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Ramification point
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An attempt of a graphical representation of a neighborhood U of the point O =
(0, 0) of the Riemann surface C given by equation z = w2, where U is “seen

from different angles”. Here the bottom plane symbolizes the complex plane C

endowed with a coordinate z. Note that the point O = (0, 0) is nonsingular:

we just cannot use z as a local coordinate in U , as we cannot use y as a local

coordinate in a neighborhood of (0, 0) on a real parabola y = x2.



General ramification point
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An schematic representation of a neighborhood of a ramification point of degree

n on a Riemann surface C given in local coordinates by equation z = wn.

Traditionally by a ramification point P̂ we call a point on a branched cover Ĉ ,

and by a branch point P = p(P̂ ) we call its image under the cover p : Ĉ → C .



Example: conical singularity with cone angle 6π
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Locally a neighborhood of a conical point looks like a “monkey saddle”.

A neighborhood of this conical point with a cone angle 6π can be glued from

six metric half discs. If we consider a ramified triple cover over a regular flat
domain, then this would be a shape of the induced flat metric on the cover in a

neighborhood of a ramification point. The conical point is a singularity of the

metric; it is non-singular as a point of a smooth surface (complex curve)



Holomorphic 1-form in a neighborhood of a zero
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We say that a holomorphic 1-form ω on a Riemann surface X has a zero of

degree k at a point P of X , if one can choose a coordinate w in a

neighborhoodW(w) of P in which ω has the form ω = wk dw.

Example. Consider a ramified cover p : C(u) → C(z) of degree k + 1 defined

by equation z = uk+1. Consider a holomorphic form ω = dz defined in a

neighborhood of 0 in the image of p. The induced 1-form in the preimage has

the form p∗ω = d(z(u)) = d(uk+1) = (k + 1)uk du. Changing the
coordinate u to a coordinate w = ( k

√
k + 1)u we see that ω = wkdw has a

zero of degree k at the preimage of the cover.

This explains why a zero of degree k of a holomorphic 1-form corresponds to a

conical singularity of a flat metric with cone angle 2π(k + 1), which, in turn,

corresponds to a ramified cover of degree k + 1 over a regular point of a flat

metric.



Riemann–Hurwitz formula
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Consider a ramified cover p : Ŝ → S of degree N with ramifications points

P̂1, . . . , P̂k. Let d1, . . . , dk be the corresponding ramification indices. Then

χ(Ŝ) = N · χ(S)−
k∑

j=1

(dj − 1) .

Proof. Consider a triangulation of S having vertices at all branch points (and

possibly at other points). Consider induced triangulation of Ŝ. Using the

resulting triangulations we compute Euler characteristic of Ŝ in terms of Euler
characteristic of S taking into consideration a defect coming from ramification

points.

Excercise. Using Riemann–Hurwitz formula prove that a hyperelliptic surface

given by equation

w2 = (z − z1)(z − z2) . . . (z − z2g+2) ,

has genus g.
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Hyperelliptic surfaces
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A Riemann surface C given by equation w2 = (z − z1)(z − z2) . . . (z − zn),
where zi 6= zj are distinct complex numbers when i 6= j is called hyperelliptic.

Compactifying the complex plane C(z) at infinity and compactifying C we get a

natural double cover P : C → CP1 having double ramifications over the
points z1, . . . , zn of CP1 = C.

Excercise. Verify that the cover p has double ramification at z =∞ ∈ CP1 if

n is odd, otherwise it is unramified at z =∞ ∈ CP1.
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Suppose that n is even: n = 2k. Removing segments [z1, z2],..., [z2k−1, z2n]
from C and their preimages, we get already a regular (unramified) douvle cover.



Elliptic curve
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A schematic graphical representation of a (complex) elliptic curve

w2 = (z − z1)(z − z2)(z − z3)(z − z4) ,

with real zi. Pictures represent the same surface seen from different angles.



Basis of cycles on a hyperelliptic surface
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Verify that preimages of closed curves encircling segments [z1, z2], [z2, z3], ...,

[z2g, z2g+1] are closed curves which form a basis of cycles on Ĉ .
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Poincaré duality.
Intersection number

12 / 39



Flat metric associated to meromorphic quadratic different ial
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Definition 1. In a simply-connected coordinate chart U , in which a

meromorphic quadratic differential q(w) = φ(w) · (dw)2 does not have

zeroes and poles, it can be represented as a square of a holomorphic 1-form

q(w) = (±ω(w))2 = (±
√

φ(w)dw)2. The form ω is defined up to a sign. It

induces a flat metric, which does not depend on the choice of the sign. It also
determines vertical and horizontal foliations orthogonal in our flat metric.

Definition 2. Let w = u+ iv. Define a volume element in local coordinates as

− 1

2i
|φ(w)| dw ∧ dw̄ = |φ(w)| dx ∧ dy

and a length element as
√
|φ(w)| |dw| =

√
|φ(w)|

√
du2 + dv2 .

Exercise. Prove that the definition does not depend on coordinates: defining

the length and volume element in different coordinates we get the same
geometric objects. (See, sections 7.2 and 8.1.3 of notes of B. Petri for details.)

Exercise. Prove equivalence of the two definitions.



Canonical double cover
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Any nonorientable surface admits a canonical double cover which is already

orientable. Namely, we take an atlas of simply-connected charts and take two

copies of every chart. If transporting a tangent frame along a closed path we

get the initial orientation, we say that we got to the same point, if not — to its
twin point.

A quadratic differential q on a Riemann surface X defines a flat metric with

holonomy group Z/2Z. Similarly to the previous case, there exists a canonical

double cover p : X̂ → X such that the induced flat metric on X̂ has already

trivial holonomy. In other words, the pull-back of q to X̂ is a square of a globally
defined meromorphic 1-form ω̂, that is p∗q = (ω̂)2.

From now on we assume that the quadratic differential q has at most simple

poles. The associated flat metric has cone angle (k + 2)π at a zero of q of

degree k. (This includes the case k = −1 corresponding to a simple pole, and
k = 0 corresponding to a marked regular point.) Thus, holonomy of the flat

metric along a short closed path going around a singularity is nontrivial if and

only if it is a simple pole or a zero of odd degree. Simple poles and zeroes of

odd degree are the only ramification points of the canonical double cover p.



Canonical double cover
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Let us compute degrees of zeroes of the resulting 1-form ω̂. If P is a regular

(non-branch) point on X , and the quadratic differential has a zero of degree 2k
at P , then in an appropriate local coordinate w in a neighborhood of P it has

the form q = w2k (dw)2. The same coordinate charts can be used on each of

the two sheets of the cover, so (ω̂)2 = p∗q = (wk dw)2. Thus, there are two
zeroes of the form ω̂ of degree k over each zero of q of even degree 2k.

If q has a zero of odd degree, or a pole at a point P , i.e. q = w2k−1 (dw)2 in a

local coordinate in a neighborhood of P , then P is a branch point of the

canonical cover. In a local coordinate w around the preimage of P on the cover
X̂ , the ramified double cover has a form w = u2. Thus, on the cover we have

p∗q = (u2)2k−1
(
d(u2)

)2
= u4k−2 (2udu)2 = 4u4k (du)2 = (2u2k du)2 .

We see that the form ω̂ has a single zero of degree k over each zero of q of

odd degree 2k − 1. In particular, simple poles of q (which correspond to

k = 0) give rise to regular points of ω̂.



Example
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Consider a quadratic differential

q =
dz2

(z − z1)(z − z2)(z − z3)(z − z4)

on CP1, where we assume that zi 6= zj for i 6= j. Clearly, q has simple poles

at zi, i = 1, . . . , 4. Note that the sum of degrees of zeroes and poles of a

meromorphic quadratic differential on a surface of genus g (where we count

degrees of poles with sign minus) equals 4g − 4. Thus, q should have a

regular point at∞. This can be verified by a direct computation. Let u = 1
z

be
a local coordinate in a neighborhood of∞ ∈ CP1. Then

q =

(
d
(
1
u

))2
(
1
u
− z1

) (
1
u
− z2

) (
1
u
− z3

) (
1
u
− z4

)
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We see that u = 0 is a regular point of q.

The canonical double cover p : X̂ → CP1 is ramified at z1, . . . , z4. The

associated holomorphic form ω̂ on the torus X̂ is everywhere nonzero.



Torus as a ramified double cover
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Consider a torus T2 glued from a unit square by identification of opposite sides
by parallel translations. A central symmetry of the square acts as an involution

τ of T2. The left shaded region of the square provides a fundamental domain of

the involution τ . The quotient of T2 by τ can be represented by identifications

of sides of the fundamental domain as indicated in the picture; they correspond

to folding the vertical shaded rectangle with respect to horizontal axes followed

by identification of the boundary. We get a “pillow” CP1 as on the right picture
and a double cover of CP1 by an elliptic curve T2 ramified at four points.



Elliptic surface
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A schematic graphical representation of an elliptic surface

w2 = (z − z1)(z − z2)(z − z3)(z − z4) ,

with real zi. Pictures represent the same surface seen from different angles. It

is not instant to recognize a topological torus in these pictures!



Families of hyperbolic surfaces
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Consider a configuration of four distinct points on the Riemann sphere CP1.

Using appropriate holomorphic automorphism of CP1 we can send three out of

four points to 0, 1 and∞. There is no more freedom: any further holomorphic

automorphism of CP1 fixing 0, 1 and∞ is already the identity transformation.

The remaining point serves as a complex parameter in the spaceM0,4 of
configurations of four distinct points on CP1 (up to a holomorphic diffeomorphism).
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automorphism of CP1 fixing 0, 1 and∞ is already the identity transformation.

The remaining point serves as a complex parameter in the spaceM0,4 of
configurations of four distinct points on CP1 (up to a holomorphic diffeomorphism).

By the uniformization theorem, complex structures on a surface with marked

points are in natural bijection with hyperbolic metrics of curvature −1 with

cusps at the marked points, so the moduli spaceM0,4 can be also seen as the

family of hyperbolic spheres with four cusps. Deforming the configuration of

points we change the shape of the corresponding hyperbolic surface.
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Poincaré duality.
Intersection number

20 / 39



Cyclic covers
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Consider an integer N > 1 and a 4-tuple of integers (a1, . . . , a4) satisfying:

0 < ai ≤ N ; gcd(N, a1, . . . , a4) = 1 ;
∑

ai ≡ 0 ( mod N) .

Let z1, z2, z3, z4 ∈ C be four distinct points. Above conditions imply that,

possibly after a desingularization, a Riemann surface MN (a1, a2, a3, a4)
defined by

wN = (z − z1)
a1(z − z2)

a2(z − z3)
a3(z − z4)

a4

is closed, connected and nonsingular. By construction, MN (a1, a2, a3, a4) is

a ramified cover over the Riemann sphere CP1 branched over the points

z1, . . . , z4 and over no other points. The condition on gcd is a necessary and

sufficient condition of connectedness of the resulting cyclic cover. The third

condition implies that there is no branching at infinity.

A group of deck transformations of this cover is the cyclic group Z/NZ with a

generator T : M →M given by T (z, w) = (z, ζw), where ζ is a primitive

N th root of unity, ζN = 1. By a cyclic cover we call a Riemann surface

MN (a1, . . . , a4), with parameters N, a1, . . . , a4.



Ramification profile of a cyclic cover. Monodromy representa tion
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Let σi be a contour on the sphere going around zi in the positive direction and

not encircling other branch points. The paths σi, i = 1, 2, 3 generate the

fundamental group of the sphere punctured at the four ramification points.
Test question. Why only three loops and not four? What is the fundamental

group of a four-punctured sphere?

By lifting the loop σi to a path on the cover which starts at the point (w, z), we

land at the point (ζaiw, z), where ζ is the primitive N th root of unity. Thus we
get the following representation of the fundamental group of the punctured

sphere in the cyclic group Z/NZ of deck transformations:

Deck : σi 7→ ai ∈ Z/NZ

This observation implies that the Riemann surface MN (a1, a2, a3, a4) has

gcd(N, ai) ramification points over each branch point zi ∈ P1(C), where

i = 1, . . . , 4, on the base sphere. Each ramification point has degree N/ gcd(N, ai).

Excercise. Using the Riemann–Hurwitz formula compute the genus of

MN (a1, a2, a3, a4).



Pillow metric on CP1
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A meromorphic quadratic differential q(z)(dz)2 on a Riemann surface defines
a flat metric |q(z)| with conical singularities at zeroes and poles of q. The

metric has finite area if and only if all the poles of q (if any) are simple. A

meromorphic quadratic differential q0 on CP1 of the form

q0 :=
c0 · (dz)2

(z − z1)(z − z2)(z − z3)(z − z4)
, where c0 6= 0

defines a structure of a flat “pillow” on CP1. One can choose c0, z1, z2, z3, z4
in such a way that the parallelogram gets a shape of a unit square with vertical

and horizontal sides.
z1

z2 z3

z4
A

B C

D

σ1

τh



Holonomy of the metric on the base and on the cover

24 / 39

Since the cone angle at each cone singularity of the underlying “flat sphere” is

π (no matter whether it is glued from squares or not), a parallel transport along

each loop σi around a “corner” Pi of the pillow brings a tangent vector ~v to −~v.

Hence,
Hol : σi 7→ 1 ∈ Z/2Z

for the generators σi of π1(CP
1 \P1, P2, P3, P4, P ).

The induced flat metric on MN (a1, a2, a3, a4) has gcd(N, ai) conical points
over Pi; each conical point has cone angle

(
N/ gcd(N, ai)

)
π.

Let P̂ be a regular point of the cover p, so that p(P̂ ) = P 6= Pi, i = 1, . . . , 4.

Since the metric on MN (a1, a2, a3, a4) is induced from the metric on the
sphere, the holonomy representation

Ĥol : π1(MN (a1, a2, a3, a4), P̂ )→ Z/2Z

of the fundamental group of the cover factors through the one of the sphere:

π1(MN (a1, a2, a3, a4), P̂ )→ π1(CP
1 \P1, P2, P3, P4, P )→ Z/2Z .



Combinatorics of a square-tiled cyclic cover
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We have represented the base CP1 of the cover as a “pillow” glued from two

unit squares. Since the cover p : MN (a1, a2, a3, a4)→ CP1 has degree N ,

the cyclic cover gets tiled with 2N squares. We associate the letters A, B, C ,

D to the four corners of the pillow respectively. We also associate the

corresponding letters to the corners of each square on the surface upstairs.

Paint one of the faces of our pillow in white, and the other one in black. Lift this

coloring to the cover. Choose some white square S0 on the cover, and

associate the number 0 to it. Take a black square adjacent to the side [CD] of

S0, and associate the number 1 to it. Acting by deck transformations we
associate to a white square T k(S0) the number 2k, and to a black square

T k(S1) the number 2k + 1. As usual, k is taken modulo N , so we may

assume that 0 ≤ k < N .

Consider a lift of a closed path σj around the corner number j on the pillow to

the cover. The endpoint of the lifted path is the image of the action of T ai on
the starting point of the lifted path. Hence, starting at a square number j and

“turning around a corner” number k on MN (a1, a2, a3, a4) in the positive (i.e.

in the counterclockwise) direction we get to a square number j + 2ak (mod 2N).



Combinatorics of a square-tiled cyclic cover
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A monodromy along a horizontal path τh following the equator of the pillow in

the East direction acts as T a1+a4 = T−(a2+a3). Hence, “moving two squares

to the right” on the cover we get from a square number j to a square number

j + 2(a1 + a4), if vertices B and C are at the bottom of the squares, and to a
square number j − 2(a1 + a4), if vertices B and C are on top of the squares.

σ1

A

j

j+2a1

σ1

A

j+2a1

j

σ−1
1

A

j−2a1

j

σ−1
1

A

j

j−2a1

σ2

B

j

j+2a2

σ2

B

j

j+2a2 τh
A D A D

B C B C

j
j+2(a1+

+a4)



Square-tiling of M6(1, 1, 1, 3): consruction
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τh 0 1 8 0 1 8 9

A D A

B C B

A D A D

B C B C

τh 0 1 8 9 4 5 0 Closed up a cylinder

A D A D A D A

B C B C B C B

σ4 0 1 8 9 4 5

10
A D A D A D A

B C B C B C B

σ−1
1 0 1 8 9 4 5

10 3
A D A D A D A

B C B C B C B

τ−1
h 0 1 8 9 4 5

10 3 2

8 1 0 5 4 9



Square-tiling of M6(1, 1, 1, 3): answer
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As a result we get the following square-tiling of M6(1, 1, 1, 3), where the

exponents {1, 1, 1, 3} are represented by vertices {A,B,C,D} respectively.

0 1 8 9 4 5

11 10 3 2 7 6

5

7 6 3 2
6

8

3 10 11 6 7 2

0

1 0 5 4 9

8 9 0 1

11

Note that by moving two squares to the right in the first row (say, 0 −→ 8) we

apply τh, while by moving two squares to the right in the second row (say,

10 −→ 2) we apply τ−1
h .

Excercise. Construct analogous square tiling for M4(1, 3, 2, 2).



Relative homology. Poincar é
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Homology, cohomology
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Sometimes we get a natural sequence of vector spaces (groups, ...) called

“chains” related by linear transformations ∂ satisfying the relation ∂2 = 0:

· · · ∂k+2−−−→ Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1
∂k−1−−−→ · · · ∂0−→ 0 .

The condition ∂ ◦ ∂ = 0 implies that Im(∂k+1) ⊆ Ker(∂k), and one defines

homology of the above chain complex as Hk := Ker(∂k)/ Im(∂k+1).
For example one can define singular homology of a topological space (which
does not have anything singular) and a cell homology of a CW-complex (and

prove that they, actually, coincide).

Considering linear functions on vector spaces Ck and induced maps of the

resulting dual vector spaces Ck ones gets a co-chain complex

· · · d←− Ck+1 d←− Ck d←− Ck−1 d←− · · · d←− 0 .

The relation ∂ ◦ ∂ = 0 valid for any k implies analogous relation d ◦ d = 0,

and we can define the cohomology

Hk := Ker(Ck d−→ Ck+1)/ Im(Ck−1 d−→ Ck) ,

as de Rham cohomology of a complex of differential forms on a manifold.



Relative homology
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Let Y ⊂ X be topological spaces such that Y = Y . For singular homology
we get an induced inclusion Ck(Y ) ⊂ Ck(X) for every k. Define relative

chains as Ck(X,Y ) :
def
= Ck(X)/Ck(Y ). We denote an induced map

Ck(X,Y )→ Ck−1(X,Y ) by the same symbol ∂k. It is immediate to check
that we still have Im(∂k+1) ⊆ Ker(∂k), which allows to define relative

homology as Hk(X,Y ) := Ker(∂k)/ Im(∂k+1).

• The inclusion i : Y →֒ X induces a map i∗ : Hk(Y )→ Hk(X).
• An absolute cycle, i.e. an element of Hk(X), naturally defines a relative

cycle, so we get a map π : Hk(X)→ Hk(X,Y ).
• Let zk be a relative cycle, zk ∈ Ker ∂k : Ck(X,Y )→ Ck−1(X,Y ). Take

its representative z̃k ∈ Ck(X). Then ∂k(z̃k) ∈ Ck−1(Y ) and, moreover,

∂k(z̃k) ∈ Ker ∂k : Ck−1(Y )→ Ck−2(Y ). Thus, z̃k defines an element of

Hk−1(Y ).

Excercise. Verify that the resulting element of Hk−1(Y ) does not depend on

a choice of the representative z̃k of zk.



Exact sequence of a pair
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Theorem. The following sequence is exact

· · ·
∂k+1−−−→ Hk(Y )

i∗−→ Hk(X)
π−→ Hk(X,Y )

∂k−→
∂k−→ Hk−1(Y )

i∗−→ Hk−1(X)
π−→ Hk−1(X,Y )

∂k−→
∂k−→ · · ·

i.e. for any two consecutive maps the image of the first one coincides with the
kernel of the second one. This sequence is called the exact sequence of a pair

(X,Y ).

Similar to the case of absolute cochains we can define a complex of relative
cochains as linear functions on relative chains and define relative cohomology

and an induced exact sequence of the pair (X,Y ) for cohomology:

d←− Hk(Y )
i∗←− Hk(X)

π∗

←− Hk(X,Y )
d←−

d←− Hk−1(Y )
i∗←− Hk−1(X)

π∗

←− Hk−1(X,Y )
d←−



Stokes formula
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Theorem (Stokes formula). Let Nk+1 be a (k + 1)-dimensional smooth

oriented submanifold with boundary of a smooth oriented manifold M . The

boundary ∂N is a smooth k-dimensional submanifold, which inherits a natural

orientation from Nk+1. Let ω ∈ Ωk(M) be a smooth k-differential form on M .

∫

∂N

ω =

∫

N

dω .

A differential form ω is called closed if dω = 0 and exact if there exists a form

φ such that ω = dφ. The Stokes formula shows that when ω is closed, we

have
∫
∂N

ω = 0 and when ω is exact and K is a k-dimensional oriented

submanifold without boundary (with empty boundary), then
∫
K
ω = 0.



Idea of Poicar é duality
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By definition, two distinct k-dimensional submanifolds K1 and K2 are

homologous (i.e. define homologous k-cycles [K1] and [K2]) if there exists a

(k+ 1)-chain [N ] such that ∂[N ] = [K1]− [K2]. Ignoring a discussion when

and how we can realize the chain [N ] as a (k + 1)-dimensional submanifold,

we see that two k-dimensional submanifolds K1 and K2 are homologous when
K1 taken with its original orientation union with K2 taken with the opposite

orientation form an oriented boundary of an oriented submanifold Nk+1.

γ1 γ2
Cycles γ1 and γ2 are homologous but

not freely homotopic to each other.

The Stokes formula implies that integrals of a closed k-form ω over K1 and K2

coincide, and integrals of an exact k-form dφ over K1 and K2 are null. We get

a natural pairing between Hk(M,R) and de Rham cohomology Hk(M,R).
Poincaré duality asserts that this pairing is nondegenerate (and justifies that
cohomology can be seen as linear functions on homology).



Intersection number
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Let γ1, γ2 be two smooth closed oriented curves on a smooth closed oriented

surface. Suppose that the curves are in a general position, i.e. all their

intersections xj are transversal; let γ1 ∩ γ2 = {x1, . . . , xk}. Define a sign
sgn(xj) of an intersection xj as 1 if an ordered frame (γ̇1xj

, γ̇2xj
) composed

of tangent vectors to the curves has the orientation of the surface and as −1
otherwise. The algebraic intersection number γ1 ◦ γ2 is defined as∑k

j=1 sgn(xj). It instantly follows from the definition that γ1 ◦ γ2 = −γ2 ◦ γ1.

Lemma. Intersection number γ1 ◦ γ2 is invariant under free homotopy of γi.

+
−
+

γ1

γ2
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Intersection number
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Actually, a much stronger statement is valid:

Theorem. Intersection number γ1 ◦ γ2 depends only on homology classes

[γ1], [γ2] of the curves. It defines a nondegenerate symplectic structure on the

first homology of the surface.

The notion of intersection number extends to closed oriented submanifolds
P p, Qq of complemetary dimensions p+ q = n, where n is the dimension of

the ambiant oriented manifold Mn. Now we have P ◦Q = (−1)pqQ ◦ P . The

intersection number is again completely determined by homology classes of P
and Q (where this time we consider homology only with coefficients in Q,R,C
to avoid torsion). It is known that the pairing is always nondegenrate, which
provides a canonical way to identify cohomology Hk(Mn) with homology

Hn−k(M
n). Values ℓ(c) of a k-cocycle ℓ on k-cycles c represented by closed

oriented k-submanifolds c = [Nk] are interpreted as an intersection numbers

ℓ([Nk]) = Nk ◦ Ln−k(ℓ) with a fixed subamnifold Ln−k(ℓ) representing the

(n− k)-cycle [Ln−k] dual to the k-cocycle ℓ. This is the original approach of

H. Poincaré to Poincaré duality and origin of the notion of intersection theory.



Symplectic structure in cohomology
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Having two closed 1-forms ω1, ω2 on a smooth closed orientable surface S
define a skew-symmetric pairing

〈ω1, ω2〉 :=
∫

S

ω1 ∧ ω2 .

Theorem. The pairing 〈ω1, ω2〉 depends only on cohomology classes

[ω1], [ω2] of the closed forms. It defines a nondegenerate symplectic structure

on the first cohomology of the surface. Poicaré duality D : H1(S)→ H1(S)
respects the natural symplectic structures on homology and cohomology:

〈ω1, ω2〉 = (D[ω1]) ◦ (D[ω2]) .

To verify the first assertion note that when ω2 is closed we have

∫

S

df ∧ ω2 =

∫

S

d(fω2) =

∫

∂S

fω2 = 0

since the surface S does not have boundary, ∂S = ∅.



Exercise
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• Check that the following two flat surfaces belong to the stratumH(4).

• Compute a matrix of intersection numbers between cycles representing the
sides of the left polygon. Prove that these cycles form a basis in homology.

• Determine which of the two surfaces is hyperelliptic.

• Find the hyperelliptic involution of this surface in geometric terms. Find the

Weierstrass points (the fixed points of the hyperelliptic involution). Check that

there are 2g + 2 such points.



Period coordinates
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ω = dz

Identifying corresponding sides Vj of a polygon by parallel translations we get a

Riemann surface X and a holomorphic 1-form ω on it, where ω = dz in

coordinate z on the polygon. The sides Vj become lines on S with endpoints in

the collection of points Y = {P1, . . . , Pk} ⊂ X coming from vertices of the
polygon. Since dω = 0 it defines a relative homology class [ω] ∈ H1(X,Y ;C):

the value of [ω] on a cycle c is given by
∫
γ
ω, where [γ] = c is any collection of

paths representing c. It is easy to check that vectors Vj generate

H1(X,Y ;C). Considered as complex numbers, they represent integrals

C ∋ Vj =
∫
Vj

dz of ω over the corresponding relative cycles. Thus, the

collection of vectors uniquely determines [ω] ∈ H1(X,Y ;C). Reciprocally,

any cohomology class in H1(X,Y ;C) sufficiently close to [ω] defines a

collection of deformed integrals over paths Vj , and, hence a deformed polygon.
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