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Maryam Mirzakhani (1977–2017)
Anton Zorich (University Paris Diderot, Paris, France)

. . . je dirai quelques mots sur toi, mais je ne te gên-
erai point en insistant avec lourdeur sur ton courage
ou sur ta valeur professionnelle. C’est autre chose que
je voudrais décrire . . . Il est une qualité qui n’a point
de nom. Peut-être est-ce la “gravité”, mais le mot ne
satisfait pas. Car cette qualité peut s’accompagner de
la gaieté la plus souriante . . .

Antoine de Saint-Exupéry

You have to ignore low-hanging fruit, which is a little
tricky. I am not sure if it is the best way of doing things,
actually – you are torturing yourself along the way. But
life is not supposed to be easy.

Maryam Mirzakhani

On 14 July 2017, Maryam Mirzakhani died. Less than three
years earlier, she had received the Fields Medal “for her out-
standing contributions to the dynamics and geometry of Rie-
mann surfaces and their moduli spaces”, becoming the first
woman to win the Fields Medal. She was often the first. For
example, together with her friend Roya Beheshti, she was
the first Iranian girl to participate in the International Math-
ematical Olympiad. She won two gold medals: in 1994 and
in 1995. Despite all the glory, Maryam always remained ex-
tremely nice, friendly, modest and not the least bit standoff-
ish. Meeting her at a conference, you would, at first glance,
take her for a young postdoc rather than a celebrated star. She
worked hard, mostly “keeping low profile” (using her own
words). Kasra Rafi, Maryam’s friend since school years, said
about her: “Everything she touched she made better”. This
concerned things much broader than just mathematics.

Maryam was born and grew up in Tehran with a sister and
two brothers. In one of her rare interviews (given on the de-
mand of the Clay Mathematics Institute at the end of her Clay
Research Fellowship), she said: “My parents were always
very supportive and encouraging. It was important for them
that we have meaningful and satisfying professions but they
did not care as much about success and achievement.” After
passing a severe entrance test, Maryam entered the Farzane-
gan school for girls in Tehran. Having completed her under-
graduate studies in Sharif University in Tehran in 1999, she
came to Harvard University for graduate studies and received
her PhD degree in 2004. The results of her thesis were as-
tonishing for everybody, including Maryam’s doctoral advi-
sor C. McMullen: Maryam had discovered beautiful ties be-
tween seemingly very different geometric counting problems.
In particular, she had discovered how the count of closed non-
self-intersecting geodesics on hyperbolic surfaces is related to
the Weil–Petersson volumes of the moduli spaces of bordered
hyperbolic surfaces. As an application, Maryam had found an
alternative proof of Witten’s celebrated conjecture first proved
by M. Kontsevich.

Maryam in CIRM, Luminy, 2008
(Picture by F. Labourie)

Amazing thesis

I cannot adequately describe the full depth of Maryam’s
amazing thesis. Maryam’s perceptive insight on how to use
dynamics in geometric problems would, unfortunately, re-
main invisible. Hopefully, this brief description will give an
idea of the key actors and of the interplay between them.

Simple closed geodesics. Moduli spaces.
A closed curve on a surface is called simple if it does not have
self-intersections. Closed geodesics on a hyperbolic surface
usually do have self-intersections. Indeed, since the classi-
cal works of Delsarte, Hubert and Selberg, it is known that
the number of closed geodesics of length at most L on a hy-
perbolic surface grows with the rate eL/L when the bound L
grows. However, Mary Rees and Igor Rivin showed that the
number N(X, L) of simple closed geodesics of length at most
L grows only polynomially in L. Maryam went further and
obtained striking results on this more subtle count of simple
closed hyperbolic geodesics.

Let us start with a concrete example of a family of hyper-
bolic surfaces. Consider a configuration of six distinct points
on the Riemann sphere CP1. Using an appropriate holomor-
phic automorphism of the Riemann sphere, we can send three
out of six points to, say, 0, 1 and ∞. There is no more free-
dom: any further holomorphic automorphism of the Riemann
sphere fixing 0, 1 and∞ is already the identity transformation.
Hence, the three remaining points serve as three independent
complex parameters in the space of configurations M0,6 of
six points on the Riemann sphere, considered up to a holo-
morphic diffeomorphism.

Maryam Mirzakhani (1977–2017) 
Anton Zorich (Université Paris-Diderot, Paris, France)
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Figure 1. Schematic picture of hyperbolic spheres with cusps

By the uniformisation theorem, complex structures on a
surface with marked points are in natural bijection with hy-
perbolic metrics of constant negative curvature with cusps at
the marked points, so the moduli spaceM0,6 can also be seen
as the family of hyperbolic spheres with six cusps.

Deforming the configuration of points on CP1, we can
drastically change the shape of the corresponding hyperbolic
surface, making it quite symmetric or, on the contrary, creat-
ing very long and very narrow bottlenecks between parts of
the surface.

The spaceMg,n of configurations of n distinct points on a
smooth closed orientable Riemann surface of genus g ≥ 2 is
even richer. While the sphere admits only one complex struc-
ture, a surface of genus g ≥ 2 admits a complex (3g − 3)-
dimensional family of complex structures. As in the case of
the Riemann sphere, complex structures on a smooth sur-
face with marked points are in natural bijection with hyper-
bolic metrics of constant negative curvature with cusps at the
marked points. For genus g ≥ 2, one can let n = 0 and con-
sider the space Mg = Mg,0 of hyperbolic surfaces without
cusps.

Theorem 1 (Mirzakhani, 2008). For any hyperbolic surface
X in the familyMg,n, the number of simple closed geodesics
has exact polynomial asymptotics:

lim
L→+∞

N(X, L)
L6g−6+2n = const(X) ,

where the constant const(X) admits explicit geometric inter-
pretation, and the power of the bound L in the denominator is
the dimension dimRMg,n = 6g − 6 + 2n of the corresponding
family of hyperbolic surfaces.

Now, I would like to describe a discovery of Maryam that
I find particularly beautiful and, at first glance, even diffi-
cult to believe. Let us return to hyperbolic spheres with six
cusps, as in Figure 1. A simple closed geodesic on a hyper-
bolic sphere separates the sphere into two components. We
either get three cusps on each of these components (as in the
left picture in Figure 1) or two cusps on one component and
four cusps on the complementary component (as in the right
picture in Figure 1). Hyperbolic geometry excludes other par-
titions. Denote the numbers of such specialised simple closed
geodesics by N3+3(X, L) and by N2+4(X, L) respectively. We
have N3+3(X, L) + N2+4(X, L) = N(X, L).

Maryam proved that the asymptotic frequency of simple
closed geodesics of each topological type is well defined for
every hyperbolic surface and computed it. In our example,

Maryam’s computation gives the following proportions:

lim
L→+∞

(
N3+3(X, L) : N2+4(X, L)

)
= 4 : 3 .

Isn’t it astonishing: the asymptotic frequency of simple closed
geodesics of a given topological type is one and the same for
any hyperbolic surface X ∈ M0,6 no matter how exotic the
shape of the particular hyperbolic surface is!

The result of M. Mirzakhani is, of course, much more gen-
eral than this particular example. There is a finite number of
equivalence classes of simple closed curves on a topologi-
cal surface of genus g with n punctures, considered up to a
homeomorphism of the surface. M. Mirzakhani proved that
the asymptotic frequency of simple closed geodesics of each
type on any hyperbolic surface X inMg,n is well defined and
is one and the same for all X inMg,n. Maryam expressed any
such asymptotic frequency in terms of the intersection num-
bers of moduli spaces. In this way, Maryam described geo-
metric properties of individual hyperbolic surfaces in terms
of geometry and topology of the ambient moduli spaces.

We shall come back to intersection numbers when dis-
cussing Maryam’s proof of Witten’s conjecture.

Weil–Petersson volumes of moduli spaces
Now, consider several closed hyperbolic geodesics simulta-
neously. Assume that they have neither self-intersections nor
intersections between each other. Cutting the initial hyper-
bolic surface by such a collection of simple closed geodesics,
we get several bordered hyperbolic surfaces with geodesic
boundary components.

We denote by Mg,n(b1, . . . , bn) the moduli space of hy-
perbolic surfaces of genus g with n geodesic boundary com-
ponents of lengths b1, . . . , bn. By convention, the zero value
bi = 0 corresponds to a cusp of the hyperbolic metric, so the
moduli spaceMg,n considered in the previous section corre-
sponds toMg,n(0, . . . , 0) in this more general setting.

A hyperbolic pair of pants (as in Figure 2) is by far the
most famous bordered hyperbolic surface. Topologically, a
pair of pants is a sphere with three holes. It is known that
for any triple of nonnegative numbers (b1, b2, b3) ∈ R3

+, there
exists a hyperbolic pair of pants P(b1, b2, b3) with geodesic
boundaries of given lengths, and that such a hyperbolic pair of
pants is unique (we always assume that the boundary compo-
nents of P are numbered). It is also known that two geodesic
boundary components γ1, γ2 of any hyperbolic pair of pants P
can be joined by a single geodesic segment ν1,2 orthogonal to
both γ1 and γ2 (see Figure 2). Thus, every geodesic boundary
component γ of any hyperbolic pair of pants might be en-
dowed with a canonical distinguished point. The construction
can be extended to the situation when both remaining bound-

γ1

ν1,2

γ2

Figure 2. Hyperbolic pair of pants
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Figure 3. Twist parameter τ responsible for gluing together two hyper-
bolic pairs of pants

ary components of the pair of pants are represented by cusps.
Two hyperbolic pairs of pants P′(b′1, b

′
2, �) and

P′′(b′′1 , b
′′
2 , �) sharing the same length � > 0 of one of the

geodesic boundary components can be glued together (see
Figure 3). The hyperbolic metric on the resulting hyper-
bolic surface Y is perfectly smooth and the common geodesic
boundary of P′ and P′′ becomes a simple closed geodesic γ
on Y .

Recall that each geodesic boundary component of any pair
of pants is endowed with a distinguished point. These dis-
tinguished points record how the pairs of pants P′ and P′′

are twisted, with respect to each other, when we glue them
together by a common boundary component (see Figure 3).
Hyperbolic surfaces Y(τ) corresponding to different values of
the twist parameter τ in the range [0, �[ are generically not
isometric.

In a similar way, any hyperbolic surface X of genus g with
n geodesic boundary components admits a decomposition in
hyperbolic pairs of pants glued along simple closed geodesics
γ1, . . . , γ3g−3+n. It is clear from what was said above that we
can vary all 3g − 3 + n lengths �γi (X) of the resulting simple
closed geodesics γi on X and vary the twists τγi (X) along them
to obtain a deformed hyperbolic metric. The resulting collec-
tion of 2 · (3g− 3+ n) real parameters serve as local Fenchel–
Nielsen coordinates in the moduli spaceMg,n(b1, . . . , bn).

By the work of W. Goldman, each spaceMg,n(b1, . . . , bn)
carries a natural closed non-degenerate 2-form ωWP called the
Weil–Peterson symplectic form. S. Wolpert proved that ωWP

has a particularly simple expression in Fenchel–Nielsen co-
ordinates, that is, no matter what pants decomposition we
choose, we get

ωWP =

3g−3+n∑
i=1

d�γi ∧ dτγi .

The wedge power ωn of a symplectic form on a manifold
M2n of real dimension 2n defines a volume form on M2n. The
volume Vg,n(b1, . . . , bn) of the moduli spaceMg,n(b1, . . . , bn)
with respect to the volume form 1

(3g−3+n)! ω
3g−3+n
WP is called the

Weil–Petersson volume of the moduli spaceMg,n(b1, . . . , bn);
it is known to be finite.

To give an account of Mirzakhani’s work on Weil–Petersson
volumes, we start with the identity of G. McShane.

Theorem (G. McShane, 1998). Let f (x) = (1 + ex)−1 and let
X be a hyperbolic torus with a cusp. Then,

∑
γ

f
(
�γ(X)

)
=

1
2
,

where the sum is taken over all simple closed geodesics γ on
X, and �γ(X) is the length of the geodesic γ.

This identity is, in some sense, a miracle: though the
length spectrum of simple closed geodesics is different for
different hyperbolic tori with a cusp, the sum above is identi-
cally 1

2 for any X inM1,1. Ten years after McShane’s break-
through, M. Mirzakhani was asked to present his result at the
seminar of her scientific advisor Curt McMullen. Preparing
the talk, Maryam discovered a remarkable generalisation of
McShane’s identity to hyperbolic surfaces of any genus with
any number of boundary components.

Let us discuss why such identities are relevant to the
Weil–Petersson volumes of the moduli spaces. Integrating the
right side of McShane’s identity over the moduli spaceM1,1
with respect to the Weil–Petersson form, one obviously gets
1
2 VolM1,1. It is less obvious that the integral of the sum on
the left side admits a geometric interpretation as the integral
of f over a certain natural cover M∗1,1 of the initial moduli
spaceM1,1. This cover is already much simpler than the orig-
inal moduli space: it admits global coordinates in which the
integral of f can be easily computed.

Mirzakhani’s more general identity does not immediately
yield the volume. However, cutting the initial surface by sim-
ple closed geodesics involved in her identity and develop-
ing the idea of averaging over all possible hyperbolic sur-
faces, Mirzakhani got a recursive relation for the volume
Vg,n(b1, . . . , bn) in terms of volumes of simpler moduli spaces.
These relations allowed Maryam to prove the following state-
ment and to compute the volumes explicitly.

Theorem 2 (Mirzakhani, 2007). The volume Vg,n(b1, . . . , bn)
is a polynomial in b2

1, . . . , b
2
n; namely, we have:

Vg,n(b1, . . . , bn) =
∑

d1+···+dn≤3g−3+n

Cd1,...,dn · b2d1
1 . . . b

2dn
n , (1)

where Cd1,...,dn > 0 lies in π6g−6+2n−2(d1+···+dn) · Q.

Simple recursive formulae for volumes in genera 0, 1, 2
were found earlier by P. Zograf. Precise asymptotics of vol-
umes for large genera were recently proved by M. Mirzakhani
and P. Zograf up to a multiplicative constant conjecturally
equal to 1√

π
, which still resists a rigorous evaluation.

Witten’s conjecture
The family of all complex lines passing through the origin
in Cn+1 forms the complex projective space CPn. This space
carries the natural tautological line bundle: its fiber over a
“point” [L] ∈ CPn is the line L considered as a vector space.
Any complex line bundle ξ over a compact manifold M can
be induced from the tautological bundle by an appropriate
map fξ : M → CPn (for a sufficiently large n depending on
M). The second cohomology of the complex projective space
H2(CPn;Z) � Z has a distinguished generator c1. The pull-
back c1(ξ) = f ∗ξ c1 ∈ H2(M;Z) is called the first Chern class
of the line bundle ξ.

We have already used a natural bijective correspondence
between hyperbolic metrics of constant negative curvature
with n cusps and complex structures endowed with n distinct
marked points x1, . . . , xn on a closed smooth surface of genus
g. In this section, we use this latter interpretation of the mod-
uli spaceMg,n.

Consider the cotangent spaceL(C, xi) to the Riemann sur-
face C at the marked point xi. Varying (C, x1, . . . , xn) inMg,n,
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we get a family of complex lines L(C, xi) parameterised by
the points of Mg,n. This family forms a line bundle Li over
the moduli space Mg,n. This tautological line bundle Li ex-
tends to the natural Deligne–Mumford compactificationMg,n

of the initial moduli space. The spaceMg,n is a nice compact
complex orbifold so, for any i = 1, . . . , n, one can define the
first Chern class ψi := c1(Li). Recall that cohomology has a
ring structure so, taking a product of k cohomology classes
of dimension 2 (as the first Chern class), we can integrate the
resulting cohomology class over a compact complex mani-
fold of complex dimension k. In particular, for any partition
d1 + · · · + dn = 3g − 3 + n of dimCMg,n = 3g − 3 + n into
the sum of nonnegative integers, one can integrate the product
ψd1

1 · · · · · ψ
dn
n over the orbifoldMg,n. By convention, the “in-

tersection number” (or the “correlator” in a physical context)
is defined as ∫

Mg,n

ψd1
1 . . . ψ

dn
n . (2)

As always, when there are plenty of rational numbers in-
dexed by partitions or such, it is useful to wrap them into a
single generating function. The resulting generating function
for correlators (2) is really famous. For physicists, it is the free
energy of two-dimensional topological gravity. In mathemat-
ical terms, E. Witten conjectured in 1991 a certain recursive
formula for the numbers (2) and interpreted this recursion in
the form of KdV differential equations satisfied by the gener-
ating function. The conjecture caused an explosion of interest
in the mathematical community: a single formula interlaced
quantum gravity, enumerative algebraic geometry, combina-
torics, topology and integrable systems.

The first proof of Witten’s conjecture was discovered by
M. Kontsevich, who used metric ribbon graphs as a “com-
binatorial model” of the moduli space to express the inter-
section numbers (2) as a sum over 3-valent ribbon graphs.
Maryam Mirzakhani suggested an alternative proof. She in-
geniously applied techniques of symplectic geometry to the
moduli spaces of bordered Riemann surfacesMg,n(b1, . . . , bn)
discussed in the previous section. Maryam recognised the in-
tersection numbers (2) in the coefficients Cd1,...,dn from for-
mula (1) for the Weil–Petersson volumes Vg,n(b) (up to a rou-
tine normalisation factor). This allowed Maryam to reduce the
recurrence relations for the intersection numbers contained
in Witten’s formula to recurrence relations for the volumes
Vg,n(b) discussed above and thus prove Witten’s conjecture.

Echoes
Geometer Kasra Rafi, Maryam’s school friend, says the fol-
lowing about her studies at Harvard: “She faced the same
challenges as the rest of us but she moved through them much
more quickly. And not that everything in her life was perfect.
When she finished her amazing thesis, she asked herself: ‘And
what if all of this is wrong . . . ?’ She had the fears that every-
body has, she felt all the anxiety, but she managed to pass
through it way more quickly than you can imagine . . . ”

Maryam’s thesis was not wrong. It is a true masterpiece.
The proofs are neither very technical nor particularly com-
plicated. However, they insightfully put together tools and
ideas from many different areas of contemporary dynamics
and geometry. Reading the three relatively short papers de-

scribing this work gives the same euphoric feeling as listening
to your favourite piece of music, reading your best-loved poet
or gazing upon your preferred painting. Re-reading these pa-
pers might echo something you had been thinking about and
reveal a simple and unexpected solution.

For my collaborators and me, it has already happened sev-
eral times: Maryam’s papers are full of beautiful ideas that are
still at the stage of being absorbed by the mathematical com-
munity. For example, the proportion 4 : 3 for asymptotic fre-
quencies of simple closed geodesics on a hyperbolic sphere
with six cusps was very recently verified and confirmed by
M. Bell and S. Schleimer, who used train tracks in their ex-
periments. V. Delecroix, E. Goujard, P. Zograf and I recently
proved that square-tiled surfaces of different combinatorial
types have the same asymptotic frequencies as those discov-
ered by Maryam for the corresponding simple closed hyper-
bolic geodesics.

Slow thinker

Having defended her PhD thesis, Maryam Mirzakhani got a
prestigious Clay Mathematics Institute Research Fellowship.
(Note that three out of four 2014 Fields Medallists are also
former Clay Research Fellows.) In the same interview that I
mentioned above, she said about this period of time: “It was a
great opportunity for me; I spent most of my time at Princeton,
which was a great experience. The Clay Fellowship gave me
the freedom to think about harder problems, travel freely and
talk to other mathematicians. I am a slow thinker and have to
spend a lot of time before I can clean up my ideas and make
progress. So I really appreciate that I didn’t have to write up
my work in a rush.” What Maryam called “slowness” is actu-
ally “depth” or a kind of quality that Saint-Exupéry fails to de-
scribe in one word. In 2008, at the age of 31, Maryam Mirza-
khani became a full professor at Stanford University, where
she worked ever since.

To mention just one of Mirzakhani’s numerous results of
this period, I have to say a word about the earthquake flow
introduced by Thurston. Given a non-self-intersecting closed
geodesic on a hyperbolic surface, you can cut the surface by
the geodesic, twist the two sides of the cut with respect to
each other and reglue the cuts to get a new hyperbolic surface
as in Figure 3. Having the imagination of Bill Thurston, you
can twist a hyperbolic surface X along a closed subset of X,
formed as a disjoint union of simple geodesics (such a subset
is called a hyperbolic lamination). Moreover, Thurston de-
fined a continuous family of simultaneous twists on the large
spaceMLg,n of all measured geodesic laminations on all hy-
perbolic surfaces. For many years, the properties of the re-
sulting earthquake flow were completely enigmatic. In par-
ticular, it was not known whether it had any dense trajecto-
ries.

One more time Maryam Mirzakhani discovered unex-
pected ties between seemingly different objects. In some
sense, she recognised in Thurston’s earthquake flow the much
more familiar and better understood horocycle flow on the
moduli space of quadratic differentials. More precisely, she
established a measure isomorphism between the two flows
with respect to the corresponding natural invariant measures.
Some important applications of this theorem were obtained
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instantly; some were recognised very recently – a decade
later. I am sure that more will appear in the future. Mathe-
matics is a slow science (in the same sense that Maryam was
a “slow thinker”).

If you ever saw Maryam attend a lecture in a large audito-
rium like in MSRI, she was always standing behind the back
row of seats. It was neither impatience nor extravagance. I
have never seen the slightest trace of a capricious “genius
Olympiad kid” in Maryam: she simply had serious health
problems with her back, which she never manifested other-
wise. She would later mention with humour and irony that
“serious” might become very relative.

Magic Wand theorem

In addition to having brilliant ideas, Maryam worked hard, as
she worked on the Magic Wand theorem. From a dynamical
point of view, the moduli space of holomorphic differentials
can be viewed as a “homogeneous space with difficulties”. I
am citing Alex Eskin, who knows both facets very well: how
the dynamics on the moduli space might mimic the homoge-
neous dynamics in some situations and how deep the difficul-
ties might be.

The rigidity theorems, including and generalising the the-
orems proved by Marina Ratner at the beginning of the 1990s,
show why homogeneous dynamics is so special. (Sadly, Ma-
rina Ratner also died just a week before Maryam.) General
dynamical systems usually have some very peculiar trajecto-
ries living in very peculiar fractal subsets. Such trajectories
are rare but there are still plenty of them. In particular, the
question of identification of all (versus almost all) orbit clo-
sures or of all invariant measures has no sense for most dy-
namical systems: the jungle of exotic trajectories is too large.
In certain situations, this diversity creates a major difficulty:
even when you know plenty of fine properties of the trajec-
tory launched from almost every starting point, you have no
algorithm to check whether the particular initial condition you
are interested in is generic or not. Ergodic theory is aimed
at responding to statistical questions but might become com-
pletely powerless in the study of specific initial data.

The situation in homogeneous dynamics is radically dif-
ferent. In certain favourable cases, one can prove that any or-
bit closure is a nice homogeneous space, any invariant mea-
sure is the corresponding Haar measure, etc. This kind of
rigidity allows one to obtain fantastic applications to num-
ber theory, developed, in particular, by J. Bourgain, E. Lin-
denstrauss, G. Margulis and T. Tao (to mention only Fields
Medallists out of an extremely impressive list of celebrated
scientists working in this area).

For several decades, it was not clear to what extent the dy-
namics of SL(2,R)-action on the moduli space of Abelian and
quadratic differentials resembles homogeneous dynamics. For
Alex Eskin, who came to dynamics in the moduli space from
homogeneous dynamics, it was, probably, the main challenge
for 15 years. Maryam Mirzakhani joined him in working on
this problem around 2006. She was challenged by the result
of her scientific advisor Curt McMullen, who had solved the
problem in the particular case of genus two, ingeniously re-
ducing it to the homogeneous case of genus one. After sev-
eral years of collaboration, the first major part of the theorem,

namely the measure classification for SL(2,R)-invariant mea-
sures, was proved. We forced Alex Eskin to announce it at the
conference in Bonn in the Summer of 2010.

To illustrate the importance of this theorem, I cite what
Artur Avila said about this result of Eskin and Mirzakhani to
S. Roberts for the New Yorker article in memory of Maryam:
“Upon hearing about this result, and knowing her earlier
work, I was certain that she would be a front-runner for
the Fields Medals to be given in 2014, so much so that I
did not expect to have much of a chance.” I do not think
that Maryam thought much about the Fields Medal at this
time (several years later she took the email message from In-
grid Daubechies announcing that she had received the Fields
medal as a joke and just ignored it) but she certainly knew
how important the theorem was. For the last few years, ba-
sically every paper in my domain has used the Magic Wand
theorem in one way or another.

However, it took Alex Eskin and Maryam Mirzakhani sev-
eral more years of extremely hard work to extend their re-
sult, proving the rigidity properties not only for the group
SL(2,R) of all 2 × 2 matrices with unit determinant but also
for its subgroup of upper-triangular 2×2 matrices (which is
already amenable). The difference might seem insignificant.
However, exactly this difference is needed for the most pow-
erful version of the Magic Wand theorem. Part of the theorem
concerning orbit closures was proved in collaboration with
Amir Mohammadi; an important complement was proved by
Simion Filip.

Suppose, for example, that you have to study billiards in a
rational polygon (that is, in a polygon with angles that are
rational multiples of π). What mathematical object can be
more simple-minded and down-to-earth than a rational trian-
gle? However, the only known efficient approach to the study
of billiards in rational polygons consists of the following. Ap-
plying symmetries over the sides of the polygon, unfold your
billiard trajectory into a closed surface. The billiard trajectory
gets unfolded into a non-self-intersecting winding line on this
closed translation surface. This nice trick is called Katok–
Zemlyakov construction.

Consider, for example, the triangle with angles 3π
8 ,

3π
8 ,
π
4 .

It is easy to check that a generic billiard trajectory moves in
one of eight directions at any time. We can unfold the triangle
to a regular octagon glued from eight copies of the triangle.
Identifying the opposite sides of the octagon, we get a closed
surface of genus two endowed with a flat metric. There is no
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Figure 4. Billiard trajectories unfold into leaves of surface foliation

contradiction with Gauss–Bonnet theorem, since our flat met-
ric has a conical singularity: all vertices of the octagon are
glued into one point with the cone angle 6π. Geodesics on the
resulting flat surface correspond to unfolded billiard trajecto-
ries.

It is convenient to incorporate the direction of the straight-
line foliation into the structure of the translation surface and,
turning the resulting polygon, place the distinguished direc-
tion into a vertical position. Acting on such “polarised” oc-
tagons with linear transformations of the plane, we get other
octagons with sides distributed into pairs, where sides in each
pair are parallel and have equal lengths. From any such poly-
gon, we can glue a translation surface. Having a translation
surface, we can unwrap it to a polygon in many ways (see
Figure 5). This gives an idea of why the GL(2,R)-action on
the space of translation surfaces is anything but easy to study.

Now, touch the resulting translation surface with the
Magic Wand theorem to get the closure of its GL(2,R)-orbit
in the moduli space of all translation surfaces sharing the
same combinatorial geometry as the initial surface. According
to the Magic Wand theorem, the orbit closure is a very nice
orbifold that would provide you with plenty of fine informa-
tion about the initial state. Is it not like getting a Cinderella
Pumpkin Coach? One of the last works of Maryam Mirza-
khani, performed in collaboration with Alex Wright, proves
that despite the fact that the translation surface obtained af-
ter unfolding a rational triangle has plenty of symmetries, the
corresponding orbit closure is often as large as it can be: it
coincides with the entire ambient moduli space of transla-
tion surfaces. (The triangle considered above, however, gives
a small orbit closure.)

The proof of the Magic Wand theorem is a titanic work,
which absorbed numerous recent fundamental developments
in dynamical systems; most of these developments do not
have any direct relation to moduli spaces. I still do not un-
derstand how they managed to do it. Very serious technical
difficulties appeared at every stage of the project, not to men-
tion that in the four years between 2010 and 2014 Maryam
gave birth to a daughter and managed to overcome the first
attack of cancer. Since then, I believed that Maryam could do
everything.

=

Figure 5. Polygonal patterns of the same translation surface

I cannot help telling a story that is symbolic to me. Af-
ter M. Mirzakhani received the Fields Medal, I was asked by
the “Gazette of the SMF” to write an article about the Magic
Wand theorem and to ask Maryam for her picture to include
in the article. The photograph that I received from Maryam
was unexpected for a scientific paper: a three-year-old girl
was holding two balloons of sophisticated shape (Riemann
surfaces) almost as big as the girl herself.

However, the picture seemed to me absolutely appropri-
ate. It perfectly represented my own image of Maryam; I was
just surprised that she would suggest such a picture herself.
Maryam carried through her entire life the curiosity and imag-
ination that are so natural for children but which, unfortu-
nately, are lost by most grown-ups.

Then came the next email: “Oops, sorry Anton, you got a
picture of my daughter :-)” I had taken Anahita for Maryam.

Curt McMullen has a story related to Anahita that oc-
curred during the ICM laudation. Presenting Maryam’s work
to thousands of people, Curt was nervous, asking himself how
Maryam, sitting in the front row, might perceive his descrip-
tion of her accomplishments. During the talk, he realised that
Maryam was spending most of the time tending to Anahita
sitting on her knees.

In the Autumn of 2016, I learned that the illness had come
back. But I also knew for sure that Maryam was doing her
best to stay with her daughter and with her family as long as
possible. I was not the only one to believe that Maryam could
do what no other human can do. But by admiring someone’s
outstanding courage, we cannot expect that person to produce
miracles.

If you want to learn more about Maryam as a personal-
ity, read the article “A Tenacious Explorer of Abstract Sur-
faces”, written by Erica Klarreich for Quanta Magazine, and
watch the Stanford Memorial recorded on October 2017 on
YouTube. Maryam’s husband, Jan Vondrák, her shield and
support, said at the memorial: “I want to say to the young
people who are asking questions ‘What would Maryam say?’
that though she was a role model, it does not mean that you
have to be exactly like her . . . You have to find your own path.
You have to find what you love. You have to find what you are
good at and what is meaningful to you. And if you do it well
then you would have made Maryam happy.”

“A light was turned off today,” wrote Firouz Naderi, an-
nouncing Maryam’s death. Both Maryam’s work and her per-
sonality inspired and encouraged many people all over the
world – women and men. Maryam’s light will be kept inside
us.
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