to the general case.

Theorem

• The moduli space of Abelian differentials on a complex curve of genus

g = 2 contains two strata: H(1, 1) and H(2). Each of them is connected

and coincides with its hyperelliptic component.
• Each of the strata H(2, 2), H(4) of the moduli space of Abelian

differentials on a complex curve of genus g = 3 has two connected

components: the hyperelliptic one, and one having odd spin structure. The

other strata are connected for genus g = 3.
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• Check that the following two flat surfaces belong to the stratum H(4).

• Compute the parity of the spin structure for these surfaces
(and notice that it is not the same).

• Determine which of the two surfaces is hyperelliptic.

• Find the hyperelliptic involution of this surface in geometric terms. Find the

Weierstrass points (the fixed points of the hyperelliptic involution). Check that

there are 2g + 2 such points.
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