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MULTIPLE SADDLE CONNECTIONS ON FLAT
SURFACES AND THE PRINCIPAL BOUNDARY OF

THE MODULI SPACES OF QUADRATIC
DIFFERENTIALS

Howard Masur and Anton Zorich

Abstract. We describe typical degenerations of quadratic differentials thus
describing “generic cusps” of the moduli space of meromorphic quadratic
differentials with at most simple poles. The part of the boundary of the
moduli space which does not arise from “generic” degenerations is often
negligible in problems involving information on compactification of the
moduli space.

However, even for a typical degeneration one may have several short
loops on the Riemann surface which shrink simultaneously. We explain
this phenomenon, describe all rigid configurations of short loops, present
a detailed description of analogs of desingularized stable curves arising
here, and show how one can reconstruct a Riemann surface endowed with
a quadratic differential which is close to a “cusp” from the corresponding
point at the principal boundary.

Introduction

Saddle connections on flat surfaces. We study flat metrics on a closed
orientable surface of genus g, which have isolated conical singularities and
linear holonomy restricted to {Id,−Id}. If the linear holonomy group is
trivial, then the surface is referred to as a translation surface, such a flat sur-
face corresponds to an Abelian differential ω on a Riemann surface. If the
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holonomy group is nontrivial, then such a flat surface arises from a mero-
morphic quadratic differential q with at most simple poles on a Riemann
surface. In this paper, unless otherwise stated, a quadratic differential is
not the square of an Abelian differential and a flat surface is the Riemann
surface with the flat metric corresponding to an Abelian or to a quadratic
differential.

It is natural to consider families of flat surfaces sharing the same com-
binatorial geometry: the genus, the number of singularities and the cone
angles at singularities. Such families correspond to the strata Q(d1, . . . , dm)
in the moduli space of quadratic differentials (correspondingly to the strata
H(n1, . . . , nm) in the moduli space of Abelian differentials when the flat
structure has trivial linear holonomy). Here di ∈ {−1, 0, 1, 2, 3, . . . } stand
for the orders of singularities (simple poles, marked points, zeroes) of
quadratic differentials (correspondingly ni ∈ {1, 2, 3, . . . } stand for the de-
grees of zeroes of Abelian differentials). The collection α = {d1, . . . , dm}
(correspondingly β = {n1, . . . , nm}) is called the singularity data of the
stratum.

A saddle connection is a geodesic segment joining a pair of conical sin-
gularities or a conical singularity to itself without any singularities in its
interior. For the flat metrics as described above, regular closed geodesics
always appear in families; any such family fills a maximal cylinder bounded
on each side by a closed saddle connection or by a chain of parallel saddle
connections. Thus, when some regular closed geodesic becomes short the
corresponding saddle connection(s) become short as well. More generally,
a degeneration of an Abelian or of a quadratic differential corresponds to
collapse of some saddle connections.

Any saddle connection on a flat surface S ∈ Q(α) persists under small
deformations of S inside Q(α). It might happen that any deformation of
a given flat surface which shortens some specific saddle connection neces-
sarily shortens some other saddle connections. We say that a collection
{γ1, . . . , γn} of saddle connections is rigid if any sufficiently small defor-
mation of the flat surface inside the stratum preserves the proportions
|γ1| : |γ2| : · · · : |γn| of the lengths of all saddle connections in the col-
lection.

Degeneration of Abelian differentials. In the case of Abelian differ-
entials ω, rigid collections of saddle connections were studied in the paper
[EMZ]. It was shown that all saddle connections in any rigid collection are
homologous. In particular, they are all parallel and have equal length and
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either all of them join the same pair of distinct singular points, or they are
all closed.

This implies that when the saddle connections in a rigid collection are
contracted by a continuous deformation, the limiting flat surface generi-
cally decomposes into several components represented by nondegenerate
flat surfaces S′

1, . . . , S
′
k, where k might vary from one to the genus of the

initial surface. Let H(β′
j) be the stratum ambient for S′

j. The stratum
H(β′) = H(β′

1) � · · · � H(β′
k) of disconnected flat surfaces S′

1 � · · · � S′
k is

referred to as a principal boundary stratum of the stratum H(β). For any
connected component of any stratum H(β) the paper [EMZ] describes all
principal boundary strata; their union is called the principal boundary of
the corresponding connected component of H(β).

The paper [EMZ] also presents the inverse construction. Consider any
flat surface S′

1�· · ·�S′
k ∈ H(β′) in the principal boundary of H(β); consider

a sufficiently small value of a complex parameter δ ∈ C. One can recon-
struct the flat surface S ∈ H(β) endowed with a collection of homologous
saddle connections γ1, . . . , γn such that

∫
γi

ω = δ, and such that the degen-
eration of S that consists of contracting the saddle connections γi in the
collection gives the surface S′

1 � · · · �S′
k. This inverse construction involves

several basic surgeries of the flat structure. Given a disconnected flat sur-
face S′

1 � · · · � S′
k one applies an appropriate surgery to each S′

j producing
a surface Sj with boundary. The surgery depends on the parameter δ: the
boundary of each Sj is composed of two geodesic segments of lengths |δ|;
moreover, the boundary components of Sj and Sj+1 are compatible, which
allows one to glue the compound surface S from the collection of surfaces
with boundary.

A collection γ = {γ1, . . . , γn} of homologous saddle connections deter-
mines the following data on combinatorial geometry of the decomposition
S \ γ: the number of components, their boundary structure, the singu-
larity data for each component, the cyclic order in which the components
are glued to each other. These data are referred to as configuration of
homologous saddle connections. A configuration C uniquely determines the
corresponding boundary stratum H(β′

C).
The constructions above explain how configurations of homologous sad-

dle connections on flat surfaces S ∈ H(β) determine the “cusps” of the
stratum H(β). Consider a subset Hε

1(β) ⊂ H(β) of surfaces of area one
having a saddle connection shorter than ε. Up to a subset Hε,thin

1 (β) of
negligibly small measure the set Hε

1(β) can be represented as a disjoint
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union over all admissible configurations C (i.e. as a union over different
“cusps”) of neighborhoods of the corresponding “cusps”. When a configu-
ration C is composed from homologous saddle connections joining distinct
zeroes, the neighborhood of the corresponding cusp has the structure of
a fiber bundle over the corresponding boundary stratum H(β′

C) with the
fiber represented by an appropriate ramified cover over the Euclidean ε-disc.
Moreover, the canonical measure in the corresponding connected compo-
nent of Hε,thick

1 (β) = Hε
1(β)\Hε,thin

1 (β) decomposes as a product measure of
the canonical measure in the boundary stratum and the Euclidean measure
in the fiber, see [EMZ].

Remark. We warn the reader that the correspondence between the com-
pactification of the moduli space of Abelian differentials and the Deligne–
Mumford compactification of the underlying moduli space of curves is not
straightforward. In particular, the desingularized stable curve correspond-
ing to the limiting flat surface generically is not represented as the union of
corresponding Riemann surfaces S′

1, . . . , S
′
k: the stable curve might contain

more components.

1 Structure of the Paper and Statements of Theorems

This paper concerns the study of similar phenomena in the case of quadratic
differentials that are not squares of Abelian differentials.

1.1 Ĥomologous saddle connections. A meromorphic quadratic dif-
ferential q with at most simple poles on a Riemann surface S defines a
canonical (ramified) double cover p : Ŝ → S such that p∗q = ω2 is a square
of an Abelian differential ω on Ŝ. Let P = {P1, . . . , Pm} ⊂ S be the collec-
tion of singularities (zeroes and simple poles) of q; let P̂ = p−1(P ) be the
set of their preimages under the projection p : Ŝ → S.

Given a saddle connection γ on S choose an orientation of γ and let
γ′, γ′′ be its lifts to the double cover endowed with the orientation inherited
from γ. If [γ′] = −[γ′′] as cycles in H1(Ŝ, P̂ ; Z) we let [γ̂] := [γ′], otherwise
we define [γ̂] as [γ̂] := [γ′] − [γ′′].

Remark 1. It immediately follows from the above definition that the cycle
[γ̂] defined by a saddle connection γ is always primitive in H1(Ŝ, P̂ ; Z).

Definition 1. The saddle connections γ1, γ2 on a flat surface S defined by
a quadratic differential q are ĥomologous if [γ̂1] = [γ̂2] in H1(Ŝ, P̂ ; Z) under
an appropriate choice of orientations of γ1, γ2. (The notion “homologous
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in the relative homology with local coefficients defined by the canonical
double cover induced by a quadratic differential” is unbearably bulky, so we
introduced an abbreviation “ĥomologous”. We stress that the circumflex
over the “h” is quite meaningful: as is indicated in the definition, the
corresponding cycles are homologous on the double cover.)

Remark 2. Note that since there is no canonical way to enumerate the
preimages γ′, γ′′ of a saddle connection γ on the double cover, the cycle γ̂
is defined only up to a sign, even when we fix the orientation of γ. Thus,
γ1 is ĥomologous to γ2 if and only if γ̂1 = ±γ̂2.
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Figure 1: Saddle connections γ1, γ2, γ3 on the torus (above picture) are
ĥomologous, though γ1 is a segment joining distinct points and γ2 and γ3 are
closed loops.
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We begin with the following example which illustrates many of the main
ideas.
Example 1. Consider three unit squares, or rather a rectangle 1 × 3
and glue a torus from it as indicated at the top left corner of Figure 1.
Identifying the three corresponding sides β, γ1 and δ of the two bottom
squares we obtain a “pocket” with two “corners” P1 and P2 at the bot-
tom and with two “corners” P0 at the boundary on top. Identifying the
points P0 we obtain a “pocket” with a “figure-eight” boundary (the bottom
fragment of the top right picture at Figure 1). Identifying the sides α of
the remaining square we obtain a cylinder which we glue to the previous
fragment. Topologically the surface thus obtained is a torus. Metrically
this torus has three conical singularities. Two of them (“the corners P1, P2

of the pocket”) have cone angle π; the third conical singularity P0 has cone
angle 4π. Such a flat torus gives us a point in the stratum Q(2,−1,−1).

The bottom picture illustrates the canonical double covering over the
above torus. The cycle γ′

2 is homologous to γ′
3 on the double cover and the

cycle γ′′
2 is homologous to γ′′

3 . This implies that the cycles γ̂1, γ̂2 and γ̂3 on
the double cover are homologous to the waist curve of the thick cylinder
fragment of the right bottom picture. Thus, the saddle connections γ1, γ2

and γ3 are ĥomologous, though γ1 is a segment joining distinct points P1

and P2, and γ2, γ3 are the closed loops with the base point P0.
It essentially follows from the definition that ĥomologous saddle con-

nections are parallel on S and that their lengths either coincide or differ
by a factor of two. The following simple statement proved in Appendix A
characterizes rigid collections of saddle connections on a flat surface with
nontrivial linear holonomy.
Proposition 1. Let S be a flat surface corresponding to a meromorphic
quadratic differential q with at most simple poles. A collection γ1, . . . , γn

of saddle connections on S is rigid if and only if all saddle connections
γ1, . . . , γn are ĥomologous.

There is an obvious geometric test for deciding when saddle connections
γ1, γ2 on a translation surface S are homologous: it is sufficient to check
whether S \ (γ1 ∪ γ2) is connected or not (provided S \ γ1 and S \ γ2 are
connected). It is slightly less obvious to check whether saddle connections
γ1, γ2 on a flat surface S with nontrivial linear holonomy are ĥomologous or
not. In particular, a pair of closed saddle connections might be homologous
in the usual sense, but not ĥomologous; a pair of closed saddle connections
might be ĥomologous even if one of them represents a loop homologous to
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zero, and the other does not; finally, a saddle connection joining a pair of
distinct singularities might be ĥomologous to a saddle connection joining a
singularity to itself, or joining another pair of distinct singularities.

Section 2 describes geometric criteria for deciding when two saddle con-
nections are ĥomologous and what is the structure of the complement
S \ (γ1 ∪ γ2). These criteria are intensively used in the remaining part
of the paper. In particular, we prove in section 2 the following statement.
Theorem 1. Let S be a flat surface corresponding to a meromorphic
quadratic differential q with at most simple poles. Two saddle connections
γ1, γ2 on S are ĥomologous if and only if they have no interior intersections
and one of the connected components of the complement S \ (γ1 ∪ γ2) has
trivial linear holonomy. Moreover, if such a component exists, it is unique.

1.2 Graph of connected components. A collection γ of ĥomologous
saddle connections γ = {γ1, . . . , γn} divides S into simpler surfaces Sj

with boundary. We associate to any such decomposition a graph Γ(S, γ).
The vertices of the graph correspond to the connected components Sj of
S \ (γ1 ∪ · · · ∪ γn). We denote the vertices corresponding to cylinders (if
any) by small circles “◦”. The remaining vertices are labelled with a “+”
sign if the corresponding surface Sj has trivial linear holonomy and with a
“−” sign if it does not. We do not label the vertices of “◦”-type: it is easy
to see that the cylinders always have trivial linear holonomy.

The edges of the graph are in the one-to-one correspondence with the
saddle connections γi. Each saddle connection γi is on the boundary of
either one or two surfaces. If γi is on the boundary of pair of surfaces, it
corresponds to an edge joining the corresponding vertices. If γi is on the
boundary of only one surface, then it corresponds to an edge of the graph
which joins the vertex to itself; such an edge contributes 2 to the valence
of the vertex.
Remark 3. The union γ = γ1 ∪ · · · ∪ γn of saddle connections can be
considered as a graph γ embedded into the surface S. By definition Γ(S, γ)
is a graph dual to γ. Namely, Γ(S, γ) can be realized as graph embedded
into the surface S in the following way. A vertex of Γ(S, γ) corresponding
to a connected component Sj of S \ γ is mapped to a point vj located
in the interior of the corresponding surface with boundary Sj. The line
representing the image of an edge of Γ(S, γ) corresponding to a saddle
connection γi has a single transversal intersection with γi in some interior
point; it does not intersect any other saddle connection γi′ , where i′ �= i.
Moreover, this line does not intersect either itself or any other such line in
an interior point.
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S2
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v2

v1

γ2 γ3
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v1

γ2 γ3

γ1

Figure 2: Graph Γ(S, γ) of connected components.

Example 2. Consider the surface S and the collection γ of ĥomologous
saddle connections {γ1, γ2, γ3} as in Example 1 above (see Figure 1). The
complement S \ γ has two connected components; both represented by flat
cylinders. The graph Γ(S, γ) contains two vertices, both of the “◦”-type,
and three edges. The graph Γ(S, γ) ⊂ S is dual to the graph γ ⊂ S, see
Figure 2.

It follows from the definition of ĥomologous saddle connections that
their lengths are either the same or differ by a factor of two. Having a
collection γ of ĥomologous saddle connections γ1, . . . , γn we can normalize
the length of the shortest one to 1. Then the other saddle connections
have lengths either 1 or 2, which endows the edges of the graph Γ with the
weights 1 or 2.

The theorem below classifies all possible graphs corresponding to non-
empty collections of ĥomologous saddle connections.

Theorem 2. Let S be a flat surface corresponding to a meromorphic
quadratic differential q with at most simple poles; let γ be a collection of
ĥomologous saddle connections {γ1, . . . , γn}, and let Γ(S, γ) be the graph
of connected components encoding the decomposition S \ (γ1 ∪ · · · ∪ γn).

The graph Γ(S, γ) either has one of the basic types listed below or can
be obtained from one of these graphs by placing additional “◦”-vertices of
valence two at any subcollection of edges subject to the following restric-
tions. At most one “◦”-vertex may be placed at the same edge; a “◦”-vertex
cannot be placed at an edge adjacent to a “◦”-vertex of valence 3 if this is
the edge separating the graph.

The graphs of basic types, presented in Figure 3, are given by the fol-
lowing list:
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Figure 3: Classification of admissible graphs.
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a) An arbitrary (possibly empty) chain of “+”-vertices of valence two
bounded by a pair of “−”-vertices of valence one;

b) A single loop of vertices of valence two having exactly one “−”-vertex
and arbitrary number of “+”-vertices (possibly no “+”-vertices at
all);

c) A single chain and a single loop joined at a vertex of valence three.
The graph has exactly one “−”-vertex of valence one; it is located
at the end of the chain. The vertex of valence three is either a “+”-
vertex, or a “◦”-vertex (vertex of the cylinder type). Both the chain,
and the cycle may have in addition an arbitrary number of “+”-
vertices of valence two (possibly no “+”-vertices at all);

d) Two nonintersecting cycles joined by a chain. The graph has no
“−”-vertices. Each of the two cycles has a single vertex of valence
three (the one where the chain is attached to the cycle); this vertex is
either a “+”-vertex or a “◦”-vertex. If both vertices of valence three
are “◦”-vertices, the chain joining two cycles is nonempty: it has at
least one “+”-vertex. Otherwise, each of the cycles and the chain
may have arbitrary number of “+”-vertices of valence two (possibly
no “+”-vertices of valence two at all);

e) “Figure-eight” graph: two cycles joined at a vertex of valence four,
which is either a “+”-vertex or a “◦”-vertex. All the other vertices
(if any) are the “+”-vertices of valence two. Each of the two cy-
cles may have arbitrary number of such “+”-vertices of valence two
(possibly no “+”-vertices of valence two at all).

Every graph listed above corresponds to some flat surface S and to some
collection of saddle connections γ.

Theorem 2 is proved in section 3 with exception of the final statement
on realizability, which is proved in sections 5–6.

1.3 Parities of boundary singularities. In section 4 we give a de-
tailed analysis of each connected component Sj of the decomposition S \γ.

It is convenient to consider a closed surface with boundary Scomp
j canon-

ically associated to Sj by taking the natural compactification of Sj. Note,
that Scomp

j need not be the same as the closure of Sj in S. For example,
if we cut a surface S along a single saddle connection γ joining a pair of
distinct singularities we obtain a surface S1 whose compactification is a
surface with boundary composed of a pair of parallel distinct geodesics of
the same length, while the closure of S1 = S \ γ1 in S coincides with S.
The closure of Sj in S is obtained from the compactification Scomp

j of Sj by
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identification of some boundary points (if necessary), or by identification
of some boundary saddle connections (if necessary).

Ribbon graph. Given a vertex v of a finite graph Γ consider a tree Γv

obtained as a small neighborhood of v in Γ in the natural topology of a one-
dimensional cell complex. The tree Γv together with the canonical mapping
of the graphs Γv → Γ will be referred to as the boundary of v. The number
of edges of Γv is exactly the valence of v (and hence is at most 4 for the
graphs from Figure 3).

Suppose that the boundary of Scomp
j has r = r(j) connected components

(called boundary components). Every boundary component is composed of
a closed chain of saddle connections γji,1, . . . , γji,p(i)

, where 1 ≤ i ≤ r. The
case p(i) = 1 is not excluded: a boundary component might be composed of
a single saddle connection. The canonical orientation of Scomp

j determines
the orientation of every boundary component Bi of ∂Scomp

j and hence de-
termines the cyclic order

→ γji,1 → · · · → γji,p(i)
→ (1)

on every such chain; by convention we let ji,p(i)+1 := ji,1. Thus, we get
a natural decomposition of the set of edges of Γvj into a disjoint union of
subsets, each endowed with a cyclic order,

{→γj1,1→γj1,2→ . . .→γj1,p(1)
→} � · · · � {→γjr,1→ . . .→γjr,p(r)

→} . (2)

It is convenient to encode such a combinatorial structure by a local ribbon
graph Gvj which is defined in the following way. We denote a saddle con-
nection and the edge of the graph Γ(S, γ) dual to it by the same symbol γi.

Consider a realization of Γ(S, γ) by an embedded graph dual to the
graph γ in S (see Remark 3 above). For every vertex vj of Γ(S, γ) we get an
induced embedding Γvj ↪→ Scomp

j . Let a connected component Bi of ∂Scomp
j

be represented by a chain (1) of saddle connections. A tubular neighbor-
hood in Scomp

j of the union of the corresponding edges {γji,1 ∪ · · · ∪ γji,p(i)
}

of Γvj ⊂ Scomp
j (as in the left picture of Figure 4) inherits the canonical

orientation of S. This orientation induces a natural cyclic order on the
edges γji,1, . . . , γji,p(i)

of Γvj . We choose the embedding Γvj ↪→ Scomp
j in

such way that turning counterclockwise around vj (considered as a point
of Scomp

j ) we see the edges γji,1 , . . . , γji,p(i)
appear in the cyclic order (1).

When the boundary ∂Scomp
j contains several connected components, the

ribbon graphs corresponding to different components overlap at vj (as in
the left picture of Figure 4). However, it is easy to make them disjoint by a
small deformation, subject to an appropriate choice of the initial embedding
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Γvj ↪→ Scomp
j . From now on we shall always assume that the embedding is

chosen appropriately.

Scomp
2

Scomp
1

γ2 γ3

γ′′
1

γ′
1

1
2

2
1

1
2

Gv2

γ2 γ3

γ′′
1 γ′

1
Gv1

G(S, γ)

Figure 4: Compactifications Scomp
1 , Scomp

2 of connected components
of S \ γ, the associated local ribbon graphs Gv1 , Gv2 and the global
ribbon graph G(S, γ).

Example 3. Consider once again the surface S and the collection γ of
ĥomologous saddle connections {γ1, γ2, γ3} as in Example 1, see Figure 1.
In Example 2 we have constructed the associated graph Γ(S, γ), see Figure 2.

The complement S \ γ has two connected components; their compact-
ifications Scomp

1 , Scomp
2 are represented by a pair of flat cylinders. Each of

the two connected components of the boundary of Scomp
2 (the top cylinder

in Figure 4) is formed by a single saddle connection, so we get ∂Scomp
2 =

{γ2} � {γ3}. Each of the two connected components of the boundary of
Scomp

1 (the bottom cylinder in Figure 4) is formed by a pair of saddle con-
nections, so we get ∂Scomp

2 = {γ2 → γ3} � {γ′
1 → γ′′

1}. The orientation
of the boundary components induced by the canonical orientation of S is
indicated in the left picture.

The picture in the center of Figure 4 shows the corresponding local
ribbon graphs and the picture on the right shows the global ribbon graph
G(S, γ) for this example.

For vertices v of valence 1, 2, 3, 4, Figure 5 gives a complete list of all
possible partitions of the edges of Γv into a disjoint union of subsets en-
dowed with a cyclic order and of the corresponding local ribbon graphs Gv.
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{γj11} � {γj21} � {γj31 →γj32} {γj11} � {γj21} � {γj31} � {γj41}

Figure 5: All local ribbon graphs Gv of valences from one to four.
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Boundary singularities. Let Sj be a connected component of the de-
composition S \ (γ1 ∪ · · · ∪ γn); let Scomp

j be its compactification, and let
a connected component Bi of the boundary ∂Scomp

j be represented by a
chain (1) of saddle connections. The common endpoint of γji and γji+1

is called the boundary singularity of Scomp
j . Since all saddle connections

γ1, . . . , γn are parallel, the corresponding angle between γji and γji+1 is an
integer multiple of π. There might also be several conical singularities in
the interior of Scomp

j ; they are called interior singularities.
Definition 2. If the total angle at a boundary singularity is (k + 1)π
the order of the boundary singularity is defined to be k, and the parity of
the boundary singularity is defined to be the parity of k. If the total angle
at an interior singularity is (d + 2)π the order of the interior singularity is
defined to be d.

The order of the interior singularity coincides with the order of the zero
(simple pole) of the corresponding germ of a quadratic differential. By
convention, boundary singularities, and their orders will always refer to the
compactification Scomp

j .
When Sj is represented by a “+”-vertex of the graph Γ(S, γ), we include

the parities of the boundary singularities in our combinatorial structure
represented by the embedded local ribbon graph Gvj . Let Bi be a connected
component of the boundary ∂Scomp

j constituted by a chain (1) of saddle
connections. The edges γji,1, . . . , γji,p(i)

of the embedded graph Γvj ↪→ Scomp
j

subdivide a neighborhood of vj in Sj into p(i) sectors. To each sector
bounded by a pair of consecutive edges γji,l

and γji,l+1
we associate the

parity of the order kji,l
of the corresponding boundary singularity of Scomp

j :
of the common endpoint of the consecutive saddle connections γji,l

→ γji,l+1

in Bi.
Any connected component Sj of the decomposition S \ {γ1, . . . , γn} de-

termines the following combinatorial data which we refer to as the boundary
type of Sj : the structure (2) of the local ribbon graph Gvj as in Figure 5;
an embedding Γvj ↪→ Γ(S, γ) and a collection of parities of boundary sin-
gularities of Sj.
Theorem 3. Consider a decomposition of a flat surface S as in Theorem 2.
Every connected component Sj of the decomposition has one of the bound-
ary types presented in Figure 6 and all indicated boundary types are real-
izable.

The dotted lines in Figure 6 indicate pairs of edges of a vertex v ∈ Γ(S, γ)
of valence 3 or 4, which are joined by a loop in the graph Γ(S, γ) (see
Figure 3) and encode in this way the embedding Γvj ↪→ Γ(S, γ).
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Remark 4. We use the following convention on indexation of local ribbon
graphs in Figure 6: the first symbol represents the type (“+”, “−”, or “◦”)
of the vertex vj in the graph Γ(S, γ); the second symbol is the valence of vj ;
the number after a dot is the number of boundary components of Sj. An
extra letter “a, b, c” is employed when it is necessary to distinguish different
embedded local ribbon graphs sharing the same vertex type, valence and
number of boundary components.

The first part of the statement of Theorem 3 which claims that ev-
ery connected component of the decomposition has one of the boundary
types in Figure 6 is quite elementary; it is proved at the end of section 4.
The statement about the realizability of all boundary types presented in
Figure 6 is much less trivial; it follows from Theorem 4 which is proved in
sections 5 and 6.

1.4 Configurations of ĥomologous saddle connections. We for-
malize the data on combinatorial geometry of the decomposition S \ γ in
Definition 3 below.

Definition 3. The following combinatorial structure is called a configu-
ration of ĥomologous saddle connections.

1. A finite graph Γ endowed with a labelling of each vertex by one of the
symbols “+”, “−, or “◦”, of one of the types described in Theorem 2
(see Figure 3).

2. For any vertex v of the graph Γ an embedded ribbon graph Gv

(encoding the decomposition of Γv into a disjoint union of subsets,
called boundary components, each endowed with a cyclic order; see
equation (2)) of one of the types described in Theorem 3 (see Figure 6).

3. For every “+”-vertex v of Γ and for every pair of consecutive elements
γi,l → γi,l+1 of Gv (called boundary singularities) an associated parity
(even or odd) as in Figure 6.

4. For every vertex v of Γ and for every boundary singularity of Gv a
nonnegative integer ki,l (referred to as the order of the boundary singu-
larity) satisfying the following conditions. The order of the boundary
singularity respects the parity associated to the corresponding bound-
ary singularity when v is of the “+”-type; the order of any boundary
singularity of any vertex of the “◦”-type is equal to zero. The sum
Di+2 = ki,1+· · ·+ki,p(i) of orders of boundary singularities along any
boundary component Bi of v satisfies Di ≥ 0 for a vertex of “+”-type
and Di ≥ −1 for a vertex of “−”-type.
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+3.3
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+4.1a +4.1b +4.2a +4.2b

+4.2c +4.3a +4.3b +4.4

Figure 6: Classification of embedded local ribbon graphs.
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5. For every vertex v of Γ of “−”-type an unordered (possibly empty)
collection of integers {d1, . . . , ds(v)}, where dl ∈ {−1, 1, 2, 3, . . . }; for
every vertex v of Γ of “+”-type an unordered (possibly empty) col-
lection of positive even integers {d1, . . . , ds(v)}, where dl ∈ {2, 4, . . . }.
In both cases these collections of integers (called orders of interior
singularities) satisfy the following compatibility conditions with the
collection of boundary singularities of Gv:

−4 ≤
( ∑

dl +
∑

Di

)
≡ 0 mod 4 ,

where the first sum is taken over all interior singularities and the
second sum is taken over all boundary components Bi of Gv.

6. When the vertex v is of the “−”-type the couple [unordered collection
of interior singularities, unordered collection of boundary singulari-
ties] is in addition not allowed to belong to the following exceptional
list:

[∅, {2}]; [{−1}, {3}]; [{1}, {1}]; [{−1, 1}, {2}]
[{1}, {5}]; [{3}, {3}]; [{1, 3}, {2}]; [∅, {6}]; [{4}, {2}]

[∅, {2, 0}]; [∅, {1, 1}]; [{−1}, {0, 3}]; [{−1}, {1, 2}]
[{1}, {0, 1}]; [{1,−1}, {0, 2}]; [{1,−1}, {1, 1}]

[{3, 1}, {2, 0}]; [{3, 1}, {1, 1}]; [{3}, {3, 0}]; [{3}, {2, 1}]
[{1}, {5, 0}]; [{1}, {4, 1}]; [{1}, {3, 2}]; [{4}, {2, 0}]; [{4}, {1, 1}]

[∅, {6, 0}]; [∅, {5, 1}]; [∅, {4, 2}]; [∅, {3, 3}]
[∅, {2, 2}]; [∅, {1, 3}]; [{−1}, {2, 3}]; [{1}, {1, 2}]; [{−1, 1}, {2, 2}]

[∅, {3, 5}]; [{1}, {2, 5}]; [{3}, {2, 3}]; [{1, 3}, {2, 2}]
[∅, {2, 6}]; [{4}, {2, 2}]

The above definition might be viewed as an instruction for a “lego
game”. Having an infinite stock of elementary “lego bricks” of twenty
different kinds (we mean the embedded local ribbon graphs of twenty types
presented at Figure 6) one constructs the entire building following the plan
given by the global graph from Figure 3. After that one “decorates the
building” with an arbitrary collection of integers matching the parities of
the “lego bricks” and satisfying some elementary conditions.

Parts (1)–(2) of the definition describe the combinatorial geometry of
the building; conditions (4)–(6) impose elementary restrictions on the col-
lection of orders of singularities. Note that the parities of the boundary
singularities are encoded in the “lego bricks”. Thus, condition (3) of the
definition makes a bridge between the geometry (1)–(2) of the ribbon graph
and the arithmetic (4)–(6) of the collection of integers representing the or-
ders of singularities. See the Main Theorem for a formal statement and
Appendix B for an explicit illustration of this approach.
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Singularity data corresponding to a configuration. Any two flat
surfaces realizing the same configuration C of ĥomologous saddle connec-
tions belong to the same stratum Q(α) of quadratic differentials. The
singularity data α are defined by the configuration C as follows.

First note that any configuration C determines a natural global ribbon
graph G in the following way. We have defined a structure of a local ribbon
graph for a small neighborhood Γv of every vertex v ∈ Γ. For every vertex v
of Γ we have a ribbon going along a germ of every edge of Γv ⊂ Γ from v to
the center of the edge. Note that all local ribbon graphs carry the canonical
orientation induced from the canonical orientation of the embodying plane.
For every edge of Γ we can extend the ribbons from the endpoints towards
the center of the edge and glue them together respecting the canonical
orientation. Applying this procedure to all edges of Γ we get a global
ribbon graph endowed with the canonical orientation.

Consider the global ribbon graph G as a surface with boundary. The
boundary components of this surface are in a one-to-one correspondence
with the subset of those conical points of S which serve as the endpoints
of the saddle connections γi in the collection γ1, . . . , γn. The orders of the
corresponding singularities are calculated as follows. For any connected
component (∂G)m of its boundary define an integer bm as

bm =
∑

boundary singularities
which belong to (∂G)m

(ki,l + 1) − 2 . (3)

The set with multiplicities α can be defined now as
α =

( ⋃

±-vertices
vj∈Γ(C)

interior singularities of vj

) ⋃( ⋃

components (∂G)m

of the boundary
of G(C)

bm

)
. (4)

Example 4. The configurations C presented in the left picture of Figure 7
has 8 saddle connections γ = {γ1 ∪ · · · ∪ γ8}; the surface S \ γ decomposes
into 7 connected components S1�· · ·�S7. Two components are represented
by cylinders and thus have no interior singularities. Among the remaining
five components three have no interior singularities and are denoted ∅, one
has one interior singularity of order 2, and one has two interior singularities
of order 4. Thus, we get⋃

±-vertices
vj∈Γ(C)

interior singularities of vj = {2, 4, 4} .

The boundary of the global ribbon graph G has two components (∂G)1
and (∂G)2 which correspond to two conical singularities P1 and P2 of S.
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1

3

2
∅1

1 0

{2}
(∂G)1

γ1

γ2
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γ4 γ5
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γ7
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5

9

0
0

0
0

1 1

1

1

∅

∅

(∂G)2

3

1

1

0
1

2 ∅

{2} γ2

γ1

γ3

γ8

γ4 γ5 γ6

γ7
{4,4}

5
9

0
0

0
0

1

1
1

1

∅

∅

Figure 7: An example of a configuration.

The saddle connections γ5, γ6, γ7 join P2 to itself; the other saddle con-
nections join P1 to itself. Turning counterclockwise around the point Pl,
l = 1, 2, we see geodesic rays parallel to γi appear in the same order as they
appear when we follow the corresponding component (∂G)l in the positive
direction. Denoting by “x” the geodesic rays which do not belong to the
configuration we get the following (cyclically ordered) list for the zero P2:

γ5xγ6xγ7γ7xγ6xγ5 .

We have 10 geodesic rays; this corresponds to the cone angle 10π matching
our formula for the order b2 of the zero P2:

(0 + 1) + (1 + 1) + (1 + 1) + (0 + 1) + (1 + 1) + (1 + 1) − 2 = 8 ,

The analogous list for P1 is as follows
xxγ1xγ2xγ3xxxxxγ4γ4xxxxxxxxxγ3γ8γ8xγ2xxxγ1 .

The number of consecutive “x”s coincides with the order of the correspond-
ing boundary singularity (see Definition 2). Thus, at P1 we find 32 geodesic
rays parallel to γi, which corresponds to the cone angle 32π, and the order
b1 of P1 equals to

(2+1)+(1+1)+(1+1)+(5+1)+(0+1)+(9+1)+(0+1)+(0+1)+(1+1)
+ (3 + 1) − 2 = 30 .

Finally, we get the following set with multiplicities:
α = (2, 4, 4, 8, 30) .

The surface S has genus g = 13; the configuration C represents the stratum
Q(2, 4, 4, 8, 30). Note, that the picture on the right represents the same
configuration as the picture of the left.
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Remark 5. The example above gives an idea of how can one construct
all configurations (in the sense of Definition 3) for a given stratum Q(α)
of meromorphic quadratic differentials with at most simple poles. This
algorithm is discussed in more detail in Appendix B, where as an illustra-
tion we present a complete list of all configurations of ĥomologous saddle
connections for holomorphic quadratic differentials in genus two.

Principal boundary. Analogously to the case of Abelian differentials
a configuration C of ĥomologous saddle connections determines the corre-
sponding principal boundary stratum Q(α′

C) or H(β′
C). Namely, to each

boundary component Bi

{→ γji,1 → · · · → γji,p(i)
→}

of every “+” or “−”-vertex vj of the graph Γ(C) (i.e. to each connected
component of the corresponding local ribbon graph Gj) we assign a number

Dji = kji,1 + · · · + kji,p(i)
− 2 , (5)

where kji,1, . . . , kji,p(i)
are the orders of the boundary singularities corre-

sponding to this boundary component. By Lemma 2.1 proved in the be-
ginning of section 2 the number Dji is always a nonnegative even integer
whenever vj is a “+”-vertex. To every “+”-vertex vj of the graph Γ(C) we
assign the stratum

H(β′
j) = H

(
d1

2
, . . . ,

ds(j)

2
,
D1

2
, . . . ,

Dr(j)

2

)

(6)

of holomorphic Abelian differentials, where d1, . . . , ds(j) are the orders of
interior singularities of vj. Note that conditions (4) and (5) in Definition 3
of a configuration of ĥomologous saddle connections imply that the entries
of β′

j are integers and that their sum is even, so the stratum H(β′
j) is

nonempty.
We assign to a “−”-vertex vj the stratum

Q(α′
j) = Q(d1, . . . , ds(j),D1, . . . ,Dr(j)) (7)

of meromorphic quadratic differentials with at most simple poles, where
d1, . . . , ds(j) are the orders of interior singularities of vj. Note that condi-
tion (5) in Definition 3 of a configuration of ĥomologous saddle connections
guarantees that the sum of entries of α′

j defined above equals 0 modulo 4,
while condition (6) guarantees that α′ �∈ {(∅, {−1, 1}, {3, 1}, {4}}, which
implies that the stratum Q(α′

j) is nonempty.
Given a configuration C we assign to every “±”-vertex of the graph

Γ the corresponding stratum. When Γ does not contain “−” vertices we
get a stratum H(β′

C) of disconnected translation surfaces S′
1 � · · · � S′

k,
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where S′
j ∈ H(β′

j), j = 1, . . . , k. Otherwise we get a stratum Q(α′
C) of

disconnected flat surfaces S′
1 � · · · � S′

k, where S′
j ∈ H(β′

j) when S′
j is

represented by a “+”-vertex and S′
j ∈ Q(α′

j) when S′
j is represented by a

“−”-vertex. The resulting stratum is called the principal boundary stratum
corresponding to the admissible configuration C.
Example 5. Let us compute the principal boundary stratum correspond-
ing to the configuration from Example 4, see Figure 7. The components
represented by cylinders, encoded by ◦-vertices do not contribute to the
principal boundary: they shrink and disappear. The vertex v1 of valence
four has type +4.2c, see Figure 6; the corresponding local ribbon graph
Gv1 has two connected components, r(1) = 2, which correspond to two
connected components B1,B2 of the boundary ∂Scomp

1 . The corresponding
zeroes of the induced Abelian differential on S′

1 are calculated in terms of
D1 = 2 − 2 = 0 and D2 = 1 + 0 + 1 − 2 = 0, see (5). Since Scomp

1 does
not have interior singularities, the corresponding closed flat surface S′

1 is a
torus with two marked points, S′

1 ∈ H(0, 0), see (6).
The remaining four vertices of Γ(S, γ) have type +2.1; the boundary of

each of the corresponding components S2, . . . , S4 is connected. Applying
formulae (5) and (6) we get the following list of surfaces S′

j:

S′
2 ∈ H

(
2
2
,
3+1−2

2
,

)

S′
3 ∈ H

(
4
2
,
4
2
,
5+9−2

2
,

)

S′
4, S

′
5 ∈ H

(
1+1−2

2

)

.

The corresponding principal boundary stratum is
H(0, 0) �H(1, 1) �H(6, 2, 2) �H(0) �H(0) .

Main theorems. In sections 5 and 6 we describe some basic surgeries
which depend continuously on a small complex parameter δ ∈ C (respon-
sible for the length and direction of the saddle connections which form the
boundary) and on an additional discrete parameter having finitely many
values. The theorem below makes a bridge between the formal combinato-
rial constructions discussed above and the geometry of the moduli spaces
of quadratic differentials and is proved in those sections.

We denote by Qε
1(α) ⊂ Q1(α) the subset of those flat surfaces of area

one, which have at least one saddle connection of length at most ε.
Theorem 4. For each configuration C of ĥomologous saddle connections
as in Definition 3, let Γ be the graph of connected components correspond-
ing to this configuration. Let Q(α′

C) (or H(β′
C)) be the boundary stratum

corresponding to the configuration C.
For any flat surface S′ ∈ Q(α′

C) (correspondingly in H(β′
C)), and any

sufficiently small value of the complex parameter δ, if one applies the basic
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surgeries to the connected components of S′ and assembles a closed surface
S from the resulting surfaces with boundary according to the structure of
the graph Γ(C), then the result is a surface in Qε(α).

Similar to the case of Abelian differentials, we denote by Qε,thick
1 (α) ⊂

Q1(α) the subset of those flat surfaces of area one, which have a collection
of ĥomologous saddle connections of length at most ε and no other short
saddle connection. Here “short” means, of length less than λεr for some
parameters λ ≥ 1 and 0 < r ≤ 1, where the values of the parameters
depend on the stratum. Then one can show that any surface in Qε,thick

1 (α)
can be obtained by this construction. We will not prove this statement in
order not to overload this paper.

We put Theorem 2, Theorem 3 and Theorem 4 together in one statement
which may be considered as our main theorem.

We say that a collection γ of ĥomologous saddle connections {γ1, . . . , γn}
on a flat surface S ∈ Q(α) is in general position if there are no other saddle
connections on S parallel to saddle connections in the collection γ. It follows
from Proposition 4 stated in the end of section 2 that for almost all flat
surfaces in any stratum any collection of ĥomologous saddle connections is
in general position. This implies, that we can always put a collection of
ĥomologous saddle connections in general position by an arbitrary small
deformation of the flat surface inside the stratum.

Main Theorem. Any collection γ of ĥomologous saddle connections
{γ1, . . . , γn} in general position on a flat surface S ∈ Q(α) naturally defines
a corresponding configuration C(S, γ).

Any “formal” configuration of ĥomologous saddle connections as in Def-
inition 3 corresponds to some actual collection of ĥomologous saddle con-
nections on an appropriate flat surface.

Proof. By Theorem 2 any collection γ of ĥomologous saddle connections
{γ1, . . . , γn} on a flat surface S ∈ Q(α) naturally defines a graph of con-
nected components Γ(S, γ) (structure 1 of a configuration). According to
Theorem 3, for every vertex v of Γ(S, γ) the collection γ also defines a local
ribbon graph (structure 2 of a configuration) as well as the orders dl and
ki,l of all interior and boundary singularities. By Theorem 3, for vertices
of “+”-type, the orders ki,l of the boundary singularities are compatible
with the corresponding parities (structures 3 and 4 of a configuration).
The lower bounds for the sums Di of orders of boundary singularities fol-
low from Lemma 2.3. The necessary condition of the compatibility of the
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orders of interior singularities with the orders of boundary singularities for-
malized as structure 5 is proved in Lemma 2.2. The list of nonrealizable
singularity data for the vertices of the “−”-types presented in structure 6
of a configuration is justified in Lemma 6.2 at the end of section 6. This
completes the proof of the first part of the statement.

The realizability of all formal configurations immediately follows from
Theorem 4. �

Appendices. Long saddle connections. In Appendix A we study
collections of ĥomologous saddle connections when they are not necessarily
short.

The next proposition follows immediately from Definition 1 and the
notion of configuration.

Proposition. Let γ(S0) = {γ1, . . . , γn} be a collection of ĥomologous sad-
dle connections on a flat surface S0 in Q(α). Let a flat surface S be obtained
by a sufficiently small continuous deformation of S0 in Q(α) and γ(S) the
corresponding collection of saddle connections. Then all saddle connections
in the collection γ(S) are ĥomologous. The configuration C(S, γ(S)) defined
by the collection γ(S) of ĥomologous saddle connections on S coincides with
the initial configuration C(S0, γ(S0)).

By definition, a configuration C of ĥomologous saddle connections is
admissible for a given connected component Qc(α) of the stratum Q(α) if
there is at least one flat surface S0 ∈ Qc(α) and at least one collection γ
of ĥomologous saddle connections γ = {γ1, . . . , γn} on S0 realizing C. Con-
sider any surface S in the same connected component Qc(α). By NC(S,L)
denote the number of collections γ = {γ1, . . . , γn} of ĥomologous saddle
connections on S defining the same configuration C(S, γ) = C and such
that max1≤i≤n |γi| ≤ L. The results in [EM] imply the following statement
proved in the appendix.
Proposition 2. For almost every flat surface S in the connected compo-
nent Qc(α) containing S0 the following limit exists:

lim
L→+∞

NC(S,L)
L2

= cC(S) ,

and is strictly positive. Moreover, for almost all surfaces S in Qc(α) this
limit is the same, cC(S) = constC . (This limit is called Siegel–Veech
constant.)

In particular, any admissible configuration is presented on almost every
flat surface in the corresponding connected component of the stratum by
numerous collections of ĥomologous saddle connections.
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Final comments, open problems, applications. The thick part
Qε,thick

1 (α) decomposes into a disjoint union

Qε,thick
1 (α) =

⊔

configurations C
Qε

1(α, C)

of (not necessarily connected) components corresponding to admissible con-
figurations; the surfaces in any such component of Qε

1(α, C) share the same
configuration C of ĥomologous saddle connections. Following the lines of
the paper [EMZ] one could extend Theorem 4 and prove that up to a defect
of a very small measure, for every configuration C there is an integer M(C)
such that Qε

1(α, C) is a (ramified) covering of order M(C) over the follow-
ing space. The space is a fiber bundle over the boundary stratum Q1(α′

C)
(correspondingly H1(β′

C)). It has a Euclidean ε-disc as a fiber when C does
not contain cylinders, and the space Hε

1(0, . . . , 0) when C contains cylinders
(number of marked points on the torus equals the number of cylinders). In
both cases it is easy to express the measure on Qε

1(α, C) in terms of the
product measure on the fiber bundle, and compute the volume of Qε

1(α, C)
in terms of volumes of the strata, and using the Siegel–Veech formula com-
pute the constants cC .

However, the evaluation of the constants M (which depend on the con-
figuration C) requires some additional work. In particular, if the corre-
sponding surgeries (see Theorem 4) are nonlocal (i.e. those, which use a
path on a surface, see section 6) one needs to study the dependence of the
resulting surface on the homotopy type of the path. These and related
issues are partly discussed in the papers [B1] and [B2].

Another subject which we do not discuss in this paper is the individual
study of the connected components of the strata of quadratic differentials:
different connected components of the same stratum Q(α) have their indi-
vidual lists of admissible configurations, graphs, boundary strata, etc. In
particular, one can use the lists of admissible configurations to determine
the connected component to which a given flat surface belongs. For ex-
ample, a saddle connection joining the zero and the simple pole on any
flat surface from the component Qir(9,−1) has a ĥomologous saddle con-
nection joining the zero to itself, while analogous saddle connections on
surfaces from the complementary connected component Qreg(9,−1) may
have multiplicity one. The existing invariant called the Rauzy class used
to distinguish these components is rather complicated, see [L], [BL], [Z].
Configurations of ĥomologous saddle connections for some nonconnected
strata are studied in the paper [B1].
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Given a billiard in a rational polygon Π, one can build a translation sur-
face Ŝ from an appropriate number 2N of copies of Π such that geodesics
on S will project to the billiard trajectories in Π. Taking N copies instead
of 2N one obtains a flat surface with Z/2Z-holonomy with the same prop-
erties of geodesics. In some cases this latter construction is more advanta-
geous. In the paper [AEZ] there is the study of billiards in polygons whose
angles are multiples of π/2. Identifying two copies of such polygons by
their boundaries one obtains a flat surface corresponding to a meromorphic
quadratic differential on CP 1 with at most simple poles. The results of
this paper are used to classify closed billiard trajectories and generalized
diagonals in the paper [AEZ], see also [B1].
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2 Preliminaries on Flat Surfaces and on Ĥomologous
Saddle Connections

In this section of preliminary results we describe geometric criteria for
deciding when two saddle connections are ĥomologous and describe the
structure of the complement S \ (γ1 ∪ γ2). The key result in this section is
Proposition 3.

In the case of a translation surface S it is obvious that two saddle con-
nections γ1, γ2 are homologous if and only if S \ (γ1 ∪ γ2) is disconnected
(provided S \ γ1 and S \ γ2 are connected). It is less obvious to check
whether saddle connections γ1, γ2 on a flat surface S with nontrivial linear
holonomy are ĥomologous or not. In particular, a pair of closed saddle con-
nections might be homologous in the usual sense, but not ĥomologous; a
pair of closed saddle connections might be ĥomologous even if one of them
represents a loop homologous to zero, and the other does not; finally, a sad-
dle connection joining a pair of distinct singularities might be ĥomologous
to a saddle connection joining a singularity to itself, or joining another pair
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of distinct singularities. The flat torus described in the introduction gives
an example of these phenomena (see Example 1 and Figure 1).

We start this section with several lemmas establishing some restrictions
on the orders of singularities of a flat surface with boundary. By conven-
tion we consider only those flat structures which have linear holonomy in
{Id,−Id}. Throughout this paper we assume that the boundary compo-
nents of any flat surface with boundary are made up of parallel saddle
connections, unless otherwise noted. We also assume that a sufficiently
small collar neighborhood of any boundary component is a topological an-
nulus (or, in the other words, that the natural compactification of S \ ∂S
coincides with S).
Lemma 2.1. If a flat surface Sj with boundary has trivial linear holo-
nomy, then the sum of the orders of the boundary singularities along each
boundary component is even:

kji,1 + · · · + kji,p(i)
≡ 0 mod 2 .

Proof. Take a loop following the i-th boundary component
{→ γji,1 → · · · → γji,p(i)

→}
at a sufficiently small constant distance. Recall that by Definition 2 of
the order of a boundary singularity, the angle between the saddle con-
nection γji,l

and the saddle connection γji,l+1
at the boundary singularity

γji,l
→ γji,l+1

equals (kji,l
+1)π. Thus, the linear holonomy around the loop

is trivial if and only if the total sum of the angles kji,1π+· · ·+kji,p(i)
π is an in-

teger multiple of 2π, or, equivalently, if and only if the sum kji,1 +· · ·+kji,p(i)

of the orders of the boundary singularities is even. �

Lemma 2.2. Let djl
, kji,l

denote the orders of correspondingly interior
singularities and boundary singularities of a flat surface with boundary Sj .
Then

2r(Sj) − 4 ≤
∑

djl
+

∑
kji,l

≡ 2r(Sj) mod 4 ,

where r(Sj) is the number of boundary components, the first sum is taken
over all interior singularities and the second sum is taken over all boundary
singularities.

Proof. Consider one more copy of the surface Sj taken with the opposite
orientation. We can naturally identify these two copies along the common
boundary. It follows from our assumptions on Sj that the resulting surface
S is a nonsingular oriented closed flat surface without boundary. In other
words, the closed flat surface S corresponds to a meromorphic quadratic
differential on a Riemann surface.
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Each interior singularity of Sj of order djl
produces two distinct sin-

gularities of S of order di. Each boundary singularity of Sj of order kji,l

gives rise to an interior singularity of S of order 2kji,l
. The surface S has

genus ĝ = 2g + r(Sj)− 1. Now recall that for any quadratic differential on
a closed Riemann surface S of genus ĝ the sum of orders of singularities
equals 4ĝ − 4. Hence,

2
( ∑

interior
singularities

of Sj

dl +
∑

boundary
singularities

of Sj

kji,l

)
= 4ĝ − 4 = 4

(
2g + r(Sj) − 1

) − 4

= 8(g − 1) + 4r(Sj) ,

which implies the desired relation. �

Lemma 2.3. The sum Di + 2 = ki,1 + · · · + ki,p(i) of orders of boundary
singularities along some boundary component Bi of a flat surface S is equal
to zero if and only if a sufficiently narrow collar neighborhood of Bi in S is
isometric to a flat cylinder.

When S has trivial linear holonomy and the sum Di + 2 of orders of
boundary singularities along a boundary component Bi is strictly positive,
Di satisfies the inequality Di ≥ 0.

Proof. By Definition 2 the order ki,l of any boundary singularity is nonneg-
ative. Thus, Di +2 is equal to zero if and only if the orders of all boundary
singularities along the boundary component Bi are equal to zero, which
implies the first part of the statement.

The second statement is an obvious corollary of the first one combined
with Lemma 2.1. �

Lemma 2.4. Let β denote the total boundary of a translation surface
defined by a holomorphic 1-form ω. Then

1.
∫
β ω = 0.

2. β cannot consist of a single saddle connection.
3. If β is composed of exactly two saddle connections γ1, γ2 then γ1, γ2

are parallel and have equal length. Moreover, the oriented surface ob-
tained by isometric identification of γ1 and γ2 is a translation surface
(i.e. it is a closed flat surface with trivial linear holonomy).

Proof. Note that the canonical orientation of the surface induces a canonical
orientation of the boundary β. Thus, the first statement is an immediate
consequence of Stokes’ formula. The second statement follows from the
first since the holonomy

∫
γ ω along a saddle connection γ cannot be 0.

For the third let β = γ1 − γ2. Then
∫
γ1

ω =
∫
γ2

ω. This implies that
γ1, γ2 are parallel, have equal length and that their directions defined by
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the chosen orientations are compatible with linear holonomy. We can iso-
metrically identify γ1 either with γ2 or with −γ2. However, the second
identification produces a nonorientable surface, so γ1 must be identified
with γ2 which implies that the resulting surface is a translation surface. �

Remark 6. Whenever it is possible we follow the following convention
concerning unions of curves: by γ1 ∪ γ2 we denote a set-theoretical union,
when the curves γ1, γ2 are not oriented or when the orientation is irrelevant.
We use the additive notation (say, γ1−γ2 in the proof above) for the union
of oriented curves endowed with the orientation defined by the choice of
signs of the components.

Let S be a flat surface with boundary; let γ1, γ2 be a pair of nonoriented
parallel saddle connections γ1, γ2 of equal length at the boundary of S.
The canonical orientation of the surface induces a canonical orientation
of γ1, γ2. In this paper we often construct a new flat surface from the
surface S by gluing part of the boundary of S represented by γ1 to the
part of the boundary represented by γ2. By convention such a surgery
is always performed by an isometric identification of γ1 and −γ2, i.e. we
always identify γ1 and γ2 in such way that the resulting flat surface is
orientable.

Suppose that, moreover, S has trivial linear holonomy.

Definition 4. We say that γ1 and γ2 are identified by a translation if
the resulting flat surface has trivial linear holonomy; otherwise we say that
γ1 and γ2 are identified by a flip.

Lemma 2.5. Assume that a flat surface S with nontrivial linear holonomy
is divided by a pair of parallel saddle connections γ1, γ2 into two connected
components S1, S2. Then at least one of the components must have non-
trivial linear holonomy.

Proof. If one of the γ1, γ2 is a closed curve homologous to zero, say γ1, then
γ2 lies in one of the two components of the complement S \ γ1. Then, the
boundary of the other component, say, S1 consists solely of γ1, ∂S1 = γ1.
By property 2 of Lemma 2.4 the component S1 has nontrivial linear holon-
omy.

Therefore, we may assume that γ1 and γ2 are not homologous to zero
so they are homologous to each other. Choosing appropriate orientations
of γ1 and γ2 we get

∂S1 = γ1 − γ2 , ∂S2 = −γ1 + γ2 .
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where the orientations of S1, S2 are induced from the canonical orientation
of S. If both S1 and S2 have trivial linear holonomy we can choose the
defining holomorphic 1-forms ω1, ω2 on S1 and S2 in such way that∫

γ1

ω1 =
∫

γ1

ω2 =
∫

γ2

ω1 =
∫

γ2

ω2 .

The latter relations imply the compatibility of ω1 and ω2 on S. Thus, the
flat structure on S can be defined by a holomorphic 1-form ω such that
ω|S1 = ω1, ω|S2 = ω2, and S has trivial linear holonomy contrary to the
initial assumption. �

Lemma 2.6. Any two ĥomologous saddle connections γ1, γ2 on a flat
surface S are parallel. When both relations [γ′

1] = −[γ′′
1 ] and [γ′

2] = −[γ′′
2 ]

are simultaneously valid or simultaneously not valid the saddle connections
γ1, γ2 have the same length, |γ1| = |γ2|. When one of the relations, say,
[γ′

1] = −[γ′′
1 ], is valid while the other one is not, [γ′

2] �= −[γ′′
2 ], the lengths

differ by the factor of two, |γ1| = 2|γ2|.
Proof. The proof is a straightforward corollary of Definition 1 and the
fact that the length of a saddle connection δ on the translation surface Ŝ is
defined as |δ| = | ∫δ ω| and its direction is defined by the argument of

∫
δ ω. �

Lemma 2.7. Let γ be a saddle connection on a flat surface S having
nontrivial linear holonomy. The following properties are equivalent:

(a) [γ′] = −[γ′′] in H1(Ŝ, P̂ ; Z);
(b) Ŝ \ (γ′ ∪ γ′′) contains exactly two connected components;
(c) [γ] = 0 in H1(S,P ; Z).

Proof. (a)⇒(c). Consider the map p∗ : H1(Ŝ, P̂ ; Z) → H1(S,P ; Z) induced
by the covering p. By definition of γ′, γ′′ we have [γ] = p∗[γ′] = p∗[γ′′].
Thus, when [γ′] = −[γ′′] we get [γ] = −[γ], so [γ] = 0.

(c)⇒(b). Since [γ] = 0, S\γ contains two connected components S1, S2,
such that ∂S1 = γ, ∂S2 = −γ. By property 2 of Lemma 2.4 both S1 and
S2 have nontrivial linear holonomy, which implies that both Ŝ1 = p−1(S1),
Ŝ2 = p−1(S2), are connected. Thus, Ŝ \ (γ′∪γ′′) = Ŝ1� Ŝ2 contains exactly
two connected components.

(b)⇒(a). Since γ′ and γ′′ are symmetric, the two connected components
Ŝ′, Ŝ′′ of Ŝ\(γ′∪γ′′) are also symmetric with respect to the involution. This
restricts the possible situations to the following three (up to an interchange
of the superscripts of Ŝ′

1, Ŝ
′′
1 if necessary):

— either ∂Ŝ′ is composed of two copies of γ′ and ∂Ŝ′′ of two copies of γ′′;
— or ∂Ŝ′ = γ′ − γ′′ and ∂Ŝ′′ = γ′′ − γ′;
— or ∂Ŝ′ = γ′ + γ′′ and ∂Ŝ′′ = −γ′′ − γ′.
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The first situation implies that Ŝ contains two connected components
which contradicts the assumptions that S has nontrivial linear holonomy.
Hence, the first situation is excluded. The second situation implies that
isometrically identifying the boundary components γ′ and γ′′ of S′ we obtain
a flat surface isometric to S. By property 3 of Lemma 2.4 this again implies
that S has trivial linear holonomy which contradicts the assumptions. This
case is also excluded. In the only remaining case we have ∂Ŝ′ = γ′ + γ′′

which implies [γ′] = −[γ′′]. �
The next proposition is the key to the proofs of Theorems 1 and 2. We

do not assume that the saddle connections in the proposition below are
parallel.
Proposition 3. Let S be a flat surface having nontrivial linear holonomy.
Two saddle connections γ1, γ2 on S are ĥomologous if and only if they have
no interior intersections and one of the following holds

1. The union γ1 ∪ γ2 does not separate the surface S and the complement
S \ {γ1 ∪ γ2} has trivial linear holonomy. (In this case |γ1| = |γ2|; all
combinations: loop–loop, loop–segment, segment–segment are possible.)

2. The union γ1 ∪ γ2 separates S; neither γ1 nor γ2 by itself separates; the
complement S \ {γ1 ∪ γ2} has two connected components, one of them
has trivial linear holonomy, the other nontrivial. (In this case |γ1| = |γ2|;
the saddle connections are either two segments or two loops.)

3. One of γ1, γ2, say, γ1 separates S, the other one does not; the complement
S\{γ1∪γ2} has two connected components, one of them has trivial linear
holonomy, the other one, whose boundary is γ1, has nontrivial holonomy.
(In this case |γ1| = 2|γ2|; the separating saddle connection γ1 is a loop,
γ2 might be a segment or a loop.)

4. Both γ1 and γ2 separate S; the complement S \ {γ1 ∪ γ2} has three
connected components; two of which have nontrivial linear holonomy,
while the remaining one, whose boundary is γ1 ∪ γ2, has trivial linear
holonomy. (In this case |γ1| = |γ2|; both γ1 and γ2 are loops.)

Proof. According to Lemma 2.6 ĥomologous saddle connections are parallel.
If two ĥomologous saddle connections γ1 and γ2 have a common point, this
point is an endpoint for both γ1 and γ2. Thus, from now on we can assume
that γ1, γ2 have no interior intersections.

Two saddle connections γ1, γ2 without interior intersections subdivide
a flat surface S in one of the following ways:

(i) The union γ1 ∪ γ2 does not separate the surface S.
(ii) The union γ1 ∪ γ2 separates S; neither γ1 nor γ2 by itself separates.
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(iii) One of γ1, γ2, say, γ1 separates S, the other one does not.
(iv) Both γ1 and γ2 separate S.

For each of these cases we prove that the additional assumption that
γ1 and γ2 are ĥomologous is equivalent to the corresponding additional
assumptions (1)–(4) on triviality of linear holonomy of the corresponding
components. In each case we use Lemmas 2.6 and 2.7 to determine the
corresponding relation between the lengths |γ1| and |γ2|. We combine this
information with Lemma 2.7 (when appropriate) to prove that one of γ1, γ2

(or both γ1 and γ2) is a closed cycle. The proof of realizability of combina-
tions loop–loop, loop–segment, segment–segment indicated in Proposition 3
is left to the reader as an exercise. Note that Example 1 already proves
realizability of combinations loop–segment in (1) and loop–loop in (2). The
remaining combinations can be found in sections 5 and 6.

Let X ⊆ S be a subset of S. By X̂ we denote the preimage X̂ =
p−1(X). Let Sj be a connected component of S \ (γ1 ∪ γ2). We use the
following obvious criterion: Sj has nontrivial linear holonomy if and only
if the preimage Ŝj is connected. Now let us pass to consideration of cases
(i)–(iv).

(i) In this case S \ (γ1 ∪ γ2) is connected; denote it by S1. Neither of
γ1, γ2 is homologous to zero, so [γ̂1] = [γ′

1]− [γ′′
1 ], and [γ̂2] = [γ′

2]− [γ′′
2 ] (see

Lemma 2.7). By Lemma 2.6 when such γ1 and γ2 are ĥomologous, we have
|γ1| = |γ2|.

If the saddle connections γ1 and γ2 are ĥomologous then the cycle [γ′
1]−

[γ′′
1 ] is homologous (in the usual sense) to one of the ±([γ′

2] − [γ′′
2 ]) which

means that Ŝ1 = Ŝ \ (γ′
1 ∪ γ′′

1 ∪ γ′
2 ∪ γ′′

2 ) is not connected. Hence, by the
above criterion S1 has trivial linear holonomy.

Suppose now that S1 = S\(γ1∪γ2) has trivial linear holonomy. Then Ŝ1

has two connected components Ŝ′
1 and Ŝ′′

1 . By assumption the flat surface
S has nontrivial linear holonomy. Hence, it follows from property 3 in
Lemma 2.4 that both S \ γ1 and S \ γ2 have nontrivial linear holonomy.
This implies that there exist a pair of loops ρ1, ρ2 on S such that ρi and
γi have a single transversal intersection, i = 1, 2; such that ρ1 ∩ γ2 = ∅,
ρ2 ∩ γ1 = ∅; and such that holonomy along each ρi, i = 1, 2, is nontrivial.
Interchanging the superscripts of Ŝ′

1, Ŝ
′′
1 if necessary, we may assume that

γ′
1 is on the boundary of Ŝ′

1. Since ρ1 has nontrivial linear holonomy,
the lift ρ′1 ⊂ Ŝ′

1 of ρ starting at γ′
1 is not closed and hence it ends on

−γ′′
1 . This implies that both γ′

1 and −γ′′
1 belong to the boundary of Ŝ′

1.
Since S1 = S \ (γ1 ∪ γ2) is connected, at least one of both ±γ′

2 and ±γ′′
2
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belongs to the boundary of Ŝ′
1. Applying the same argument as above and

using the obvious symmetry between Ŝ′
1 and Ŝ′′

1 we conclude that under an
appropriate choice of orientations of γ1 and γ2 one has

∂Ŝ′
1 = γ′

1 − γ′′
1 − γ′

2 + γ′′
2 ,

which is equivalent to
[γ′

1] − [γ′′
1 ] = [γ′

2] − [γ′′
2 ] ,

and hence, γ1 and γ2 are ĥomologous.
(ii) In this case γ1 and γ2 are homologous in the usual sense, and not

homologous to zero; the complement S \ {γ1 ∪ γ2} has two connected com-
ponents S1, S2. This implies that either both of γ1 and γ2 are segments,
or both are closed cycles. Since neither of γ1, γ2 is homologous to zero,
Lemma 2.7 implies that [γ′

i] �= −[γ′′
i ] for i = 1, 2. Thus, if such γ1, γ2 are

ĥomologous we get |γ1| = |γ2| by Lemma 2.6.
We will now prove that in case (ii) the two curves are ĥomologous if and

only if exactly one of the two components has nontrivial linear holonomy.
By Lemma 2.5 at least one of two components, say, S1 has nontrivial

linear holonomy. Under an appropriate choice of orientations of γ1, γ2 we
have ∂S1 = γ1 − γ2, which implies

∂Ŝ1 = (γ′
1 + γ′′

1 ) − (γ′
2 + γ′′

2 ) .

Since [γ′
i] �= −[γ′′

i ], for i = 1, 2, the condition that γ1 and γ2 are
ĥomologous is equivalent to one of the relations ([γ′

1]−[γ′′
1 ]) = ±([γ′

2]−[γ′′
2 ]).

Together with the above equation on ∂Ŝ1 it is equivalent to one of the fol-
lowing systems {

[γ′
1] = [γ′

2]
[γ′′

1 ] = [γ′′
2 ]

{
[γ′

1] = [γ′′
2 ]

[γ′′
1 ] = [γ′

2]
The systems might be identified by interchange of superscripts of, say, γ′

2

and γ′′
2 , thus we can consider just the first one.

Since by the second property of Lemma 2.4 neither of [γ′
i], [γ

′′
i ], i = 1, 2,

is homologous to zero, the latter system is valid if and only if cutting ∂Ŝ
by any of two pairs [γ′

1], [γ
′
2] or [γ′′

1 ], [γ′′
2 ] of saddle connections we get two

connected components. Since Ŝ1 is connected the latter is true if and only if
Ŝ2 contains two connected components. By the criterion formulated above
this is true if and only if S2 has trivial linear holonomy. The equivalence is
proved.

(iii) In this case γ1 is a closed cycle homologous to zero, while γ2 is not
homologous to zero. This implies that the complement S \ {γ1 ∪ γ2} has
two connected components S1, S2. Combining Lemma 2.7 with Lemma 2.6
we see that if such γ1 and γ2 are ĥomologous, we have |γ1| = 2|γ2|.
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Choose the orientation of γ1 and enumeration of the components in such
way that

∂S1 = γ1 ∂S2 = −γ1 + γ2 − γ2 .

Then
∂Ŝ1 = γ′

1 + γ′′
1 , ∂Ŝ2 = −γ′

1 − γ′′
1 + γ′

2 − γ′
2 + γ′′

2 − γ′′
2 .

Note that S1 has nontrivial linear holonomy (see property 2 of Lemma 2.4)
so Ŝ1 is connected. If γ1 and γ2 are ĥomologous, then [γ′

1] = ±([γ′
2] − [γ′′

2 ]).
This implies that Ŝ \ (γ′

1 ∪ γ′
2 ∪ γ′′

2 ) contains at least two connected compo-
nents. Since Ŝ \ (γ′

1 ∪ γ′
2 ∪ γ′′

2 ) = Ŝ1 ∪ γ′′
1 ∪ Ŝ2 where Ŝ1 is connected and γ′′

1

connects Ŝ1 and Ŝ2, this implies that Ŝ2 is not connected. Hence, S2 has
trivial linear holonomy.

Conversely, consider the connected component of S \ γ1 containing γ2;
denote it by S̃2. Property 2 of Lemma 2.4 implies that S̃2 has nontrivial
linear holonomy. Note that S2 = S̃2 \ γ2. Thus, when S2 has trivial
linear holonomy, there exists a closed path ρ on S̃2 transversally intersecting
γ2 such that holonomy along ρ is nontrivial. Since S2 has trivial linear
holonomy, Ŝ2 has two connected components Ŝ′

2, Ŝ
′′
2 . Changing if necessary

the superscripts of Ŝ′
2, Ŝ

′′
2 we may assume that γ′

2 is on the boundary of Ŝ′
2.

Since the holonomy along ρ is nontrivial, following the lift of ρ which starts
at γ′

2 and goes inside Ŝ′
2 the path ρ ends at −γ′′

2 , which shows that γ′
2 and

−γ′′
2 make part of the boundary of the same component Ŝ′

2. Taking into
consideration the symmetry between components Ŝ′

2, Ŝ
′′
2 and choosing an

appropriate orientation of γ1 we get
∂Ŝ′

2 = −γ′
1 + γ′

2 − γ′′
2 , ∂Ŝ′′

2 = −γ′′
1 − γ′

2 + γ′′
2 ,

which implies that γ1 and γ2 are ĥomologous.
(iv) In this case the complement S \{γ1 ∪ γ2} has three connected com-

ponents. Both γ1 and γ2 are homologous to zero, so they are represented
by closed cycles. This also implies that [γ̂i] = γ′

i, i = 1, 2. If such γ1 and
γ2 are ĥomologous, we have |γ1| = |γ2| (see Lemma 2.6).

Denote the connected components of S\(γ1∪γ2) in such way that under
an appropriate choice of orientations of γ1, γ2 one gets

∂S1 = γ1 , ∂S2 = −γ2 , ∂S3 = −γ1 + γ2 .

By property 2 of Lemma 2.4 the components S1 and S2 have nontrivial
linear holonomy, so Ŝ1 and Ŝ2 are connected. We get

∂Ŝ1 = γ′
1 + γ′′

1 , ∂Ŝ2 = −γ′
2 − γ′′

2 , ∂Ŝ3 = −γ′
1 − γ′′

1 + γ′
2 + γ′′

2 .

If γ1 and γ2 are ĥomologous then [γ′
1] = ±[γ′

2] which implies that cutting
Ŝ by γ′

1, γ
′
2 we get two connected components, which means that Ŝ3 is not

connected and hence S3 has trivial linear holonomy.
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Conversely, if S3 has trivial linear holonomy then Ŝ3 contains two con-
nected components Ŝ′

3, Ŝ
′′
3 which (under appropriate enumeration) have

boundaries
∂Ŝ′

3 = −γ′
1 + γ′

2 , ∂Ŝ′′
3 = −γ′′

1 + γ′′
2 ,

which implies that γ1 and γ2 are homologous. Proposition 3 is proved. �

Theorem 1 follows from Proposition 3.

Proof of Theorem 1. Cutting S by γ1, γ2 we get one of the decompositions
(i)–(iv). According to Proposition 3, the additional assumptions (1)–(4) on
the triviality of the linear holonomy of the corresponding component are
necessary and sufficient conditions for γ1, γ2 to be ĥomologous. It remains
to note that in each of the cases (1)–(4) there is a unique component with
trivial linear holonomy. �

The following criterion is analogous to the corresponding statement in
[EMZ]. It is proved in Appendix A, where the notion of a measure on each
stratum is discussed.

Proposition 4. For almost every flat surface in any stratum, two saddle
connections are parallel if and only if they are ĥomologous.

3 Graph of Connected Components

In this section we give the proof that every graph is given by the list in
Theorem 2. Denote by Ṡ the surface S punctured at the singularities.
Any closed loop ρ on Ṡ can be homotoped to have a finite number of
transverse intersections with the saddle connections from the collection
γ = {γ1 . . . γn}. It naturally induces a path ρ∗ on the graph Γ(S, γ) by
recording the surfaces Sj intersected by ρ. It is easy to see that paths ρ ∼ ρ′

homotopic on the punctured surface Ṡ define paths ρ∗ ∼ ρ′∗ homotopic on
the graph. Mark a point x ∈ Ṡ \ {γi}; let v(x) be the corresponding
vertex of the graph Γ(S, γ). We get a natural homomorphism π1(Ṡ, x) →
π1

(
Γ(S, γ), v(x)

)
.

Any finite connected graph can be retracted by a deformation to a
bouquet of circles (possibly to a point). We can choose the retraction in
such way that v(x) retracts to the base point of the bouquet of circles. We
can consider the bouquet of circles B as a graph obtained from the graph
Γ(S, γ) by identifying some subtree of Γ(S, γ) to a single vertex of B. Thus,
some edges of Γ(S, γ) remain nondegenerate under the retraction, and some
edges collapse to a point.
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Now we can prove the lemma which is the main technical tool in the
proof of Theorem 2.

Lemma 3.1. Let α ⊂ Γ(S, γ) be a closed path on Γ(S, γ) realized as a
subgraph of Γ(S, γ). If under some retraction of Γ(S, γ) to a bouquet of
circles, α retracts to one of the circles, then there exists a closed path ρ on
the punctured surface Ṡ such that ρ∗ = α and the linear holonomy along ρ
is nontrivial.

Proof. We suppose that a retraction of Γ(S, γ) to a bouquet of circles is
fixed. We start with consideration of the general case, when the bouquet
of circles contains at least two circles.

Let γ1 and γ2 be a pair of edges of Γ(S, γ), which remain nondegen-
erate under retraction, such that γ1 ∈ α and γ2 �∈ α (since the bouquet
contains at least two circles, such γ2 exists). Cutting Γ(S, γ) by these
edges we get a connected graph. Equivalently, cutting the surface S by
a pair of ĥomologous saddle connections γ1, γ2 we get a connected surface
S(1,2) = S \ (γ∪γ2) which, by Proposition 3, has trivial linear holonomy.
By construction ∂S(1,2) = γ1 ∪ −γ1 ∪ γ2 ∪ −γ2. Gluing back the boundary
components γ1 and −γ1 of S(1,2) we get a surface S(2) = S \ γ2 which has
nontrivial linear holonomy by Lemma 2.4. Thus, the boundary components
γ1 and −γ1 of the translation surface S(1,2) = S \ (γ1 ∪ γ2) are identified by
a flip (see Definition 4 in the previous section).

Consider any path ρ in S such that ρ∗ = α and such that ρ has unique
transversal intersection with γ1. By construction ρ gives a nonclosed con-
nected path ρ′ on S(1,2) joining a pair of points on P+ ∈ γ1 and P− ∈ −γ1

corresponding to the same point P ∈ γ1 on S upon gluing of γ1 with −γ1.
Since γ1 and −γ1 are identified by a flip, we see that the linear holonomy
along ρ is nontrivial.

It remains to consider the case, when the bouquet of circles correspond-
ing to the graph Γ(S, γ) has a single circle. It follows from Proposition 3
that the graph cannot be just a single loop composed of “+”-vertices of
valence two and of “cylinder vertices” of valence two. Thus, either Γ(S, γ)
is a loop composed of vertices of valence two with some “−”-vertices, or
there is at least one nontrivial subtree with a vertex on the base loop.

In the first case choose any path ρ′ on S such that ρ′∗ = α. If the linear
holonomy along the path ρ′ is nontrivial, we choose ρ := ρ′ and the lemma
is proved. If the holonomy is trivial, we can compose ρ′ with a closed
path ρ′′, such that ρ′′ is contained entirely inside some S−

j , and such that
the linear holonomy along ρ′′ is nontrivial. Since ρ′′ ⊂ S−

j the projection
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ρ′′∗ is a trivial path. Thus, (ρ′ · ρ′′)∗ = ρ′∗ = α, and by construction the
linear holonomy along (ρ′ · ρ′′) is nontrivial. The required path ρ is given
by ρ′ · ρ′′.

In the second case the subtree necessarily has a vertex Sj of valence
one, which by Lemma 2.4 is a “−”-vertex. Denote by γ1 the edge adjacent
to this vertex of valence one; we denote by the same symbol γ1 the cor-
responding saddle connection in S. Consider any path ρ′ on S such that
ρ′∗ = α. If α ⊂ Γ(S, γ) passes through S−

j , we apply the same construction
as in the previous case. If α does not pass through S−

j then γ1 ∩ α = ∅,
and any path ρ ∈ S such that ρ∗ = α has trivial intersection with the
saddle connection γ1. Choose some edge γ2 ∈ α which is nondegenerate
under retraction. Cutting S by the pair of ĥomologous saddle connections
γ1, γ2 we get two connected components: a connected surface S(1,2) and a
surface S−

j (corresponding to the vertex of valence one). The closed path
ρ on S becomes a nonclosed connected path on S(1,2) joining the boundary
components γ′

2 and γ′′
2 . By Proposition 3 the surface S(1,2) has trivial linear

holonomy. By construction ∂S(1,2) = γ1 ∪ γ2 ∪ −γ2. Glue back the bound-
ary components γ2 and −γ2 of S(1,2). We get a surface S(1) which coincides
with one of the two components of the initial surface S cut by a single
saddle connection γ1. Since ∂S(1) = γ1 , by Lemma 2.4 the surface S(1) has
nontrivial linear holonomy. Thus, the boundary components γ2 and −γ2

of the translation surface S(1,2) were identified by a flip which implies that
the linear holonomy along ρ is nontrivial. �

Lemma 3.2. Consider a connected subgraph Υ of the initial graph Γ(S, γ).
If Υ has a vertex labelled with “−” or if it is not a tree, the surface with
boundary SΥ corresponding to this subgraph has nontrivial linear holon-
omy.

Proof. If the subgraph has some vertex labelled with “−”, the correspond-
ing surface S−

j has a closed path with nontrivial linear holonomy. The big-
ger surface SΥ has the same path, so it also has nontrivial linear holonomy.
If the subgraph is not a tree, then it has a loop which is not homotopically
trivial. By Lemma 3.1 there is a closed path ρ on SΥ corresponding to this
loop such that ρ has nontrivial linear holonomy. �

Proof of Theorem 2 (Necessity). First we note that a cylinder has trivial
linear holonomy, so by Lemma 2.4 a “◦”-vertex cannot have valence 1.

If the valence of a “◦”-vertex is two, then each of the two boundary com-
ponents of the corresponding cylinder represents a single saddle connection.
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Hence, two “◦”-vertices of valence two cannot have a common edge, other-
wise the pair of corresponding cylinders would be identified along a bound-
ary component of each which would result in a longer cylinder contradicting
the assumption that each cylinder is maximal.

Now note that the bouquet of circles to which the graph Γ(S, γ) is
retracted contains at most two circles. Otherwise there would be edges γ1

and γ2 such that Γ(S, γ) \ (γ1 ∪ γ2) would be connected but not simply
connected. Thus, according to Lemma 3.2 the surface S(1,2) = S \ (γ1 ∪ γ2)
would have nontrivial linear holonomy, which contradicts Proposition 3.

Two loops. Suppose that the bouquet of circles contains exactly two
circles. Cut them by some edges γ1 and γ2 which correspond to different
circles of the bouquet. By Proposition 3 the resulting surface has trivial
linear holonomy. Lemma 3.2 implies that the surface and therefore the
graph does not have any “−”-vertices, in particular, no vertices of valence 1.
Since the Euler characteristic of S1 ∨ S1 equals to −1 we get

− 1 = χ(S1 ∨ S1) = χ(Γ(S, γ)) = −1
2 · (number of vertices of valence 3)

− 2
2 · (number of vertices of valence 4)

− 3
2 · (number of vertices of valence 5) − . . . ,

which means that either Γ(S, γ) has two vertices of valence 3 while all the
other vertices have valence 2, or Γ(S, γ) has a single vertex of valence 4
while all the other vertices have valence 2. All graphs of this type except
one are in the list of Theorem 2, see types d and e. The type which we
have to rule out is schematically presented in Figure 8.

++ +

+

++

+

Figure 8: A graph of this type is not realizable as Γ(S, γ).

We prove by contradiction that this graph is not realizable as Γ(S, γ).
Let S+

n be a vertex of valence three; let γ1, γ2, γ3 be the edges adjacent
to it. Cutting Γ(S, γ) by any pair of distinct edges γi, γj , i = 1, 2, 3, we
still get a connected graph. This means that no pair of ĥomologous saddle
connections γi ∪ γj , i = 1, 2, 3, separates S. Hence, by Proposition 3 the
lengths |γi|, i = 1, 2, 3 are equal and all γi are parallel.
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Let ω be the holomorphic 1-form representing the translation structure
on S+

n . Under an appropriate choice of orientations of γ1, γ2, γ3 we get
∂S+

n = γ1 ∪ γ2 ∪ γ3, and hence
∫
γ1

ω +
∫
γ2

ω +
∫
γ3

ω = 0. On the other
hand the fact that all the lengths |γi|, i = 1, 2, 3 are equal and all γi are
parallel implies that

∫
γ1

ω = ± ∫
γ2

ω = ± ∫
γ3

ω. These two relations are
incompatible, which is a contradiction.

One loop. If Γ(S, γ) is a loop of vertices of valence two then by Propo-
sition 3 it has at least one “−”-vertex S−

i . Let γ1 and γ2 be the edges of
Γ(S, γ) adjacent to S−

i . The complement S \ (γ1 ∪ γ2) has two connected
components: S−

i and S \ S−
i . Since S−

i has nontrivial linear holonomy, by
Proposition 3 the flat surface S \S−

i has trivial linear holonomy. It follows
now from Lemma 3.2 that S \ S−

i is a chain of “+”-vertices of valence two
and of “◦”-vertices of valence two. Thus, in this case the graph Γ(S, γ) is
of the type b, see Theorem 2 and Figure 3.

If the graph has a nontrivial subtree attached to the base loop then any
such subtree necessarily has a vertex of valence one, which by Lemma 2.4
is a “−”-vertex. Let us show that Γ(S, γ) can have only one “−”-vertex
of valence one. Suppose that there are two vertices S−

i and S−
j of valence

one; denote by γ1 and γ2 the edges of Γ(S, γ) adjacent to these vertices.
Cutting S by γ1 and γ2 we obtain three connected components: S−

i , S−
j

and S(1,2) := S \ (S−
i ∪ S−

j ). Since the first two surfaces have nontrivial
linear holonomy, it follows from Proposition 3 that S(1,2) has trivial linear
holonomy. But by assumption the graph Υ corresponding to S(1,2) has a
nontrivial loop, so by Lemma 3.1 the flat surface S(1,2) has nontrivial linear
homology, which is a contradiction.

Thus, the graph has the structure of a union of a circle with a segment
attached to a circle. The graph has a single vertex of valence three, a single
vertex of valence one and an arbitrary number of vertices of valence two.
Choosing an appropriate pair of edges γ1, γ2 and combining Proposition 3
with Lemma 3.1 and Lemma 3.2 we see that the only “−”-vertex of the
graph is the vertex of valence one located at the free end of the segment.
This is the graph of the type c in the list of graphs in Theorem 2.

A tree. In this case Γ(S, γ) has at least two vertices of valence one
which are therefore of “−”-type. Let γ1 and γ2 be the edges of Γ(S, γ) ad-
jacent to this pair of vertices S−

i , S−
j . Cutting the surface S by γ1, γ2

we get three connected components S−
i , S−

j , and S \ (S−
i ∪ S−

j ). By
Proposition 3 the component S \ (S−

i ∪ S−
j ) has trivial linear holonomy.
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Thus, by Lemma 3.2 it does not have any “−”-vertices. Since Γ(S, γ) is a
tree it means that Γ(S, γ) is a chain of “+”-vertices of valence two bounded
at the ends by a pair of “−”-vertices of valence one. This is the graph a
from Theorem 2 (see also Figure 3).

Two “◦”-vertices of valence two cannot be neighbors. It remains to
prove that a “◦”-vertex of valence 3 cannot be joined by a separating edge
to a “◦”-vertex of valence 2. If that were the case then on one boundary
component of the cylinder there would be a marked point. If this boundary
component were joined to a “◦”-vertex of valence 2 it would produce a “fake
singularity” on S.

We have proved that all graphs must be of the type in Theorem 2. The
fact that the weights are as described follows from the next lemma.
Lemma 3.3. The type of the graph Γ(C) uniquely determines the distri-
bution of unsigned weights 1 and 2 on the edges of the graph; the corre-
sponding weights are presented in Figure 3.

Proof. For every vertex representing a component with trivial linear holon-
omy we can choose signs for the weights 1 and 2 on the edges adjacent
to the vertex. The sum of these signed weights is zero. This immediately
implies that the globally defined unsigned weights on both edges adjacent
to a valence two “+”-vertex or to a valence two “◦”-vertex are the same.
This in turn implies that all the weights on the graphs of types a) and b)
coincide, and hence are marked by 1.

The remaining graphs do not have “−”-vertices. The edges of any vertex
of valence three are weighted by 1, 1 and 2. This implies that the weights
of the graphs of types c) and d) are as in Figure 3.

Let γ1, γ2 be a pair of edges adjacent to a valence four vertex, and
belonging to two different loops. The surface cut along these saddle con-
nections is connected. By Proposition 3, |γ1| = |γ2|, and hence the cor-
responding edges have the same weight. Since all the edges in a chain of
“+”-vertices or “◦”-vertices of valence 2 have the same weight, we see that
all edges of a graph of type e) are weighted by 1. �

This completes the proof of the necessity part of Theorem 2. �

4 Parities of Boundary Singularities

In this section we prove the necessity part of Theorem 3 which says that
for any decomposition of a flat surface S as in Theorem 2 every connected
component Sj has one of the boundary types presented in Figure 6.
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Theorem 2 and Figure 3 give the types of graphs Γ; Figure 5 gives the list
of all abstract local ribbon graphs of valences from one to four. Basically,
what remains to check is that for any “+”-vertex v of Γ an embedding
Gv ↪→ Γ of the local ribbon graph Gv into the graph Γ uniquely determines
the parities of the boundary singularities, and that these parities are exactly
as in Figure 6.

Signs of the weights. Given a collection γ of ĥomologous saddle con-
nections γ1, . . . , γn on a flat surface S we have assigned weights 1 and 2
to saddle connections γi (see the paragraph preceding Theorem 2 for the
definition of the weights and Figure 3 for the distribution of the weights
in Γ). If a connected component Sj of S \γ has trivial linear holonomy (i.e.
if it is represented by a “+” or by a “◦”-vertex of Γ) we may assign signs
± to the weights of the saddle connections on the boundary of Sj. The
canonical orientation of Sj induces the canonical orientation of the bound-
ary ∂Sj . Let ω be a holomorphic 1-form representing the flat structure on
Sj normalized so that ∫

γi

ω = weight of γi ,

for some saddle connection γi on the boundary of Sj. Then for the other
saddle connections on ∂Sj we get

∫
γi′

ω = ±1 or
∫
γi′

ω = ±2 (see also
Figures 10–13).

There is an ambiguity in the choice of signs: we may simultaneously
change the signs of all weights to the opposite ones. This corresponds to
choosing −ω instead of ω.
Lemma 4.1. Consider two consecutive saddle connections γji,l

→ γji,l+1
on

the same boundary component Bi of ∂Sj. The parity of the corresponding
boundary singularity is even if the weights of γji,l

and γji,l+1
have the same

signs, and odd if the weights of γji,l
and γji,l+1

have opposite signs.

Proof. The holomorphic 1-form ω chosen above defines an oriented horizon-
tal foliation on Sj: the kernel foliation of Im(ω). The above normalization
of ω implies that any saddle connection at the boundary ∂Sj is horizontal.
The weight of a saddle connection γji,l

on the boundary of Sj is positive
if the orientation of γji,l

induced from the orientation of the boundary
matches the orientation of the foliation and negative if it does not.

The cone angle between two incoming or two outgoing separatrix rays
(in the sense of the orientation of the foliation) is an even multiple of π
and the cone angle between an incoming and an outgoing separatrix ray
(in the sense of the orientation of the foliation) is an odd multiple of π.
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The statement of the lemma now follows from Definition 2 of the order of
a boundary singularity. �

Consider now a particular case when Sj is represented by a vertex vj

of valence four of the graph Γ(S, γ). Four edges of Γvj are distributed into
two pairs: each pair bounds one of the two loops of the graph Γ(S, γ), see
Figure 3.
Lemma 4.2. The weights of saddle connections on the boundary of a
component Sj represented by a vertex of valence four have same signs if
they bound the same loop in Γ(S, γ) and opposite signs otherwise.

Proof. From Lemma 3.3 we know that the absolute values of weights of
all edges of Γvj for a vertex vj of valence four are equal to one (see also
Figure 3). Hence, it follows from Stokes’ theorem that we have two edges
of weight +1 and two edges of weight −1 in Γvj . We want to show that
the weights of a pair of edges of Γvj bounding the same loop in Γ have the
same signs.

Let γ1, γ2 ∈ Γvj bound different loops in Γ. Cutting S by γ1, γ2 we get
a connected flat surface S12. Using the same notation as in the proof of
Proposition 3 we get

∂S12 = γ′
1 ∪ −γ′′

1 ∪ γ′
2 ∪ −γ′′

2 .

By Theorem 1 the surface S12 has trivial linear holonomy. Hence, we can
extend the form ω to S12 which enables us to assign signs to the weights of
saddle connections γ′

1, γ
′′
1 , γ′

2, γ
′′
2 on the boundary ∂S12 of S12.

The last statement of Lemma 2.4 implies that gluing the initial closed
surface S from S12 the boundary component γ′

1 is glued to −γ′′
1 by a flip

(see Definition 4 in section 2). Similarly γ′
2 is glued to −γ′′

2 by a flip. Hence,
the weights of γ′

1 and of γ′′
1 have the same signs, and the weights of γ′

2 and
of γ′′

2 have the same signs.
This completes the proof of the lemma in the case when the correspond-

ing loop contains no vertices at all. An induction on the number of vertices
in the loop completes the proof in general case. �

Lemma 4.3. For any “+”-vertex or “◦”-vertex v of the graph Γ(S, γ) the
type of the graph uniquely determines the distribution of signed weights
±1 and ±2 on the edges of Γv (up to simultaneous interchange of all signs
to the opposite ones).

Proof. By Stokes’ theorem the sum of weights of all saddle connections of
Γv is equal to zero. Taking into consideration Lemma 3.3 (see also Figure 3)
this implies that when the vertex v has valence 2, the weights of the edges
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of Γv are +1,−1; when v has valence 3, the weights are +1,+1,−2; when
v has valence 4, the weights are +1,+1,−1,−1. Moreover, according to
Lemma 4.2 the weights of edges of Γv which bound the same loop in Γ(S, γ)
coincide. �

Now we are ready to prove the following proposition, which corresponds
to the necessity part of Theorem 3. (The sufficiency part of Theorem 3
immediately follows from Theorem 4 proved in the next section).

Proposition 5. For any decomposition of a flat surface S as in Theorem 2
every connected component Sj has one of the boundary types presented in
Figure 6.

Proof. The necessity part of Theorem 2 proved in section 3 claims that
the graph Γ(S, γ) of the decomposition has one of the types presented
in Figure 3. Note that for “+” and “−”-vertices, Figure 6 describes all
possible embeddings of abstract local ribbon graphs Gv that are given in
Figure 5 into graphs Γ as in Figure 3. We use dotted lines to indicate the
pairs of edges bounding cycles in the graphs in Figure 6; dotted lines are
not indicated in symmetric situations. Since there are no restrictions on the
parities of boundary singularities of “−”-vertices this completes the proof
for “−”-vertices.

Any “◦”-vertex Scomp
j corresponds to a flat cylinder. Hence, it has ex-

actly two distinct boundary components. The boundary singularities on
each of the components correspond to marked points, so the order of any
boundary singularity of a “◦”-vertex is zero. By Lemma 4.1 this implies
that all edges of Γvj which correspond to the same boundary component
of the cylinder Sj have weights of the same sign. Taking into considera-
tion Lemma 4.3 these two conditions restrict the possible structures of an
embedded local ribbon graph Gv ↪→ Γ(S, γ) for “◦”-vertices to structures
◦2.2, ◦3.2 and ◦4.2 in Figure 6.

By Lemma 4.3 for any “+”-vertex of Γ(S, γ) we know the signed weights
of the edges of Γv (up to simultaneous interchange of all signs to the opposite
ones). For “+”-vertices of valence two and three this distribution follows
immediately from Figure 3 and from Stokes’ theorem; for “+”-vertices of
valence four this distribution is described by Lemma 4.2. Hence, using
Lemma 4.1 we can determine the parities of all boundary singularities for
any embedded local ribbon graph Gv ↪→ Γ. It remains to check that for all
possible embeddings listed in Figure 6 the parities are the ones listed. This
is an easy exercise. �
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Corollary 1. Given any abstract graph Γ as in Theorem 2 (see
Figure 3), any “+” or “−”-vertex vj of Γ, any choice of the structure of a
local ribbon graph Gvj on Γvj and any embedding Gvj ↪→ Γ, one can find

a flat surface S and a collection γ of ĥomologous saddle connections on it
such that Γ(S, γ) = Γ and such that the boundary type of the component
Sj is represented by the chosen embedded ribbon graph. Moreover, if vj is
represented by a “+”-vertex of Γ, then the parities of boundary singulari-
ties of Sj are completely determined by the choice of the embedded ribbon
graph.

Conversely, given an abstract graph Γ as in Theorem 2 (see Figure 3),
a “+”-vertex vj of Γ, an abstract local ribbon graph Gvj , and a choice of
the parities of boundary singularities as given in Figure 6 there is a unique
way (up to a symmetry of the ribbon graph Gvj ) to embed the local ribbon
graph with marked parities into the graph Γ. This unique way is expressed
by the dotted lines in Figure 6.

Proof. For “+” and “−”-vertices vj all possible embeddings of local ribbon
graphs as in Figure 5 into the graphs Γ as in Figure 3 are represented in
Figure 6. Thus, the first statement follows from Theorem 3. The second
statement immediately follows from Theorem 3 combined with Lemmas 4.1
and 4.3. �

5 Neighborhood of the Principal Boundary:
Local Constructions

In this section and in the next one we construct surfaces with boundaries
representing all boundary types listed in Figure 6. We first prove the key
proposition below. Combining it with some elementary extra arguments we
prove Theorem 4 (and, hence, the missing realizability parts of Theorems
2 and 3).
Proposition 6. Consider any configuration C as in Definition 3, and
any vertex vj of the graph Γ(C). Let S′

j be any flat surface from the
component Q(α′

j) (or H(β′
j)) of the principal boundary stratum Q(α′) (or

H(β′)) corresponding to vj . Choose any sufficiently small value of a complex
parameter δ (depending on S′

j).
Applying to S′

j an appropriate basic surgery (depending on δ) as de-
scribed below one gets a surface Sj with boundary, such that the boundary
type of Sj and the collections of interior singularities and of boundary sin-
gularities of Sj are represented by the local ribbon graph Gvj and by the
corresponding structures {dl}j , {ki,l}j of the configuration C.
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Recall that the principal boundary stratum corresponding to a “+”-
vertex is of type H(β′

j); the principal boundary stratum corresponding to
a “−”-vertex is of type Q(α′

j). The singularity data β′
j , α

′
j are defined by

equations (6) and (7) correspondingly. Unlike the initial singularity data
α the collections β′

j and α′
j might contain entries “0” representing marked

points of the surface S′
j.

Though the principal boundary stratum corresponding to a “◦”-vertex
is empty, Proposition 6 is not meaningless (though very simple) even for
such vertices. We leave the construction of surfaces Sj with boundary real-
izing each of ◦2.2, ◦3.2, ◦4.2-boundary types to the reader as an elementary
exercise; see Figure 10.

−1.1 −2.1 −2.2

any

any any

any any

any

any

any any any

Figure 9: Surfaces with boundary versus local ribbon graphs: “−”-vertices.

We split Proposition 6 into a collection of Propositions 7, 8 and 9. To
avoid excessive repetitions we abbreviate the statements of the correspond-
ing propositions; they should be read as the statement of Proposition 6
applied to vertices of specified types.

Part of the surgeries (namely, “breaking up a zero by a local construc-
tion” and a “parallelogram construction”) are taken from the paper [EMZ].
For the sake of completeness we present their outline in the current paper.
For more details we address the reader to the original paper [EMZ].

5.1 Surfaces with boundary versus local ribbon graphs. Fig-
ure 6, Theorem 3 and Proposition 6 are formulated in terms of local ribbon
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graphs. By definition they correspond to flat surfaces with boundary. Fig-
ures 9–13 explicitly describe this correspondence.

By convention we orient the boundary of a surface as follows. Choose
an orthogonal frame (n, τ ) equivalent to a canonical frame in such way that
n is the external normal, and τ is a vector tangent to the boundary. The
vector τ defines the orientation of the boundary (see Figure 4).

◦2.2 ◦3.2 ◦4.2

−1 +1

−1

−1

+2 +1

+1

−1

−1

0 0 0
0

0

00
0
0

Figure 10: Surfaces with boundary versus local ribbon graphs: “◦”-vertices.

In those pictures in Figures 9–13, which represent surfaces with bound-
ary (and not the ribbon graphs), the shadowed regions represent small holes
inside a flat surface. The same remark concerns Figures 15–21.

Our convention on orientation implies that the boundaries of the small
holes are oriented clockwise. The same convention implies that the edges
of the graphs Gv are oriented counterclockwise.

Choosing a line element in the tangent space to some point of a flat
surface one can transport this line element to the tangent space at any
other point. The resulting distribution defines a foliation. For the surfaces
with boundary under consideration the foliation can be chosen parallel to
all boundary saddle connections.
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+2.1 +2.2

+1

−1

odd odd

−1+1

even even

odd

odd even even

Figure 11: Surfaces with boundary versus local ribbon graphs: “+”-vertices of
valence two.

When the flat surface has trivial linear holonomy, the corresponding
foliation is orientable. The arrows on the saddle connections in Figures
10–13 represent the orientation of the foliation and not the canonical ori-
entation of the saddle connections induced from the canonical orientation
of the boundary. We also use this convention for Figures 14–19.

5.2 Local constructions. We reserve the word “degree” for the zeroes
of Abelian differentials. A zero of degree l has cone angle π(2l + 2). We
reserve the word “order” for the zeroes of quadratic differentials. A zero of
order m has cone angle π(m + 2). Recall that a boundary singularity of
order k has cone angle π(k + 1).

We distinguish two kinds of surgeries. The surgeries of the first type
are purely local: they do not change the flat metric on S′

j outside a small
neighborhood of one or two points on S′

j. The surgeries of the second type
depend on a nonlocal construction. In the remaining part of this section
we describe local surgeries.

Proposition 7. Every surface with boundary type +2.1, +3.1, +4.1a,
+4.1b, +4.2a is realizable by a local construction.

We use the indexation of the boundary types as in Figure 6 and in
Remark 4 in section 1.3.
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+3.1 +3.2a +3.2b +3.3

odd odd

even

-1 -1

+2

eveneven

-1

-1

+2

even

oddodd

-1

+2

-1

even

-1 -1

+2

even even

even

even

odd odd

even

even
even

odd

odd
even

eveneven
even

Figure 12: Surfaces with boundary versus local ribbon graphs: “+”-vertices of
valence three.

Proof. The principle boundary stratum corresponding to a vertex vj of a
“+”-type has type H(β′

j). The singularity data β′
j is given by equation (6),

namely
β′

j = {d1/2, . . . , ds(j)/2 , D1/2, . . . ,Dr(j)/2} ,

where d1, . . . , ds(j) are the orders of interior singularities, and D1, . . . ,Dr(j)

are expressed in terms of the orders of boundary singularities by formula (5).
Conditions 4 and 5 in Definition 3 of a configuration guarantee that all the
entries of β′

j are nonnegative integer numbers, and that the total sum of
these numbers is even. According to [MS2] this implies that the stratum
H(β′

j) is nonempty.
Consider any surface S′

j in H(β′
j). Denote the length of the shortest

saddle connection on S′
j by 4ε. We shall apply a surgery to S′

j, which
would continuously depend on a small complex parameter considered as a
vector v in R

2 � C. It is convenient to change slightly the notation and
to denote by δ the norm of v. We always assume that δ < ε. Our surgery
would not affect interior singularities of S′

j.
We provide all the details of the proof in the case of the boundary type

+2.1 and we point out the differences in the other cases.
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Figure 13: Surfaces with boundary versus local ribbon graphs: “+”-vertices of
valence four.
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Boundary type +2.1. In this case (see Figure 11) the boundary has
single component, r(j) = 1, and D1 = k1,1 + k1,2 − 2, where k1,1, k1,2 are
the orders of the two boundary singularities of Gvj . Both k1,1, k1,2 are odd
positive integers, see Figure 6.

Let P be the zero of S′
j of degree m, where m = D1/2. We can represent

m as the sum m = m′+m′′, where m′ = (k1,1−1)/2 and m′′ = (k1,2−1)/2.
Consider a metric disc of radius ε centered at P . By the choice of ε the disc
does not contain any other singularities and is isometrically embedded into
S′

j. It can be glued from 2(m + 1) copies of standard metric half-discs of
radius ε; see the picture at the top of Figure 14. Let v ∈ R

2 be a vector of
length δ < ε. Following [EMZ] we may break up the zero P of degree m into
a pair of zeroes of degrees m′ and m′′ joined by a single saddle connection
with affine holonomy v.

ε ε

6π

2δ

ε+δ ε−δ

ε−δ ε+δ

2δε+δ ε+δ

ε−δ ε−δ

ε−δ ε−δ

Figure 14: Breaking up a zero into two zeroes (after [EMZ]).

We do this by changing the way of gluing the half-discs as indicated
on the bottom picture of Figure 14. As patterns we still use the standard
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metric half-discs, but move the marked points on their diameters. Two
special half-discs have two marked points on the diameter at distance δ
from the center. Each of the remaining 2m half-discs has a single marked
point at distance δ from the center. We alternate the half-discs with the
marked point moved to the right and to the left of the center. The picture
shows that all the lengths along identifications match; gluing the half-discs
we obtain a topological disc with a flat metric. Now the flat metric has two
cone-type singularities with cone angles 2π(m′ + 1) and 2π(m′′ + 1). Here
2m′ and 2m′′ are the numbers of half-discs with one marked point glued in
between the distinguished pair of half-discs with two marked points.

The case when one of m′,m′′ (or both of them) is equal to zero is not
excluded, in this case the corresponding “newborn” singularity is just a
marked point.

Note that a small annular neighborhood of the boundary of the ini-
tial disc is isometric to the corresponding annular neighborhood of the
boundary of the deformed disc. Thus, we can glue the deformed disc
back into the surface. Gluing back we can turn it by any angle ϕ, where
0 ≤ ϕ < 2π(m + 1) in such way that the newborn saddle connection will
have the prescribed affine holonomy v.

Making a slit along the resulting saddle connection we get a surface Sj

with boundary having prescribed boundary type +2.1, a pair of bound-
ary singularities of prescribed orders k1,1, k1,2, and a collection of interior
singularities of prescribed orders d1, . . . , ds(j) (see Figure 11). We have
completed the proof of Proposition 7 for the boundary type +2.1.

Boundary types +3.1 and +4.1a. Boundary type +3.1 can be con-
sidered as a particular case of boundary type +4.1a. To see this compare
the surfaces with boundary representing the corresponding ribbon graphs
(see the appropriate entries in Figures 12 and 13). Marking a point in the
middle of the saddle connection labelled by “+2” on the boundary of the
surface of type +3.1 we get a surface with boundary type +4.1a, where the
boundary singularity joining the pair of edges labelled by “+1” has order 0.

Consider a local ribbon graph of type +4.1a, a collection {2m1, . . . , 2mn}
of orders of interior singularities and a collection {2a1 +1, 2a2, 2a3 +1, 2a4}
of orders of four boundary singularities (see Figure 6 for their parities). The
singularity data β′

j of the corresponding component H(β′
j) of the principal

boundary stratum has the form β′ = {m1, . . . ,mn, a1 + a2 + a3 + a4}, see
equations (5) and (6).
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Figure 15: Breaking up a zero into three ones and performing a surgery we get a
surface of type “+4.1a”.

Choose an Abelian differential S′
j ∈ H(β′). As before denote the length

of the shortest saddle connection on S′
j by 4ε. This time we split the

distinguished zero P of degree a1 + a2 + a3 + a4 into three zeroes P1, P, P3

such that the zero P1 of degree a1 is joined to the zero P of degree a2 + a4

by a saddle connection, and the zero P of degree a2 + a4 is joined to the
zero P3 of degree a3 by a saddle connection, see Figure 15. The two saddle
connections have the same holonomy vector v. We assume as before that
‖v‖ = δ < ε. We then cut along both saddle connections and detach
the zero P into two boundary singularities P2, P4 of orders 2a2 and 2a4

correspondingly, getting a surface Sj with boundary of desired geometric
combinatorial type (see Figures 12 and 13).

Boundary type +4.1b. Consider a local ribbon graphs of type +4.1b
(see Figure 13) and a corresponding collection {2m1, . . . , 2mn} of orders of
interior singularities and a collection {2a1 + 1, 2a2 + 1, 2a3 + 1, 2a4 + 1} of
orders of four boundary singularities.

The singularity data β′
j of the corresponding component H(β′

j) of the
principal boundary stratum has the form β′ = {m1, . . . ,mn, a1 + a2 + a3 +
a4 + 1}, see equations (5) and (6).

Choose an Abelian differential S′
j ∈ H(β′

j); let P be a zero of S′
j of

degree (a1 + a2 + a3 + a4 + 1). We split P into three zeroes P1, P, P3 such
that the zero P1 of degree a1 is joined to the zero P of degree a2 +a4 +1 by
a saddle connection with a holonomy vector v and the zero P3 of degree a3

is also joined to P by a saddle connection with the same holonomy vector v,
see Figure 16. Note that the new saddle connections are oriented differently
than in the previous case. We then cut along both saddle connections and
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detach the zero P into two boundary singularities P2, P4 of orders 2a2 + 1
and 2a4 + 1 correspondingly.

ε ε δ

δ
ε

ε−δ

ε+δ ε−δ ε

ε

ε

ε

ε−δ

ε+δ

ε−δ
P3

P1

P4

P2

Figure 16: Breaking up a zero into three ones and performing a surgery we get a
surface of type “+4.1b”.

By construction the resulting surface Sj with boundary has the desired
boundary type “+4.1b” (see Figure 13), and collections of interior and
boundary singularities of prescribed orders.

Boundary type +4.2a. Consider a local ribbon graphs of type +4.2a
(see Figure 13) and corresponding collection {2m1, . . . , 2mn} of orders of
interior singularities and collections {2a′ + 1, 2a′′ + 1}, {2b′ + 1, 2b′′ + 1} of
orders of two pairs of boundary singularities (see Figure 6 for their pari-
ties). The singularity data β′

j of the corresponding component H(β′
j) of the

principal boundary stratum has the form β′ = {m1, . . . ,mn, a′+a′′, b′+b′′},
see equations (5) and (6).

Choose an Abelian differential S′
j ∈ H(β′

j); let P1 be a zero of S′
j of

degree a′ + a′′; let P2 be a zero of degree b′ + b′′. As in the case +2.1
we break each of the distinguished zeroes P1, P2 into a pair of zeroes of
degrees a′, a′′ and b′, b′′ correspondingly. We apply the surgery in such way
that each of the two corresponding pairs of zeroes is joined by a saddle
connection with a holonomy vector v. We then cut open the modified flat
surface along the saddle connections. As a result we get a surface Sj with
boundary of the desired boundary type “+4.2a” (see Figure 13) and with
collections of interior and boundary singularities of prescribed orders.

Proposition 7 is proved. �
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6 Neighborhood of the Principal Boundary: Nonlocal
Constructions

Recall that a direction ±v ∈ R
2 \ {0} determines a corresponding line field

on the flat surface and a foliation in direction v. The foliation is orientable
if and only if S has trivial linear holonomy. Such an auxiliary direction v is
an element of all our constructions. We are creating surfaces with boundary
from closed flat surfaces; the direction v is the direction of parallel geodesic
segments which form the boundary components.

An interior singularity P of order d has d+2 adjacent separatrix rays (or
just separatrices) of the foliation in direction v. They divide a disc of small
radius ε centered at P into d+2 sectors, each with cone angle π (see the top
part of Figure 14 which represents a singularity of order 4). When P is a
regular point (a marked point) we still have two such adjacent sectors, each
having cone angle π. When P is a simple pole, we have a single separatrix
adjacent to P ; cutting an ε-neighborhood of P by this separatrix we get a
single sector. When we speak about “sectors” adjacent to a singularity we
always mean the sectors bounded by a pair of neighboring separatrices of
the foliation in direction v.

When a flat surface has trivial linear holonomy, the foliation parallel to
v is oriented by the choice of direction v. The separatrix rays adjacent to
any point P inherit the natural orientation: incoming and outgoing rays
alternate with respect to the natural cyclic order on the collection of rays
adjacent to P . The sectors adjacent to any singularity P are also naturally
divided into two classes: the ones which are located to the right of the
corresponding oriented separatrix rays and the ones which are located to
the left. We shall refer to them as to the “right” and to the “left” sectors
correspondingly.

In all nonlocal constructions we shall use a surgery along a smooth
path without self-intersections joining a pair of singularities of a compact
flat surface (sometimes joining a singularity to itself). This path ρ (two
paths in some constructions) will be always chosen to be transverse to
the direction v (and hence, transverse to the foliation in direction v); in
particular, ρ never passes through singularities. We shall often call such
path a “transversal”.

The following theorem from [HM] gives us a key instrument for all non-
local constructions:

Theorem (Hubbard–Masur). Consider a closed flat surface S with non-
trivial linear holonomy, a pair of points P1, P2 on S, a direction ±v ∈ R

2\{0}
and a pair of sectors Σi adjacent to the corresponding points Pi, i = 1, 2.
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For any such data there exist a transversal ρ with the endpoints at P1

and P2 which leaves P1 in Σ1 and arrives at P2 in Σ2. The case when P1

and P2 coincide, or even when Σ1 and Σ2 coincide is not excluded.
If S has trivial linear holonomy the statement above is valid under

additional assumption that one of the sectors is a “right” sector, and the
other one is a “left” sector.

6.1 Parallelogram construction. In this section we extend the “paral-
lelogram construction” from [EMZ] to flat surfaces with nontrivial linear
holonomy. For more details (including restrictions on the choice of para-
meter δ in terms of the length 4ε of the shortest saddle connection on S, and
generalization of the “parallelogram construction” to piecewise-transverse
paths) we address the reader to the original paper [EMZ] and to the forth-
coming paper [B2].

Consider a transversal ρ as in the theorem above. In the construction
below, we assume that if S has trivial linear holonomy, then P1 �= P2. If
S has nontrivial linear holonomy, then we allow P1 = P2 unless P1 is a
singularity of order −1. If P1 = P2 we allow Σ1 = Σ2.

Fix the orientation of ρ from P1 to P2. Since the path is smooth, it has
well-defined tangent directions u1 = ρ̇|P1 and u2 = ρ̇|P2 at the endpoints.
If the surface has trivial linear holonomy we assume that the frame {ui, v}
represents the canonical orientation (upon interchanging, if necessary, the
ordering of P1, P2).

For some interior point P ∈ ρ let u = ρ̇|P be the vector tangent to ρ.
Chose a vector v ∈ TP (S) at P parallel to v such that the frame u,v repre-
sents the canonical orientation of the surface. Perform a parallel transport
of v along ρ to all points of ρ.

For a sufficiently small δ > 0 and any positive s ≤ δ we can construct a
parallel shift ρs of ρ in direction v at the distance s. Suppose that Σ1,Σ2

do not coincide nor are adjacent. Then for any 0 ≤ s1 < s2 ≤ δ the
corresponding shifts ρs1 and ρs2 do not intersect and do not have self-
intersections. If Σ1 and Σ2 coincide or are adjacent, the same is true upon
an appropriate choice of orientation of ρ. .

Let γi be a segment of the separatrix ray in direction v at Pi of length δ.
Even when P1 = P2 (in particular, when Σ1 = Σ2) the segments γ1 �= γ2

are well defined. The interior of the domain Ω bounded by ρ, ρ′, γ1, γ2 is
homeomorphic to an open disc and can be thought of as a “curvilinear
parallelogram”, see Figure 17.

Remove Ω from S and identify ρ and ρ′ by a parallel translation. When
P1 �= P2, as a result of this surgery we get a surface with two boundary
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Figure 17: “Parallelogram construction”.

components each with a single singular point, see Figure 17. When P1 = P2

we detach the resulting boundary singularity into two getting a surface
with a single boundary component with two boundary singularities, see
Figure 21. We refer to this surgery as to the parallelogram construction.

If the parallelogram construction is applied to a pair of distinct points
P1 �= P2, let Di be the order of the corresponding singularity Pi ∈ S,
i = 1, 2. In the case when P1 = P2, let π(a1 + 1) be the angle between
γ1 and γ2 counted in the positive direction, and let π(a2 + 1) be the angle
between γ1 and γ2 counted in the negative direction. By construction
ai ≥ 0, i = 1, 2. The order of the singularity P in this case is a1 + a2.

In this notation, the orders of the boundary singularities of a surface
obtained by a parallelogram construction are equal to {D1 + 2}, {D2 + 2},
when P1 �= P2 and to {a1, a2 +2} when P1 = P2. To see this, when P1 �= P2

it is sufficient to observe Figure 17; in the remaining case it is sufficient to
observe Figure 21.

6.2 Nonlocal surgeries. The remaining constructions are a combina-
tion of one of the local constructions described in the previous section with
a parallelogram construction. The parameters ε, δ are chosen as before.
Proposition 8. Every surface of any of boundary types +2.2, +3.2a,
+4.2b, +3.2b, +4.2c, +4.3a, +3.3, +4.3b, +4.4 is realizable by a combina-
tion of a local construction with a parallelogram construction.

Proof. Applying the same arguments as in the beginning of the proof of
Proposition 7 we check that the singularity data β′ defined by equation (6)
from formal combinatorial data (Gvj , {d1, . . . , ds}, {k1,1, . . . , kr,p(r)) as in
Proposition 8 represents a nonempty stratum H(β′

j). Having a closed flat
surface S′

j ∈ H(β′
j) we now need to construct a surface Sj with boundary

realizing the initial combinatorial data (Gvj , {d1, . . . , ds}, {k1,1, . . . , kr,p(r)).

Boundary type +2.2. We begin with boundary type +2.2 (see Fig-
ure 11). All interior singularities {2m1, . . . , 2ms} have positive even orders;
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each of the two boundary components contains a single boundary singu-
larity. The boundary singularities also have positive even orders 2m′, 2m′′

(see Figure 6 and condition (4) of Definition 3 of a configuration), so in this
case β′ = {m1, . . . ,ms,m

′ − 1,m′′ − 1}.
Choosing an Abelian differential S′

j ∈ H(β′) and performing the paral-
lelogram construction at the zeroes of degrees m′−1,m′′−1 (see Figure 17)
we get a flat surface Sj with boundary of type “+2.2” (see Figure 11), hav-
ing collections of interior and of boundary singularities of prescribed orders.

Boundary types +3.2a and +4.2b. Boundary type +3.2a can be con-
sidered as a particular case of +4.2b when one of the boundary singularities
has order 0 (see the appropriate entries in Figures 12 and 13).

Consider a ribbon graph of type +4.2b. Let {2m1, . . . , 2ms} be a col-
lection of orders of interior singularities. According to Figure 6 the orders
of all boundary singularities are even for boundary type +4.2b; denote
by 2a1, 2a2 + 2 the orders of boundary singularities corresponding to the
first boundary component and by 2a3, 2a4 + 2 the orders of boundary sin-
gularities corresponding to the second component. By condition (4) of
Definition 3 of a configuration the numbers ai are nonnegative integers for
i = 1, . . . , 4. We get β′ = {m1, . . . ,ms, a1 + a2, a3 + a4}.

Choose a flat surface S′
j ∈ H(β′

j). Choose a pair of separatrices γ1, γ2

in direction v adjacent to the first zero. Choose γ1 to be an outgoing
separatrix and γ2 to be an incoming separatrix in such way that the angle
from the separatrix ray γ1 to the separatrix ray γ2 in the clockwise direction
is (2a1 + 1)π. Let Σ1 be the sector adjacent to γ1 counterclockwise; let Σ2

be the sector adjacent to γ2 clockwise.
Similarly, choose a pair of separatrices γ3, γ3 in direction v adjacent

to the zero of degree a3 + a4 in such a way that γ3 is outgoing, γ4 is
incoming; the counterclockwise angle from γ3 to γ4 is (2a3 + 1)π. Let Σ3

be the sector adjacent to γ3 clockwise; let Σ4 be the sector adjacent to γ4

counterclockwise.
Join Σ3 to Σ1 by a transversal ρ1; join Σ2 to Σ4 by a transversal ρ2. If

ρ1 intersects ρ2 we can resolve the intersections to achieve nonintersecting
transversals.

Suppose that in resolving the intersections (if any) we did not change the
correspondence between the sectors and ρ1 still joins Σ3 to Σ1 and ρ2 joins
Σ2 to Σ4. Choosing some small δ we can apply parallelogram construction
to the transversal ρ1 and the direction v and to the transversal ρ2 and the
direction −v, see Figure 18.
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Figure 18: A pair of simultaneous parallelogram constructions.

In the remaining case after the resolution of intersections, the corre-
spondence between the sectors changes and the transversal ρ1 joins sector
Σ4 to Σ1 while the transversal ρ2 joins Σ2 to Σ3. In this case we deform
the transversals slightly in such way that they still do not intersect and ρ2

lands on the ray γ3 at a distance δ from the zero (in the same sector Σ3)
and ρ1 starts at a point on the ray γ4 at a distance δ from the zero (in the
same sector Σ4). We can construct two “curvilinear parallelograms” Ω1,Ω2

(see Figure 18) which do not intersect, so we can proceed as above.
Detaching each of the resulting singularities into pairs P1, P2 and P3, P4

(see Figure 18) we get the desired surface Sj with boundary of type “+4.2b”
(see Figure 13) and with prescribe collections of interior and of boundary
singularities.
Remark 7. Recall that if we identify the opposite sides of each hole of a
surface constructed above we obtain a closed surface with a pair of even
order zeroes simultaneously broken up into a pair of odd order zeroes.

Boundary types +3.2b and +4.2c. Boundary type +3.2b can be con-
sidered as a particular case of boundary type +4.2c. To see this compare
the surfaces with boundary representing the corresponding ribbon graphs
(see the appropriate entries in Figures 12 and 13). Marking a point in the
middle of the saddle connection labelled by “+2” on the boundary of the
surface of type +3.2b we get a surface of boundary type +4.2c with the
corresponding boundary singularity of order 0.

Consider a ribbon graph of type +4.2c. Let {2m1, . . . , 2ms} be a collec-
tion of orders of interior singularities. Let 2a1 +1, 2a2, 2a3 +1 be the orders
of the boundary singularities on the boundary component composed from
three saddle connections; let 2a4 + 2 be the order of the single boundary
singularity on the complementary boundary component, see Figure 6. By
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condition (4) of Definition 3 of a configuration the numbers ai are nonneg-
ative integers for i = 1, . . . , 4. We get β′ = {m1, . . . ,ms, a1 + a2 + a3, a4}.

Choose a flat surface S′
j ∈ H(β′

j). Let P be the zero of degree a1+a2+a3,
and P4 be the zero of degree a4. Choose a separatrix γ1 in direction v
adjacent to P4 and a separatrix γ2 in direction v adjacent to P . Let Σ1 be
the “right” sector adjacent to γ1; let Σ2 be the “left” sector adjacent to γ2,
see Figure 19. Join Σ1 to Σ2 by a separatrix ρ. Choose δ small enough,
so that the intersection of ρ with an δ-neighborhood of P contains a single
connected component contained in Σ2.

P4

P ′

P

P1

ρ′

ρ
P4

P ′

P ′′ P2

P1

ρ′

ρ
P4

P3

P2

P1

ρ

Figure 19: Parallelogram construction combined with breaking up a zero creates
a surface of type +4.2c.

Choose a separatrix γ3 at P such that the angle from γ2 to γ3 (in the
counterclockwise direction) equals π(2a3 + 1). Break the zero P along γ3

into two zeroes P and P1 of degrees a2 + a3 and a1 correspondingly joined
by a saddle connection in direction v of length δ and perform the paral-
lelogram construction along ρ (strictly speaking to a transversal naturally
corresponding to ρ), see Figure 19. Detaching P into two points we obtain
a surface of type “+4.2c” with the desired singularity data (see Figure 13).

Boundary type +4.3a. Let {2a1 + 2}, {2a2 + 2}, {2a3 + 1, 2a4 + 1}
be the orders of the boundary singularities naturally distributed into the
corresponding boundary components, see Figures 6 and 13. By condition
(4) of Definition 3 of a configuration the numbers ai are nonnegative integers
for i = 1, . . . , 4. We get β′ = {m1, . . . ,ms, a1, a2, a3 + a4}.

Surfaces with boundary of this type are obtained by a trivial combina-
tion of a parallelogram construction applied to a pair of distinct zeroes of
degrees a1 and a2 and by breaking up a zero of degree a3 + a4 into two
zeroes of degrees a3, a4 with a subsequent slit along the resulting saddle
connection.
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Boundary types +3.3 and +4.3b. The boundary type +3.3 (see Fig-
ure 12) can be considered as a particular case of the boundary type +4.3b
when the appropriate boundary singularity has order 0 (see Figure 13).

Surfaces of type +4.3b can be constructed in complete analogy with
surfaces of type +4.2b (see Figure 18) with the only difference that now we
choose sectors Σ3 and Σ4 at two distinct points.

Boundary type +4.4. In this case the orders of boundary singularities
have the form {2a1 +2, 2a2 +2, 2a3 +2, 2a4 +2}; according to condition (4)
of Definition 3 of a configuration all numbers ai are nonnegative integers.
Thus, in this case we get β′ = {m1, . . . ,ms, a1, a2, a3, a4}. To construct a
desired surface with boundary of type +4.4 (see Figure 13) it is sufficient
to apply a pair of independent parallelogram constructions.

Proposition 8 is proved. �

6.3 Surfaces with boundary of “–” type. To complete the proof
of Proposition 6 it remains to construct surfaces with boundary realizing
any combinatorial data (Gvj , {d1, . . . , ds}, {k1,1, . . . , kr,p(r)) satisfying con-
ditions 2–6 of Definition 3 for local ribbon graphs Gvj of “−”-types; see
also Figure 9.
Proposition 9. Combinatorial data representing boundary types −2.2,
−1.1 and −2.1 are realizable by appropriate surfaces with boundaries.

(See initial Proposition 6 for the detailed formulation.)
Proof. The component of the principle boundary stratum corresponding to
a vertex vj of “−”-type has type Q(α′

j). The singularity data α′
j is given

by equation (7), namely
α′

j = {d1, . . . , ds(j) , D1, . . . ,Dr(j)} ,

where d1, . . . , ds(j) are the orders of interior singularities, and D1, . . . ,Dr(j)

are expressed in terms of the orders of boundary singularities by formula (5).
Conditions 4 and 5 in Definition 3 of a configuration guarantee that all the
entries of α′

j are from the set {−1, 0, 1, 2, . . . }, that the total sum of the en-
tries of α′

j is divisible by 4 and that this sum is greater than or equal to −4.
Moreover, condition 6 in Definition (3) implies that α′

j neither belongs to
the exceptional list given by equation (8) below, nor can be obtained from
an entry of this list by adding additional elements “0” (see Lemma 6.1 in
the next section). According to the results of the paper [MS2] this implies
that the stratum Q(α′

j) is a nonempty.
Consider any flat surface S′

j in Q(α′
j). We use the same conventions

on parameters δ, ε, and v as in the proof of Proposition 7. Applying an
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appropriate surgery to the closed surface S′
j we are going to construct

a surface Sj with boundary realizing the initial combinatorial data
(Gvj , {d1, . . . , ds}, {k1,1, . . . , kr,p(r)).

Boundary type –2.2. Boundary type −2.2 (see Figure 9) is constructed
in complete analogy to +2.2 by a parallelogram construction. Each of the
two boundary components contains a single boundary singularity. The
boundary singularities have strictly positive orders k1,1, k2,1 (see inequality
on Di in condition (4) of Definition 3 of a configuration), so in this case
α′ = {d1, . . . , ds, k1,1 − 2, k2,1 − 2}.

Choosing a quadratic differential S′ ∈ Q(α′) and performing the paral-
lelogram construction at the zeroes of orders k1,1−2, k2,1−2 (see Figure 17)
we get a flat surface Sj with boundary of type “−2.2”, having collections
of interior and of boundary singularities of prescribed orders.

Boundary types –1.1 and –2.1. Note next that boundary type −1.1
can be considered as a particular case of boundary type −2.1 when one of
the two boundary singularities has order 0 (see Figure 9).

Consider a ribbon graph of type −2.1. Let {d1, . . . , ds} be the or-
ders of interior singularities, let {k1,1, k1,2} be the orders of boundary
singularities. By condition (4) of Definition 3 we have D1 ≥ −1, where
D1 = k1,1 + k1,2 − 2, which implies that nonnegative integers k1,1, k1,2 can-
not be simultaneously equal to zero. Thus, we may assume that k1,1 ≥ 1.
We get α′

j = {d1, . . . , ds, k1,1 + k1,2 − 2}.
Consider a flat surface S′

j in Q(α′
j). When both k1,1, k1,2 are odd we

can break up the zero of order k1,1 + k1,1 − 2 into a pair of zeroes of orders
k1,1 − 1 and k1,2 − 1 as in Figure 14.

When one of k1,1, k1,2 is odd and another one is even we can break up
the zero of order k1,1 + k1,1 − 2 into a pair of zeroes of orders k1,1 − 1 and
k1,2−1 by a similar construction, see Figure 20. (Recall that by convention
a “zero of order −1” is a simple pole of the corresponding meromorphic
quadratic differential.) Cutting along the saddle connection we obtain the
desired surface of type −2.1 with prescribed orders of interior and boundary
singularities (see Figure 9).

When both k1,1, k1,2 are even, in fact k1,1 ≥ 2 and k1,1 + k1,2 − 2 ≥ 0.
Let P be the zero of order k1,1 + k1,2 − 2 of the quadratic differential
representing the flat surface S′

j. Choose a pair of separatrices γ1, γ2 in such
way that the angle from γ1 to γ2 counted counterclockwise is π(k1,2 + 1).
Let Σ1 be the sector adjacent to γ1 in the clockwise direction and Σ2 be
the sector adjacent to γ2 in the counterclockwise direction. Apply the
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Figure 20: Breaking up a zero of odd order into two zeroes and splitting the
saddle connection we get a surface of type −2.1.

parallelogram construction to Σ1,Σ2 and detach P into two singularities
P1, P2 (see Figure 21). The orders of the boundary singularities of the
resulting surface Sj are k1,1 and k1,2 (see Figure 9).

γ2
Σ2

Σ1 γ1

Figure 21: Applying the parallelogram construction to a pair of sectors of the
same zero we get the missing surfaces of type −2.1.

We have completed the proof of Proposition 9 and, thus, the proof of
Proposition 6. �

Now we are ready to prove Theorem 4. Note that Theorem 4 immedi-
ately implies the missing realizability parts of Theorems 2 and 3.

Proof of Theorem 4. Consider a configuration C (in the sense of the for-
mal combinatorial Definition 3). Let Q(α′

C) (resp. H(β′
C) be the principal

boundary stratum corresponding to the configuration C. Let S′ be a (possi-
bly nonconnected) flat surface in Q(α′

C) (resp. H(β′
C). To every connected
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component of S′ apply the appropriate surgeries as in sections 5 and 6 re-
alizing the corresponding local ribbon graphs. We apply the surgeries in
such a way that the saddle connections on the boundary of each surface
Sj are, say, horizontal, and have length proportional to their weight in Γ
with coefficient δ. For every “◦”-vertex of Γ consider an appropriate flat
cylinder, with the same requirement for the boundary. Now we glue a com-
pound surface from the components Sj as prescribed by the graph Γ. By
construction the result is a closed surface S endowed with a flat metric with
linear holonomy restricted to {Id,−Id}.

By construction each flat surface Sj with boundary is endowed with the
canonical orientation. By definition the global ribbon graph G(C) is en-
dowed with the canonical orientation compatible with the canonical orien-
tation of the embedded local ribbon graphs. This implies that the resulting
closed surface S inherits the canonical orientation. By construction S has
a collection of saddle connections γ1, . . . , γn realizing the configuration C.

It remains to prove that S is nonsingular, i.e. that it does not have
any double (triple, ...) points. Suppose it does. Detaching them we get a
nonsingular closed flat surface S̃. By construction S̃ still has a collection
of saddle connections γ1, . . . , γn realizing the configuration C, which means
that assembling the initial surface S we have performed some superfluous
identifications of several points of S̃. �

6.4 Nonrealizable collections of singularities. It was proved in
[MS2] that, for the following exceptional list {α′′

1 , . . . , α
′′
4} of singularity

data {
∅, {1,−1}, {3, 1}, {4}} , (8)

the four corresponding strata Q(α′′
j ) are empty. It is clear, that completing

any of these lists with entries “0” (which stand for marked points) we also
get an empty stratum. This gives rise to restriction 6 in Definition 3 of a
configuration which we justify in this section.

Let Gvj be a local ribbon graph of one of types −1.1,−2.1,−2.2 and
let {d1, . . . , ds}, {k1,1, . . . , kr,p(r)} be a couple of unordered collections of
integers satisfying conditions 4 and 5 of Definition 3 of a configuration. (In
our formal combinatorial definition they represent orders of interior and
of boundary singularities of a virtual flat surface with boundary.) Apply-
ing formally equations (5) and (7) (which evaluate the singularity data of
the corresponding component of the virtual principal boundary stratum)
to our combinatorial data we obtain an unordered collection α′

j of inte-
gers. Consider a collection α′′

j obtained from α′
j by omitting all entries “0”

(if any).
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Lemma 6.1. The collection α′′
j belongs to the exceptional list (8) if and

only if the combinatorial data (Gvj , {d1, . . . , ds}, {k1,1, . . . , kr,p(r)) as above
belongs to the list (6) in Definition 3 of a configuration.

Proof. The proof of the lemma is an exercise in elementary combinatorics. �

Having justified the combinatorial obstructions we complete this section
with the corresponding geometric lemma.

Lemma 6.2. Let Sj be a flat surface with boundary of one of types −1.1,
−2.1, −2.2. Assume that Sj does not have any saddle connections parallel
to the boundary different from those which belong to the boundary. Then
the corresponding combinatorial data (Gvj , {unordered collection of interior
singularities}, {unordered collection of boundary singularities}) does not
belong to the exceptional list (6) in Definition 3 of a configuration.

Proof. We use the following strategy to prove the lemma. If some surface
Sj with boundary would define an entry from the list (6) in Definition 3 we
would shrink the boundary of Sj to get as a limit a nondegenerate surface
S′

j from the corresponding component Q(α′
j) of the principal boundary

stratum. However, Lemma 6.1 implies that such Q(α′
j) is empty, which

leads to a contradiction.
To complete the proof we need to describe how can one “shrink the

boundary” of a flat surface. First note, that boundary type “−1.1” can be
considered as a particular case of boundary type “−2.1” when the order
of one of the boundary singularities is equal to zero (see the corresponding
surfaces with boundary in Figure 9).

Having a surface Sj of type −2.1 we can isometrically identify the pair
of boundary components to get a closed flat surface S. The corresponding
singularity data α of S ∈ Q(α) is expressed in terms of the singularity data
of Sj as follows:

α = {d1, . . . , ds(j), k1,1 − 1, k1,2 − 1} .

This implies that the couples [{d1, . . . , ds(j)}, {k1,1, k1,2}] of collections of
orders of interior and of boundary singularities in the list below

∅, {1, 1} ∅, {2, 0}
{1,−1}, {1, 1} ; {1}, {1, 0} ; {−1}, {2, 1}
{3, 1}, {1, 1} ; {3}, {2, 1} ; {1}, {4, 1}

{4}, {1, 1} ; ∅, {5, 1} ; ∅, {4, 2} .

are not realizable by any surface Sj with boundary of type −2.1, for in these
cases we would get a flat surface S from an empty stratum, see equation (8).
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In the remaining cases we get a closed surface S ∈ Q(α) with a distin-
guished pair of singularities P0, P1 joined by a distinguished saddle connec-
tion γ. By assumptions of the lemma this saddle connection is not parallel
to any other saddle connection on S. This implies that deforming, if neces-
sary, S and then applying an appropriate element of SL(2, R) the surface
S can be continuously deformed inside Q(α) to a surface S̃ with a single
short saddle connection γ̃ and with no other short saddle connections. The
deformation might be performed in such a way that the conical singulari-
ties P̃0, P̃1 serving as endpoints of γ̃ would have the same cone angles as P0

and P1 correspondingly. But then we would apply an appropriate surgery
inverse to the one presented in Figures 14, 20 or 21 to coalesce the cor-
responding pair of zeroes into one. This would give a nondegenerate flat
surface S′. Forgetting, if necessary, the resulting marked points on S′ we
get S′ ∈ Q(α′′), where α′′ is in the list (8) (see Lemma 6.1). The latter
leads to a contradiction since these strata are empty.

The proof in the case of boundary type −2.2 is completely analogous.
Lemma 6.2 is proved. �

Appendices

A Long Saddle Connections

We recall the definition of the natural GL(2; R)-invariant measure in the
stratum Q(α). Let P̂ = p−1(P ) be the collection of preimages of the
singularities of a flat surface S ∈ Q(α). Let H−

1 (Ŝ, P̂ ; Z) be the subgroup
in the relative homology group of Ŝ, odd with respect to the involution τ .
Similarly, let H1−(Ŝ, P̂ ; C) be the subspace in the relative cohomology odd
with respect to the involution τ (i.e. the invariant subspace corresponding
to the eigenvalue −1 of the induced linear involution τ∗ : H1(Ŝ, P̂ ; C) →
H1(Ŝ, P̂ ; C)). We can choose a basis in H−

1 (Ŝ, P̂ ; Z) obtained as lifts γ̂i,
i = 1, . . . ,dimC Q(α), of a collection of saddle connections on S. For any
surface near S the affine holonomy vectors

∫
γ̂ ω serve as local coordinates for

Q(α). We define a measure dν(S) on Q(α) as Lebesgue measure defined by
these coordinates, normalized so that the volume of a fundamental domain
of the integer lattice in

H1
−(Ŝ, P̂ ; Z ⊕ iZ) ⊂ H1

−(Ŝ, P̂ ; C)

is equal to one.
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Remark. Note that the Abelian differential ω on Ŝ has a regular point
at the preimage P ′

i ∈ p−1(Pi) of a simple pole Pi of the quadratic differen-
tial q on S. Consider the set P̃ ⊆ P̂ obtained by removing these regular
points. It is easy to see that the canonical homomorphism H1−(Ŝ, P̂ ; C) →
H1−(Ŝ, P̃ ; C) induced by the inclusion P̃ ⊆ P̂ is actually an isomorphism.
Thus, it does not matter which of two sets P̂ , P̃ is used to define the coor-
dinate charts.

Proof of Proposition 2. Let C be an admissible configuration of ĥomologous
saddle connections. Let γ = {γ1, . . . , γn} be a collection of ĥomologous sad-
dle connections on the flat surface S0 representing configuration C. Choose
some saddle connection γi corresponding to an edge of weight 1 of the
graph Γ(S, γ); such edge always exists, see Figure 3. We associate to the
collection γ a pair of vectors ±v(γ) ∈ R

2 setting v =
∫
γi

ω ∈ C ∼= R
2. For

every surface S in the same connected component we consider the discrete
subset VC(S) by taking the union VC(S) = ∪ ± v(γ) over all collections of
ĥomologous saddle connections γ realizing C.

It is easy to see that the set VC(S) satisfies axioms (A), (B), (Cµ) in
[EM]. Proposition 2 now follows from the general results in [EM] and
from Theorem 4 which implies that the Siegel–Veech constant constC is
nonzero. �

Proof of Proposition 4. By Remark 1 the cycles [γ̂1] and [γ̂2] are primitive.
This implies that if γ1 and γ2 are not ĥomologous the homology classes of
the lifts γ̂1 and γ̂2 are independent in H−

1 (Ŝ, P̂ ; Z).
If saddle connections γ1 and γ2 are parallel, then

∫
γ̂1

ω = r
∫
γ̂2

ω for r

real. Since the cycles [γ̂1] and [γ̂2] are independent, the above equation holds
only for a set of measure zero in H1−(Ŝ, P̂ ; C). Taking a countable union
of sets of measure zero corresponding to possible pairs of integer cycles
and different coordinate charts, we see that two nonĥomologous saddle
connections on S are parallel only for a set of S of measure zero. �

Proof of Proposition 1. Suppose that there are two saddle connections
γ1, γ2 in the collection which are not ĥomologous. Then the correspond-
ing periods

∫
γ̂1

ω and
∫
γ̂2

ω correspond to two independent coordinates in
a small neighborhood of the initial flat surface, and hence they can be
deformed independently. Since the length |γ| equals | ∫γ̂ ω| or 1/2| ∫γ̂ ω|
(depending on whether γ is homologous to zero or not), we conclude that
a collection containing two nonĥomologous saddle connections cannot be
rigid.
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The necessity of the condition in Proposition 1 is proved. Sufficiency
immediately follows from Lemma 2.6 which says that the lengths of ĥomolo-
gous saddle connections are either the same or differ by a factor of two. �

B List of Configurations in Genus 2

Using Definition 3, Theorem 4 and Corollary 1, and following Examples
4 and 5 in section 1 one can construct a complete list of configurations
for any given stratum Q(α). In this section we present an outline of the
algorithm and list all configurations for holomorphic quadratic differentials
in genus 2.

There are two natural parameters measuring “complexity” of singularity
data α = {d1, . . . , dm}: the genus g of a flat surface S in Q(α) and the num-
ber N of simple poles on S (i.e. the number of conical points with the cone
angle π). Having a configuration C denote by N ′ the number of interior sin-
gularities of order −1 corresponding to this configuration and by g′1, . . . , g′k
the genera of surfaces S′

1, . . . , S
′
k corresponding to the principal boundary

Q(α′
C) (correspondingly H(β′

C) when C does not have “−”-vertices). It is
easy to see that the number of simple poles on S (i.e. the number of entries
“−1” of α) might vary from N ′ to N ′ + 4, and that the genus g might vary
from

∑k
j=1 g′j to

∑k
j=1 g′j + 2 (see [B1] for an explicit expression of g(S) in

terms of genera g′j of components and of a structure of the global ribbon
graph). Thus, having fixed the upper bounds for g and N , we confine the
list of corresponding configurations to a finite one.

A naive algorithm of enumeration of all configurations for a given stra-
tum Q(α) can be represented as follows. Let g = g(α) be the genus corre-
sponding to the singularity data α,

d1 + · · · + dm = 4g(α) − 4 .

Consider complete lists of (possibly disconnected) strata H(β′) of genera
g−2, g−1, g. These lists are finite and can be easily constructed. Consider
complete lists of (possibly disconnected) strata Q(α′) of genera g−2, g−1,
g such that α′ contains from N − 4 to N entries “−1” and at most two
connected components α′

i, α
′
j representing strata of quadratic differentials

Q(α′
i), Q(α′

j) (the remaining connected components are represented by
strata of holomorphic differentials H(α′

l)). These lists are also finite and
can be easily constructed. Add the empty set to these lists when 0 ≤ g ≤ 2.

For every entry α′ = α′
1�· · ·�α′

k (correspondingly β′) as above consider
all possible ways to organize the set {α′

1, . . . , α
′
k} into one of the graphs as in
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Figure 22: Configurations of ĥomologous saddle connections for holomorphic
quadratic differentials in genus 2.
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Figure 3, in such way that vertices corresponding to the strata H(α′
j), H(β′

j)
have “+”-type, and vertices corresponding to the strata Q(α′

j) have “−”-
type. Using these basic graphs, construct all possible “extended” graphs
adding vertices of the “◦”-type as described in Theorem 2.

For every vertex of every graph as above consider all possible structures
of an embedded local ribbon graph as in Figure 6.

At the current stage we have already chosen α′ = {α′
1, . . . , α

′
k} (corre-

spondingly β′), the graph Γ, the bijection of {α′
1, . . . , α

′
k} (correspondingly

{β′
1, . . . , β

′
k}) with the set of vertices of Γ compatible with the structure

of “+” and “−”-vertices, and the structure of a local ribbon graph for ev-
ery vertex of Γ. Now for every local ribbon graph Gj representing a “+”
or “−”-vertex Sj consider all possible ways to arrange orders of interior
singularities and of boundary singularities of Sj in a way compatible with
conditions (3)–(6) of Definition 3 and with equation (6) for the correspond-
ing singularity data β′

j (correspondingly equation (7) for the singularity
data α′

j).
By “compatibility” with equations (6)–(7) we mean that singularity

data computed by these equations should produce β′
j (correspondingly α′

j)
possibly completed with several (from 1 to rj) entries “0” (where rj is the
number of connected components of the local ribbon graph Gj).

From the resulting lists of configurations extract those which correspond
to the required singularity data α.

Certainly this algorithm is not very efficient for large values of g or N .
Nevertheless, for strata in small genera having reasonable number of simple
poles, it works quite well (especially being slightly optimized using specific
properties of given data α).

As an example we present a complete list of configurations of ĥomologous
saddle connections for holomorphic quadratic differentials in genus 2. We
are grateful to Alex Eskin, who helped us to test completeness of this list.
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