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Reminder: translation surface of genus two
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Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.

Considered as complex numbers, they represent integrals of the holomorphic

form ω = dz along paths joining zeroes of the form ω. (In polygonal

representation the zeroes of ω are represented by vertices of the polygon.)
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ω = dz

Identifying corresponding sides Vj of a polygon by parallel translations we get a

Riemann surface X and a holomorphic 1-form ω on it, where ω = dz in

coordinate z on the polygon. The sides Vj become lines on S with endpoints in

the collection of points Y = {P1, . . . , Pk} ⊂ X coming from vertices of the
polygon. Since dω = 0 it defines a relative homology class [ω] ∈ H1(X,Y ;C):

the value of [ω] on a cycle c is given by
∫

γ ω, where [γ] = c is any collection of

paths representing c. It is easy to check that vectors Vj generate

H1(X,Y ;C). Considered as complex numbers, they represent integrals

C ∋ Vj =
∫

Vj
dz of ω over the corresponding relative cycles. Thus, the

collection of vectors uniquely determines [ω] ∈ H1(X,Y ;C). Reciprocally,

any cohomology class in H1(X,Y ;C) sufficiently close to [ω] defines a

collection of deformed integrals over paths Vj , and, hence a deformed polygon.
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In other words, the moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is

a complex curve and ω is a holomorphic 1-form on C having zeroes of
prescribed multiplicities m1, . . . ,mn, where

∑

mi = 2g − 2, is modeled on

the vector space H1(S, {P1, . . . , Pn};C). The latter vector space contains a

natural lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of

the volume element dν in these period coordinates.
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We have a natural action of R+ on any stratum H(m1, . . . ,mn): we can

rescale a flat surface by any positive factor r. The flat area gets rescaled by r2.
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We have a natural action of R+ on any stratum H(m1, . . . ,mn): we can

rescale a flat surface by any positive factor r. The flat area gets rescaled by r2.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C
ω ∧ ω̄ =

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where
r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the

volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on H1 and d = dimC H(m1, . . . ,mn) = 2g + n− 1.

Excercise. Prove that ν1(Harea=1) = 2d · ν(Harea≤1).
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.

The area function defined on every stratum H(m1, . . . ,mn)

area(C, ω) =
i

2

∫

C
ω ∧ ω̄ =

i

2

g
∑

i=1

(AiB̄i − ĀiBi) .

allows to define an analog of a “unit ball” H≤1 in any stratum as a subset of

those (C, ω) in H(m1, . . . ,mn), where area(C, ω) ≤ 1. (Note that in period

coordinates the “unit ball” is rather the interior of a “unit hyperboloid”.)

Definition.

VolH(m1, . . . ,mn) := 2d ·
∫

H≤1

dν ,

where d = dimC H(m1, . . . ,mn).



Masur–Veech volume
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Summary. Every stratum of Abelian differentials admits

• A local structure of a vector space H1(S, {P1, . . . , Pn};C);
• An integer lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ) which allows to normalize

the associated Lebesgue measure;

• A positive homogeneous function which allows to define an analog of a unit
sphere (or rather of a unit hyperboloid).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian differentials or of

meromorphic quadratic differentials with at most simple poles is finite.
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Masur–Veech volume element in H(0)
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Let A,B ∈ C be periods of a holomorphic 1-form on an elliptic curve

(equivalently, a pair of vectors defining a parallelogram in R2). Projection from

the stratum H(0) to the modular surface PH(0) = M1 = H2/PSL(2,Z)
corresponds to normalization of the A-period to 1 (equivalently, rescaling the

parallelogram proportionally to make the length of the short side equal to 1
followed by a rotation making this side horizontal). We assume that B-period is

chosen in such way, that we get directly to the fundamental domain.

u

B

A

ϕ
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= −1

4
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= −1

4
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By definition of the induced volume element dν1 on the “unit sphere” H1(0) we

have
dν = r3 dr dν1 .

where r2 is the area of the flat torus. Recall that having rescaled the torus

proportionally by a factor ρ = |ζ| we transformed its area to Im(u). Thus, the

area of the original torus with periods A,B is r2 = |ζ|2 Im(u) = ρ2 Im(u).
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By definition of the induced volume element dν1 on the “unit sphere” H1(0) we

have
dν = r3 dr dν1 .

where r2 is the area of the flat torus. Recall that having rescaled the torus

proportionally by a factor ρ = |ζ| we transformed its area to Im(u). Thus, the

area of the original torus with periods A,B is r2 = |ζ|2 Im(u) = ρ2 Im(u).

We are looking for a function f(u, ū) such that the volume element dν1 disintegrates

as dν1 = dϕ ∧ f(u, ū)du ∧ dū. Replacing r with ρ
√

Im(u) in dν we get

dν = r3 dr dϕ∧f(u, ū)du∧dū =
(

ρ
√
Imu

)3 (√
Imu dρ

)

∧dϕ∧f(u, ū)du∧dū .

Comparing the above expression with our original formula for dν we get

i

2
ρ3 dρ ∧ dϕ ∧ du ∧ dū = ρ3(Imu)2f(u, ū) dρ ∧ (dϕ ∧ du ∧ dū) ,

We recognize the hyperbolic volume element f(u, ū)du ∧ dū =
i
2 du ∧ dū

Im2(u)
.
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y

x

Letting u = x+ iy we get the standard volume element

i
2 du ∧ dū

Im2(u)
=

dx ∧ dy

y2

in the hyperbolic half-plane. A hyperbolic triangle with angles

α, β, γ, has area π − (α + β + γ). Thus, the hyperbolic
area of the modular surface is π −

(

π
3 + π

3 + 0
)

= π
3 .
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Our disintegration formula shows, that the Masur–Veech volume Vol(H(0))
equals the hyperbolic area of the modular surface times the measure of the

circle S1 responsible for the choice of the vertical direction on the torus.
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y

x

Letting u = x+ iy we get the standard volume element

i
2 du ∧ dū

Im2(u)
=

dx ∧ dy

y2

in the hyperbolic half-plane. A hyperbolic triangle with angles

α, β, γ, has area π − (α + β + γ). Thus, the hyperbolic
area of the modular surface is π −

(

π
3 + π

3 + 0
)

= π
3 .

Our disintegration formula shows, that the Masur–Veech volume Vol(H(0))
equals the hyperbolic area of the modular surface times the measure of the

circle S1 responsible for the choice of the vertical direction on the torus.

Observe that every flat torus admits an involution (central symmetry of its

parallelogram pattern). Hence, directions φ and −φ give rise to isomorphic
“polarized” flat tori and thus the measure of S1 equals π and not 2π. We get

Vol(H(0)) =
π

3
· π =

π2

3
.
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Counting volume by counting integer points in a large cone
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X≤1

To count volume of the cone X≤1 one can take an ε-grid and count the number
of lattice points inside it.
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X≤1

To count volume of the cone X≤1 one can take an ε-grid and count the number
of lattice points inside it.

Counting points of the ε-grid in the cone X≤1 is the same as counting integer

points in the proportionally rescaled cone X≤1/ε.
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Integer points in period coordinates are represented by square-tiled surfaces.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point.
Let P1 be a zero of ω and P ∈ C any point of the Riemann surface C . Define

p : P 7→
∫ P
P1

ω (mod Z ⊕ iZ)

p : C → T = C/(Z ⊕ iZ)

The ramification points of the cover p are exactly the zeroes of ω.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point.
Let P1 be a zero of ω and P ∈ C any point of the Riemann surface C . Define

p : P 7→
∫ P
P1

ω (mod Z ⊕ iZ)

p : C → T = C/(Z ⊕ iZ)

The ramification points of the cover p are exactly the zeroes of ω.

Choosing the standard unit square pattern for T we get induced tiling of (C, ω)
by unit squares which form horizontal and vertical cylinders. The square-tiled

surface of genus two in the picture has 2 maximal horizontal cylinders filled with

periodic geodesics.
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Square-tiled surfaces which represent integer points in a “ball Harea≤N of

radius N ” in a given stratum H of Abelian differentials are the ones, tiled with

at most N unit squares. Denote the corresponding set by STN (H). We have,

ν(Harea≤N) ∼ card(STN (H)) .

By homogeneity of the Masur–Veech volume element ν we get

ν(Harea≤R) = Rd · ν(Harea≤1) ,

where

d = dimC H(m1, . . . ,mn) = 2g + n− 1 .

Thus,
ν(H≤1) = lim

N→+∞

card(STN )

Nd
.

By definition of the Masur–Veech volume VolH1 of the “ unit sphere H1

= Harea=1”, we have VolH1 = 2d · ν(Harea≤1). Combining, we get

VolH1(m1, . . . ,mn) := 2(2g+n−1)· lim
N→+∞

card(STN (H(m1, . . . ,mn)))

Nd
.
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Picture created by Jian Jiang

We reduced evaluation of the Masur–Veech volumes VolH(m1, . . . ,mn) to a

combination of the following two related problems:

• Describe all combinatorial types of square-tiled surfaces in any given stratum

H(m1, . . . ,mn).
• Count the leading term in the asymptotics of the number of square-tiled

surfaces of any given combinatorial type tiled with at most N squares when

N → +∞.



Count of square-tiled surfaces
through separatrix diagrams

Masur–Veech volumes.
Square-tiled surfaces

Disintegration of the
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element in H(0)
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• Critical graph

• Realizable diagrams

• Volume computation
in genus two

• Multiple zeta-values
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• Homework
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Baby case: decomposition of a square-tiled torus
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Let us count the number card(STN (H(0)) of square-tiled tori tiled by at most

N ≫ 1 squares. Cutting a square-tiled torus by a horizontal waist curve we get

a cylinder of integer height h. A waist curve of the cylinder has integer length

w. The number of squares in the tiling equals w · h.

t

w

h
t

The way, in which two boundary components of the cylinder are identified, is

described by an integer twist t which can take any value in {0, 1, . . . , w − 1}.
Thus, for any fixed w, h ∈ N we get exactly w distinct square-tiled tori.



Baby case: counting square-tiled tori
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We get the following leading term for card(STN (H(0)) as N → +∞.

t

w

h

h

t w

card(STN (H(0)) =
∑

w,h∈N
w·h≤N

w =
∑

w,h∈N
w≤N

h

w ∼
∑

h∈N

1

2
·
(

N

h

)2

=
N2

2

∑

h∈N

1

h2

=
N2

2
·ζ(2) = N2

2
· π

2

6
.

Our formula gives

VolH1(0) := 2d · lim
N→+∞

card(STN (H(0)))

Nd
=

π2

3
.



Critical graph (separatrix diagram)
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Note that all leaves of the horizontal (vertical) foliation on a square-tiled surface

are closed. The critical graph Γ (separatrix diagram) is the union of all

horizontal critical leaves. Vertices of Γ are represented by the conical points;

the edges of Γ are formed by horizontal saddle connections (red in the picture).
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Let us construct the critical graph step-by-step. In our example the cone angle

is 6π, so there are three outgoing separatrix rays and three incoming rays; they

are alternated with respect to the natural cyclic order.
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are alternated with respect to the natural cyclic order. Going around our

conical singularity we can trace the order of appearance of horizontal rays and

the way the prongs are joined into a graph.
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conical singularity we can trace the order of appearance of horizontal rays and

the way the prongs are joined into a graph. We see that the prong 3 is joined

to prong 4; prong 5 is joined to prong 2, and prong 1 is joined to prong 6.

The core of the critical graph is constructed.
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Our critical graph is embedded into a translation surface, so it carries an

induced structure of a ribbon graph as if we would have oriented ribbons going

along the edges with a well-defined cyclic order at every edge.
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Our critical graph is embedded into a translation surface, so it carries an

induced structure of a ribbon graph as if we would have oriented ribbons going

along the edges with a well-defined cyclic order at every edge. We can

reconstruct one-by-one the boundary components of the resulting ribbon

graph.
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Our critical graph is embedded into a translation surface, so it carries an

induced structure of a ribbon graph as if we would have oriented ribbons going

along the edges with a well-defined cyclic order at every edge. We can

reconstruct one-by-one the boundary components of the resulting ribbon

graph. It remains to encode how the boundary components are organized
into pairs, where each pair bounds a cylinder filled with parallel closed horizontal

geodesics of equal length. We shade the first pair in dark and the second in light.
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Note that all leaves of the horizontal (vertical) foliation on a square-tiled surface

are closed. The critical graph Γ (separatrix diagram) is the union of all

horizontal critical leaves. Vertices of Γ are represented by the conical points;

the edges of Γ are formed by horizontal saddle connections.

A critical graph Γ is an oriented ribbon graph endowed with the following structure:
1. The orientation of edges at any vertex is alternated with respect to the cyclic

order of edges at this vertex.

2. The complement S − Γ is a finite disjoint union of flat cylinders foliated by

oriented circles. Thus, the set of boundary components of the ribbon graph is

decomposed into pairs: to each pair of boundary components we glue a
cylinder, and there is one positively oriented and one negatively oriented

boundary component in each pair.



Realizable separatrix diagrams
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Note, however, that not all ribbon graphs as above correspond to actual flat

surfaces. A flat metric endows saddle connections with positive lengths ℓi. The

left graph is realizable for any lengths ℓ1, ℓ2, ℓ3. The middle one — only when

ℓ1 = ℓ3. The rightmost one is never realizable: pairs of boundary components

bounding the same cylinder have to have equal length, and we cannot find a
pair for the component of length ℓ1 + ℓ2 + ℓ3.

ℓ1

ℓ2ℓ3

ℓ1
ℓ2

ℓ3

ℓ1

ℓ2ℓ3

Lemma. The set of all square-tiled surfaces sharing any realizable separatrix
diagram provides a nontrivial contribution to the volume of the corresponding

stratum.



Volume computation for H(2): the 1-cylinder diagram
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ℓ1

ℓ2ℓ3

Single cylinder

1

3

∑

ℓ1,ℓ2,ℓ3,h∈N
(ℓ1+ℓ2+ℓ3)h≤N

(ℓ1 + ℓ2 + ℓ3) ≈ 1

3

∑

w,h∈N
w·h≤N

w · w
2

2
=

1

6

∑

w,h∈N
w≤N

h

w3

≈ 1

6

∑

h∈N

1

4
·
(

N

h

)4

=
N4

24
·
∑

h∈N

1

h4

=
N4

24
· ζ(4) = N4

24
· π

4

90
.



Volume computation for H(2): the 2-cylinders diagram
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ℓ1
ℓ2

ℓ1

∑

ℓ1,ℓ2,h1,h2∈N
ℓ1h1+(ℓ1+ℓ2)h2≤N

ℓ1(ℓ1 + ℓ2) =
∑

ℓ1,ℓ2,h1,h2∈N
ℓ1(h1+h2)+ℓ2h2≤N

(ℓ21 + ℓ1ℓ2) =

=
∑

h1,h2∈N

∑

ℓ1,ℓ2∈N
ℓ1(h1+h2)

N +
ℓ2h2
N ≤1

(ℓ21 + ℓ1ℓ2) .



Volume computation for H(2): the 2-cylinders diagram
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For any fixed h1, h2 we can replace the sum with respect to ℓ1, ℓ2 by the

integral. Let x1 := ℓ1 ·
h1 + h2

N
and x2 := ℓ2 ·

h2

N
be the new variables,

where h1, h2 are considered as parameters. After this change of variables our
sums with respect to ℓ1, ℓ2 become the integral with respect to x1, x2, where

we integrate over the simplex ∆ = {x1 + x2 ≤ 1 : x1 ≥ 0;x2 ≥ 0}:

∑

ℓ1,ℓ2∈N
ℓ1(h1+h2)

N +
ℓ2h2
N ≤1

(ℓ21 + ℓ1ℓ2) ≈

≈
∫

∆





(

x1N

h1 + h2

)2

+

(

x1N

h1 + h2

)(

x2N

h2

)





(

N

h1 + h2
dx1

)(

N

h2
dx2

)

.



Multiple zeta-values

30 / 43

We will need the values of the sums

ζ(s1, s2, . . . , sk) =
∑

n1,...,nk≥1

1

ns1
1 (n1 + n2)s2 . . . (n1 + · · ·+ nk)sk

at positive integers sj , where sk ≥ 2. They are called multiple zeta-values and

have beautiful properties, which recently attracted a lot of attention by Brown,
Cartier, Deligne, Drinfeld, Écalle, Goncharov, Kontsevich, Zagier, to give only

some names. We already used zeta values as

ζ(2) =
π2

6
; ζ(4) =

π4

90
; ζ(2n) =

p

q
· π2n, where p, q ∈ N .
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ns1
1 (n1 + n2)s2 . . . (n1 + · · ·+ nk)sk

at positive integers sj , where sk ≥ 2. They are called multiple zeta-values and

have beautiful properties, which recently attracted a lot of attention by Brown,
Cartier, Deligne, Drinfeld, Écalle, Goncharov, Kontsevich, Zagier, to give only

some names. We already used zeta values as

ζ(2) =
π2

6
; ζ(4) =

π4

90
; ζ(2n) =

p

q
· π2n, where p, q ∈ N .

Conjecturally π, ζ(3), ζ(5), . . . are algebraically independent over Q.

However, multiple zeta values satisfy numerous relations, some of them were

discovered already by Euler, for example

ζ(1, 3) =
1

4
ζ(4); ζ(2, 2) =

3

4
ζ(4) .



Volume computation for H(2): the 2-cylinders diagram
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∑

h1,h2

∫

∆





(

x1N

h1 + h2

)2

+

(

x1N

h1 + h2

)(

x2N

h2

)





(

N

h1 + h2
dx1

)(

N

h2
dx2

)

= N4





∫

∆
x21 dx1dx2 ·

∑

h1,h2∈N

1

h2(h1 + h2)3

+

∫

∆
x1x2 dx1dx2 ·

∑

h1,h2∈N

1

h22(h1 + h2)2





=
N4

24

[

2 · ζ(1, 3) + ζ(2, 2)
]

=
N4

24

[

2 · ζ(4)
4

+
3ζ(4)

4

]

=
N4

24
· 5
4
· π

4

90
.

where we used the identities ζ(1, 3) = 1
4 ζ(4), ζ(2, 2) = 3

4 ζ(4) and the

values
∫

∆ x21 dx1dx2 = 2
∫

∆ x1x2 dx1dx2 = 2 · 1
4! .



Volume computation for H(2): summary
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1

3

∑

ℓ1,ℓ2,ℓ3,h∈N
(ℓ1+ℓ2+ℓ3)h≤N

(ℓ1 + ℓ2 + ℓ3) ≈
N4

24
· ζ(4)

ℓ1

ℓ2ℓ3

ℓ1
ℓ2

ℓ1

∑

ℓ1,ℓ2,h1,h2

ℓ1h1+(ℓ1+ℓ2)h2≤N

ℓ1(ℓ1 + ℓ2)

=
N4

24

[

2 · ζ(1, 3) + ζ(2, 2)
]

=
N4

24
· 5
4
· ζ(4)

Vol(H1(2)) = lim
N→∞

2 · 4
N4

· (Number of surfaces) =
π4

120



Contributions Volk H(3, 1) of k-cylinder surfaces to VolH(3, 1)
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Vol1H(3, 1) =
ζ(7)

15

Vol2H(3, 1) =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

45

Vol3H(3, 1) =
1

90

(

12 ζ(6)− 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5)− 250 ζ(1, 6)− 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4)− 52 ζ(2, 5) + 6 ζ(3, 3)− 82 ζ(3, 4)

+ 6 ζ(4, 2)− 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5)− 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3)− 120 ζ(1, 4, 2)− 54 ζ(2, 1, 4)− 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2)− 88 ζ(3, 1, 3)− 34 ζ(3, 2, 2)− 48 ζ(4, 1, 2)

)

Vol4H(3, 1) =
2ζ(2)

45

(

ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)

.



After simplification
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Multiple zeta values satisfy numerous relations. After simplification (which is

now accessible through a SAGE package) we get

Vol1H(3, 1) = 1/15 · ζ(7)
Vol2H(3, 1) = –7/135 · ζ(1, 6) + 1/135 · ζ(2, 5) + 23/135 · ζ(7)
Vol3H(3, 1) = –2/15 · ζ(1, 6)− 2/45 · ζ(2, 5) + 1/5 · ζ(6)− 4/45 · ζ(7)
Vol4(H(3, 1) = 5/27 · ζ(1, 6) + 1/27 · ζ(2, 5) + 7/45 · ζ(6)− 4/27 · ζ(7)

Conjecturally, multiple zeta values involved in these simplified expressions are

linearly independent over rational numbers. However, the total contribution is a
rational multiple of π2g in accordance with the general result by A. Eskin and

A. Okounkov, 2001:

VolH(3, 1) = Vol1H(3, 1) + · · ·+Vol4 H(3, 1) =
16

42525
π6



Volumes of some low-dimensional strata
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Vol(H1(∅)) = 2 · ζ(2) =
1

3
· π2

Vol(H1(2)) =
2

3!
· 9
4
· ζ(4) =

1

120
· π4

Vol(H1(1, 1)) =
1

4!
· 4 · ζ(4) =

1

135
· π4

Vol(Hhyp
1 (4)) =

2

5!
· 135
16

· ζ(6) =
1

6720
· π6

Vol(Hodd
1 (4)) =

2

5!
· 70
3
· ζ(6) =

1

2430
· π6

Vol(H1(1, 3)) =
2

6!
· 128 · ζ(6) =

16

42525
· π6

Vol(Hhyp
1 (6)) =

2

7!
· 2625

64
· ζ(8) =

1

580608
· π8



Volumes through multiple zeta values
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Conjecture. Prove that for any connected component of any stratum the

contribution to the Masur–Veech volume coming from square-tiled having exatly

k horizontal cylinders is a linear combination with rational coefficients of
multiple zeta values.

Stronger Conjecture. Prove the that contribution to the Masur–Veech volume

coming from square-tiled corresponding to any fixed separatrix diagram is a
linear combination with rational coefficients of multiple zeta values.

The latter statement is elementary for 1-cylinder separatrix diagrams, simple for

2-cylinder diagrams. It is already a nontrivial theorem (proved by B. Allombert

and V. Delecroix) for 3-cylinder diagrams.



Homework assignment
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Picture created by Jian JiangQuestions.

• To what stratum belongs this square-tiled surface?

• Find all realizabe separatrix diagrams for this stratum.

• To which of the found diagrams corresponds the square-tiled surface from the
picture?
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Masur–Veech volumes of strata of Abeliand differentials:
a historical retrospective
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• Around 1998. Masur–Veech volumes of several low-dimensional strata of

Abelian differentials were evaluated by M. Kontsevich and A. Zorich through

straightforward count of square-tiled surfaces.

• Around 2001. A. Eskin and A. Okounkov found a much more efficient
approach based on quasimodularity of an associated generating function.

A. Eskin wrote a computer code giving volumes of all strata in genera at most

10 and of some strata in genera up to 200.

• 2020. D. Chen, M. Möller, A. Sauvaget and D. Zagier obtained very important

advances based on recent BCGGM smooth compactification of the moduli

space of Abelian differentials. They developed intersection theory of relevant

moduli spaces and found a recursive formula for volumes.

• 2018–2020. D. Chen–M. Möller–A. Sauvaget–D. Zagier and independently

A. Aggarwal obtained spectacular results on large genus asymptotics of

Masur–Veech volumes uniform for all strata stratum of Abelian differentials

proving a conjecture by A. Eskin and of A. Zorich based on their numerical

experiments from 2003.



Masur–Veech volumes of strata of quadratic differentials:
a brief historical retrospective
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The knowledge of Masur–Veech volumes VolQ1(d1, . . . , dk) of strata of

quadratic differentials is still limited.

• Around 1998-2000. Masur–Veech volumes of several low-dimensional strata
of quadratic differentials were evaluated by A. Zorich through straightforward

count of square-tiled surfaces.

• 2001. A. Eskin and A. Okounkov found a much more efficient approach

based on quasimodularity of the generating function counting pillowcase
covers. However, the resulting expressions contain huge tables of characters of

the symmetric group, which makes the computation inefficient. The algorithm is

more involved than for Abelian differentials.

• 2016. The algorithm of A. Eskin and A. Okounkov was implemented by

E. Goujard. She wrote a code and computed volumes of all strata up to

dimension 12.



Masur–Veech volumes of strata of quadratic differentials:
a brief historical retrospective
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• 2016. J. Athreya–A. Eskin–A. Zorich obtained a close expression (conjectured

by M. Kontsevich) for the Masur–Veech volume of any stratum in genus zero

through the formula of A. Eskin–M. Kontsevich–A. Zorich for the sum of

Lyapunov exponents combined with some combinatorial considerations.

• 2019. V. Delecroix–E. Goujard–P. Zograf–A. Zorich computed volumes of the

principal strata (the ones containing only simple zeroes and poles) in terms of

Witten–Kontsevich correlators.

• 2019. D. Chen–M. Möller–A. Sauvaget expressed volumes of the principal

strata in terms of certain Hodge integrals.

• 2019. J. Andersen–G. Borot–S. Charbonnier–V. Delecroix–A. Giacchetto–

D. Lewanski–C. Wheeler used the DGZZ-formula to compute volumes through

topological recursion.

• 2020. M. Kazarian and independently Di Yang–D. Zagier–Y. Zhang developed

efficient recursion for the Hodge integrals involved in the CMS-formula.

• 2021. A. Aggarwal derived the large genus asymptotics for the volumes of
principal strata conjectured by V. Delecroix–E. Goujard–P. Zograf–A. Zorich.



Open problem: volumes of strata of quadratic differentials
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Let d = (d1, . . . , dn) be an unordered partition of a positive integer number

4g − 4 divisible by 4 into a sum |d| = d1 + · · ·+ dn = 4g − 4, where

di ∈ {−1, 0, 1, 2, . . . } for i = 1, . . . , n. Denote by Π̂4g−4 the set of those

partitions as above, which satisfy the additional requirement that the number of

entries di = −1 in d is at most log(g).

Open problem. Find the Masur–Veech volume of strata Q(d1, . . . , dn) of

meromorphic quadratic differentials with at most simple poles when at least

one od di is even. Prove the following conjectural asymptotic formula (currently

proved by A. Aggarwal only for the principal stratum): for any d ∈ Π̂4g−4 one

has

VolQ(d1, . . . , dn) =
4

π
·

n
∏

i=1

2di+2

di + 2
·
(

1 + ε1(d)
)

,

where

lim
g→∞

max
d∈Π̂4g−4

|ε1(d)| = 0 .

For strata of dimension up to 12 the volumes are found by E. Goujard using

Eskin–Okounkov algorithm.
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