
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 33, Number 4, October 2020, Pages 941–989
https://doi.org/10.1090/jams/947

Article electronically published on September 28, 2020

LARGE GENUS ASYMPTOTICS FOR VOLUMES OF STRATA

OF ABELIAN DIFFERENTIALS

AMOL AGGARWAL, WITH AN APPENDIX BY ANTON ZORICH

Contents

1. Introduction 941
2. Miscellaneous preliminaries 945
3. Evaluating the volumes 953
4. Estimating 〈m〉 960
5. Proof of Theorem 3.10 967
Appendix: Asymptotic values of Siegel–Veech constants

by Anton Zorich 975
Acknowledgments 988
References 988

1. Introduction

1.1. The moduli space of Abelian differentials. Fix a positive integer g > 1,
and let H = Hg denote the moduli space of pairs (X,ω), where X is a Riemann
surface of genus g and ω is a holomorphic one-form on X. Equivalently, H is the
total space of the Hodge bundle over the moduli space Mg of complex curves of
genus g; H is typically referred to as the moduli space of Abelian differentials.

For any (X,ω) ∈ H, the one-form ω has 2g− 2 zeros (counted with multiplicity)
on X. Thus, the moduli space of Abelian differentials can be decomposed as a
disjoint union H =

⋃
m∈Y2g−2

H(m), where m is ranged over all partitions1 of

2g − 2, and H(m) ⊂ H denotes the moduli space of pairs (X,ω) where X is again
a Riemann surface of genus g and ω is a holomorphic differential on X with n
distinct zeros of multiplicities m1,m2, . . . ,mn. These spaces H(m) are (possibly
disconnected [12]) orbifolds called strata.

There is an action of the general linear group GL2(R) on the moduli space H that
preserves its strata H(m). This action is closely related to billiard flow on rational
polygons [14, 22, 24]; dynamics on translation surfaces [14, 22, 24]; the theory of
interval exchange maps [5,13,14,20,24]; enumeration of square-tiled surfaces [5,24];
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942 AMOL AGGARWAL

and Teichmüller geodesic flow [7,24]. We will not explain these topics further here
and instead refer to the surveys [14, 22, 24] for more information.

In any case, there exists a measure on H (or equivalently, on each stratum H(m))
that is invariant with respect to the action of SL2(R) ⊂ GL2(R); this measure can
be defined as follows. Let m = (m1,m2, . . . ,mn) ∈ Y2g−2, let (X,ω) ∈ H(m) be
a pair in the stratum corresponding to m, and define k = 2g + n − 1. Denote the
zeros of ω by p1, p2, . . . , pn ∈ X, and let γ1, γ2, . . . , γk denote a basis of the relative
homology group H1

(
X, {p1, p2, . . . , pn},Z

)
. Consider the period map Φ : H(m) →

Ck obtained by setting Φ(X,ω) =
( ∫

γ1
ω,
∫
γ2

ω, . . . ,
∫
γk

ω
)
. It can be shown that

the period map Φ defines a local coordinate chart (called period coordinates) for
the stratum H(m). Pulling back the Lebesgue measure on Ck yields a measure ν
on H(m), which is quickly verified to be independent of the basis {γi} and invariant
under the action of SL2(R) on H(m).

As stated, the volume ν
(
H(m)

)
will be infinite since (X, cω) ∈ H(m) for any

(X,ω) ∈ H(m) and constant c ∈ C. To remedy this issue, let H1(m) ⊂ H(m)
denote the moduli space of pairs (X,ω) ∈ H(m) such that i

2

∫
X
ω ∧ ω = 1; this is

the hypersurface of the stratum H(m) consisting of (X,ω) where ω has area one.
Let ν1 denote the measure induced by ν on H1(m). It was established indepen-

dently by Masur [13] and Veech [20] that ν1 is ergodic on each connected component
of H1(m) under the action of SL2(R) and that the volume ν1

(
H1(m)

)
is finite for

each m. This volume ν1
(
H1(m)

)
is called the Masur-Veech volume of the stratum

indexed by m.

1.2. Explicit and asymptotic Masur-Veech volumes. Although the finite-
ness of the Masur-Veech volumes was established in 1982 [13, 20], it was nearly
two decades until mathematicians produced general ways of finding these volumes
explicitly. One of the earlier exact evaluations of these volumes appeared in the
paper [25] of Zorich (although he mentions that the idea had been independently
suggested by Eskin-Masur and Kontsevich-Zorich two years earlier), in which he
evaluates ν1

(
H1(m)

)
for some partitions m corresponding to small values of the

genus g.
Through a different method, based on the representation theory of the symmetric

group and asymptotic Hurwitz theory, Eskin-Okounkov [10] proposed a general
algorithm that, given g ∈ Z>1 and m = (m1,m2, . . . ,mn) ∈ Y2g−2, determines the
volume of the stratum ν1

(
H1(m)

)
. Although this intricate algorithm did not lead

to closed form identities, Eskin-Okounkov were able to use it to establish several
striking properties of these volumes. For instance, they showed that ν1

(
H1(m)

)
∈

π2gQ for any m ∈ Y2g−2, a fact that had earlier been predicted by Kontsevich-
Zorich.

Once it is known that these volumes are finite and can in principle be determined,
a question of interest is to understand how they behave as the genus g tends to ∞.
In the similar context of Weil-Petersson volumes, such questions were investigated
at length by Mirzakhani-Zograf in [15, 16, 23].

To that end, the algorithm of Eskin-Okounkov enabled Eskin to write a computer
program to evaluate the volumes ν1

(
H1(m)

)
form ∈ Y2g−2 such that g ≤ 10. Based

on the numerical data provided by this program, Eskin and Zorich predicted in 2003
(although the conjecture was not published until over a decade later; see Conjecture

Licensed to Biblio University Jussieu. Prepared on Thu Nov 11 09:56:37 EST 2021 for download from IP 81.194.27.167.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LARGE GENUS ASYMPTOTICS 943

1 and equations (1) and (2) of [11]) that

ν1
(
H1(m)

)
=

4∏n
i=1(mi + 1)

(
1 +O

(
1

g1/2

))
,(1.1)

uniformly in g > 1 and m ∈ Y2g−2.

Remark 1.1. Eskin and Zorich mention at the end of Section 2 of [11] that their
data suggest that the error on the right side of (1.1) should be smallest (over all
m ∈ Y2g−2) when m = 12g−2 consists only of ones and largest when m = (2g − 2).

Remark 1.2. It was observed as a curiosity in Remark 1 of [11] that the right side of
(1.1) is asymptotically a rational number, while for each m the left side is a rational
multiple of π2g (as mentioned above). Our method will see this as a consequence
of the fact that the Riemann zeta function ζ(2g) is a rational multiple of π2g but
converges to 1 as g tends to ∞.

Remark 1.3. Theorem 2.12 of the recent work of Delecroix-Goujard-Zograf-Zorich
[5] shows that (1.1) implies (and is essentially implied by) asymptotics for the rel-
ative contribution of one-cylinder separatrix diagrams to the Masur-Veech volume
of a stratum H1(m). This provides an alternative interpretation of (1.1).

Before this work, the asymptotic (1.1) had been verified in two cases. First, the
work of Chen-Möller-Zagier [3] established (1.1) if H(m) is the principal stratum,
that is, when m = 12g−2; this corresponds to the stratum in which all zeros of the
holomorphic differential ω are distinct. By analyzing a generating function for the
sequence

{
ν1
(
H1(1

2g−2)
)}

g≥1
, they show as Theorem 19.3 of [3] that

ν1
(
H1(1

2g−2)
)
= 24−2g

(
1− π2

24g
+O

(
1

g2

))
.(1.2)

Second, the work of Sauvaget [18] established (1.1) in the case of the minimal
stratum m = (2g − 2), when ω has one zero with multiplicity 2g − 2. Through an
analysis of Hodge integrals on the moduli space of curves (based on his earlier work
[17]), he shows as Theorem 1.9 of [18] that

ν1
(
H1(2g − 2)

)
=

4

2g − 1

(
1 +O

(
1

g

))
.(1.3)

1.3. Results. In this paper we establish the asymptotic (1.1) for all strata, as
indicated by the following theorem.

Theorem 1.4. Let g > 1 be a positive integer, and let m = (m1,m2, . . . ,mn)
denote a partition of size 2g − 2. Then,

4∏n
i=1(mi + 1)

(
1− 22

200

g

)
≤ ν1

(
H1(m)

)
≤ 4∏n

i=1(mi + 1)

(
1 +

22
200

g

)
.(1.4)

Remark 1.5. Observe that the error in (1.4) (which is of order 1
g ) is in fact smaller

than what was predicted by (1.1). However, this is consistent with Remark 1.1 and
(1.3). Indeed, the former states that the error should be largest when m = (2g−2),
and the latter states that if m = (2g − 2), then the error is of order 1

g . Thus, one

should expect the error to be of order 1
g for all m, as in (1.4).
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944 AMOL AGGARWAL

The proof of Theorem 1.4 (or in fact the equivalent Theorem 3.10 below) will
appear in Sections 4 and 5; we will very briefly discuss this proof (see Section
3.3 for a slightly more detailed description) and describe the organization for the
remainder of this paper in Section 1.4. However, before doing so, let us make a few
additional comments about the conjectures in [11].

Eskin-Zorich made a number of asymptotic predictions in addition to (1.1). In
particular, they also have conjectures on the large genus asymptotics for the area
Siegel-Veech constants of the strata H(m). Although we will not carefully define it
here, the area Siegel-Veech constant is a different numerical invariant of a stratum
H(m) of Abelian differentials, and it can be directly equated with several quantities
of geometric interest, such as asymptotics for the number of closed geodesics on a
translation surface [8] and the sum of the positive Lyapunov exponents of the Hodge
bundle under the Teichmüller geodesic flow [7]. The previously mentioned results
of Chen-Möller-Zagier [3] and Sauvaget [18] confirm the predictions of [11] on the
asymptotics for these constants (in addition to (1.1)) for the principal stratum and
the minimal stratum, respectively.

We have not attempted to see whether our methods can be applied to estab-
lish these predictions on the area Siegel-Veech constants in full generality, but let
us recall that the work of Eskin-Masur-Zorich [9] provides identities that express
Siegel-Veech constants of a given stratum in terms of the Masur-Veech volumes of
(often different) strata. By combining these results with Theorem 1.4, the appendix
by Anton Zorich evaluates the large genus asymptotics for Siegel-Veech constants
counting various types of saddle connections. It might be possible to also use The-
orem 1.4 to determine the large genus asymptotics for area Siegel-Veech constants
of some families of strata, but we will not pursue this here.

Remark 1.6. Subsequent to the appearance of this paper, we in [1] established
the Eskin-Zorich prediction on area Siegel-Veech constants for connected strata of
Abelian differentials. After this, Chen-Möller-Sauvaget-Zagier [4] proposed an inde-
pendent and very different algebro-geometric proof of both the volume asymptotic
(1.4) and area Siegel-Veech constant asymptotic predicted in [11]. Later, using
both combinatorial ideas from the present work and algebro-geometric methods
from [4], Sauvaget in [19] proved an all-order genus expansion for the Masur-Veech
volume of an arbitrary stratum. In [2, 6], several predictions were proposed for
asymptotics for Masur-Veech polynomials and volumes associated with strata of
quadratic differentials under various limiting regimes.

1.4. Outline. The proof of Theorem 1.4 is based on a combinatorial analysis of the
original algorithm proposed by Eskin and Okounkov for evaluating ν1

(
H1(m)

)
in

[10]. However, as mentioned previously, this algorithm is intricate; it expresses the
Masur-Veech volume through the composition of three identities, each of which in-
volves a sum whose number of terms increases exponentially in the genus g. What
we will show is that each of these sums is dominated by a single term, and the
remaining (nondominant) terms in the sum decay rapidly and can be viewed as
negligible. However, instead of explaining this method in full generality immedi-
ately, it might be useful to see it implemented in a special case.

Therefore, after recalling some notation and combinatorial estimates in Section 2,
we will in Section 3.1 consider the case of the principal stratum, m = 12g−2. In this
setting, Eskin-Okounkov provide an explicit identity (see Lemma 3.1 below) for the
volume ν1

(
H1(m)

)
. This identity will retain the complication of involving a large
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LARGE GENUS ASYMPTOTICS 945

sum, but it will allow us to avoid having to implement the three-fold composition
mentioned above. Thus, we will use Lemma 3.1 to obtain a quick proof of (1.2)
and, in so doing, hopefully provide some indication as to how one can estimate the
types of large sums that will appear later in this paper.

Next, we will recall the Eskin-Okounkov algorithm in Section 3.2 and explain
how it can be used to provide a heuristic for Theorem 1.4 in Section 3.3. The
remaining Sections 4 and 5 will then be directed towards establishing the estimates
required for the proof of Theorem 1.4 (or rather its equivalent version Theorem
3.10).

The appendix by Anton Zorich then applies Theorem 1.4 to evaluate the large
genus asymptotics for certain classes of Siegel-Veech constants.

2. Miscellaneous preliminaries

In this section we recall some notation and estimates that will be used throughout
this paper. In particular, Section 2.1 will set some notation on partitions and set
partitions, and Section 2.2 will collect several estimates to be applied later.

2.1. Notation. A partition λ = (λ1, λ2, . . . , λk) is a finite, nondecreasing sequence
of positive integers. The numbers λ1, λ2, . . . , λk are called the parts of λ; the number

of parts �(λ) = k is called the length of λ; and the sum of the parts |λ| =
∑k

i=1 λi

is called the size of λ. We will also require the (slightly nonstandard) notion of the
weight of the partition, which is defined as follows.

Definition 2.1 ([10, Definition 4.26]). The weight of λ is defined to be wt(λ) =
|λ|+ �(λ).

For each integer n ≥ 0, let Yn denote the set of partitions of size n, and let Yn(k)
denote the number of partitions of size n and length k. Further let Y =

⋃
n≥0 Yn

denote the set of all partitions. For each i ≥ 1 and any λ ∈ Y, let Mi(λ) denote
the multiplicity of i in λ; stated alternatively, Mi(λ) denotes the number of indices
j ∈
[
1, �(λ)

]
such that λj = i.

Observe in particular that
∑∞

i=1 Mi(λ) = �(λ). Furthermore, for any positive
integers n and k, we have that∑

λ∈Yn(k)

k!∏∞
j=1Mj(λ)!

=

(
n− 1

k − 1

)
,(2.1)

since both sides of (2.1) count the number of compositions of n of length k, that is,
the number of (ordered) k-tuples (j1, j2, . . . , jk) of positive integers that sum to n.
We denote the set of compositions j = (j1, j2, . . . , jk) of k-tuples of positive integers
summing to n by Cn(k). Also denote the set of nonnegative compositions of some
integer n ≥ 0, that is, the set of (ordered) k-tuples (j1, j2, . . . , jk) of nonnegative
integers that sum to n, by Gn(k). Observe that∣∣Yn(k)

∣∣ ≤ ∣∣Cn(k)∣∣ =
(
n− 1

k − 1

)
;

∣∣Gn(k)
∣∣ = (n+ k − 1

k − 1

)
.(2.2)

In addition to discussing partitions, we will also consider set partitions. For
any finite set S, a set partition α =

(
α(1), α(2), . . . , α(k)

)
of S is a sequence of

disjoint subsets α(i) ⊆ S such that
⋃k

i=1 α
(i) = S; these subsets α(i) are called the

components of α. The length �(α) = k of α denotes the number of components of
α.
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946 AMOL AGGARWAL

Depending on the context, we may wish to (or not to) distinguish two set parti-
tions consisting of the same components but in a different order. To that end, we
have the definition below; in what follows, S(k) denotes the symmetric group on k
elements.

Definition 2.2. We say that two set partitions α1 =
(
α
(1)
1 , α

(2)
1 , . . . , α

(k1)
1

)
and

α2 =
(
α
(1)
2 , α

(2)
2 , . . . , α

(k2)
2

)
are equivalent as reduced set partitions if k1 = k2 and

there exists a permutation σ ∈ S(k1) such that α
(i)
1 = α

σ(i)
2 for each 1 ≤ i ≤ k1.

However, we will consider them inequivalent as nonreduced set partitions unless
σ = Id. For instance, if S = {1, 2, 3, 4}, then the set partitions

(
{1, 2}, {3, 4}

)
and(

{3, 4}, {1, 2}
)
are equivalent as reduced set partitions but not as nonreduced ones.

For any positive integers n and k, let Pn denote the family of (equivalence
classes of) reduced set partitions of {1, 2, . . . , n} and let Pn;k denote the family of
(equivalence classes of) reduced set partitions of {1, 2, . . . , n} of length k. Similarly,
let Pn denote the family of nonreduced set partitions of {1, 2, . . . , n} and let Pn;k

denote the family of nonreduced set partitions of {1, 2, . . . , n} of length k.
Furthermore, for any set of positive integers A = (A1, A2, . . . , Ak) ⊂ Z>0 with∑k
i=1 Ai = n, let P(A) = P(A1, A2, . . . , Ak) = Pn;k(A1, A2, . . . , Ak) denote the

family of nonreduced set partitions α =
(
α(1), α(2), · · · , α(k)

)
of {1, 2, . . . , n} such

that α(i) has Ai elements for each 1 ≤ i ≤ k.

Observe in particular that

k!
∣∣Pn,k

∣∣ = ∣∣Pn,k

∣∣; ∣∣P(A)
∣∣ = ( n

A1, A2, . . . , Ak

)
; Pn,k =

⋃
A∈Cn(k)

P(A).

(2.3)

We say that a reduced set partition α1 ∈ Pn refines α2 ∈ Pn if, for each α
(i)
1 ∈ α1,

there exists some α
(j)
2 ∈ α2 such that α

(i)
1 ⊆ α

(j)
2 . Then there exists a partial order

on Pn (and thus one on Pn) defined by stipulating that α1 ≤ α2 if α1 refines α2.
This allows one to define the notion of complementary partitions, given as follows.

Definition 2.3 ([10, Definition 6.2]). Two reduced set partitions α1, α2 ∈ Pn are
complementary if �(α1) + �(α2) = n + 1 and the minimal element of Pn greater
than or equal to both α1 and α2 is the maximal set partition ({1, 2, . . . , n}). For
any γ ∈ Pn, let C(γ) denote the set of reduced set partitions α ∈ Pn that are
complementary to γ.

For instance if n = 5, then
(
{1}, {2}, {3, 4, 5}

)
and

(
{1, 3}, {2, 4}, {5}

)
are com-

plementary. However,
(
{1, 2}, {3}, {4, 5}

)
and

(
{1, 2, 3}, {4}, {5}

)
are not since they

both refine
(
{1, 2, 3}, {4, 5}

)
.

The following lemma indicates that two complementary set partitions α1 and α2

are transverse, in that any component of α1 can intersect any component of α2 at
most once.

Lemma 2.4. If α1 ∈ Pn and α2 ∈ C(α1), then
∣∣α(i)

1 ∩ α
(j)
2

∣∣ ≤ 1 for each i, j.

Proof. Denote α1 =
(
α
(1)
1 , α

(2)
1 , . . . , α

(r)
1

)
and α2 =

(
α
(1)
2 , α

(2)
2 , . . . , α

(s)
2

)
, and as-

sume to the contrary that there exist i ∈ [1, r] and j ∈ [1, s] such that
∣∣α(i)

1 ∩α
(j)
2

∣∣ ≥
2. For notational convenience, let us set i = j = 1.

Licensed to Biblio University Jussieu. Prepared on Thu Nov 11 09:56:37 EST 2021 for download from IP 81.194.27.167.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We will define distinct indices k1, k2, . . . , ks ∈ [1, s] inductively as follows. First,
set k1 = 1. Now, suppose we have selected k1, k2, . . . , km−1 for some integer m ∈
[2, s]. Let Rm−1 denote the set of indices i ∈ [1, r] such that α

(i)
1 is not disjoint

with
⋃m−1

j=1 α
(kj)
2 ; observe that 1 ∈ R1.

Since ({1, 2, . . . , n}) is the minimal reduced set partition that is refined by

both α1 and α2, it follows that
⋃m−1

j=1 α
(kj)
2 ⊂

⋃
i∈Rm−1

α
(i)
1 (and

⋃
i∈Rm−1

α
(i)
1 =⋃m−1

j=1 α
(kj)
2 ). Thus, there exists an index k ∈ [1, s] distinct from k1, k2, . . . , km−1

such that α
(k)
2 is not disjoint with

⋃
i∈Rm−1

α
(i)
1 ; set km equal to any such k.

Now observe that
∣∣R1

∣∣ ≤ �
(
α
(1)
2

)
− 1, since

∣∣α(1)
1

∣∣ ∩ ∣∣α(1)
2

∣∣ ≥ 2 and there can be

at most �
(
α
(1)
2

)
− 2 indices i = 1 such that α

(i)
1 intersects α

(1)
2 . We also have that∣∣Rm

∣∣ ≤ ∣∣Rm−1

∣∣ + �
(
α
(km)
2

)
− 1 for each m ≥ 2, since

∣∣α(km)
2 ∩

⋃
i∈Rm−1

α
(i)
1

∣∣ ≥ 1.

Together these estimates yield |Rs| = �(α1) ≤
∑s

i=1

(
�
(
α
(i)
2

)
−1
)
= n−�(α2), which

contradicts the fact that �(α1) = n+1−�(α2) as α1 and α2 are complementary. �
2.2. Estimates. In this section we collect several estimates that will be used at
various points throughout this paper. In the below, for any integer k > 1, we denote
by ζ(k) =

∑∞
j=1 j

−k the Riemann zeta function. Moreover, if c is some constant

and k is some integer variable, then we write ck! to denote c · k! (instead of (ck)!).
For instance, 2k! = 2 ·k! = (2k)! and 2(k−4)! = 2 ·(k−4)! =

(
2(k−4)

)
! = (2k−8)!.

We will repeatedly use the bounds

k ≤2k−1;
2kk+1/2

ek
≤ k! ≤ 4kk+1/2

ek
;

(
n

k

)
≤ 2n;

k−1∑
i=1

i!(k − i)! ≤ 4(k − 1)!;
∣∣ζ(k)− 1

∣∣ ≤ 4

2k
,

(2.4)

which hold for any nonnegative integer k (and for the last estimate in (2.4) we
additionally assume that k > 1). The first three estimates in (2.4) are quickly
verified; let us explain how to derive the fourth and fifth. The fourth follows from
the fact that
k−1∑
i=1

i!(k − i)! = 2(k − 1)! + (k − 1)!

k−2∑
i=2

k

(
k

i

)−1

≤ (k − 1)!

(
2 + k(k − 3)

(
k

2

)−1
)

≤ 4(k − 1)!,

where in the second statement above we used the fact that min2≤i≤k−2

(
k
i

)
=
(
k
2

)
.

To deduce the fifth bound in (2.4), observe for k ∈ Z>1 that

∣∣ζ(k)− 1
∣∣ = 2−k

(
1 +

∞∑
j=3

(
2

j

)k
)

≤ 2−k

(
1 +

∞∑
j=3

(
2

j

)2
)

= 2−k
(
4ζ(2)− 4

)
<

4

2k
.

Let us state a further (known) bound that we will also often use throughout this
paper. If n, r are positive integers and {Ai} and {Ai,j} for 1 ≤ i ≤ n and 1 ≤ j ≤ r
are nonnegative integers such that

∑r
j=1 Ai,j = Ai for each i, then one can quickly

verify the multinomial coefficient estimate
n∏

i=1

(
Ai

Ai,1, Ai,2, . . . , Ai,r

)
≤
( ∑n

j=1 Ai∑n
i=1 Ai,1,

∑n
i=1 Ai,2, . . . ,

∑n
i=1 Ai,r

)
.(2.5)
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948 AMOL AGGARWAL

Now we have the following lemma bounds products of factorials and this will be
used several times throughout the proof of Theorem 3.10.

Lemma 2.5. Let k ≥ 1 and C1, C2, . . . , Ck be nonnegative integers with C1 =
max1≤i≤k Ci. Fix some integer N , and let A1, A2, . . . , Ak be nonnegative integers

such that
∑k

i=1 Ai = N . Then,

k∏
i=1

(Ai + Ci)! ≤ (N + C1)!

k∏
i=2

Ci!.(2.6)

Moreover, if we stipulate that Ai are all nonnegative integers; that at least two of
the Ai are positive; that C1 = max1≤i≤k Ci; and that C2 = max2≤i≤k Ci, then we
have that

k∏
i=1

(Ai + Ci)! ≤ (N + C1 − 1)!(C2 + 1)!

k∏
i=3

Ci!.(2.7)

Furthermore, if we impose k ≥ 2 and that the Ai are all even positive integers
(meaning that N is even) with at least two of them greater than or equal to four,
then

k∏
i=1

(2Ai − 3)!! ≤ 15(2N − 4k − 3)!!.(2.8)

Remark 2.6. Equality in each of the bounds (2.6), (2.7), and (2.8) can be achieved
when one of the terms in the product on the left side is as large as possible. Specifi-
cally, equality in (2.6) is obtained when A1 = N and Ai = 0 for each i > 1; equality
in (2.7) is obtained when A1 = N − 1, A2 = 1, and Ai = 0 for each i > 2; and
equality in (2.8) is obtained when A1 = N − 2k, A2 = 4, and Ai = 2 for each i > 2.

Proof of Lemma 2.5. The proofs of (2.6) and (2.7) are very similar, so let us omit
the proof of (2.7). To establish (2.6), we induct on k, observing that the statement
holds if k = 1. Thus, let m ≥ 2 be a positive integer and suppose that the statement
is valid whenever k ≤ m− 1.

Let C1, C2, . . . , Cm be nonnegative integers with C1 = max1≤i≤m Ci and let
A1, A2, . . . , Am be nonnegative integers such that

∑m
i=1 Ai = N . Then,

m∏
i=1

(Ai + Ci)! = (A1 + C1)!
n∏

i=2

(Ai + Ci)! ≤ (A1 + C1)!(N + C2 −A1)!
m∏
i=3

Ci!.

(2.9)

Since C1 = max1≤i≤mCi and A1 ≤ N , we have that

(A1 + C1)!

C2!
=

A1+C1−C2∏
j=1

(j + C2) ≤
A1+C1−C2∏

j=1

(j +N + C2 −A1)

=
(N + C1)!

(N + C2 −A1)!
,

and so we deduce (2.6) from (2.9).
To establish (2.8), we again induct on k. To verify the statement for k = 2, let

A = A1 ≥ A2 = B ≥ 4, and observe that (2.8) holds if B = 4. If instead B ≥ 5,
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then

(2A− 3)!!(2B − 3)!! =

A−1∏
i=1

(2i− 1)

B−1∏
i=1

(2i− 1)

<
A−1∏
i=1

(2i− 1)
B−1∏
i=1

(2i− 1)
B−1∏
i=4

2(i+A− 4)− 1

2i− 1

= 15

A+B−5∏
i=1

(2i− 1) = 15(2A+ 2B − 11)!!,

where to deduce the second statement we used the fact that 2(i+A−4)−1 > 2i−1
for each i ∈ [1, B − 1] (as A ≥ B ≥ 5). Thus, (2.8) holds.

Now, let m ≥ 3 be a positive integer and suppose that (2.8) is valid whenever
k ≤ m − 1. Let A1, A2, . . . , Am be positive even integers such that

∑m
i=1 Ai = N

and such that at least two of the Ai are greater than or equal to four; assume that
A1 ≥ A2 ≥ · · · ≥ Am, so that A2 ≥ 4. Then, we have that

m∏
i=1

(2Ai − 3)!! = (2Am − 3)!!

m−1∏
i=1

(2Ai − 3)!!

≤ 15(2Am − 3)!!
(
2(N −Am)− 4(m− 1)− 3

)
!!

≤ 15(2Am − 3)!!
(
2(N −Am)− 4(m− 1)− 3

)
!!

×
Am−1∏
i=2

2(N −Am − 2m) + 2i− 1

2i− 1

= 15(2N − 4m− 3)!!,

where we have used the fact that N ≥ Am + 2m (since A1 ≥ A2 ≥ 4 and each
of the m − 2 other Ai are all positive, even integers and thus are at least equal to
two); this verifies (2.8). �

The following lemma estimates sums of products of factorials and will be used in
the proofs of Propositions 5.1 and 5.3. In what follows, we recall the sets Cn(k) of
compositions and Gn(k) of nonnegative compositions, as explained in Section 2.1.

Lemma 2.7. Let L ≥ a ≥ 0 and b ≥ 0 be integers with L positive. For any
composition A = (A1, A2, . . . , AL−a+1) ∈ CL(L−a+1) and nonnegative composition
B = (B1, B2, . . . , BL−a+1) ∈ Gb(L− a + 1), let s = s(A,B) ∈ [1, L − a+ 1] denote
the minimal index such that As + 2Bs = max1≤i≤L−a+1(Ai + 2Bi), and if L = a,
then let h = h(A,B) ∈ [1, L − a + 1] \ {s} denote the minimal index such that
Ah + 2Bh = maxi �=s(Ai + 2Bi). In particular, h is an index such that Ah + 2Bh is
second largest among all Ai + 2Bi.

Then,

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

L−a+1∏
i=1

(Ai + 2Bi)!

Ai!Bi!
≤ 29L+5(a+ 2b)!

a!b!
,(2.10)
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and if L = a, then

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

(Ah + 2Bh + 1)

L−a+1∏
i=1

(Ai + 2Bi)!

Ai!Bi!
≤ 29L+5(a+ 2b)!

a!b!
.

(2.11)

Proof. If L = a, then the left side of (2.10) is equal to (a+2b)!
a!b! and so (2.10) holds.

Thus, we may assume that L > a, in which case (2.10) would follow from (2.11).
It therefore suffices to establish (2.11), to which end we set

g(a, b;L) =
∑

A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

(Ah + 2Bh + 1)

L−a+1∏
i=1

(Ai + 2Bi)!

Ai!Bi!
.

First observe that, for any composition A = (A1, A2, . . . , AL−a+1) ∈ CL(L−a+1)
and nonnegative composition B = (B1, B2, . . . , BL−a+1) ∈ Gb(L − a + 1), we have
that

L−a+1∏
i=1

(
Ai + 2Bi

Ai, Bi, Bi

)
=

L−a+1∏
i=1

(
Ai + 2Bi − 1

Ai − 1, Bi, Bi

)
Ai + 2Bi

Ai

≤
(
a+ 2b− 1

a− 1, b, b

) L−a+1∏
i=1

(
2Bi

Ai
+ 1

)
,

where in the second statement we used (2.5) (with the n there equal to L − a + 1
here; r there equal to 3 here; the Ai,1 there equal to Ai−1 here; and the Ai,2 = Ai,3

there equal to Bi here) together with the facts that
∑L−a+1

i=1 (Ai − 1) = a − 1 and∑L−a+1
i=1 Bi = b. Hence, since 2Bi

Ai
+ 1 ≤ 2(Bi + 1) and a ≤ L ≤ 2L (recall the first

estimate in (2.4)), it follows that

L−a+1∏
i=1

(
Ai + 2Bi

Ai, Bi, Bi

)
≤ 22L(a+ 2b− 1)!

a!b!2

L∏
i=1

(Bi + 1).(2.12)

Additionally, since Ah ≤ L − 1 ≤ 2L−1, we have Ah + 2Bh + 1 ≤ 2L(Bh + 1).

Together with (2.12) and the fact that
∣∣CL(L− a+ 1)

∣∣ = (L−1
L−a

)
≤ 2L−1 (recall the

first identity in (2.2)), this yields

g(a, b;L)

≤ 22L(a+ 2b− 1)!

a!b!2

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

(Ah + 2Bh + 1)

L−a+1∏
i=1

(Bi + 1)!

≤ 24L(a+ 2b− 1)!

a!b!2
max

A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

(Bh + 1)
L−a+1∏
i=1

(Bi + 1)!.

(2.13)

To bound the right side of (2.13), observe that any B = (B1, B2, . . . , BL−a+1) ∈
Gb(L − a + 1) is uniquely determined an integer s ∈ [0, L − a + 1]; a subset T =
{t1, t2, . . . , ts} ⊆ {1, 2, . . . , L − a + 1}; and a composition C = (C1, C2, . . . , Cs) ∈
Cb(s). Indeed, given such an s, T , and C, one produces B by setting Bti = Ci for
each i ∈ [1, s] and Bj = 0 for each j /∈ T .
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Therefore, instead of summing the right side of (2.13) over B, we can sum it
over all s, T , and C. Denote by Ch by the second largest element in C (unless
s < 2, in which case set Ch = 0), and observe that Bh ≤ L + Ch ≤ 2L−1(Ch + 1)

since a ≤ L ≤ 2L−1. Thus, since there are
(
L−a+1

s

)
≤ 2L+1 possibilities for T and

L− a+ 2 ≤ 2L+1 possibilities for s, we find that

g(a, b;L) ≤ 25L(a+ 2b− 1)!

a!b!2

L−a+1∑
s=0

∑
|T |=s

∑
C∈Cb(s)

(Ch + 2)
s∏

i=1

(Ci + 1)!

≤ 25L(a+ 2b− 1)!

a!b!2

L−a+1∑
s=0

∑
|T |=s

∑
C∈Cb(s)

(Ch + 2)!
∏

1≤i≤s
i �=h

(Ci + 1)!

≤ 27L+2(a+ 2b− 1)!

a!b!2
max

s∈[0,L−a+1]

∑
C∈Cb(s)

(Ch + 2)!
∏

1≤i≤s
i �=h

(Ci + 1)!.

(2.14)

Next, if the maximum of the right side of (2.14) is taken at s = 0, then the right

side is bounded by 27L+3(a+2b−1)!
a!b!2 , and so the lemma holds. Similarly, if it is taken

at s = 1, then Ch = 0 and C = (b), meaning that the quantity on the right side

of (2.14) is equal to 27L+3(b+1)!(a+2b−1)!
a!b!2 ≤ 27L+3(a+2b)!

a!b! , and the lemma again holds.
Thus, we may assume that the maximum on the right side of (2.14) is taken at
s ≥ 2, so that Ch ≥ 1.

Now we apply (2.6) with the k there equal to s − 1; the Ci there each equal to
2; and the Ai there equal to the Ci − 1 here (for i = h). Since

∑
i �=h(Ci − 1) =

b− s− Ch + 1 and since b− s− Ch + 3 ≤ a+ 2b, this yields

g(a, b;L) ≤ 27L+s+1(a+ 2b− 1)!

a!b!2
max

s∈[2,L−a+1]

∑
C∈Cb(s)

(Ch + 2)!(b− Ch − s+ 3)!

≤ 28L+1(a+ 2b)!

a!b!2
max

s∈[2,L−a+1]

∑
C∈Cb(s)

(Ch + 2)!(b− Ch − s+ 2)!.

(2.15)

Let us estimate the right side of (2.15). To that end, observe that there are
s ≤ L + 1 ≤ 2L possibilities for h ∈ [1, s] and that Ch ∈

[
1, b

2

]
(since Ch denotes

the second largest element of the composition C, which has total size b). Thus,
relabeling Ch = D, summing over all possible D and h, and using the fact that∣∣Cb−D(s− 1)

∣∣ = (b−D−1
s−2

)
≤
(
b−D
s−2

)
(again due to (2.2)) yields

g(a, b;L) ≤ 29L+1(a+ 2b)!

a!b!2
max

s∈[2,L−a+1]

�b/2�∑
D=1

∣∣Cb−D(s− 1)
∣∣(b− s+ 2−D)!(D + 1)!

=
29L+1(a+ 2b)!

a!b!2
max

s∈[2,L−a+1]

�b/2�∑
D=1

(
b−D − 1

s− 2

)
(b− s+ 2−D)!(D + 2)!

≤ 29L+1(a+ 2b)!

a!b!2

�b/2�∑
D=1

(b−D)!(D + 2)!.

(2.16)
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To bound the right side of (2.16), observe for b ≤ 3 that
∑�b/2�

D=1 (b−D)!(D+2)! ≤ 3b!
and for b ≥ 4 that

�b/2�∑
D=1

(b−D)!(D + 2)! ≤
b−2∑
D=1

(b−D)!(D + 2)!

≤ 6(b− 1)! + 2b! + (b+ 2)!

b−3∑
D=2

(
b+ 2

D + 2

)−1

≤ 4b! + (b+ 2)!(b− 4)

(
b+ 2

3

)−1

≤ 10b!,

where we have used the fact that min4≤i≤b−1

(
b+2
i

)
=
(
b+2
b−1

)
=
(
b+2
3

)
. Together with

(2.16), this establishes the lemma. �
The following lemma also bounds sums of products and will be used in Section

5.2.

Lemma 2.8. Let n ≤ r and k1, k2, . . . , kn be positive integers; denote k =
∑n

i=1 ki.
Then, ∑

�∈Cr(n)

n∏
i=1

k2�i−2
i

(2�i − 2)!
≤ k2(r−n)

(2r − 2n)!
.

Proof. This follows from the fact that

(2r − 2n)!
∑

�∈Cr(n)

n∏
i=1

k2�i−2
i

(2�i − 2)!
≤ (2r − 2n)!

∑
A∈G2r−2n(n)

n∏
i=1

kAi
i

Ai!

=
∑

A∈G2r−2n(n)

(
2r − 2n

A1, A2, . . . , An

) n∏
i=1

kAi
i = k2r−2n,

where in the last equality we used the fact that
∑n

i=1 ki = k. �
We conclude with the following lemma, which also will be used in Section 5.2,

that estimates factorials.

Lemma 2.9. Let k and a be positive integers with k ≥ 2a. Then,

ka ≤ 28a(k − 1)!

(k − 2a)!
; k2a ≤ 28a(k − 1)!

(k − 2a− 1)!
, if k ≥ 2a+ 1.(2.17)

Proof. We only establish the second estimate in (2.17), since the proof of the first
is very similar. First observe that if k ≥ 4a, then k

k−i ≤ 2 for each 1 ≤ i ≤ 2a,
meaning that

k2a
2a∏
i=1

1

k − i
≤ 22a,

from which we deduce the second estimate in (2.17). If k ≤ 4a, then since k
k−i ≥ 1

for any i ∈ [2a+1, k− 1] and since (k− 1)! ≥ 2
(
k
e

)k−1
(due to the second estimate

of (2.4)), we have that

k2a
2a∏
i=1

1

k − i
≤ kk−1

k−1∏
i=1

1

k − i
=

kk−1

(k − 1)!
≤ ek−1

2
≤ 22k−1 ≤ 28a,
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from which we again deduce (2.17). �

3. Evaluating the volumes

The goal of this section is to explain several ways to explicitly evaluate the strata
volumes ν1

(
H1(m)

)
for various partitions m. We begin in Section 3.1 by using

an identity of Eskin-Okounkov [10] to establish Theorem 1.4 in the case of the
principal stratum m = 12g−2. Then, in Section 3.2 we recall the general algorithm
of Eskin-Okounkov [10] that finds the stratum volume ν1

(
H1(m)

)
, for any given

m = (m1,m2, . . . ,mn). In Section 3.3 we outline how to use this algorithm to
establish Theorem 1.4 (or in fact the equivalent Theorem 3.10).

3.1. The principal stratum. In this section we establish (1.4) when m = 12g−2

is the principal stratum using an identity of Eskin-Okounkov [10] that provides
an explicit expression for the volume ν1

(
H1(1

2g−2)
)
. Following the notation in

[10], we will use and estimate a quantity c(m) instead of the Masur-Veech volume
ν1
(
H1(m)

)
. In view of Remark 2 of [11], the two quantities are related by

ν1
(
H1(m)

)
= 2c(m+ 1),(3.1)

where if m = (m1,m2, . . . ,mn), then m+1 = (m1+1,m2 +1, . . . ,mn+1); we can
take (3.1) to be the definition of c(m+ 1).

The below Lemma 3.1, which originally appeared as Theorem 7.1 of [10], yields an
identity for c(2, 2, . . . , 2) (for any even positive integer n) that will be asymptotically
analyzed in Proposition 3.2; this will imply (1.4) in the case of the principal stratum.
In what follows, we define the quantity (which was originally given by Definition
6.6 of [10] and will also appear later)

z(k) =
(
2− 22−k

)
ζ(k)1k∈2Z≥0

,(3.2)

where ζ(k) denotes the Riemann zeta function and 1E denotes the indicator for
any event E.

Lemma 3.1 ([10, Theorem 7.1]). For any even positive integer n, let κ = κn denote
the partition 2n = (2, 2, . . . , 2), in which 2 appears n times. Then, we have that

c(κn) = n!
∑

μ∈Yn+2

μ Even

(−1)�(μ)−1(
2n− �(μ) + 2)!

∏∞
i=2 Mi(μ)!

�(μ)∏
i=1

(2μi − 3)!!z(μi),

where μ is summed over all partitions of n + 2 with only even parts and we recall
from Section 2.1 that Mi(μ) denotes the multiplicity of i in μ.

Using Lemma 3.1 we will establish the below proposition, which verifies Theorem
1.4 in the special case of the principal stratum.

Proposition 3.2. For any positive integer g > 1, we have that

∣∣∣22g−4ν1
(
H1(1

2g−2)
)
− 1
∣∣∣ ≤ 220

g
.(3.3)

Licensed to Biblio University Jussieu. Prepared on Thu Nov 11 09:56:37 EST 2021 for download from IP 81.194.27.167.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



954 AMOL AGGARWAL

Proof. Throughout this proof, set n = 2g−2. Combining (3.1) and Lemma 3.1, we
deduce that

2n−2ν1
(
H1(1

n)
)
= 2n−1c(κn) = 2n−1n!

∑
|μ|∈Yn+2

μ Even

(−1)�(μ)−1(
2n− �(μ) + 2)!

∏∞
i=2 Mi(μ)!

×
�(μ)∏
i=1

(2μi − 3)!!z(μi).

(3.4)

Let us begin by removing the one-part partition μ = (n+2) from the sum on the
right side of (3.4). To that end, observe that the contribution of the μ = (n + 2)
term (which satisfies �(μ) = 1) is equal to

2n−1n!(2n+ 1)!!

(2n+ 1)!
z(n+ 2) =

z(n+ 2)

2

= (1− 2−n−1)ζ(n+ 2) ∈ [1− 21−n, 1 + 21−n],

where to deduce the last statement we used the last estimate of (2.4).
Thus, it follows from (3.4) that

∣∣∣2n−2ν1
(
H1(1

n)
)
− 1
∣∣∣ ≤ 2n−1n!

∑
|μ|∈Yn+2

μ Even
�(μ)≥2

1(
2n− �(μ) + 2)!

�(μ)∏
i=1

(2μi − 3)!!z(μi)

+ 21−n.

(3.5)

It remains to show that the sum on the right side of (3.5) is O
(
1
n

)
, to which

end we will divide this sum into two contributions. Specifically, for each integer
r ≥ 2, let ξ(r) = ξ =

(
ξ1, ξ2, . . . , ξr

)
denote the partition of length r such that

ξ1 = n + 4 − 2r and ξ2 = ξ3 = · · · = ξr = 2. Set Ξ =
{
ξ(2), ξ(3), . . . , ξ(n/2+1)

}
.

Furthermore, for each r ≥ 2, let Ω(r) = Ωn(r) denote the set of partitions μ =
(μ1, μ2, . . . , μr) ∈ Yn+2 such that �(μ) = r; each μi is even, and μ /∈ Ξ. The last
condition is equivalent to μ2 ≥ 4 and implies that �(μ) ≤ n

2 .
Then (3.5) implies that

∣∣∣2n−2ν1
(
H1(1

n)
)
− 1
∣∣∣ ≤ 1

2n−1
+ E1 + E2,(3.6)

where

E1 = 2n−1n!
∑
μ∈Ξ

1(
2n− �(μ) + 2)!

�(μ)∏
i=1

(2μi − 3)!!z(μi);

E2 = 2n−1n!

n/2∑
r=2

∑
μ∈Ω(r)

1(
2n− r + 2)!

r∏
i=1

(2μi − 3)!!z(μi).
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Let us first estimate E1. Since �
(
ξ(r)
)
= r for each integer r ≥ 2 and z(k) ≤ 4 for

each k ≥ 2 (in view of the last estimate in (2.4)), we find that

E1 ≤ 2n−1n!

n/2+1∑
r=2

22r(2n− 4r + 5)!!

(2n− r + 2)!

= 2n−1n!

n/2+1∑
r=2

22r(2n− 4r + 5)!

2n−2r+2(n− 2r + 2)!(2n− r + 2)!

= n!

n/2∑
s=1

24s+1(2n− 4s+ 1)!

(n− 2s)!(2n− s+ 1)!

=

n/2∑
s=1

24s+1
2s−1∏
i=0

n− i

2n− 2s+ 1− i

s−1∏
i=0

1

2n− s+ 1− i
≤ 2

n/2∑
s=1

(
16

n

)s

≤ 210

n
,

(3.7)

where we set s = r−1 and used the facts that n−i
2n−2s+1−i ≤ 1 for each i ∈ [0, 2s−1]

and that 2n− s+ 1− i ≥ n for each i ∈ [0, s− 1] and s ≤ n
2 .

Next we bound E2. To do this, let us apply (2.8) with Ai = μi, k = r, and
N = n + 2 to deduce that maxμ∈Ω(r)

∏r
i=1(2μi − 3)!! ≤ 15(2n − 4r + 1)!! (since

μ1 ≥ μ2 ≥ 4). Combining this with the fact that z(k) ≤ 4 (which follows from the
last estimate in (2.4), as above) yields

E2 ≤ 2n−1n!

n/2∑
r=2

∑
μ∈Ω(r)

22r(
2n− r + 2)!

r∏
i=1

(2μi − 3)!!

≤ 2n+3n!

n/2∑
r=2

22r
∣∣Ω(r)∣∣(2n− 4r + 1)!!(

2n− r + 2)!
.

Since
∣∣Ω(r)∣∣ ≤ ∣∣Yn/2(r)

∣∣ ≤ (n/2r−1

)
≤ 1

(r−1)!

(
n
2

)r−1
(here, we recall from Section

2.1 that Yn(k) denotes the number of partitions of size n and length k, and we are
using the first estimate in (2.2)), it follows that

E2 ≤ 2n+5n!

n/2∑
r=2

(2n)r−1(2n− 4r + 1)!!

(r − 1)!(2n− r + 2)!

= 2n+5n!

n/2∑
r=2

(2n)r−1(2n− 4r + 1)!

2n−2r(r − 1)!(n− 2r)!(2n− r + 2)!

= 128n!

n/2∑
r=2

8r−1

(r − 1)!

nr−1

(n− 2r)!

3r∏
j=0

1

2n− r + 2− j
.

Therefore, since n!nr−1

(n−2r)! ≤ n−2
∏3r

j=0(n + r + 1 − j) (since n + r + 1 − j ≥ n for

j ∈ [0, r]), we obtain

E2 ≤ 128

n2

n/2∑
r=2

8r−1

(r − 1)!

3r∏
j=0

n+ r + 1− j

2n− r + 2− j
≤ 128

n2

n/2∑
r=2

8r−1

(r − 1)!
≤ 128e8

n2
≤ 219

n2
,

(3.8)
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where we used the facts that n+r+1−j
2n−r+2−j ≤ 1 for each r ≤ n

2 and that e ≤ 23/2 to

deduce the fourth and fifth inequalities, respectively. Now the proposition follows
from (3.6), (3.7), (3.8), and the first estimate in (2.4). �

The method used to establish Proposition 3.2 will be used many times in the
proof of Theorem 1.4. Upon encountering a large sum, such as the one that appears
on the right side of (3.4), we will sometimes remove a leading order term that should
in principle dominate the sum.2 This is analogous to the removal of the μ = (n+2)
term used to establish (3.5) from (3.4).

It will then remain to estimate the error, which is still a sum with many sum-
mands. In some cases, we will remove a few “exceptional summands” from this
sum, whose contribution can be estimated directly (in the proof above, these were
the ξ(r)), and then partition the remaining summands according to a certain statis-
tic. In the proof above, this statistic was the length of the partition (although it

will not always be in the future), which led to the partition
⋃n/2

r=2Ω(r) of the “non-
exceptional summands”. We then bound the sum over each part using the largest
possible value of a summand, and then sum over all parts to estimate the error.

Remark 3.3. Through a similar procedure as used in the proof of Proposition 3.2,
it is also possible to obtain the second order correction to ν1

(
H1(1

2g−2)
)
, as in the

asymptotic (1.2) of Chen-Möller-Zagier [3]. Although we will not pursue a complete
proof here, it can be shown that the second order correction in the sum on the right
side of (3.5) occurs at μ = ξ(2) = (n, 2). In this case, �(μ) = 2 and this correction
becomes

−2n−1n!
(2n− 3)!!z(2)z(n)

(2n)!
= −2nn!(1− 21−n)(2n− 3)!ζ(2)ζ(n)

2n−2(n− 2)!(2n)!

∼ −ζ(2)

2n
∼ − π2

24g
,

where we used the fact that ζ(2) = π2

6 and n = 2g − 2. This matches the second

order correction − π2

24g appearing on the right side of (1.2).

3.2. The Eskin-Okounkov algorithm. In this section we explain the algorithm
of [10] that evaluates the quantity c(m) for any m with m1,m2, . . . ,mn ≥ 2. Recall
from (3.1) that 2c(m) = ν1

(
H1(m − 1)

)
and thus that any Masur-Veech volume

can be directly expressed in terms of such a quantity. As mentioned in Section 1.4,
the algorithm that determines c(m) essentially proceeds through the composition
of three identities.

We begin with a countably infinite set of indeterminates {p1, p2, . . .} and consider
the algebra Λ = C[p1, p2, . . .] that they generate.3 Two of the three identities will
define a multilinear form 〈·| . . . |·〉 : Λn → C, the first of which will define the form
on the subset of Λ given by the vector space spanned by p1, p2, . . ..

In particular, we have the definition below, which essentially appears as Theorem
6.7 of [10]. In what follows, we recall the notions of reduced set partitions (as
explained in Section 2.1) and the definition (3.2) of zk.

2In some cases this will not be done, if our goal is to bound the sum instead of approximate it.
3In [10], the indeterminates {pi} are shifted power sums, and Λ = Λ∗ is the algebra of shifted

symmetric functions. However, these facts will not be necessary for us to state the algorithm.
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Definition 3.4. For any reduced partition α ∈ Pn, let Δ(α) = G�(α)−2

(
�(α)

)
denote the set of �(α)-tuples of nonnegative integers (d1, d2, . . . , d�(α)) such that∑�(α)

i=1 di = �(α)− 2.
For any sequence of n positive integers m = (m1,m2, . . . ,mn) ∈ Zn

≥1, define

〈m〉 = 〈m1|m2| · · · |mn〉 = 〈pm1
|pm2

| · · · |pmn
〉 = |m|!z

(
|m| − n+ 2

)
+ E(m),

(3.9)

where |m| =
∑n

i=1 mi, and E(m) = E(m1,m2, . . . ,mn) is given by

E(m) =
∑
α∈Pn
�(α)≥2

(−1)�(α)−1
(
�(α)− 2

)
!

×
∑

d∈Δ(α)

�(α)∏
i=1

1

di!

∣∣mα(i)

∣∣!z(∣∣mα(i)

∣∣− ∣∣α(i)
∣∣− di + 1

)
.

(3.10)

In (3.9), we have denoted α =
(
α(1) ∪ α(2) ∪ · · · ∪ α(�(α))

)
;
∣∣α(i)

∣∣ by the number

of elements in the component α(i); and
∣∣mα(i)

∣∣ = ∑j∈α(i) mj . Observe that each

summand on the right side of (3.10) is well-defined since it does not depend on the
representative of the equivalence class of α ∈ Pn.

Remark 3.5. In Theorem 6.7 of [10], the �(α)-tuple d = (d1, d2, . . . , d�(α)) was not

summed over Δ, but instead only those elements of Δ such that
∣∣mα(i)

∣∣− ∣∣α(i)
∣∣−

dj + 1 is even. Due to the definition (3.2) of z, one quickly verifies that it is only
these elements of Δ that contribute to the right side of (3.10).

Remark 3.6. For any α ∈ Pn, observe from the second identity in (2.2) that∣∣Δ(α)
∣∣ = (2�(α)− 3

�(α)− 1

)
≤ 22�(α).(3.11)

Now we must extend the inner product partly defined in Definition 3.4 to all
of Λk, which will be done through the second identity, given by the definition
below that essentially appears as Theorem 6.3 of [10] (under the name of a “Wick-
type identity”). In what follows we recall the notion of complementary set par-

titions explained in Definition 2.3, and we let pλ =
∏�(λ)

i=1 pλi
for any partition

λ = (λ1, λ2, . . . , λ�(λ)) ∈ Y; observe that the {pλ}λ∈Y generate Λ and thus it suf-
fices to define the inner product on any family of pλ.

Definition 3.7. Fix partitions λ(1), λ(2), . . . , λ(n) ∈ Y; set Lj =
∑j

i=1 �
(
λ(i)
)
for

each j ∈ [1, n]; and denote L0 = 0 and L = Ln. Let ρ =
(
ρ(1), ρ(2), · · · , ρ(n)

)
∈ PL;n

denote the reduced partition of {1, 2, . . . , L} such that ρ(i) =
{
Li−1 + 1, Li−1 +

2, . . . , Li

}
for each i ∈ [1, n]. Define

〈
pλ(1) |pλ(2)| · · · |pλ(n)

〉
=
∑

α∈C(ρ)

L−n+1∏
i=1

〈
λα(i)

〉
,(3.12)

where the sum is over all reduced set partitions α =
(
α(1), α(2), . . . , α(L−n+1)

)
∈ Pn

that are complementary to ρ, and λα(i) ⊂ Z≥1 is a set of
∣∣α(i)

∣∣ integers defined as
follows. We stipulate that a positive integer u is in λα(i) if and only if there exist

j ∈ [1, n] and k ∈
[
1, �
(
λ(j)
)]

such that u = λ
(j)
k and Lj−1 + k ∈ α(i). Observe
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that the product on the right side of (3.12) does not depend on the representative
of the equivalence class of α. Now, using (3.12), extend the inner product 〈·| . . . |·〉
by linearity to all of Λn.

For instance, if n = 3, ρ =
(
{1, 2, 3}, {4}, {5, 6}

)
, and α=

(
{1, 4}, {2, 6}, {3}, {5}

)
,

then (L0, L1, L2, L3) = (0, 3, 4, 6) and

λα(1) =
(
λ
(1)
1 , λ

(2)
1

)
; λα(2) =

(
λ
(1)
2 , λ

(3)
2

)
; λα(3) =

(
λ
(1)
3

)
; λα(4) =

(
λ
(3)
1

)
.

The corresponding summand in (3.12) is then
〈
λ
(1)
1 |λ(2)

1

〉〈
λ
(1)
2 |λ(3)

2

〉〈
λ
(1)
3

〉〈
λ
(3)
1

〉
.

The quantities c(m) will not be directly expressed in terms of inner products of
the pλ, but rather in terms of inner products of a different family of elements of
fk ∈ Λ. The third identity, which appears as Theorem 5.5 of [10], expresses these fk
in the {pλ} basis. In what follows, we recall the notion of the weight of a partition
from Definition 2.1.

Definition 3.8. For any integer k ≥ 2, define the function fk through4

fk =
1

k

∑
wt(λ)=k+1

(−k)�(λ)−1∏∞
i=1 Mi(λ)!

pλ.(3.13)

Using the above definitions, we can express c(m) as an inner product through
the following proposition, which follows from combining equation (1.8), Theorem
5.5, Definition 6.1, Theorem 6.3, and Theorem 6.7 of [10].

Proposition 3.9 ([10]). Let m = (m1,m2, . . . ,mn) ∈ Y be a partition such that
m1,m2, . . . ,mn ≥ 2. Then,

c(m) =
1

|m|!
〈
fm1

|fm2
| · · · |fmn

〉
.

The goal of the remainder of this article is to establish the following theorem,
which in view of (3.1) implies Theorem 1.4.

Theorem 3.10. Let g > 1 be an integer and let m = (m1,m2, . . . ,mn) ∈ Y2g+n−2

be a partition such that mi ≥ 2 for each i ∈ [1, n]. If we denote Fk = kfk for each
k ≥ 2, then ∣∣∣〈Fm1

|Fm2
| · · · |Fmn

〉
− 2|m|!

∣∣∣ ≤ 22
200(|m| − 1

)
!.(3.14)

In particular, since |m| = 2g + n− 2 ≥ g, we have that∣∣∣∣∣c(m)

n∏
i=1

mi − 2

∣∣∣∣∣ ≤ 22
200

g
.

3.3. Outline of the proof of Theorem 3.10. Let us briefly indicate why one
might expect the estimate (3.14) to hold.

First, using the identity Fk = kfk and the definition (3.13) of fk, observe that〈
Fm1

|Fm2
| · · · |Fmn

〉
can be expressed as a linear combination of inner products

of the form
〈
pλ(1)|pλ(2) | · · · pλ(n)

〉
. One of these terms is

〈
pm1

|pm2
| · · · |pmn

〉
, which

occurs when λ(i) = (mi) for each i; it is quickly verified that this is the term
corresponding to the maximal value of the total size

∑n
i=1

∣∣λ(i)
∣∣.

4In [10], the functions fk denote the highest weight part in the expansion of certain (normalized)
characters of the symmetric group in the shifted power sum basis {pλ}. However, this fact is again
not required to state the algorithm.
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We will establish that this term in fact dominates
〈
Fm1

|Fm2
| · · · |Fmn

〉
, that is,

〈
Fm1

|Fm2
| · · · |Fmn

〉
≈
〈
pm1

|pm2
| · · · |pmn

〉
= 〈m〉.

To analyze the latter expression, recall from (3.9) that

〈m〉 = |m|!z
(
|m| − n+ 2

)
+ E(m),

where E is defined by (3.10). We will show that, if m does not contain any parts
equal to one (which is the case in the setting of Theorem 3.10), then E(m) is of
smaller order than |m|!. Therefore, 〈m〉 ≈ |m|!z

(
|m| − n + 2

)
; since z(k) = (2 −

22−k)ζ(k)1k∈2Z≥0
≈ 2 for k large and even, this would show

〈
Fm1

|Fm2
| · · · |Fmn

〉
≈

〈m〉 ≈ 2|m|!, as in Theorem 3.10.5

To fully justify this procedure will require some additional bounds. Specifically,
we will begin in Section 4 by estimating the inner products 〈m〉 for partitions
m = (m1,m2, . . . ,mn). If each mi ≥ 2, then Lemma 4.1 will verify the above
statement that E(m) = O

(
(|m| − 1)!

)
. However, this will not quite suffice for our

purposes. Indeed, although the partition m in the statement of Theorem 3.10 has
all parts at least two, it is possible that when we use (3.13) to express F as a linear
combination of the pλ that some of these pλ will have some parts equal to one.

Therefore, we will still be required to bound 〈m〉 in the case when some parts of
m are equal to one. In this case, we are in fact not certain if E(m) = O

(
(|m| − 1)!

)
holds, but we will establish a weaker bound for this quantity as Proposition 4.2,
which will suffice for our purposes.

Next, we must bound the more general inner product given by (3.12). To gain an
initial idea for how these bounds should look, one might first attempt to understand
the contribution of any one summand to the sum on the right side of (3.12). For
simplicity, let us suppose as above that the ideal approximation

〈mα(i)〉 ∼ 2
∣∣mα(i)

∣∣!
holds. In this case, each summand on the right side of (3.12) becomes approximately

2L−n+1
∏L−n+1

i=1

∣∣mα(i)

∣∣!, which can be shown to be bounded by 2L−n+1
(
|m| −L+

n
)
!.
This heuristic holds for any individual summand in (3.12). However, if the terms

defining the sum on the right side of (3.12) decay sufficiently quickly, then one might
expect it to in fact be possible to estimate the inner product on the left side of (3.12)
by CL−n+1

(
|m| − L + n

)
! for some constant C. We will be able to establish such

an estimate through a more careful analysis, as we will see in Proposition 5.1 and
its refinement Proposition 5.3 below.

Once the multifold inner products
〈
pλ(1)|pλ(2) | · · · |pλ(n)

〉
have been appropri-

ately estimated as indicated above, we will be able to justify the approximation〈
Fm1

|Fm2
| · · · |Fmn

〉
≈
〈
pm1

|pm2
| · · · |pmn

〉
and conclude the proof of Theorem

3.10 in Section 5.2.

5Observe that this heuristic does not use the multifold inner product given by (3.12) (in the

generic case when at least one of the λ(i) there has at least two parts). Indeed, this will be due
to the fact that the sum of these terms will not contribute in the large |m| limit.
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4. Estimating 〈m〉
In this section we estimate E(m) as |m| tends to ∞. Specifically, in Section 4.1

we bound this quantity in the case when m has no parts equal to one, and in Section
4.2 we establish a weaker bound for this quantity when some parts of m equal one.

4.1. The case when each mi ≥ 2. Our goal in this section is to establish the
following lemma, which estimates E(m) when each part of m is at least two.

Lemma 4.1. Let n be a positive integer, and let m = (m1,m2, . . . ,mn) be an
n-tuple of integers with each mi ≥ 2. Denoting |m| =

∑n
i=1 mi, we have that∣∣E(m)

∣∣ ≤ 240
(
|m| − 1

)
!.

Proof. Observe by the definition (3.10) of E(m), we have that

∣∣E(m)
∣∣ ≤ ∑

α∈Pn

�(α)≥2

(
�(α)− 2

)
!
∑

d∈Δ(α)

�(α)∏
j=1

∣∣mα(j)

∣∣!z(∣∣mα(j)

∣∣− ∣∣α(j)
∣∣− dj + 1

)
.

Applying the fact that
∣∣z(k)∣∣ ≤ 4 and (3.11), we deduce that

∣∣E(m)
∣∣ ≤ ∑

α∈Pn
�(α)≥2

24�(α)
(
�(α)− 2

)
!

�(α)∏
j=1

∣∣mα(j)

∣∣! .

Setting �(α) = r and applying the first and third identities in (2.3) yields

∣∣E(m)
∣∣ ≤ n∑

r=2

∑
α∈Pn;r

24r
(
r − 2

)
!

r∏
j=1

∣∣mα(j)

∣∣!
=

n∑
r=2

24r

r(r − 1)

∑
α∈Pn;r

r∏
j=1

∣∣mα(j)

∣∣!
=

n∑
r=2

24r

r(r − 1)

∑
�∈Cn(r)

∑
α∈P(�)

r∏
j=1

∣∣mα(j)

∣∣! .
(4.1)

Now, for any composition � ∈ Cn(r), let s = s(�) denote the minimal index
s ∈ [1, r] such that �s = max1≤j≤r �j . Then, since

∑r
i=1

∣∣mα(i)

∣∣ = |m|;
∑r

i=1 �i = n;

and
∣∣mα(i)

∣∣ ≥ 2�i (since mi ≥ 2 for each i ∈ [1, r]), (2.6) applied with Ci = 2�i and

Ai =
∣∣mα(i)

∣∣− 2�i yields

max
α∈P(�)

r∏
j=1

∣∣mα(j)

∣∣! ≤ (|m| − 2n+ 2�s
)
!
∏

1≤i≤r
i �=s

(2�i)!.(4.2)
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Applying the second identity in (2.3) and (4.2) in (4.1) yields

∣∣E(m)
∣∣ ≤

n∑
r=2

24r

r(r − 1)

∑
�∈Cn(r)

(
n

�1, �2, . . . , �r

)(
|m| − 2n+ 2�s

)
!
∏

1≤i≤r
i �=s

(2�i)!

=
∣∣m∣∣! n∑

r=2

24r

r(r − 1)

∑
�∈Cn(r)

n!

�s!

2n−2�s−1∏
i=0

1

|m| − i

∏
1≤i≤r
i �=s

(2�i)!

�i!

≤ 2n
(
|m| − 1

)
!

n∑
r=2

24r

r(r − 1)

∑
�∈Cn(r)

n!
∏r

j=1 �i!

(2n)!

r∏
i=1

(
2�i
�i

)
,

(4.3)

where in the last estimate we used the fact that

2n−2�s−1∏
i=0

1

|m| − i
≤ 2n

|m|

2n−2�s−1∏
i=0

1

2n− i
=

2n(2�s)!

m(2n)!
, since |m| ≥ 2n.

Since
∏r

i=1

(
2�i
�i

)
≤
(
2n
n

)
(due to (2.5)), we deduce from (4.3) that

∣∣E(m)
∣∣ ≤ 2n

(
|m| − 1

)
!

n∑
r=2

24r
∑

�∈Cn(r)

1

n!

r∏
j=1

�i!

≤ 2n
(
|m| − 1

)
!

n∑
r=2

24rr(n− r + 1)!

n!

+ 2n
(
|m| − 1

)
!

n∑
r=2

24r
∑

�∈Cn(r)
maxi�=s �i≥2

∏r
j=1 �i!

n!
,

(4.4)

where the first sum on the right side of (4.4) corresponds to “exceptional” composi-
tions � ∈ Cn(r) with one part equal to n− r+1 and the remaining r−1 parts equal
to one, and the second sum corresponds to the remaining compositions (which must
satisfy maxi �=s �i ≥ 2).

Applying (4.4), (2.2), and (2.7) (with Ai = �i − 1 and Ci = 1) we obtain

∣∣E(m)
∣∣ ≤ 2n

(
|m| − 1

)
!

n∑
r=2

24rr(n− r + 1)!

n!

+ 2n
(
|m| − 1

)
!

n∑
r=2

24r
∣∣Cn(r)∣∣ max

�∈Cn(r)
maxi�=s �i≥2

∏r
j=1 �i!

n!

≤ 512
(
|m| − 1

)
!

n∑
r=2

16r−2r

(r − 2)!
+ 4n

(
|m| − 1

)
!

n∑
r=2

16r(n− r)!

n!

(
n− 1

r − 1

)

≤ 215e16
(
|m| − 1

)
!,

(4.5)

from which we deduce the lemma, since e ≤ 23/2. �

4.2. The case when m has parts equal to 1. Our goal in this section is to
establish the following proposition that estimates

∣∣E(m)
∣∣ when m has some parts

equal to one.
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962 AMOL AGGARWAL

Proposition 4.2. Let k ≤ n be positive integers, and let m = (m1,m2, . . . ,mn)
be an n-tuple of positive integers with at most k parts equal to 1. Denoting |m| =∑n

i=1 mi, we have that
∣∣E(m)

∣∣ ≤ 278k|m|!.

For the remainder of this section we will for notational convenience assume that
mn−k+1 = mn−k+2 = · · · = mn = 1 and that mi ≥ 2 for each 1 ≤ i ≤ n − k. We
begin with the bound below.

In what follows, for any nonnegative integers u, r ≤ n, let Vn;r;u denote the set

of nonreduced set partitions α =
(
α(1), α(2), . . . , α(r)

)
∈ Pn;r with the property

that α(i) contains at least one element in {1, 2, . . . , n − u} for each i ∈ [1, r] or,
equivalently, no α(i) is a subset of {n− u+ 1, n− u+ 2, . . . , n}.

Lemma 4.3. Let k ≤ n be positive integers, and let m = (m1,m2, . . . ,mn) be an
n-tuple of positive integers with mn−k+1 = mn−k+2 = · · · = mn = 1 and mi ≥ 2
for each 1 ≤ i ≤ n− k. Then,

∣∣E(m)
∣∣ ≤ n∑

r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

k!

(k − t)!

(
t− 1

s− 1

) ∑
α∈Vn−t;r−s;k−t

r−s∏
j=1

∣∣mα(j)

∣∣!.
(4.6)

Proof. Recalling the definition (3.10) of E , applying the first identity in (2.3), and
setting r = �(α) yields

∣∣E(m)
∣∣ ≤ n∑

r=2

1

r(r − 1)

∑
α∈Pn;r

∑
d∈Δ(α)

r∏
j=1

∣∣mα(j)

∣∣!z(∣∣mα(j)

∣∣− ∣∣α(j)
∣∣− dj + 1

)
.

(4.7)

In order to analyze the right side of (4.7), we will fix which components of α
are subsets of {n − k + 1, n − k + 2, . . . , n}; this will correspond to understanding
when

∣∣mα(k)

∣∣ = ∣∣α(k)
∣∣ (the cardinality of α(k)). To that end, let s ≤ r and t ≤ k

be nonnegative integers; s will denote the number of components in α that are
contained in {n − k + 1, n − k + 2, . . . , n}, and t will denote the total number
of elements in these components. Also let C = (C1, C2, . . . , Cs) ∈ Ct(s), and let
I = (i1, i2, . . . , is) denote an s-tuple of positive integers such that 1 ≤ i1 < i2 <
· · · < is ≤ r. The sequence I will specify which α(i) are contained in {n−k+1, n−
k+2, . . . , n}, and the composition C will specify how many elements each of these
α(i) has.

Now, let us define Kn;r(C; I) to be the family of nonreduced partitions α =(
α(1), α(2), . . . , α(r)

)
∈ Pn;r such that the following holds. First, for each 1 ≤ j ≤ s,

we have that α(ij) ⊆ {n−k+1, n−k+2, . . . , n} and
∣∣α(ij)

∣∣ = Cj . Second, for each

i ∈ {1, 2, . . . , r} \ {i1, i2, . . . , is}, the component α(i) contains at least one element
less than n− k + 1. Thus, Kn;r(C; I) identifies which components of α are subsets
of {n− k + 1, n− k + 2, . . . , n} and also identifies how many elements they have.

Observe that

Pn;r =
r⋃

s=0

k⋃
t=s

⋃
C∈Ct(s)

⋃
|I|=s

Kn;r(C; I),
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LARGE GENUS ASYMPTOTICS 963

which upon insertion into (4.7) yields

∣∣E(m)
∣∣ ≤ n∑

r=2

r∑
s=0

k∑
t=s

∑
C∈Ct(s)

∑
|I|=s

∑
α∈Kn;r(C;I)

∑
d∈Δ(α)

r∏
j=1

∣∣mα(j)

∣∣!
×

r∏
j=1

z

(∣∣mα(j)

∣∣− ∣∣α(j)
∣∣− dj + 1

)

=

n∑
r=2

r∑
s=0

k∑
t=s

∑
C∈Ct(s)

∑
|I|=s

∑
α∈Kn;r(C;I)

∑
d∈Δ(α)

s∏
i=1

Ci!
∏
i∈I

z(1− di)

×
∏

1≤i≤r
i/∈I

∣∣mα(i)

∣∣!z(∣∣mα(i)

∣∣− ∣∣α(i)
∣∣− di + 1

)
,

(4.8)

where we have used the fact that mn−k+1 = mn−k+2 = · · · = mn = 1.
To further estimate the right side of (4.8), first observe that the summand on the

right side of (4.8) does not depend on the choice of I ⊆ {1, 2, . . . , r} with |I| = s.
Thus we can fix I = J = Js = {1, 2, . . . , s} and multiply the summand by

(
r
s

)
.

Further observe that z(1−di) = 1di=1, since z(k) = 0 if k is either odd or negative
and z(0) = 1. Thus, let ΔJ (α) ⊆ Δ(α) denote the subset of (d1, d2, . . . , d�(α)) ∈
Δ(α) such that di = 1 for i ∈ Js.

Inserting these two facts and the additional fact that
∣∣ΔJ (α)

∣∣ = (2�(α)−2s−3
�(α)−s−2

)
≤

22�(α)−2s = 22(r−s) (see (3.11)) into (4.8) yields

∣∣E(m)
∣∣ ≤ n∑

r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

∑
C∈Ct(s)

∑
α∈Kn;r(C;J )

s∏
i=1

Ci!
r∏

i=s+1

∣∣mα(i)

∣∣!,(4.9)

where we used the bound (due to the last estimate in (2.4)) z(k) ≤ 4 when i /∈ J .
To proceed, observe that any α ∈ Kn;r(C;J ) can be identified as an ordered

union α′ ∪U1 ∪U2 ∪ · · · ∪Us, where the Ui are disjoint subsets of {n− k+1, n− k+
2, . . . , n} such that

∣∣Ui

∣∣ = Ci for each i ∈ [1, s], and α′ is a nonreduced partition of

{1, 2, . . . , n} \
⋃s

i=1 Ui, none of whose components is a subset of {n− k+1, n− k+
2, . . . , n}. Since the rightmost summand in (4.9) does not depend on the explicit
choice of the Ui satisfying these properties, we can fix some choice of the Ui and
multiply the summand on the right side of (4.9) by the number of such choices,

which is
(

k
k−t,C1,C2,...,Cs

)
. If we fix

⋃s
i=1 Ui = {n− t+ 1, n− t+ 2, . . . , n}, then α′

becomes a member of Vn−t;r−s,k−t.
It follows upon insertion into (4.9) that

∣∣E(m)
∣∣ ≤ n∑

r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

∑
C∈Ct(s)

∑
α∈Vn−t;r−s;k−t

(
k

k − t, C1, C2, . . . , Cs

)

×
s∏

i=1

Ci!
r−s∏
i=1

∣∣mα(i)

∣∣!.

(4.10)

Now the lemma follows from (4.10), the fact that the summand on the right side
of (4.10) does not depend on C, and the fact (from (2.2)) that

∣∣Cs(t)∣∣ ≤ (t−1
s−1

)
. �
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964 AMOL AGGARWAL

Now we can establish Proposition 4.2 in a similar way to how we established
Lemma 4.1.

Proof of Proposition 4.2. We will begin by rewriting the sum over α in (4.6). To
that end, for any α =

(
α(1), α(2), . . . , α(r−s)

)
∈ Vn−t;r−s;k−t, define β = β(α) =(

β(1), β(2), . . . , β(r−s)
)
∈ Pn−k;r−s by β(i) = α(i) ∩ {1, 2, . . . , n − k} for each 1 ≤

i ≤ r − s; observe that no β(i) is empty since α ∈ Vn−t;r−s;k−t. Further define the

(possibly empty) sets T1, T2, . . . , Tr−s by Ti = Ti(α) = α(i) ∩ {n − k + 1, n − k +

2, . . . , n − t}; then the Ti are disjoint and satisfy
⋃r−s

i=1 Ti = {n − k + 1, n − k +
2, . . . , n− t}.

Any α ∈ Vn−t;r−s;k−t can be uniquely recovered from β(α) ∈ Pn−k;r−s and

disjoint family of sets T = (T1, T2, . . . , Tr−s) such that
⋃r−s

i=1 Ti = {n − k + 1, n −
k + 2, . . . , n − t}. Thus, instead of having the sum on the right side of (4.6) be
over all α we can therefore take it over all β and T satisfying the above conditions.
More precisely, let Tr−s(n; k; t) denote the family of all (r − s)-tuples of disjoint

sets T = (T1, T2, . . . , Tr−s) such that
⋃r−s

i=1 Ti = {n − k + 1, n − k + 2, . . . , n − t}.
We find from (4.6) (and the fact that k!

(k−t)! = t!
(
k
t

)
) that

∣∣E(m)
∣∣ ≤ n∑

r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

t!

(
k

t

)(
t− 1

s− 1

)

×
∑

β∈Pn−k;r−s

∑
T ∈Tr−s(n;k;t)

r−s∏
i=1

(∣∣mβ(i)

∣∣+ |Ti|
)
!,

(4.11)

where we have used the fact that
∣∣mα(i)

∣∣ = ∣∣mβ(i)

∣∣+ |Ti| since mn−k+1 = mn−k+2 =
· · · = mn−t = 1.

Now observe that, for fixed β, the summand on the right side of (4.11) does not
depend on the explicit choice of T but only on the sizes |Ti|. Thus, for any non-
negative composition A = (A1, A2, . . . , Ar−s) ∈ Gk−t(r − s), let T(A) = T(A;n; k)
denote the set of all T ∈ Tr−s(n; k; t) such that |Ti| = Ai for each 1 ≤ i ≤ r − s.
Using the last identity in (2.3) and the fact that Tr−s(n; k; t) =

⋃
A∈Gk−t(r−s) T(A),

we deduce from (4.11) that

∣∣E(m)
∣∣ ≤ n∑

r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

t!

(
k

t

)(
t− 1

s− 1

)

×
∑

B∈Cn−k(r−s)

∑
β∈P(B)

∑
A∈Gk−t(r−s)

∑
T ∈T(A)

r−s∏
i=1

(∣∣mβ(i)

∣∣+Ai

)
!

=
n∑

r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

t!

(
k

t

)(
t− 1

s− 1

)

×
∑

B∈Cn−k(r−s)

∑
β∈P(B)

∑
A∈Gk−t(r−s)

(
k − t

A1, A2, . . . , Ar−s

) r−s∏
i=1

(∣∣mβ(i)

∣∣+Ai

)
!,
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LARGE GENUS ASYMPTOTICS 965

where we have used the fact that
∣∣T(A)

∣∣ = (
k−t

A1,A2,...,Ar−s

)
. So, in view of the

estimate
(
t−1
s−1

)
≤ 2t ≤ 2k, we have that

∣∣E(m)
∣∣ ≤ 2kk!

n∑
r=2

r∑
s=0

24(r−s)

(
r

s

)

×
k∑

t=s

∑
A∈Gk−t(r−s)

∑
B∈Cn−k(r−s)

∑
β∈P(B)

r−s∏
i=1

(∣∣mβ(i)

∣∣+Ai

)
!

Ai!
.

Using the fact
∣∣P(B)

∣∣ = (
n−k

B1,B2,...,Br−s

)
(recall the second identity in (2.3)), we

deduce

∣∣E(m)
∣∣ ≤ 2kk!

n∑
r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

∑
A∈Gk−t(r−s)

∑
B∈Cn−k(r−s)

(
n− k

B1, B2, . . . , Br−s

)

× max
β∈P(B)

r−s∏
i=1

(∣∣mβ(i)

∣∣+Ai

)
!

Ai!
.

(4.12)

Next we use (2.6) with their Ai and Ci equal to our
∣∣mβ(i)

∣∣− 2Bi and Ai +2Bi,
respectively (which we may do since mi ≥ 2 for each i ∈ [1, n − k]). Setting
h = h(A,B) ∈ [1, r − s] to be the minimal index such that

Ah + 2Bh = max
1≤i≤r−s

(Ai + 2Bi),

we deduce from (4.12) that

∣∣E(m)
∣∣ ≤ 2kk!

n∑
r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

∑
A∈Gk−t(r−s)

∑
B∈Cn−k(r−s)

(
n− k

B1, B2, . . . , Br−s

)

×
(
|m| − k − 2(n− k) + Ah + 2Bh

)
!

r−s∏
i=1

1

Ai!

∏
1≤i≤r−s

i �=h

(
Ai + 2Bi

)
!,

(4.13)

where we have used the fact that
∑r−s

i=1

(∣∣mβ(i)

∣∣− 2Bi

)
= |m| − k − 2(n− k).

Since |m| − t ≥ 2n− k − t ≥ Ah + 2Bh, we have that

(
|m| − k − 2(n− k) +Ah + 2Bh

)
! =
(
|m| − t

)
!

2n−k−t−Ah−2Bh−1∏
i=0

1

|m| − t− i

≤
(
|m| − t

)
!

2n−k−t−Ah−2Bh−1∏
i=0

1

2n− k − t− i

=

(
|m| − t

)
!(Ah + 2Bh)!

(2n− k − t)!
,
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966 AMOL AGGARWAL

so it follows from (4.13) that

∣∣E(m)
∣∣ ≤ 2kk!

n∑
r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

(n− k)!
(
|m| − t

)
!

(2n− k − t)!

×
∑

A∈Gk−t(r−s)

∑
B∈Cn−k(r−s)

r−s∏
i=1

(Ai + 2Bi)!

Ai!Bi!
.

Using the fact that k! = t!(k − t)!
(
k
t

)
≤ 2kt!(k − t)! for any 0 ≤ t ≤ k, we deduce

that

∣∣E(m)
∣∣ ≤ 4k

n∑
r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

t!
(
|m| − t

)
!

×
∑

A∈Gk−t(r−s)

∑
B∈Cn−k(r−s)

(k − t)!(n− k)!

(2n− k − t)!

r−s∏
i=1

Bi!

r−s∏
i=1

(
Ai + 2Bi

Ai, Bi, Bi

)

≤ 4k
n∑

r=2

r∑
s=0

24(r−s)

(
r

s

) k∑
t=s

t!
(
|m| − t

)
!

×
∑

A∈Gk−t(r−s)

∑
B∈Cn−k(r−s)

1

(n− k)!

r−s∏
i=1

Bi!,

(4.14)

where we have used the fact that
∏r−s

i=1

(
Ai+2Bi

Ai,Bi,Bi

)
≤
(

2n−k−t
k−t,n−k,n−k

)
, which holds due

to (2.5), since
∑r−s

i=1 Ai = k − t and
∑r−s

i=1 Bi = n− k.

Now, since maxB∈Cn−k(r−s)

∏r−s
i=1 Bi! ≤ (n−k−r+s+1)! by (2.6) (applied with

each Ai equal to Bi − 1 and each Ci equal to 1); since
∣∣Cn−k(r − s)

∣∣ = (n−k−1
r−s−1

)
(where if r = s we replace this quantity by 1) from the first statement of (2.2); and

since
∣∣Gk−t(r− s)

∣∣ = (k−t+r−s−1
r−s−1

)
≤ 2k+r−s from the second statement of (2.2), we

deduce that

∣∣E(m)
∣∣ ≤ 23k

n∑
r=2

r∑
s=0

25(r−s)

(
r

s

) k∑
t=s

t!
(
|m| − t

)
!

(
n− k − 1

r − s− 1

)
(n− k − r − s+ 1)!

(n− k)!

≤ 23k+2|m|!
k∑

s=0

n∑
r=s

25(r−s)

(
r

s

)
1

(r − s− 1)!

= 23k+2|m|!(k + 1) + 23k+2|m|!
k∑

s=0

n∑
r=s+1

25(r−s)

(
r

s

)
1

(r − s− 1)!

≤ 24k+2|m|! + 23k+7|m|!(E1 + E2),

(4.15)
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where we have used the facts that
∑|m|

t=s

(
|m| − t

)
!t! ≤ 4m! and k + 1 ≤ 2k (which

follow from the fourth and first estimates in (2.4), respectively), and we have de-
noted

E1 =

k∑
s=0

3k∑
r=s+1

25(r−s−1)

(
r

s

)
1

(r − s− 1)!
;

E2 =

k∑
s=0

∞∑
r=3k+1

25(r−s−1)

(
r

s

)
1

(r − s− 1)!
.

Now, since
(
r
s

)
≤ 2r and k + 1 ≤ 2k (recall the first bound in (2.4)), we have that

E1 ≤ 23k
k∑

s=0

3k∑
r=s+1

25(r−s−1) 1

(r − s− 1)!
≤ 23k

k∑
s=0

∞∑
r=0

32r

r!

≤ e32(k + 1)23k ≤ e3224k ≤ 24k+48.

(4.16)

Furthermore, since
(
r
s

)
≤
(
r
k

)
≤ rk for s ≤ k ≤ r

2 and rk ≤ 3k
(
r−k−1

k

)
k! for r ≥ 3k,

we have that

E2 ≤
k∑

s=0

∞∑
r=3k+1

25(r−s−1)

(
r

s

)
1

(r − s− 1)!

≤ (k + 1)
∞∑

r=3k

32rrk

(r − k − 1)!

≤ (k + 1)3k
∞∑

r=3k

32r

(r − 2k − 1)!
≤ 213k+5

∞∑
r=0

32r

r!
≤ 213k+53.

(4.17)

Since 24k+2 + 23k+7(24k+48 + 213k+53) ≤ 216k+62 ≤ 278k, the proposition follows
from (4.15), (4.16), (4.17).6 �

5. Proof of Theorem 3.10

In this section we establish Theorem 3.10. In Section 5.1 we provide bounds on
the multifold inner product

〈
pλ(1)|pλ(2) | · · · |pλ(n)

〉
. These estimates will be used in

Section 5.2 to conclude the proof of Theorem 3.10.

5.1. Estimating the multifold inner product. Our goal in this section is to pro-
vide two estimates for the multifold inner product given by (3.12). The first, stated
as Proposition 5.1 below, provides estimates on such inner products in general;
the second, Proposition 5.3 provides a stronger estimate if we make an additional
assumption on the partition sequence

{
λ(i)
}
.

Proposition 5.1. Let a ≥ 1 and b ≥ 0 be integers; let λ(1), λ(2), . . . , λ(a) be par-
titions of lengths at least two; and let D1, D2, . . . , Db ≥ 2 be integers. Denote

6This in fact shows
∣
∣E(m)

∣
∣ ≤ 216k+62|m|! ≤ 278k|m|!. However, due to the way in which we

will use Proposition 4.2 in Section 5.1 below, the constants 278k and 216k+62 will be of similar
efficiency, and so we use the former.
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�i = �
(
λ(i)
)
for each i ∈ [1, a], L =

∑a
i=1 �i, |λ| =

∑a
i=1

∣∣λ(i)
∣∣, and B =

∑b
i=1 Di.

Then, ∣∣∣〈pλ(1)|pλ(2)| · · · |pλ(a) |pD1
|pD2

| · · · |pDb
〉
∣∣∣ ≤ 289L+5

(
|λ|+ a+B − L

)
!.(5.1)

Remark 5.2. If we define the one-part partitions λ(a+j) = (Dj) for each j ∈ [1, b],
then the expression |λ| + a + B − L appearing on the right side of (5.1) can be

rewritten as
∑a+b

i=1

(
|λ(i)| − �(λ(i)) + 1

)
.

Proof of Proposition 5.1. As in Definition 3.7, let us define the set partition ρ =(
ρ(1), ρ(2), . . . , ρ(a+b)

)
of {1, 2, . . . , L + b} as follows. For each integer i ∈ [1, a],

define the partial sum Li =
∑i

j=1 �j (with L0 = 0); then set ρ(i) = {Li−1+1, Li−1+

2, . . . , Li} for each i ∈ [1, a], and set ρ(j) = {L+ j − a} for each j ∈ [a+ 1, a+ b].
In view of the definition (3.12), we have that

〈
pλ(1)|pλ(2) | · · · |pλ(a) |pD1

|pD2
| · · · |pDb

〉
=
∑

α∈C(ρ)

L−a+1∏
i=1

〈
ωα(i)

〉
,(5.2)

where the sum is over all reduced set partitions α =
(
α(1), α(2), . . . , α(L−a+1)

)
∈

PL+b that are complementary to ρ, and ωα(i) ⊂ Z≥1 is a set of
∣∣α(i)

∣∣ integers
defined as follows. We stipulate that positive integer u ∈ ωα(i) if and only if either
a+j ∈ α(i) and u = Dj for some j ∈ [1, b] or there exist j ∈ [1, a] and k ∈

[
1, �
(
λ(j)
)]

such that u = λ
(j)
k and Lj−1 + k ∈ α(i). Let

∣∣ωα(i)

∣∣ denote the sum of the elements
in ωα(i) for each i ∈ [1, L− a+ 1].

Now let α =
(
α(1), α(2), . . . , α(r)

)
be a reduced set partition complementary to ρ.

Then, we must have that r = �(α) = L+1− a due to Definition 2.3. Furthermore,
each α(i) must contain at least one element from {1, 2, . . . , L}. Indeed, otherwise,
there would exist some α(i) ⊆ {L+ 1, L+ 2, . . . , L+ b}, meaning that both α and
ρ would be refinements of

(
α(i), {1, 2, . . . , L+ b} \ α(i)

)
, which is a contradiction.

Now, for any composition A = (A1, A2, . . . , AL−a+1) ∈ CL(L−a+1) and nonneg-
ative composition B = (B1, B2, . . . , BL−a+1) ∈ Gb(L−a+1), letR(A,B) denote the
set of nonreduced set partitions of α =

(
α(1), α(2), . . . , α(L−a+1)

)
∈ PL+b;L−a+1 sat-

isfying the following three properties. First, we have that
∣∣α(i)∩{1, 2, . . . , L}

∣∣ = Ai;

second, that
∣∣α(i) ∩ {L + 1, L + 2, . . . , L + b}

∣∣ = Bi; and third, that α and ρ

are transverse, meaning that
∣∣ρ(i) ∩ α(j)

∣∣ ≤ 1 for each i, j. Observe that C(ρ) ⊆⋃
A∈CL(L−a+1)

⋃
B∈Gb(L−a+1)R(A,B) in view of Lemma 2.4. Further observe that∣∣ωα(i)

∣∣ ≥ Ai+2Bi, since ωα(i) has Ai+Bi (positive) elements, Bi elements of which
are in {D1, D2, . . . , Db} (and therefore bounded below by 2).

In view of (5.2) and the third identity in (2.3), we have that

〈
pλ(1) |pλ(2)| · · · |pλ(a) |pD1

|pD2
| · · · |pDb

〉
≤ 1

(L− a+ 1)!

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

∑
α∈R(A;B)

L−a+1∏
i=1

〈ωα(i)〉

≤ 279L

(L− a+ 1)!

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

∑
α∈R(A;B)

L−a+1∏
i=1

∣∣ωα(i)

∣∣!,

(5.3)
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LARGE GENUS ASYMPTOTICS 969

where we used (3.9), the fact that z(k) ≤ 4, Lemma 4.1, Proposition 4.2, and the
fact that the total number of ones among the ωα(i) is at most equal to L. In (5.3),∣∣ωα(i)

∣∣ =∑j∈ω
α(i)

j denotes the sum of the elements in ωα(i) .

Now let s ∈ [1, L − a + 1] denote the minimal index such that As + 2Bs =
max1≤i≤L−a+1(Ai+2Bi). Then, apply (2.6) with the Ai and Ci there equal to our∣∣ωα(i)

∣∣−Ai−2Bi ≥ 0 and Ai+2Bi, respectively (observe that we may do since each

Di ≥ 2). Since
∑L−a+1

i=1 Ai = L;
∑L−a+1

i=1 Bi = b; and
∑L−a+1

i=1

∣∣ωα(i)

∣∣ = |λ| + B,
this yields

〈
pλ(1)|pλ(2) | · · · |pλ(a) |pD1

|pD2
| · · · |pDb

〉
≤ 279L

(L− a+ 1)!

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

∑
α∈R(A;B)

(
|λ|+B +As + 2Bs − L− 2b

)
!

×
∏

1≤i≤L−a+1
i �=s

(Ai + 2Bi)!

≤ 279L

(L− a+ 1)!

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

(
|λ|+B +As + 2Bs − L− 2b

)
!

×
(

L

A1, A2, . . . , AL−a+1

)(
b

B1, B2, . . . , BL−a+1

) ∏
1≤i≤L−a+1

i �=s

(Ai + 2Bi)!,

(5.4)

where we have used the fact that
∣∣R(A,B)

∣∣ ≤ ( L
A1,A2,...,AL−a+1

)(
b

B1,B2,...,BL−a+1

)
.

The latter fact holds by first ignoring the transversality condition between α and
ρ, and then by using the second identity in (2.3), which implies that there are at

most
(

L
A1,A2,...,AL−a+1

)
possibilities for A and at most

(
b

B1,B2,...,BL−a+1

)
possibilities

for B.
Observe that since |λ|+B ≥ L+ 2b, we have that

(
|λ|+B +As+2Bs − L− 2b

)
!

=
(
|λ|+ a+B − L

)
!

2b+a−As−2Bs−1∏
i=0

1

|λ|+ a+B − L− i

≤
(
|λ|+ a+B − L

)
!

2b+a−As−2Bs−1∏
i=0

1

a+ 2b− i

=

(
|λ|+ a+B − L

)
!(As + 2Bs)!

(a+ 2b)!
.

(5.5)

Inserting (5.5) into (5.4), applying (2.10), and using the fact that

L! = a!(L− a)!

(
L

a

)
≤ 2La!(L− a+ 1)!,
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970 AMOL AGGARWAL

we obtain

〈
pλ(1) |pλ(2)| · · · |pλ(a) |pD1

|pD2
| · · · |pDb

〉
≤

279L
(
|λ|+ a+B − L

)
!L!b!

(a+ 2b)!(L− a+ 1)!

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

L−a+1∏
i=1

(Ai + 2Bi)!

Ai!Bi!

≤
288L+5

(
|λ|+ a+B − L

)
!L!

a!(L− a+ 1)!

≤ 888L+5
(
|λ|+ a+B − L

)
!

(
L

a

)
≤ 289L+5

(
|λ|+ a+B − L

)
!,

from which the proposition follows. �

If at least one of the λ(i) has at least two parts that are at least equal to two, then
the following proposition indicates that it is possible to improve upon the bound of
Proposition 5.1.

Proposition 5.3. Adopt the notation of Proposition 5.1 and additionally suppose
that there exists some j0 ∈ [1, a] such that at least two parts of λ(j0) are at least 2.
Then,

∣∣∣〈pλ(1)|pλ(2) | · · · |pλ(a) |pD1
|pD2

| · · · |pDb
〉
∣∣∣ ≤ 289L+5

(
|λ|+ a+B − L− 1

)
!.

Proof. The proof of this proposition will be similar to that of Proposition 5.1, except
that we will be able to use the existence of some j0 such that λ(j0) has two parts
not equal to 1 to improve the estimate (5.4).

To explain further, we begin in the same way as we did in the proof of Proposition
5.1; in particular, adopt the notation of that proof. Then, the estimate (5.3) still
holds.

Now let s ∈ [1, L − a + 1] denote the minimal index such that As + 2Bs =
max1≤i≤L−a+1(Ai +2Bi), and let h ∈ [1, L− a+ 1] denote the minimal index such
that Ah+2Bh = maxi �=s(Ai+2Bi); in particular, h is an index such that Ah+2Bh

is second largest among all Ai+2Bi. Set Ai =
∣∣ωα(i)

∣∣−Ai−2Bi and Ci = Ai+2Bi

for each i ∈ [1, L− a+ 1]; since each Di ≥ 2, each Ai is nonnegative.
Furthermore, since ρ and α are transverse, there exist two distinct indices u, v ∈

[1, L − a + 1] such that λ
(j0)
1 ∈ ωα(u) and λ

(j0)
2 ∈ ωα(v) . Since λ

(j0)
1 ≥ λ

(j0)
2 ≥ 2,

it follows that
∣∣ωα(u)

∣∣ ≥ Au + 2Bu + 1 and
∣∣ωα(v)

∣∣ ≥ Av + 2Bv + 1. Therefore,
Au and Av are positive, so applying (5.3), (2.7) (with the Ai and Ci there equal

to the Ai and Ci here, respectively) and using the facts that
∑L−a+1

i=1 Ai = L;
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LARGE GENUS ASYMPTOTICS 971

∑L−a+1
i=1 Bi = b; and

∑L−a+1
i=1

∣∣ωα(i)

∣∣ = |λ|+B yield

〈
pλ(1)|pλ(2)| · · · |pλ(a) |pD1

|pD2
| · · · |pDb

〉
≤ 279L

(L− a+ 1)!

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

∑
α∈R(A;B)

(Ah + 2Bh + 1)!

×
(
|λ|+B +As + 2Bs − L− 2b− 1

)
!

∏
1≤i≤L−a+1

i �=s,h

(Ai + 2Bi)!

≤ 279L

(L− a+ 1)!

∑
A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

(
|λ|+B +As + 2Bs − L− 2b− 1

)
!

×
(

L

A1, A2, . . . , AL−a+1

)(
b

B1, B2, . . . , BL−a+1

)

× (Ah + 2Bh + 1)
∏

1≤i≤L−a+1
i �=s

(Ai + 2Bi)!.

(5.6)

Observe that since at least one partition in λ has at least two parts equal to 2, we
have that |λ| ≥ L + 1; moreover, since each Di ≥ 2, we also have that B ≥ 2b.
Therefore |λ|+B − 1 ≥ L+ 2b, and so

(
|λ|+B +As + 2Bs − L− 2b− 1

)
!

=
(
|λ|+ a+B − L− 1

)
!

2b+a−As−2Bs−1∏
i=0

1

|λ|+ a+B − L− i− 1

≤
(
|λ|+ a+B − L− 1

)
!

2b+a−As−2Bs−1∏
i=0

1

a+ 2b− i

≤
(
|λ|+ a+B − L− 1

)
!(As + 2Bs)!

(a+ 2b)!
.

(5.7)

Inserting (5.7) into (5.6), applying (2.11), and using the fact that L!
a!(L−a+1)! ≤(

L
a

)
≤ 2L, we find that〈

pλ(1)|pλ(2)| · · · |pλ(a) |pD1
|pD2

| · · · |pDb

〉
≤

279L
(
|λ|+ a+B − L− 1

)
!L!b!

(a+ 2b)!(L− a+ 1)!

×
∑

A∈CL(L−a+1)

∑
B∈Gb(L−a+1)

(Ah + 2Bh + 1)

L−a+1∏
i=1

(Ai + 2Bi)!

Ai!Bi!

≤ 288L+5
(
|λ|+ a+B − L− 1

)
!

L!

a!(L− a+ 1)!
≤ 289L+5

(
|λ|+ a+B − L− 1

)
!,

from which we deduce the proposition. �

5.2. Estimating c(m). Using Lemma 4.1 and Propositions 5.1 and 5.3, we can
now establish Theorem 3.10.
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Proof of Theorem 3.10. Recalling the fact that Fk = kfk and the definition (3.13)
of fk, we deduce that

〈
Fm1

|Fm2
| · · · |Fmn

〉
=

〈 ∑
wt(λ(1))=m1+1

(−m1)
�(λ(1))−1∏∞

i=1 Mi

(
λ(1)
)
!
pλ(1)

∣∣∣∣∣ · · ·
∣∣∣∣∣

∑
wt(λ(n))=mn+1

(−mn)
�(λ(n))−1∏∞

i=1 Mi

(
λ(n)

)
!
pλ(n)

〉

=
∑

wt(λ(1))=m1+1

· · ·
∑

wt(λ(n))=mn+1

〈
pλ(1)|pλ(2)| · · · |pλ(n)

〉 n∏
j=1

(−mj)
�(λ(j))−1∏∞

i=1 Mi

(
λ(j)
)
!
.

(5.8)

Now let us rewrite the right side of (5.8). For each integer 1 ≤ j ≤ n, set
lj = �

(
λ(j)
)
, and denoting r =

∑n
j=1 lj ∈

[
n, |m|

]
. Then (5.8) can be alternatively

expressed as〈
Fm1

|Fm2
| · · · |Fmn

〉
=

|m|∑
r=n

∑
l∈Cr(n)

∑
�(λ(1))=l1

|λ(1)|=m1−l1+1

· · ·
∑

�(λ(n))=ln
|λ(n)|=mn−ln+1

〈
pλ(1) |pλ(2)| · · · |pλ(n)

〉

×
n∏

j=1

(−mj)
lj−1∏∞

i=1 Mi

(
λ(j)
)
!
.

(5.9)

There is one l = (l1, l2, . . . , ln) ∈ Cr(n) when r = n, namely l = 1n. Thus, if
r = n, we must have that each li = 1, so that λ(i) = (mi) for each 1 ≤ i ≤ n. The
corresponding summand is then

〈
pm1

|pm2
| · · · |pmn

〉
. Subtracting this term from

both sides of (5.9) yields∣∣∣〈Fm1
|Fm2

| · · · |Fmn

〉
−
〈
pm1

|pm2
| · · · |pmn

〉∣∣∣
=

∣∣∣∣∣
|m|∑

r=n+1

∑
l∈Cr(n)

∑
�(λ(1))=l1

|λ(1)|=m1−l1+1

· · ·
∑

�(λ(n))=ln
|λ(n)|=mn−ln+1

〈
pλ(1)|pλ(2) | · · · |pλ(n)

〉

×
|m|∏
j=1

(−mj)
lj−1∏∞

i=1 Mi

(
λ(j)
)
!

∣∣∣∣∣
≤

|m|∑
r=n+1

∑
l∈Cr(n)

∑
�(λ(1))=l1

|λ(1)|=m1−l1+1

· · ·
∑

�(λ(n))=ln
|λ(n)|=mn−ln+1

〈
pλ(1)|pλ(2) | · · · |pλ(n)

〉

×
n∏

j=1

m
lj−1
j∏∞

i=1 Mi

(
λ(j)
)
!
,

(5.10)

where in the inequality we removed the signs (which will be irrelevant in the esti-
mates to follow).

To proceed, we will divide the sum on the right side of (5.9) into two parts; the
first will consist of “exceptional” sequences of partitions λ =

(
λ(1), λ(2), . . . , λ(n)

)
,
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in which all of the λ(i) are of a specific form ξ(k, l) to be defined below. The second
will consist of all of the remaining sequences of partitions.

More specifically, for any nonnegative integers k ≥ s ≥ 1, define ξ(k,s) = (k −
2s+ 2, 1s−1) ∈ Yk−s+1(s) denoting the partition with one part equal to k − 2s+ 2
and s−1 parts equal to one. For any sequence l = (l1, l2, . . . , ln), let Ω(l) = Ω(l,m)
denote the set of sequences of partitions λ =

(
λ(1), λ(2), . . . , λ(n)

)
such that

∣∣λ(i)
∣∣ =

mi − li + 1; such that �
(
λ(i)
)
= li for each i ∈ [1, n]; and such that there exists a

j ∈ [1, n] such that λ(j) is not of the form ξ(k,s) for any integers k ≥ s ≥ 1. The
latter condition is equivalent to stipulating that there exists a j ∈ [1, n] such that
λ(j) has at least two parts equal to two.

In view of (5.10), we have that∣∣∣〈Fm1
|Fm2

| · · · |Fmn

〉
−
〈
pm1

|pm2
| · · · |pmn

〉∣∣∣ ≤ E1 + E2,(5.11)

where

E1 =

|m|∑
r=n+1

∑
l∈Cr(n)

〈
pξ(m1,l1) |pξ(m2,l2) | · · · |pξ(mn,ln)

〉 n∏
j=1

m
lj−1
j

(lj − 1)!
;

E2 =

|m|∑
r=n+1

∑
l∈Cr(n)

n∏
j=1

m
lj−1
j

∑
λ∈Ω(l)

〈
pλ(1)|pλ(2) | · · · |pλ(n)

〉 n∏
j=1

1∏∞
i=1 Mi

(
λ(j)
)
!
.

(5.12)

To estimate E1, let l = (l1, l2, . . . , ln) ∈ Cr(n) with k of the li equal to 1 (and
the remaining n− k of the li at least equal to 2). Since li

2 ≤ li − 1 when li ≥ 2, we

have that n+ r−k
2 ≤ n+

∑n
i=1(li−1) =

∑n
i=1 li = r, and so r−k ≤ 2(r−n). Since

each mi ≥ 2, we can apply Proposition 5.1 with the a there equal to our n − k,
the b there equal to our k, the L there equal to our r− k, the {λ(i)} there equal to
our

{
ξ(mi,li)

}
li≥2

, and the {Di} there equal to our {mi}li=1. Using the facts that∑n
i=1 li = r; r− k ≤ 2(r−n); and

∑n
i=1

∣∣λ(i)
∣∣ = |m|− r+n, this proposition yields〈

pξ(m1,l1) |pξ(m2,l2) | · · · |pξ(mn,ln)

〉
≤ 289(r−k)+5

(
|m| − 2r + 2n

)
!

≤ 2178(r−n)+5
(
|m| − 2r + 2n

)
!.

(5.13)

Inserting (5.13) into the definition (5.12) of E1, and then applying the fact (since∑n
i=1 mi = |m| and

∑n
i=1(li − 1) = r − n) that

∑
l∈Cr(n)

n∏
i=1

mli−1
i

(li − 1)!
=

|m|r−n

(r − n)!
,

yields

E1 ≤ 32

|m|∑
r=n+1

∑
l∈Cr(n)

2178(r−n)
(
|m| − 2r + 2n

)
!

n∏
i=1

mli−1
i

(li − 1)!

= 32

k∑
r=n+1

2178(r−n)
(
|m| − 2r + 2n

)
!|m|r−n

(r − n)!
.
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Using the first estimate in (2.17) and the fact that r > n, we deduce that
(
|m| −

2r + 2n
)
!|m|r−n ≤ 28(r−n)

(
|m| − 1

)
!, from which it follows that

E1 ≤ 32
(
|m| − 1

)
!

k∑
r=n+1

2186(r−n)

(r − n)!
≤ 32e2

186(|m| − 1
)
! ≤ 22

187(|m| − 1
)
!.(5.14)

Next we estimate E2. Recall that for each λ =
(
λ(1), λ(2), . . . , λ(n)

)
∈ Ω(l) there

exists some j ∈ [1, n] such that λ(j) has at least two parts that are at least equal
to two. Therefore, if k of the λ(i) have length one, we can apply Proposition 5.3
with the a there equal to our n − k, the b there equal to our k, the L there equal
to our r − k, the {λ(i)} there equal to our

{
λ(i)
}
li≥2

, and the {Di} there equal to

our {mi}li=1. This yields

max
λ∈Ω(l)

〈
pλ(1)|pλ(2)| · · · |pλ(n)

〉
≤ 289(r−k)+5

(
|m| − 2r + 2n− 1

)
!

≤ 2178(r−n)+5
(
|m| − 2r + 2n− 1

)
!.

(5.15)

Inserting (5.15) into the definition (5.12) of E2, we find that

E2 ≤
|m|∑

r=n+1

∑
l∈Cr(n)

(
max
λ∈Ω(l)

〈
pλ(1)|pλ(2) | · · · |pλ(n)

〉) n∏
j=1

m
lj−1
j

×
∑

λ∈Ω(l)

n∏
j=1

1∏∞
i=1 Mi

(
λ(j)
)
!

≤ 32

k∑
r=n+1

2178(r−n)
(
|m| − 2r + 2n− 1

)
!
∑

l∈Cr(n)

n∏
j=1

m
lj−1
j

×
n∏

j=1

∑
λ(j)∈Ymj−lj+1(li)

1∏∞
i=1 Mi

(
λ(j)
)
!
.

Using (2.1), it follows that

E2 ≤ 32

k∑
r=n+1

2178(r−n)
(
|m| − 2r + 2n− 1

)
!
∑

l∈Cr(n)

n∏
j=1

m
lj−1
j

lj !

(
mj − lj
lj − 1

)
.

Therefore, since
(
mj−lj
lj−1

)
≤ m

lj−1

j

(lj−1)! , (2lj−2)! ≤ (lj−1)!lj !
(
2lj−2
lj−1

)
≤ 22(lj−1)(lj−1)!lj !,

and
∑n

j=1(lj − 1) = r − n, we obtain

E2 ≤ 32

k∑
r=n+1

2180(r−n)
(
|m| − 2r + 2n− 1

)
!
∑

l∈Cr(n)

n∏
j=1

m
2lj−2
j

(2lj − 2)!

≤ 32
k∑

r=n+1

2180(r−n)|m|2r−2n
(
|m| − 2r + 2n− 1

)
!

(2r − 2n)!
,

where we have applied Lemma 2.8. Applying the second estimate in (2.17) then
implies

E2 ≤ 32
(
|m| − 1

)
!

k∑
r=n+1

2188(r−n)

(2r − 2n)!
≤ 64e2

188(|m| − 1
)
! ≤ 22

189(|m| − 1
)
!.(5.16)
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LARGE GENUS ASYMPTOTICS 975

Now from the definition (3.9) of the inner product
〈
pm1

|pm2
| · · · |pmn

〉
, (5.11),

(5.14), (5.16), and Lemma 4.1 (using the fact that m has no parts equal to one),
we deduce that∣∣∣〈Fm1

|Fm2
| · · · |Fmn

〉
− |m|!z

(
|m| − n+ 2

)∣∣∣ ≤ 22
190(|m| − 1

)
!.(5.17)

Thus the theorem, with the C there equal to 22
191

< 22
200

, follows from (5.17) and

the fact (which holds due to the first and last estimates in (2.4)) that
∣∣∣z(|m| − n+

2
)
− 2
∣∣∣ ≤ 8

|m|−n ≤ 16
|m| . �

Appendix: Asymptotic values of Siegel–Veech constants

by Anton Zorich

Figure 1. Saddle point with cone angle 6π on the left and two
saddle points with cone angles 4π on the right.

Siegel–Veech constants. A holomorphic one-form ω on a Riemann surface de-
fines a canonical flat metric with conical singularities located at the zeros of ω.
Namely, in the complement of a finite collection of zeros of ω, the form ω can be
represented in an appropriate local holomorphic coordinate z as ω = dz. In the
associated real coordinates (x, y), such that z = x+iy, the flat metric has the form
dx2 + dy2. The cone angle of the resulting flat metric at a zero of ω of degree m is
2π(m+ 1). The conical singularities are often called saddle points or just saddles.
Figure 1 illustrates a saddle point associated to a zero of degree two of the one-form
in the left picture and two distinct saddle points associated to two simple zeros of
the one-form in the right picture (see Figure 3 in [9] for more details on breaking a
zero into two). In certain situations it is convenient to interpret a regular marked
point on a translation surface as a saddle point.

The resulting flat metric has trivial linear holonomy: the parallel transport of a
tangent vector along any closed loop on the Riemann surface brings the vector to
itself. Note that the holomorphic one-form ω also defines the distinguished vertical
direction (direction of y-axes in flat coordinates (x, y) as above) equivariant under
the parallel transport. A closed orientable surface endowed with a flat metric with
isolated conical singularities having trivial linear holonomy and endowed with a
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976 AMOL AGGARWAL

distinguished direction in the tangent space at some point (and hence at all points)
is called a translation surface. Similar to in the torus case, geodesics on translation
surfaces do not have self-intersections at regular points.

A geodesic segment joining two saddle points (or a saddle point to itself) and
having no saddle points in its interior is called a saddle connection. The right picture
in Figure 1 illustrates a saddle connection joining two saddle points. The choice
of the vertical direction incorporated in the structure of translation surface endows
any oriented saddle connection γ with a direction. In this way, we can consider
the corresponding affine holonomy vector as a complex number in C � R2. By
construction, this complex number coincides with the integral of the holomorphic
one-form ω along γ. Since both endpoints of the saddle connection γ are located
at zeros of the one-form, γ defines an element of the relative homology group
H1(C, {P1, . . . , Pn}), where C is the Riemann surface, and {P1, . . . , Pn} is the set
of zeros of ω. Thus, the integral

∫
γ
ω defines a relative period of ω.

τ

ηη

ρ

γ γ1 γ

τ

β β

ρ

τ

ηη

ρ

γ γ1 γ

τ

β β

ρ

Figure 2. Nonhomologous saddle connections which have the
same holonomy lose this property after a generic deformation of
the surface, while homologous ones, γ ∼ γ1, share the same affine
holonomy.

The same period may be represented by several saddle connections γ1, . . . , γk.
Any finite collection γ1, . . . , γk of saddle connections persists under small deforma-
tions of the translation surface. If the initial saddle connections are homologous
as elements of H1(C, {P1, . . . , Pn}), then the deformed saddle connections stay ho-
mologous, and hence define the same period of the deformed one-form. Figure 2
(copied from Figure 2 in [9]) presents an example of a configuration of homologous
saddle connections of multiplicity 2. The translation surfaces are obtained from
the corresponding polygons by gluing together pairs of sides marked by the same
symbol. The relative periods of the translation surface in the left picture along the
saddle connections represented by the positively oriented horizontal (vertical) sides
of the squares are equal to 1 (respectively, to i). However, after a generic small
deformation of the translation surface, the periods along nonhomologous saddle
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LARGE GENUS ASYMPTOTICS 977

connections become different, while periods along homologous saddle connections
γ and γ1 coincide.

We refer to [9] for a detailed combinatorial description of the notion of configu-
ration of homologous saddle connections. The case when such saddle connections
join distinct saddle points is illustrated in Figure 3 borrowed from [9]. The number
k of homologous saddle connections in such a configuration is called the multiplicity
of the configuration. Cutting the surface along k homologous saddle connections
we decompose the surface into k connected components. Each connected compo-
nent has boundary in a form of a slit composed of two geodesic segments having
the same length and the same direction. Gluing together the two sides of each slit
as in Figure 3 we get k translation surfaces without boundary of smaller genera
each endowed with a distinguished saddle connection. For example, applying this
operation to homologous saddle connections γ and γ1 in any of the two surfaces as
in Figure 2 we get two flat tori with slits of the same length and direction. The
combinatorial geometry of the corresponding configuration of homologous saddle
connections is described by the geometry of the resulting geometric configuration.

S3
S2

γ′
3 γ′′

3 γ′
2 γ′′

2

S1

γ′′
1 γ′

1

S3
S2

z′′

z′

S1

S3

S2

z2

γ2
γ1

Figure 3. Multiple homologous saddle connections.

Consider a flat torus of unit area. The number of geodesic segments of length at
most L joining a generic pair of distinct points on the torus grows quadratically as
the number of lattice points in a disc of radius L, so we get asymptotics πL2. The
number of (homotopy classes) of closed geodesics of length at most L has different
asymptotics. Since we want to count only primitive geodesics (those which do
not repeat themselves) now we have to count only coprime lattice points in a disc

Licensed to Biblio University Jussieu. Prepared on Thu Nov 11 09:56:37 EST 2021 for download from IP 81.194.27.167.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



978 AMOL AGGARWAL

of radius L, considered up to a symmetry of the torus. Therefore we get the
asymptotics

1

2ζ(2)
· πL2 =

3

π2
· πL2.

It is proved in [8] that the growth rate of the number of saddle connections for a
generic translation surface corresponding to any stratum H(m) in the moduli space
of Abelian differentials also has quadratic asymptotics c · (πL2), and, moreover,
almost all flat surfaces of unit area in any connected component of any stratum
share the same constant c in the asymptotics. The constant c is called the Siegel–
Veech constant. It depends on the connected component of the stratum and on the
geometric type of geodesic segments which we count. In the two examples for the
torus, the Siegel–Veech constant corresponding to the count of geodesic segments
joining a generic pair of distinct points is equal to 1 while the Siegel–Veech constant
corresponding to the count of primitive geodesic segments joining a fixed point to
itself equals 3

π2 .

Volume asymptotics. Let m = (m1, . . . ,mn) be an unordered partition of a
positive even number 2g − 2, i.e., let |m| = m1 + · · · + mn = 2g − 2. Denote by
Y2g−2 the set of all partitions. Denote by ν1

(
H(m1, . . . ,mn)

)
the Masur–Veech

volume of the stratum H(m1, . . . ,mn) in normalization of [9].
Theorem 1.4 can be rephrased as follows.

Theorem. For any m ∈ Y2g−2 one has

(1) ν1
(
H1(m1, . . . ,mn)

)
=

4

(m1 + 1) · · · · · (mn + 1)
· (1 + ε(m)),

where

(2) max
m∈Y2g−2

|ε(m)| ≤ 22
200

g
.

The results in [9] combined with the bound (2) for the error term in (1) imme-
diately imply asymptotics of certain Siegel–Veech constants for connected strata in
large genus. Recall that saddle connections might appear in tuples, triples, etc.,
of homologous saddle connections having the same direction and the same length
(see [9] for details). The asymptotic formulae for Siegel–Veech constants become
particularly simple in the case when one restricts the count to saddle connections
of multiplicity one.

The original preprint version of this note stated as a conjecture that the Siegel–
Veech constants for higher multiplicities become negligibly small with respect to the
Siegel–Veech constants for multiplicity one computed below. This conjecture was
proved in the recent paper of A. Aggarwal [1] as part of the proof of the conjectures
of A. Eskin and the author on large genus asymptotics of Siegel–Veech constants.
The very recent paper of D. Chen, M. Möller, A. Sauvaget and D. Zagier [4] suggests
an alternative proof of the conjectures on large genus asymptotics of Siegel–Veech
constants. Combined with the computations below it implies an alternative proof
of the conjecture that the Siegel–Veech constants for higher multiplicities become
negligibly small in large genera.
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LARGE GENUS ASYMPTOTICS 979

Saddle connections joining distinct zeros. Consider any connected stratum
of the form H(m1,m2, . . . ), i.e., one which has at least two distinct zeros, where
m1,m2 denote their degrees. The situation when m1 = m2 is not excluded. In the
case when one (or both) of m1,m2 is equal to 0 the “zero of degree 0” should be
seen as a generic marked point (generic pair of marked points, respectively).

Corollary 1. There exists a universal constant Bsc > 0 such that the Siegel—Veech
constant cscm1,m2

(H(m1,m2, . . . )) corresponding to the count of saddle connections
of multiplicity one joining a fixed zero of degree m1 to a distinct zero of degree m2

satisfies

cscm1,m2
(H(m1,m2, . . . )) = (m1 + 1)(m2 + 1) ·

(
1 + εscm1,m2

(m)
)
,

where

(3) max
m∈Y2g−2

|εscm1,m2
(m)| ≤ Bsc

g
.

Proof. By the formula preceding formula (17) in [9] the corresponding Siegel–Veech
constant equals

(4) cscm1,m2
(H(m1,m2, . . . )) =

(m1 +m2 + 1)ν1
(
H1(m

′)
)

ν1
(
H1(m)

) ,

where m = {m1,m2, . . . , } and m′ is obtained from m by replacing the first two
entries with the single entry m1 +m2. Applying (1) to the ratio of volumes we get
the desired asymptotic expression. �

Remark 1. The answer matches the following extremely naive interpretation (which
should be taken with reservation). Normalization of Masur–Veech volumes as in [9]
implies that

ν1
(
H(0, 0,m1, . . . ,mn)

)
= ν1

(
H(0,m1, . . . ,mn)

)
= ν1

(
H(m1, . . . ,mn)

)
.

Thus, by (4), the Siegel–Veech constant csc0,0(0, 0,m1, . . . ) corresponding to the num-
ber of saddle connections of multiplicity one joining a generic marked point P1 to
a distinct generic marked point P2 identically equals to 1. When the total angle at
P1 is m1 + 1 times bigger and the total angle at P2 is m2 + 1 times bigger we get
an extra factor (m1 + 1)(m2 + 1).

By the same formula (4), the Siegel–Veech constant corresponding to the number
of saddle connections of multiplicity one joining a generic marked point P1 to a fixed
zero P2 of degree m1 identically equals to (m1 + 1)

csc0,m1
(0,m1, . . . ) = (m1 + 1) .

The preprint version of this appendix stated a conjecture that the condition
“multiplicity one” in the statement of Corollary 1 can be omitted: the contribu-
tion of all higher multiplicities becomes negligible in large genus. Meanwhile, this
conjecture was proved first by A. Aggarwal in [1] and then by D. Chen, M. Möller,
A. Sauvaget, and D. Zagier in [4] by completely different methods. Moreover, ar-
ticle [4] proves that counting multiple homologous saddle connections as a single
one, the corresponding Siegel–Veech constant equals (m1 + 1)(m2 + 1) identically
for any nonhyperelliptic component of any stratum. Both proofs are quite involved,
so for the sake of completeness we keep the original proof in the simplest case of
the principal stratum, where the only higher multiplicity is two.
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980 AMOL AGGARWAL

Corollary 2. There exists a universal constant Bsc
2 > 0 such that the Siegel—

Veech constant csc;21,1 (H(12g−2)) corresponding to the count of pairs of homologous
saddle connections joining a fixed pair of distinct zeros satisfies

(5) csc;21,1 (H(12g−2)) ≤ Bsc
2

g
.

Proof. This configuration of homologous saddle connections is discussed in detail in
section 9.6 of [9]. The two homologous saddle connections joining two fixed distinct
simple zeros cut the surface into two subsurfaces of positive genera g1, g2 where
g1 + g2 = g. Formula 9.2 in [9] gives the value of the corresponding Siegel–Veech
constant for all possible pairs of 2g − 2 simple zeros. Dividing the corresponding
expression by the number (2g − 2)(2g − 1)/2 of possible pairs we get

csc;21,1 (H(12g−2))

=
1

4
·
∑

g1+g2=g

(2g − 4)! (4g1 − 3)! (4g2 − 3)!

(2g1 − 2)! (2g2 − 2)! (4g − 5)!
·
ν1
(
H(12g1−2)

)
· ν1
(
H(12g2−2)

)
ν1
(
H(12g−2)

)
where g1, g2 ≥ 1.

Applying (1) and taking into consideration that g1 + g2 = g we conclude that
the ratio containing the volumes is uniformly bounded from above uniformly in
g, g1, g2.

Consider the following expression as a function of g1 depending on the parameter
g, where g1 + g2 = g:

ag1 :=
(2g − 4)! (4g1 − 3)! (4g2 − 3)!

(2g1 − 2)! (2g2 − 2)! (4g − 5)!
.

Then,

a1 :=
1

(4g − 5)(4g − 6)

and

ag1+1 = ag1 ·
(4g1 + 1)(4g1 − 1)

(4g2 − 3)(4g2 − 5)
.

Hence, we have ag1+1 ≤ ag1 as soon as g2 > g1. Note that ag−g1 = ag1 . Thus,

g−1∑
g1=1

ag1 ≤ (g − 1)a1 =
g − 1

(4g − 5)(4g − 6)

and (5) follows. �

Isolated saddle connection joining a zero to itself. Consider a connected
stratum H(m1, . . . ). Let us count saddle connections joining a zero of degree m1

to itself.

Figure 4. A saddle connection joining a zero to itself and not
bounding a cylinder.
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LARGE GENUS ASYMPTOTICS 981

We start with saddle connections which do not bound a cylinder and do not
have any homologous saddle connections. They can be obtained from a translation
surface of genus g−1 by the following construction. Remove a parallelogram out of
a translation surface (as in the left picture in Figure 4). Glue one pair of opposite
sides of the parallelogram by parallel translation. We get a translation surface with
two parallel geodesic boundary components of the same length (as in the middle
picture in Figure 4). Gluing them together we get a translation surface in genus
g without boundary. By construction, the four corners of the initial parallelogram
are identified in one point, which is necessarily a saddle point, and the two geodesic
boundary components of the intermediate surface become a single saddle connection
joining this saddle point to itself.

One can apply this construction backwards: cut a surface along a saddle connec-
tion joining a zero to itself getting a connected surface with two disjoint geodesic
boundary components; join the two points on the boundary components coming
from the original saddle point by a nonself-intersecting path; cut the surface with
boundary along this path to get a surface of genus g − 1 with a single hole in a
form of curvilinear parallelogram with two opposite sides (coming from the original
saddle connection) represented by parallel segments of the same length.

Corollary 3. There exists a universal constant Bloop > 0 such that the Siegel—
Veech constant cloopm1

(H(m1, . . . )) corresponding to the number of saddle connections
of multiplicity one joining a fixed zero of degree m1 to itself and not bounding a
cylinder satisfies

(6) cloopm1
(H(m1,m2, . . . )) =

(m1 + 1)(m1 − 1)

2
·
(
1 + εm1

(m)
)
,

where

(7) max
m∈Y2g−2
m1∈m

H(m) is connected

|εm1
(m)| ≤ Bloop

g
.

Proof. Note that by geometric reasons any closed saddle connection joining a simple
zero to itself bounds a cylinder filled with closed regular flat geodesics. Thus, for
m1 = 1 we get

cloop1 (H(m)) = 0 ,

which justifies (6) for m1 = 1. From now on we exclude this trivial case and assume
that m1 ≥ 2.

We start with a more restrictive count. Namely, fix any integer j within bounds
1 ≤ j ≤ m1 − 1. Let us count first those closed saddle connections as above which
split the total cone angle 2(m1 + 1)π at the chosen zero of degree m1 ≥ 2 into
angles (2j + 1)π and (2m1 − 2j + 1)π. Our saddle connection has multiplicity
one, which implies that there are no other homologous saddle connections. The
condition 1 ≤ j ≤ m1 − 1 automatically implies that our saddle connections do not
bound a cylinder.

Denote by cloopm1
(j;H(m1, . . . )) the Siegel—Veech constant corresponding to the

number of saddle connections of multiplicity one joining a fixed zero of degree m1

to itself returning at the angle (2j + 1)π and not bounding a cylinder.
Let b′ = j − 1 and let b′′ = m1 − j − 1. The saddle connections described in

Corollary 3 correspond to “creating a pair of holes assignment” in terminology of [9]
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982 AMOL AGGARWAL

applied to a fixed pair of zeros of degrees b′, b′′ on a surface in a stratum H(m′),
where m = {m1, . . . , } and m′ is obtained from m by replacing the first entry (i.e.,
m1) by two entries b′, b′′.

Note that m′ corresponds to genus g− 1, but has an extra entry with respect to
m, so dimC H(m′) = dimC H(m)− 1.

If b′ = b′′ we have “γ → −γ symmetry” in terminology of [9], and this is the
only possible symmetry. In notation of [9] we have |Γ| = 1 and

|Γ−| =
{
2 if j = m1/2− 1,

1 otherwise ,

We are in the setting of Problem 1 from section 13.2 in [9] when all the zeros are
labeled. Applying formula 13.1 from [9] from which we remove all terms containing
symbols o(·) responsible for unlabeling the zeros we get

cloopm1
(j;H(m1,m2, . . . )) =

1

|Γ−|
· (b′ + 1)(b′′ + 1) ·

ν1
(
H(m′)

)
ν1
(
H(m)

) .

Applying (1) to the ratio of volumes we get

ν1
(
H1(m

′)
)

ν1
(
H1(m)

) =
m1 + 1

(b′ + 1)(b′′ + 1)
· 1 + ε(m′)

1 + ε(m)
.

Bounds (2) now imply that

(8) sup
g≥2

g · max
m∈Y2g−2

m1∈m; 1≤j≤m1−1
H(m) is connected

∣∣∣∣1 + ε(m′)

1 + ε(m)
− 1

∣∣∣∣ =: Bloop < +∞

and we conclude that cloopm1
(j;H(m1,m2, . . . )) satisfies

(9) cloopm1
(j;H(m1,m2, . . . )) =

⎧⎨
⎩

(m1 + 1)

2
·
(
1 + εm1;j(m)

)
if j = (m1

2 − 1),

(m1 + 1) ·
(
1 + εm1;j(m)

)
otherwise ,

where

max
m∈Y2g−2

|εm1;j(m)| ≤ Bloop

g
.

Now we pass to the count with no restrictions on the return angle. We have to
take the sum of all Siegel–Veech constants as in (9) over all possible return angles,
where the return angle (2j + 1)π is equivalent to the return angle (2m1 − 2j + 1)π
for we are counting unoriented saddle connections. Thus, letting j run all the range
1, 2, . . . ,m1−1 of possible values, we count each configuration twice with exception
for the symmetric situation when m1 is odd and j = (m1 + 1)/2. However, in this
symmetric situation we have extra factor 1/2 in (9) and our counting formula (6)
follows. �

Remark 2. Note that formula (6) suggests the following naive interpretation. Con-
sider a conical point with angle 2π(m1 + 1). There are m1 + 1 ways to launch
a trajectory in any chosen direction and m1 − 1 ways for such trajectory to come
back since we do not count the trajectories returning at the angle π. Since we count

unoriented saddle connections we get (m1+1)(m1−1)
2 ways of pairing.

Licensed to Biblio University Jussieu. Prepared on Thu Nov 11 09:56:37 EST 2021 for download from IP 81.194.27.167.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LARGE GENUS ASYMPTOTICS 983

Cylinders having a pair of distinct zeros on its boundaries. Consider any
connected stratum of the form H(m1,m2, . . . ), i.e., one which has at least two
distinct zeros, where m1,m2 denote their degrees. The situation when m1 = m2 is
not excluded. We assume that m1,m2 ≥ 1, i.e., that we have true zeros and not
just marked points.

Consider a configuration consisting of a flat cylinder embedded into our trans-
lation surface such that each of the two boundary components of the cylinder is
represented by a single saddle connection joining a zero to itself. We first consider
the situation when the two zeros are distinct. Such a surface can be obtained fol-
lowing the construction represented in Figure 4 except that instead of identifying
the two geodesic boundary components of the surface in the middle picture, we
attach to them a flat cylinder.

By construction the two saddle connections bounding the cylinder are homolo-
gous. We assume that there are no other saddle connections homologous to them.

Corollary 4. There exists a universal constant Bcyl > 0 such that the Siegel—
Veech constant ccylm1,m2

(H(m1,m2, . . . )) corresponding to the number of configura-
tions of saddle connections of multiplicity one which bound a cylinder with a fixed
zero of degree m1 on one boundary component of the cylinder and a fixed zero of
degree m2 on the other boundary component of the cylinder satisfies

(10) ccylm1,m2
(H(m1,m2, . . . )) =

(m1 + 1)(m2 + 1)

dimCH(m)− 2
·
(
1 + εcylm1,m2

(m)
)
,

where

(11) max
m∈Y2g−2

|εcylm1,m2
(m)| ≤ Bcyl

g
.

In the context of the above corollary the condition of “multiplicity one” means
that there are no other saddle connections homologous to the two ones on the
boundaries of the cylinder.

Proof. Let b′ := m1−1 and let b′′ := m2−1. In terminology of [9] the configurations
of saddle connections described in Corollary 4 correspond to the “creation of pair of
holes assignment” applied to a fixed pair of zeros of degrees b′, b′′ on a surface in a
stratum H(m′), where m = {m1,m2, . . . , } and m′ is obtained from m by replacing
the first two entries (i.e., the entries m1,m2) by the entries m1 − 1,m2 − 1.

The new partition m′ represents the stratum in genus g − 1, so dimC H(m′) =
dimC H(m)− 2.

We are in the setting of Problem 1 from section 13.2 in [9] when all the zeros are
labeled. Thus we do not have any symmetries, |Γ| = |Γ−| = 1 even if b′ = b′′.

Applying formula 13.1 from [9] from which we remove all terms containing sym-
bols o(·) responsible for unlabeling the zeros we get

ccylm1,m2
(H(m1,m2, . . . )) =

(b′ + 1)(b′′ + 1)

dimC H(m)− 2
·
ν1
(
H(m′)

)
ν1
(
H(m)

)
=

m1 ·m2

dimC H(m)− 2
·
ν1
(
H(m′)

)
ν1
(
H(m)

) .
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Applying (1) to the ratio of volumes we get

ν1
(
H1(m

′)
)

ν1
(
H1(m)

) =
(m1 + 1)(m2 + 1)

m1 ·m2
· 1 + ε(m′)

1 + ε(m)
.

Bounds (2) now imply that

sup
g≥2

g · max
m∈Y2g−2
m1,m2∈m

H(m) is connected

∣∣∣∣1 + ε(m′)

1 + ε(m)
− 1

∣∣∣∣ =: Bcyl < +∞

and (10) follows. �
Cylinders having the same fixed zero on both boundary components.
Consider a configuration consisting of a flat cylinder embedded into our transla-
tion surface with boundary components represented by saddle connections joining
the common saddle point to itself. We suppose that there are no other saddle
connections homologous to the two boundary components of the cylinder.

2π(a′ + 1)

Figure 5. A flat cylinder bounded by two saddle connections
joining the common saddle point to itself.

Figure 5 (reproduced from Figure 10 in [9]) describes how to create such a
configuration from a translation surface of genus g − 1. We start by slitting a
translation surface of genus g−1 along a geodesic segment with no saddle points in
its interior. In this way we get a surface with boundary as in the left picture. We
identify the two endpoints of the slit (as indicated in the middle picture) getting
a surface with geodesic boundary in the shape of a figure eight. Finally we paste
a flat cylinder to the two saddle connections forming two loops of a figure eight
and get a translation surface of genus g. It is easy to see that the construction is
invertible.

Corollary 5. There exists a universal constant Bhandle > 0 such that the Siegel—
Veech constant chandlem1

(H(m1 . . . )) corresponding to the number of configurations of
saddle connections of multiplicity one which bound a cylinder having the same fixed
zero of degree m1 on both boundary components satisfies

(12) chandlem1
(H(m1, . . . )) =

1

2
·
(m1 + 1)(m1 − 1)

dimC H(m)− 2
·
(
1 + εhandlem1

(m)
)
,

where

(13) max
m∈Y2g−2

|εhandlem1
(m)| ≤ Bhandle

g
.
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Note that we do not specify the angles between the pair of saddle connections
bounding the cylinder.

Proof. Note that by geometric reasons the common zero located at the boundaries
of the cylinder has order at least 2. Thus

chandle1 (H(m)) = 0 ,

which justifies (12) for m1 = 1. From now on we exclude this trivial case and
assume that m1 ≥ 2.

Let a := m1 − 2; let a′ + a′′ = a be a partition of a into an ordered sum of
nonnegative integers. The configurations described in Corollary 5 correspond to
the “figure eight assignment” applied to a fixed zero of degree a = m1 − 2 on a
surface in the stratum H(m′), where m = {m1, . . . , } and m′ is obtained from m
by replacing the first entry (i.e., the entry m1) by the entry m1 − 2.

The new partition m′ represents the stratum in genus g − 1, so dimC H(m′) =
dimC H(m) − 2. The partition a′ + a′′ = a encodes the angles between saddle
connections at the zero. In the setting of Problem 1 from section 13.2 in [9]. we
have |Γ| = 1 and

|Γ−| =
{
2 if j = a′ = a′′,

1 otherwise.

Applying the formula on page 135 of [9] for any fixed partition a′ + a′′ = a =
m1 − 2, where the combinatorial factor is computed on the top of page 140 in [9],
we get the value

1

|Γ−|
· a+ 1

dimC H(m)− 2
·
ν1
(
H(m′)

)
ν1
(
H(m)

)
for the Siegel–Veech constants for the more restricted count when the pair (a′, a′′)
is fixed. Pairs of partitions (a′, a′′) and (a′′, a′) of a = m − 2 represent the same
configurations in our setting. Thus, the sum over all unordered partitions a′+a′′ =
m1 − 2, where a′ = 0, 1, . . . ,m1 − 2, gives

ccylm1
(H(m1, . . . )) =

m1 − 1

2
· m1 − 1

dimC H(m)− 2
·
ν1
(
H(m′)

)
ν1
(
H(m)

) .
Applying (1) to the ratio of volumes we get

ν1
(
H1(m

′)
)

ν1
(
H1(m)

) =
m1 + 1

m1 − 1
· 1 + ε(m′)

1 + ε(m)
.

Bounds (2) now imply that

sup
g≥2

g · max
m∈Y2g−2

2≤m1∈m
H(m) is connected

∣∣∣∣1 + ε(m′)

1 + ε(m)
− 1

∣∣∣∣ =: Bhandle < +∞

and (13) follows. �
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Count of all cylinders of multiplicity one. Combining results of Corollaries 4
and 5 we get the following result.

Theorem 1. The Siegel—Veech constant c
(1)
cyl(H(m)) for the number of all cylinders

of multiplicity one on a surface of area one in a connected stratum H(m) has the
form

(14) c
(1)
cyl(H(m)) =

1

2

(
(dimC H(m)− 2)− 1

dimC H(m)− 2

)
· (1 + εcyl(m)) ,

where

(15) max
m∈Y2g−2

|εcyl(m)| ≤ max(Bcyl, Bhandle)

g

and the universal constants Bcyl, Bhandle are defined in equations (11) and (13).

Under the same assumptions as above, the Siegel—Veech constant c
(1)
area(H(m))

corresponding to the weighted count of cylinders of multiplicity one, with the area
of the cylinder taken as the weight, has the following form:

(16) c(1)area(H(m)) =
c
(1)
cyl(H(m))

dimC H(m)− 1
=

1

2
·
(
1 + εarea(m)

)
,

where

(17) max
m∈Y2g−2

|εarea(m)| ≤ B

g
,

and B is a universal constant.

Proof. We are counting maximal cylinders of multiplicity one filled with closed flat
geodesics, i.e., we assume that there are no saddle connections homologous to the
waist curve of the cylinder outside of the cylinder. To count all such cylinders we
have to sum up the Siegel–Veech constants ccylmi,mj

(H(m1,m2, . . . ,mn)) for all pairs

1 ≤ i < j ≤ n and the Siegel–Veech constants chandlemi
(H(m1, . . . )) for all i in the

range 1 ≤ i ≤ n. Representing the sum over all unordered distinct pairs (i, j) as
half of the sum of ordered distinct pairs and combining (10) and (12) we get

c
(1)
cyl(H(m1, . . . ,mn)) =

1

2
· 1

dimC H(m)− 2
·
(

n∑
i,j=1
i �=j

(mi+1)(mj+1)·
(
1+εcylmi,mj

(m)
)

+

n∑
i=1

(
(mi + 1)2 − 2(mi + 1)

)
·
(
1 + εhandlemi

(m)
))

.

Bounds (11) and (13) for εcylmi,mj
(m) and εhandlemi

(m) imply that there exists εcyl(m)

satisfying bounds (15) such that the above expression takes the form

1

2
· 1

dimC H(m)− 2
·

⎛
⎝( n∑

i=1

(mi + 1)

)2

− 2
n∑

i=1

(mi + 1)

⎞
⎠ ·
(
1 + εcyl(m)

)
.

Note that

dimC H(m1, . . . ,mn)− 1 =

n∑
i=1

(mi + 1) = (2g − 2) + n = |m|+ �(m) ,
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where |m| and �(m) are the size and the length of the partition m, respectively.

Hence, we can represent the latter expression for c
(1)
cyl(H(m)) as

c
(1)
cyl(H(m)) =

1

2
· (dimC H(m)− 2)2 − 1

dimC H(m)− 2
·
(
1 + εcyl(m)

)
,

where εcyl(m) satisfies bounds (15). This completes the proof of the first part of
the statement.

By the formula of Vorobets (see (2.16) in [7] or the original paper [21]), the
Siegel—Veech constant carea(H(m)) is expressed in terms of the Siegel—Veech con-
stants of configurations of homologous closed saddle connections as follows:

(18) carea(H(m)) =
1

dimC H(m)− 1
·
g−1∑
q=1

q ·
∑

Configurations C
containing q cylinders

cC(H(m)) .

The Siegel—Veech constant c
(1)
area(H(m)) corresponding to the weighted count of

cylinders of multiplicity one represents the term of the above sum corresponding to
q = 1, namely,

c(1)area(H(m)) :=
c
(1)
cyl(H(m))

dimC H(m)− 1
.

Expression (14) for c
(1)
cyl(H(m)) and bound (15) for εcyl(m) imply existence of a

universal constant B such that the ratio
c
(1)
cyl(H(m))

dimC H(m)−1 can be represented in the

form (16) with εarea(m) satisfying bound (17). �

Arithmetic nature of Siegel–Veech constants. By a result of Eskin and Ok-
ounkov [10] the Masur–Veech volume H(m) of any stratum in genus g has the form
of a rational number multiplied by π2g. The Siegel–Veech constants cscm1,m2

and

csc;2m1,m2
responsible for the count of saddle connections joining distinct zeros are

expressed as a rational factor times the ratio of volumes ν1
(
H(m′)

)
/ν1
(
H(m)

)
of

strata in the same genus, so these Siegel–Veech constants are rational numbers.

The Siegel–Veech constants cloopsm1
, ccylm1,m2

, chandlem1
, c

(1)
cyl, c

(1)
area, carea responsible

for the count of saddle connections going from a zero to itself are also expressed as
a rational factor times the ratio ν1

(
H(m′)

)
/ν1
(
H(m)

)
, but this time the stratum

ν1
(
H(m′)

)
corresponds to genus g − 1 while the stratum ν1

(
H(m)

)
corresponds

to genus g. Thus these latter Siegel–Veech constants have the form of a rational
number divided by π2.

Final remark. It was conjectured in [11] that the Siegel–Veech constant carea
tends to 1

2 uniformly for all nonhyperelliptic connected components of all strata as
genus tends to infinity:

(19) lim
g→∞

carea(Hcomp(m)) =
1

2
.

Theorem 1 proves the uniform asymptotic lower bound for all connected strata
H(m):

lim inf
g→∞

carea(H(m)) ≥ 1

2
and shows that the conjecture (19) for connected strata is equivalent to conjectural
vanishing of the contribution of configurations with q ≥ 2 cylinders in formula (18)
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uniformly for all connected strata in large genera. The conjectural asymptotic (19)
was recently proved first by A. Aggarwal in [1] and then by D. Chen, M. Möller,
A. Sauvaget, and D. Zagier in [4] by completely different methods.
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