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March 7, 2024



Diffeomorphisms of surfaces
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surfaces
• Diffeomorphisms of
surfaces
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the moduli space of tori
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diffeomorphisms

• Closed geodesics in
the space of tori
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spaces

Magic Wand Theorem
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Observation 1. Surfaces can wrap around themselves.

Cut a torus along a horizon-

tal circle.
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It maps the square pattern of the torus to a parallelogram pattern. Cutting and

pasting appropriately we can transform the new pattern to the initial square.
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Note that following this closed path we come back to the original square torus

having twisted the homology!
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Consider a composition

of two Dehn twists g = fv ◦ fh = ◦
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Consider eigenvectors ~vexp and ~vcontr of the linear transformation

A =

(

1 1
1 2

)

corresponding to the eigenvalues λ > 1 and to 1/λ < 1

respectively. Consider two transversal foliations on the original torus in

directions of ~vexp and of ~vcontr . We have just proved that expanding our torus

T
2 by factor λ in direction ~vexp and contracting it by the factor λ in direction

~vcontr we get the original torus.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor et in directions ~vexp
and contracting with a factor e−t in direction ~vcontr . By construction such

one-parameter family defines a closed curve in the space of flat tori: after the

time t0 = log λ it closes up and follows itself.

One can check that this closed curve is, actually, a closed geodesics in the

moduli spaces of tori.

Compute asymptotic intersection number in this particular case
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Dynamics in the moduli spaces

Diffeomorphisms of
surfaces

Dynamics in the moduli
spaces

• From flat to complex
structure
• From complex to flat
structure

• Volume element

• Group action
• Masur—Veech
Theorem

Magic Wand Theorem
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Holomorphic 1-form associated to a flat structure
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Consider the natural coordinate z in the complex plane, where lives the

polygon. In this coordinate the parallel translations which we use to identify the

sides of the polygon are represented as z′ = z + const.

Since this correspondence is holomorphic, our flat surface S with punctured

conical points inherits the complex structure. This complex structure extends to

the punctured points.

Consider now a holomorphic 1-form dz in the complex plane. The coordinate z
is not globally defined on the surface S. However, since the changes of local

coordinates are defined as z′ = z + const, we see that dz = dz′. Thus, the

holomorphic 1-form dz on C defines a holomorphic 1-form ω on S which in
local coordinates has the form ω = dz.

The form ω has zeroes exactly at those points of S where the flat structure has

conical singularities.
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Flat structure defined by a holomorphic 1-form
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• Reciprocally a pair (Riemann surface, holomorphic 1-form) uniquely defines

a flat structure: z =
∫

ω.

• In a neighborhood of zero a holomorphic 1-form can be represented as

wd dw, where d is the degree of zero. The form ω has a zero of degree d
at a conical point with cone angle 2π(d+ 1). Moreover,
d1 + · · ·+ dn = 2g − 2.

• The moduli space Hg of pairs (complex structure, holomorphic 1-form) is a

C
g-vector bundle over the moduli space Mg of complex structures.

• The space Hg is naturally stratified by the strata H(d1, . . . , dn)
enumerated by unordered partitions d1 + · · ·+ dn = 2g − 2.

• Any holomorphic 1-forms corresponding to a fixed stratum H(d1, . . . , dn)
has exactly n zeroes P1, . . . , Pn of degrees d1, . . . , dn.

• The vectors defining the polygon from the previous picture considered as

complex numbers are the relative periods
∫ Pj

Pi
ω of ω, so each stratum

H(d1, . . . , dn) is modelled on the relative cohomology
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Note that the vector space H1(S, {P1, . . . , Pn} ; C) contains a natural
integer lattice H1(S, {P1, . . . , Pn} ; Z ⊕

√
−1Z). Consider a linear volume

element dν normalized in such a way that the volume of the fundamental

domain in this lattice equals one. Consider now the real hypersurface

H1(d1, . . . , dn) ⊂ H(d1, . . . , dn) defined by the equation area(S) = 1. The

volume element dν can be naturally restricted to the hypersurface defining the
volume element dν1 on H1(d1, . . . , dn).

Theorem (H. Masur; W. A. Veech) The total volume Vol(H1(d1, . . . , dn)) of

every stratum is finite.

The Masur–Veech volumes of the first several low-dimensional strata were

computed by M. Kontsevich and A. Zorich about 2000. The first efficient
algorithm for evaluation of the Masur–Veech volume was found by A. Eskin and

A. Okounkov. In particular, they proved that the Masur–Veech volume of any

stratum always has the form (p/q)π2g where p/q is a rational number. By

2003 A. Eskin computed these rational numbers up for all strata to genus 10.

By now we have much better knowledge of Masur–Veech volumes; we will

discuss them in more details later in these lectures.
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The subgroup SL(2,R) of area preserving linear transformations acts on the

“unit hyperboloid” H1(d1, . . . , dn). The diagonal subgroup
(

et 0
0 e−t

)

⊂ SL(2,R) induces a natural flow on the stratum, which is called

the Teichmüller geodesic flow.

Key Theorem (H. Masur; W. A. Veech) The action of the groups SL(2,R)

and

(

et 0
0 e−t

)

preserves the measure dν1. Both actions are ergodic with

respect to this measure on each connected component of every stratum
H1(d1, . . . , dn).
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Theorem of Masur and Veech claims that taking an arbitrary octagon as below

we can contract it horizontally and expand vertically by the same factor et to get

arbitrary close to, say, regular octagon.

Compute asymptotic intersection number again



Masur—Veech Theorem

12 / 18

Theorem of Masur and Veech claims that taking an arbitrary octagon as below

we can contract it horizontally and expand vertically by the same factor et to get

arbitrary close to, say, regular octagon.

There is no paradox since we are allowed to cut-and-paste!

−→ =

Compute asymptotic intersection number again



Masur—Veech Theorem

12 / 18

Theorem of Masur and Veech claims that taking an arbitrary octagon as below

we can contract it horizontally and expand vertically by the same factor et to get

arbitrary close to, say, regular octagon.

−→ =

The first modification of the polygon changes the flat structure while the second
one just changes the way in which we unwrap the flat surface

Compute asymptotic intersection number again
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Magic Wand Theorem (A. Eskin–M. Mirzakhani–A. Mohammadi, 2 014).
The closure of any SL(2,R)-orbit is a suborbifold. In period coordinates any

GL(2,R)-orbit closure is represented by a complexification of an R-linear

subspace.

Any ergodic SL(2,R)-invariant measure is supported on a suborbifold. In

period coordinates this suborbifold is represented by an affine subspace, and

the invariant measure is just a usual affine measure on this affine subspace.

Theorem (S. Filip, 2014) Any GL(2,R)-invariant orbifold is, actually, an

algebraic variety characterized by special arithmetic conditions.

Further developements (A. Eskin–C. McMullen–R. Mukamel–A . Wright,
2017). New examples of nontrivial SL(2,R)–invariant orbifolds coming from

families of “optimal billiards in quadrilaterals”.

Further developements (M. Mirzakhani–A. Wright, 2017). Hundreds of
examples of triangles with small rational angles leading to orbit closures which

are as big as a priori possible.
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Fields Medal
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At the International Congress of Mathematics in 2014 Maryam Mirzakhani has

received a Fields Medal for “for her exceptional contributions to dynamics and

geometry of Riemann surfaces and their moduli spaces” becoming the first

woman to receive the Fields Medal.



Breakthrough Prize
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Alex Eskin got 2020 Breakthrough Prize in Mathematics “for revolutionary

discoveries in the dynamics and geometry of moduli spaces of Abelian

differentials, including the proof of the “Magic Wand Theorem” with Maryam

Mirzakhani.”



Why the Magic Wand Theorem is astonishing
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For most of dynamical systems (including very nice and gentle ones) certain

individual trajectories are disastrously complicated. In particular, after many

iterations they might fill wired fractal sets.

For example, the map f : x 7→ {2x} homogeneously winding the circle

S1 = R/Z twice around itself has orbits with orbit closures of (basically) any

Hausdorff dimension between 0 and 1. The same map has infinite orbits
avoiding certain arcs of the circle, etc. Even such elementary maps have

certain (rare) orbits with a very bizarre behavior.

Bernoulli shift. In the binary representation of a real number x ∈ [0; 1[

x =
n1

2
+ · · ·+ nk

2k
+ · · · ,

all the binary digits nk are zeroes or ones. The map f acts on a sequence
(n1, n2, . . . , nk, . . . ) by erasing the first digit. This coding shows that we have,

basically, a complete freedom in constructing orbits of f with peculiar behavior.
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Consider one of the nicest possible dynamical systems: the geodesic flow on a

closed compact Riemann surface of negative curvature. Its orbits live in the

three-dimensional unit tangent bundle to the hyperbolic surface.
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Folklore Theorem (H. Furstenberg versus B. Weiss). For any Riemann

surface C of constant negative curvature and any real number d, such that

1 ≤ d ≤ 3, there is a trajectory of the geodesic flow on the unit tangent bundle
to C such that its closure has Hausdorff dimension d.
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Consider one of the nicest possible dynamical systems: the geodesic flow on a

closed compact Riemann surface of negative curvature. Its orbits live in the

three-dimensional unit tangent bundle to the hyperbolic surface.

Folklore Theorem (H. Furstenberg versus B. Weiss). For any Riemann

surface C of constant negative curvature and any real number d, such that

1 ≤ d ≤ 3, there is a trajectory of the geodesic flow on the unit tangent bundle
to C such that its closure has Hausdorff dimension d.

Situation with “geodesics” of higher dimensions is completely different.

Theorem (N. Shah). In a compact manifold of constant negative curvature,

the closure of a totally geodesic, complete (immersed) submanifold of

dimension at least 2 is a totally geodesic immersed submanifold.

The moduli space is not a homogeneous space, so a priori there were no

reasons to hope for a rigidity theorem like the Magic Wand Theorem of Eskin,

Mirzakhani, and Mohammadi!
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