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On August 13, 2014 (the opening day of ICM
at Seoul) Maryam Mirzakhani received the Fields
Medal “for her outstanding contributions to the dy-
namics and geometry of Riemann surfaces and their
moduli spaces” becoming the first woman to win the
Fields Prize. We try to present two groups of re-
sults out of numerous results of Maryam. These two
groups are quite different in the subject of study
(hyperbolic world versus flat one); in the time when
they were obtained (Ph.D. thesis versus most recent
work); and also in the style (a firework of extremely
elegant results and unexpected ties between them
obtained individually versus a gigantic work in which
took a decade of collaborative efforts aiming to prove
one very concrete conjecture).

Courtesy of Maryam Mirzakhani

For a more personal biographical note we recom-
mend the online paper of E. Klarreich [Kl]. We
also recommend a short mathematical presenta-
tion [McM2] of works of Maryam written by C. Mc-
Mullen for the ICM Proceedings.

Introduction

Moduli spaces.

We are used to the fact that geometric objects
might form continuous families endowed with rich
and interesting topology. For example, the family
of all straight lines in the plane passing through the
origin forms a circle; the family of all m-dimensional
vector subspaces V in the vector space Cn forms the
Grassmann manifold Gm(Cn).

Since the Grassmann manifold is mentioned any-
way, we introduce the notions of tautological bundle
and of Chern characteristic classes which we shall

need later. The Grassmann manifold is endowed
with a natural vector bundle called the tautologi-
cal bundle: its fiber over a “point” [V ] ∈ Gm(Cn) is
V considered as a vector space. Any m-dimensional
complex vector bundle ξ over a compact manifold
M can be induced from the tautological bundle by
an appropriate map fξ : M → Gm(Cn) (for a suf-
ficiently large n depending on M). The cohomol-
ogy of the Grassmann manifold contains m distin-
guished elements c1, . . . , cm. The induced elements
f∗
ξ ci ∈ H∗(M ;C) are called the Chern character-
istic classes of the vector bundle ξ. They provide
extremely important invariants of vector bundles:
the maps fξ′ , fξ′′ : M → Gm(Cn) corresponding to
isomorphic vector bundles ξ′ ∼ ξ′′ are homotopic,
so the Chern classes of isomorphic vector bundles
ξ′ ∼ ξ′′ coincide: f∗

ξ′ci = f∗
ξ′′ci.

Coming back to families of geometric objects, one
can consider continuous families of certain geomet-
ric structures on a fixed manifold. As an illustra-
tion we describe the family of flat metrics on a two-
dimensional torus T2. One can glue a flat torus from
a parallelogram identifying the opposite sides of the
parallelogram as in the picture. Deforming continu-
ously the parallelogram we get a continuous family
of flat tori.

Actually, any flat torus can be glued from a par-
allelogram. Chose a basis of cycles a, b on the torus.
For any flat metric on the torus we can find a pair
of closed oriented flat geodesics in this metric such
that their homology classes would be exactly a and
b. Since the two closed geodesics represent a basis
(a, b) of cycles, their topological intersection number
is equal to one, a◦b = 1. Since our two closed curves
are flat geodesics, this implies that they have a single
intersection. Thus, cutting the torus by this pair of
geodesics we unwrap it in into a parallelogram. Note
also that for a fixed basis of cycles (a, b) on the torus
this parallelogram is defined in a unique way.

If we are interested in the flat metric on the torus
only up to a uniform proportional rescaling of the
metric (i.e. if we are interested only in the confor-
mall class of the flat metric), the resulting parallel-
ogram is defined up to homothety. The space of all
such parallelograms defined up to rescaling can be
identified with the upper half-plane: a point (x, y),
such that y > 0, defines a parallelogram spanned by

vectors ~a = (1, 0) and ~b = (x, y), and any parallelo-
gram with pairs of opposite sides marked by letters
a and b can be homothetically rescaled to a unique
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parallelogram like this. The condition y > 0 comes
from the convention a ◦ b = +1 for the intersection
number of the cycles a and b. Choosing a ◦ b = −1
we would get y < 0.

We have constructed the Teichmüller space T1
of conformal classes of flat metrics on a torus T2,
where the subscript “1” stands for the genus g = 1
of the torus. In this very special situation, the
Teichmüller space homogeneous: our construction
shows that the upper half-plane which we obtained
as a model of T1 can be identified with the left
quotient SO(2,R)\ SL(2,R) = H2. Indeed, instead
of rescaling proportionally the parallelogram to the
unique representative having the a-edge of unit
length, we could rescale it to a unique parallelogram
of unit area. The space of parallelograms of unit
area with pairs of opposite edges labeled by sym-
bols a and b is isomorphic to the space of oriented
frames of two vectors in R2 spanning a parallelogram
of unit area, where the frames are considered up to
a rotation. The latter space is isomorphic to

T1 ≃ SO(2,R)\ SL(2,R) = H2 .

Recall now, that our flat tori in the Teichmüller
space T1 carry an extra structure, namely, the choice
of the basis of cycles (a, b). The space obtained by
forgetting this extra structure is the moduli space
M1 of conformal classes of flat metrics on the torus
T2. Thus, by definition, the moduli space is the quo-
tient of the Teichmüller space.

To illustrate the relation between the two spaces
consider the torus T0 defined in our coordinates by
the point (0, 1) in the upper half-plane. Let us work
in the model of T1, where the a-cycle is normalized
to have the unit length. Our initial torus T0 is glued
from the unit square. Applying a family of liner

transformations

(

1 t
0 1

)

, where t ∈ [0, 1], to the unit

square, we get a one-parameter family of parallelo-
grams; the corresponding family Tt of flat tori defines
a curve in T1, and thus, in its projection M1. The
picture below shows that the flat tori T0 and T1 are

=b

a

b

a

b

a

isometric, which means that they represent the same
point of the moduli space M1. Note however, that
the b-cycle on the torus T0 is transformed to the di-
agonal of the leftmost square under our continuous
family of deformations. The isometry between T0
and T1 does not send the b-cycle of T0 to the b-cycle
of T1; the tori T0 and T1 endowed with distinguished
bases of (a, b) cycles define two distinct points of the
moduli space T1.

Fix a flat metric on the topological torus T2. The
fiber of the projection from the Teichmüller space
T1 to the moduli space M1 over the chosen point of
M1 corresponds to all possible ways to chose a ba-
sis (a, b) in homology H1(T

2;Z) = Z ⊕ Z such that
a ◦ b = 1 (and not −1). A matrix of “change of co-
ordinates” from some fixed basis to any other basis
lives in SL(2,Z); different matrices define different
bases, and any matrix defines some new bases. We
conclude that the projection T1 → M1 is an infi-
nite cover, and the group of this cover (called the
mapping class group) is isomorphic to SL(2,Z).

Note that any homeomorphism of the topologi-
cal torus T2 defines a transformation of any basis
of cycles, and that homeomorphisms homotopic to
identity keep a basis of cycles unchanged. The map-
ping class group Mod(T2) of the torus T2 can be seen
as the quotient of the group of all homeomorphisms
of the torus quotient over the normal subgroup of
homeomorphisms homotopic to identity. This defi-
nition of the mapping class group might seem exces-
sively abstract: we quotient one infinite-dimensional
group over the other. Its advantage is that it is much
more general and can be applied to define moduli
spaces of very general geometric structures.

We have to confess that in the discussion above
we used the fact that the fundamental group of the
torus is commutative, and thus isomorphic to the
first homology group, π1(T

2) ≃ H1(T
2;Z). Defining

the Teichmüller space of surfaces of genus greater
than 1 one uses a collection of simple closed curves
or a basis of loops in the fundamental group and
not a basis of cycles in homology. Certain homeo-
morphism of a surfaces of higher genera which are
not homotopic to the identity map, act nontrivially
on the fundamental group of the surface, but act
trivially on the fist homology. (The corresponding
subgroup of the mapping class group of a surface is
called the Torelli group. For the torus T2 the Torelli
group is trivial.)

Consider the closed loop in the moduli space
M1 defined by the one-parameter family of flat tori
{Tt}t∈[0,1] constructed above. We have seen that its
lift to the Teichmüller space is not closed: the ba-
sis of cycles (a, b) obtained after the deformation of
the flat metric is different from the original basis
of cycles. Thus, our lift corresponds to a nontrivial
element of the mapping class group. As a homeo-
morphism of the torus T0 representing the resulting
element of the mapping class group we can choose
the Dehn twist as in the picture below. We cut the
initial torus at the “equator” and then twist pro-
gressively the “parallels” of the resulting cylinder;
the parallel located at the height t is twisted by the
length t. Recall that our torus T0 is glued from the
unit square. Thus, arriving to the top of the cylinder
we twist the equator by a complete turn. Identifying
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the two copies of the equator we get a torus and a
well-defined map of the torus T0 to itself. We sug-
gest to the reader to recognize the Dehn twist in
the picture above as well. By construction the Dehn
twist maps the basis of cycles (a, b) exactly as the
element of the mapping class group corresponding
to the closed path {Tt}t∈[0,1] in M1.

In the model of T1 where we identify the points
of T1 with oriented frames in R2 defining a paral-
lelogram of unit area (and where we consider the
frame up to a rotation) the torus T0(a, b) endowed
with the original basis of cycles (a, b) is represented
by the standard orthonormal frame in this model,
a = (1, 0), b = (0, 1). We have already seen that the
Teichmüller space T1 can be identified with the up-
per half-plane consiered as the homogeneous space

T1 ≃ SO(2,R)\ SL(2,R) = H2 .

In this realization of T1 and for the point in the mod-
uli spaceM1 represented by the square torus, the ac-
tion of the mapping class group Mod(T2) ≃ SL(2,Z)
on T1 is exactly the action of SL(2,Z) on the right
on SO(2,R)\ SL(2,R) = H2. Thus, the moduli space
M1 is isomorphic to the modular surface:

M1 = T1/Mod(T2) = \ SL(2,R) /
SO(2,R) SL(2,Z) .

We have also seen that the mapping class group
Mod(T2) of the torus T2 is defined as the quotient
of the group of all homeomorphisms of the torus
over the subgroup of homeomorphisms homotopic to
the identity map. Choosing a distinguished element
in each class of homeomorphisms in an equivariant
way we realize the mapping class group Mod(T2) as
the group of certain particular transformation of T2.
As such group of particular transformations one can
choose the following group. Fix some flat metric on
the torus, say the one of T0. Consider all linear au-
tomorphisms of the torus T0, that is the diffeomor-
phisms f : T0 → T0 such that the differential Df is
constant in flat coordinates of T0. To exclude from
consideration linear automorphisms isotopic to iden-
tity, represented by parallel translations of the torus,
let us mark a point on the torus and consider only
those linear automorphisms which leave the marked
point fixed. The group of linear automorphisms of a
flat torus with a marked point is isomorphic to the
mapping class group Mod(T2) ≃ SL(2,Z).

To fit a more general framework, it is convenient
to consider the Teichmüller space T1 of the confor-
mal classes of flat tori and the corresponding moduli

space as the Teichmüller space T1,1 and the moduli
space M1,1 of tori with a marked point. Now the
group of automorphisms of the geometric structure
(in our context — isometries of the flat torus pre-
serving the marked point) is finite.

One cannot construct a hyperbolic metric on a
compact torus. However, it is possible to construct
a hyperbolic metric on a punctured torus; this hyper-
bolic metric has a cusp at the puncture. Moreover,
for every flat metric one can choose the hyperbolic
metric of constant curvature −1 in the same confor-
mal class as the original flat metric: infinetesimal
circles in one metric remain circles (not ellipses) in
the other. Such hyperbolic representative is unique,
and the construction can be reversed: any hyper-
bolic metric of curvature −1 on a once-punctured
torus corresponds to some flat metric in the same
conformal class. Thus, we can also view the moduli
spaceM1,1 as the moduli space of hyperbolic metrics
of constant negative curvature on a torus punctured
at one point. More generally, one can consider the
moduli space Mg,n of hyperbolic metrics of constant
negative curvature on a surface of genus g punctured
at n points, were the metric has cusps at the punc-
tured points. These spaces have more dimensions
than M1,1 and they are not homogeneous spaces
anymore. However, they have certain common prop-
erties with M1,1. They are never compact since the
metric on the surface might tend to a degenerate
one. For example, the modular surface M1,1 has a
cusp (see the picture): the tori might get arbitrary
narrow and arbitrary long. The moduli spaces Mg,n

are not manifolds but orbifolds (unless g = 0): they
have some “conical” loci. For example, M1,1 has
two conical points corresponding to the two flat tori
which are more symmetric when all other tori (see
the picture). However, passing to an appropriate fi-
nite cover ramified at the corresponding loci we get
a true manifold.

Tori close to
the cusp have
short geodesics

During the last several decades various moduli
spaces became one of the central object in mathe-
matics and theoretical physics. Mathematicians are
interested in them by various reasons. The mod-
uli space is a universal family of the correspond-
ing geometric structures (like the Grassmann man-
ifold, which, in a sense, carries in its tautological
bundle all possible vector bundles over all possible
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manifolds). Moduli spaces themselves are often ex-
tremely reach in beautiful geometric structures. And
finally, whether you like them or not, you fatally run
into the questions related with moduli spaces study-
ing extremely naive objects like graphs or interval
exchange transformations which at the first glance
have nothing to do with moduli spaces of geometric
structures.

Physicists have their own reasons. String the-
ory suggests that at some microscopic level particles
might, actually, resemble tiny circles. Then, a short
trajectory of such particle-circle is rather a narrow
tube than a curve. If in the process of evolution, the
circle might break into two circles, then might break
into two circles again, then might merge some other
circle. A trajectory of such a circle-particle is not
a tube anymore but a complicated surface of high
genus. Variational approach suggests to compute a
statistical sum of certain quantities as an integral
over the space of all possible trajectories (weighted
by their probabilities) which in our case, is the space
of all surfaces. In certain important cases, the quan-
tities depend only on the conformal class of the met-
ric on the resulting surface, which allows to reduce
the integral over the space of trajectories–surfaces to
the integral over the corresponding moduli space.

Theoretical physics continues to develop its opin-
ion on the nature of the relevant moduli space:
strings leave place to d-branes, and the moduli
spaces of Calabi–Yau manifolds step ahead mod-
uli spaces of Riemann surfaces. Though it is not
clear yet whether we live in the moduli space of
Calabi–Yau manifolds on in the moduli space of G2-
structures, one can tell for sure that Maryam Mirza-
khani has spend many years in the world of hyper-
bolic and flat surfaces.

1. Hyperbolic World

Hyperbolic surfaces.

Consider a smooth surface S of genus g with n
holes. We assume that all holes (boundary compo-
nents) are numbered once and forever. Considering
diffeomorphisms of S we assume that the bound-
ary component number i is mapped to the bound-
ary component number i for i = 1, . . . , n. A closed
curve α on S is called simple if it does not have self-
intersections. Speaking about simple closed curves
on a surface S we allways tacitly assume that they
are not contractible neither to a point nor to one
of the boundary components (if there are any: n is
allowed to be zero).

Suppose now that the surface S is endowed with a
hyperbolic metric. By convention, we always assume
that the boundary components of the resulting hy-
perbolic surface X are realized by geodesics βi in the

hyperbolic metric, where i = 1, . . . , n. The hyper-
bolic lengths of the geodesic boundary components
βi are denoted by bi(X) or by Li(X) = |βi|X .

Imagine that a simple closed curve α on X is
made from an elastic string, and that the string can
contract sliding along X . It is not surprising that
the contracted sting would take a form of a closed
geodesic in the hyperbolic metric of X . What is
not obvious, is that such closed geodesic is unique
and does not have self-intersections neither, no mat-
ter what hyperbolic metric and what simple closed
curve we chose on the original smooth surface S.
The hyperbolic length |γ|X of the resulting unique
simple closed geodesic γ = γ(α,X) in the free homo-
topy class of the simple closed curve α is denoted by
ℓα(X) := |γ(α)|X .

A topological pair of pants is a two-dimensional
sphere with three holes. One can cut any topological
surface S along an appropriate collection of noninter-
secting simple closed curves to get a decomposition
of S into pairs of pants. It is clear from the picture
that the pants decomposition of S is not unique (un-
less S is a pair of pants itself). However, the number
of simple closed curves αi in any pants decomposi-
tion of S is the same and equals 3g− 3+ n (here we
do not count the boundary components of S).

Consider now a hyperbolic metric on S and the
corresponding hyperbolic surface X . As before let
all simple closed curves αi defining the pants de-
composition get contracted to unique simple closed
geodesics γi = γ(αi, X) in the free homotopy classes
of the corresponding simple closed curves αi. Re-
call that none of γi has self-intersections. Moreover,
different γi, γj , i 6= j, never intersect either no mat-
ter what topological pants decomposition and what
hyperbolic metric on S we choose. Thus, the hy-
perbolic surface X gets decomposed into hyperbolic
pairs of pants.

γ1

ν1,2

γ2

Consider one individual hyperbolic pair of pants
P ⊂ X (as in the picture). Denote by ℓk, k = 1, 2, 3,
the lengths ℓk := |γk|X of hyperbolic geodesics γk
bounding P . It is known that for any triple of non-
negative numbers (ℓ1, ℓ2, ℓ3) ∈ R3

+ there exists a
hyperbolic pair of pants P (ℓ1, ℓ2, ℓ3) with geodesic
boundaries of given lengths, and that such hyper-
bolic pair of pants is unique (we always assume that
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the boundary components of P are numbered). If
some of the lengths ℓk are equal to zero, the corre-
sponding boundary components are represented by
hyperbolic cusps.

It is also known that two geodesic boundary com-
ponents γ1, γ2 of any hyperbolic pair of pants P can
be joined by a single geodesic segment ν1,2 orthogo-
nal to both γ1 and γ2 (see the picture). Thus, every
geodesic boundary component γ of any hyperbolic
pair of pants might be endowed with a canonical dis-
tinguished point. The construction can be extended
to the situation, when both remaining boundary
components of the pair of pants are represented by
cusps.

Having two hyperbolic pairs of pants P ′(ℓ′1, ℓ
′
2, ℓ)

and P ′′(ℓ′′1 , ℓ
′′
2 , ℓ) sharing the same length ℓ > 0 of

one of the geodesic boundary components, we can
glue such pairs of pants together (see the picture).
The hyperbolic metric on the resulting hyperbolic
surface Y is perfectly smooth and the common ge-
odesic boundary of P ′(ℓ1, ℓ2, ℓ) and P

′′(ℓ1, ℓ2, ℓ) be-
comes a simple closed geodesic γ in the hyperbolic
surface Y .

Recall that each geodesic boundary component
of any pair of pants is endowed with a distinguished
point. These distinguished points record how the
pairs of pants P ′ and P ′′ are twisted one with re-
spect to another when we glue them together by
a common boundary component (see the picture).
Hyperbolic surfaces Y (τ) corresponding to different
values of the twist parameter τ in the range [0, ℓ[ are
not isometric.

P ′ τ P ′′

Let us return to the hyperbolic pants decompo-
sition of the hyperbolic surface X corresponding to
a collection of simple closed curves α1, . . . , α3g−3+n

on the topological surface S. It is clear from what
was said above that we can vary all 3g − 3 + n
lengths ℓαi

(X) = |γi|X of the resulting simple closed
geodesics γi on X and vary the twists ταi

(X) along
them to obtain a deformed hyperbolic metric. The
resulting collection of 2 · (3g − 3 + n) real parame-
ters serve as Fenchel–Nielsen coordinates in the Te-
ichmüller space Tg,n(b1, . . . , bn) of boarded hyper-
bolic surfaces with n geodesic boundary components
of lengths b1, . . . , bn.

A hyperbolic surface X considered as a point of
the Teichmüller space is endowed with a canonical
collection of generators of the fundamental group

of the underlying smooth surface S. Forgetting
this choice of generators we identify many different
points of the Teichmüller space into one, getting the
moduli space Mg,n(b1, . . . , bn) of boarded hyperbolic
surfaces.

For example, consider a point of the Teichmüller
space T0,4(b1, . . . , b4) represented by the hyperbolic
surface Y (0) as in the picture, and the point in the
moduli spaceM0,4(b1, . . . , b4) obtained by forgetting
the basis of cycles on Y (0). Change continuously
the twist parameter τ of the hyperbolic surface Y (τ)
from 0 to ℓ, where ℓ = |γ| is the hyperbolic length
of the geodesic γ along which we twist the pairs of
pants. The family {Y (τ)}τ∈[0;ℓ] defines a closed loop
in the moduli space and a nonclosed path in the Te-
ichmüller space. Indeed, the resulting Dehn twist
along γ acts nontrivially on the fundamental group
of the surface Y (0).

The moduli spaceMg,n(b1, . . . , bn) of boarded hy-
perbolic surfaces can be viewed as the quotient of the
simply-connected Teichmüller space Tg,n(b1, . . . , bn)
by the discrete mapping class group. The Dehn
twist constructed above belongs to the mapping class
group of Y (0).

By the work of W. Goldman [G] each moduli
space Mg,n(b1, . . . , bn) carries a natural closed 2-
form ωWP called the Weil–Peterson symplectic form.
S. Wolpert proved in [Wo1] that ωWP has partic-
ularly simple expression in Fenchel–Nielsen coordi-
nates. Namely, no matter what pants decomposition
do we chose, we get

(1) ωWP =

3g−3+n
∑

i=1

dℓαi
∧ dταi

.

The wedge power ωn of a symplectic form on a
manifold M2n of real dimension 2n defines a vol-
ume form on M2n. The volume of the moduli space
Mg,n(b1, . . . , bn) with respect to the volume form

ω3g−3+n
WP is called the Weil–Peterson volume of the

moduli space Mg,n(b1, . . . , bn); it is known to be fi-
nite.

Weil–Peterson volumes.

Citing Maryam “our point of departure for calculat-
ing the Weil–Peterson volumes of the moduli spaces
is the following McShane identity [McS]:”

Theorem (McShane). Let f(x) = (1+ex)−1 and X
be a hyperbolic once-punctured torus. Then we have

∑

γ

f(ℓγ(X)) =
1

2
,

where the sum is over all simple closed geodesics γ
on X.

This identity is in some sense a miracle: though
the length spectrum of simple closed geodesics is
different for different hyperbolic surfaces, the sum
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above is identically 1/2. When Greg McShane has
discovered this identity, it had an effect of a sensa-
tional revelation. About ten years after McShane,
Maryam Mirzakhani discovered a new identity valid
already for any hyperbolic surface X of arbitrary
genus with any number n of geodesic boundary
components. This new identity (generalizing the
McShane’s one) has the following structure. Let
Li = ℓβi

(X) be the lengths of the hyperbolic bound-
ary components β1, . . . , βn. Fix the boundary com-
ponent β1 and consider all possible simple closed
curves α1, α2 such that β1, α1, α2 bound a pair of
pants. Take the sum over all such pairs α1, α2 of
certain explicit function D in lengths of geodesics
β1, γ(α1, X), γ(α2, X), where, as before, γ(αi, X) is
the unique simple closed geodesic in the hyperbolic
metric X in the free homotopy class of the simple
closed curve αi. Now consider one by one all other
boundary components βi and all simple closed curves
α such that β1, βi, α bound a pair of pants. Take a
sum of another very explicit function R in hyper-
bolic lengths of β1, βi, γ(α,X) over all such triples,
where γ(α,X) is the unique simple closed geodesic
in the hyperbolic metric X in the free homotopy
class of the simple closed curve α. The identity says
that two sums together give the hyperbolic length
L1 = ℓβ1

(X) of the initial geodesic boundary com-
ponent β1 no matter what hyperbolic surface X you
take.

Theorem ([Mi2]). For any hyperbolic surface X
with n geodesic boundary components β1, . . . , βn of
lengths L1, . . . , Ln one has

∑

α1,α2

D (L1, ℓγ1
, ℓγ2

) +

n
∑

i=2

∑

α

R (L1, L2, ℓγ) = L1 .

I have no idea how one might guess this kind of
identities!

Now let us discuss why such identities are rel-
evant to the Weil–Peterson volumes of the moduli
spacesMg,n. Integrating, the right-hand side of Mc-
Shane’s identity over the moduli space M1,1 with
respect to the Weil–Peterson form, one, obviously,
gets 1

2 VolM1,1. What is not tautology is that the
integral of the sum on the left-hand side admits a
geometric interpretation as the integral of f over the
natural cover M∗

1,1 of the initial moduli space M1,1.
This cover is already much simpler than the original
moduli space: it admits global coordinates in which
the integral of f can be easily computed.

We present this instructive computation. The
point of the cover M∗

1,1 is a hyperbolic surface X
endowed with a simple closed curve. The infinite
cover M∗

1,1 resembles the Teichmüller space T1,1.
Though this cover is smaller than the simply con-
nected universal cover T1,1 it admits global coordi-
nates. Namely, given (X,α) ∈ M∗

1,1 cut X by the

unique simple closed geodesic γ(α,X) in the free ho-
motopy class of the simple closed curve α. A simple
topological argument implies that we always get a
hyperbolic pair of pants. By construction, two ge-
odesic boundary components of this pair of pants
have the same length ℓ = ℓα(X) = |γ(α)|X and
the third boundary component is the cusp (see the
picture). Reciprocally, from any hyperbolic pair of
pants P (ℓ, ℓ, 0) we can glue a hyperbolic surface X
endowed with a distinguished simple closed curve α.
Recall, that gluing such surface we have to take into
account the twist parameter τ , see the picture below:

γ(α,X)

The hyperbolic surfaces Xτ corresponding to val-
ues of the twist parameter τ in the interval [0; ℓ[
are pairwise non isometric, while X0 and Xℓ are
isometric. Recall also, that X0 and Xℓ define the
same point of the moduli space M1,1 but the lift of
the path {Xτ}τ∈[0;ℓ] is not closed in the Teichmüller
space. Note, however, that this path lifts to a closed
path in M∗

1,1: by construction the Dehn twist sends
the free homotopy class of the simple closed curve
α to itself. This consideration proves that points in
M∗

1,1 are in the one-to-one correspondence with the
points of the cone {ℓ > 0; τ ∈ R mod ℓ}. Integrat-
ing f in these global Fenchel–Nielsen coordinates on
M∗

1,1 we get

1

2
VolWP (M1,1) =

∫

M1,1

∑

γ

f(ℓγ(X)) =

∫

M∗

1,1

f(ℓγ(X)) =

∫ ∞

0

f(ℓ)

∫ ℓ

0

dℓ dτ =

∫ ∞

0

ℓ f(ℓ) dℓ =

∫ ∞

0

ℓ dℓ

1 + eℓ
=
π2

3
.

In the more general case of Mirzakhani’s iden-
tity Maryam does not obtain the value of the vol-
ume right away. However, cutting the initial sur-
face by simple closed geodesics γ1, γ2 for the first
sum and cutting the surface by the simple closed
geodesic γ in the second sum, and developping the
idea of averaging over all possible hyperbolic sur-
faces, she gets a recursive relation for the volume
Vg,n(L1, . . . , Ln) := VolMg,n(L) in terms of anal-
ogous volumes in smaller genera. These relations
allow Maryam to prove the following statement and
to compute the volumes explicitly for all sufficiently
small values of g and n.
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Theorem ([Mi2]). The volume Vg,n(L1, . . . , Ln) is
a polynomial in L2

1, . . . , L
2
n; namely we have:

(2) Vg,n(L) =
∑

|α|≤3g−3+n

Cα · L2α ,

where Cα > 0 lies in π6g−6+2n−2|α| ·Q.

A simple recursive formula for volumes in genus
zero was found earlier by P. Zograf [Zog]. A very pre-
cise asymptotics of volumes for large genera was re-
cently proved by M. Mirzakhani and P. Zograf [MiZ]
(up to a universal multiplicative constant which is
conjecturally equal to 1 and which still resists).

Counting simple closed geodesics.

Consider a hyperbolic surface X of finite area. In
this section we do not allow any boundary compo-
nents anymore, but we still allow to the hyperbolic
metric of contant curvature −1 to have cusps. It
is known since works of Delsarte, Hubert and Sel-
berg that the growth rate of the number of closed
geodesics of length at most L on any such surface X
has the rate eL/L when the bound L grows.

It is not surprising that most of long closed
geodesics have self-intersections. A quantitative es-
timate of “most” is much more substle: the num-
ber sX(L) of simple (that is without any self-
intersections) closed geodesics of length at most
L, grows polynomially in L and not exponentially.
More precisely, I. Rivin showed in [R] that for each
X there are constants c1(X) ≤ c2(X) such that

c1L
d ≤ sX(L) ≤ c2L

d ,

where d = 6g− 6+ 2n = dimR Mg,n (see [R] for the
historical perspective of this counting problem).

Counting simple closed geodesics on a surface of
constant negative curvature X one can consider the
geodesics of certain specific topological type only.
For example, one can count separately those sim-
ple closed geodesics which separate X into two con-
nected components, and those which do not. (In the
picture with two pants decomposition of a surface of
genus 2 five simple close curves are non-separating
and one is separating.) More generally, two simple
closed curves have the same topological type if one
curve can be transformed to another by a homeo-
morphism of the punctured surface. For any surface
of a fixed genus g with a fixed number n of punctures
there is only a finite number of different topological
types of simple closed curves. Maryam counted sim-
ple closed hyperbolic geodesics type by type.

Theorem ([Mi2]). For any hyperbolic surface X ∈
Mg,n the number sX(L, type) of simple closed
geodesics on X of length at most L and of a fixed
topological type has exact polynomial asymptotics:

lim
L→+∞

sX(L, type)

Ld
= ntype(X) ,

where d = 6g − 6 + 2n = dimR Mg,n.
Moreover, ntype is a continuous proper function

on Mg,n having the following structure:

(3) ntype(X) =
c(type) ·B(X)

bg,n
,

where bg,n =
∫

Mg,n
B(X) dX <∞.

For geometers we add that the quantity B(X)
in (3) is the volume of the “unit ball” in the space of
measured laminations MLg,n where the “unit ball”
is defined in terms of the hyperbolic metric on X
and its volume is computed in terms of the Thurston
measure on MLg,n.

The coefficient ntype(X) in the polynomial asymp-
totics of sX(L, type) depends on the surface X .
Note, however, that if we compute the proportions
of simple closed geodesics of fixed topological types
among all simple closed geodesics of bounded length
on a fixed hyperbolic surface X , asymptotically such
proportions do not depend on X anymore. For ex-
ample, for a surface of genus two without cusps,
consider simple closed geodesics which separate the
surface into two pieces (we call such simple closed
geodesics “of type2”) and those which do not sep-
arate the surface (we call them “of type1”). The
Theorem implies that asymptotically the ratio be-
low does not depend on the hyperbolic surface X in
M2 anymore:

(4) lim
L→+∞

sX(L, type1)

sX(L, type2)
=
c(type1)

c(type2)
.

The proof of the Theorem combines methods from
two domains. On the one hand, technology elabo-
rated by Maryam in [Mi2] discussed in the previous
section allows to compute averages over Mg,n of all
kind of counting functions of simple closed geodesics
and not only Weil–Peterson volumes of the moduli
spaces. Namely, consider a function f : R+ → R+

with compact support, or a function f : R+ → R+

decreasing sufficiently fast when the argument goes

to infinity. Now define a function f̂ on Mg,n as

f̂(X) :=
∑

α f(ℓα(X)) , where the sum is taken over
all simple closed curves α on X (or over all simple
closed curves of some fixed topological type on X),
and ℓα(X) = |γ(α)|X is the length of the simple
closed geodesics γ(α,X) measured in the hyperbolic
metric of X . In particular, choosing the indicator
function of the interval [0;L] as f Maryam computes
the normalized averages

lim
L→+∞

1

Ld

∫

Mg,n

sX(L, type) dX =

=

∫

Mg,n

ntype(X) dX = c(type) .

The resulting values of c(type) are quite effective.
For example, Maryam proves that for surfaces in
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M2 the ratio (4) is equal to 6, that is non sepa-
rating simple closed curves (as in the picture with
different pairs of pants on a surface of genus two)
are six times more frequent than separating ones.

To prove asymptotical formulae for individual
hyperbolic surfaces, Maryam elegantly relates the
counting problems to the Thurston measure on the
space of measured laminations MLg,n and deduces
the desired results from ergodicity of the action of
the mapping class group on MLg,n with respect to
the Thurston measure proved by H. Masur in [Ma2].

2. Symplectic World

Witten’s Conjecture.

A hyperbolic metric on a surface defines a confor-
mal structure. Conformal structures on a surface are
in the natural one-to-one correspondence with com-
plex structures. This correspondence allows to iden-
tify the moduli space Mg,n of hyperbolic metrics of
constant negative curvature −1 with n cusps on a
closed surface of genus g with the moduli space of
closed Riemann surfaces (complex curves)C of genus
g with n distinct marked points. In this section we
use this latter interpretation of Mg,n. As before, we
assume that the marked points x1, . . . , xn ∈ C are
numbered.

For a “point” (C, x1, . . . , xn) ∈ Mg,n consider
the corresponding complex curve C and consider
the (co)tangent space to C at xi. Fixing the in-
dex i and varying (C, x1, . . . , xn) in Mg,n we get a
family of complex lines parameterized by “points”
(C, x1, . . . , xn) of the moduli space Mg,n. This fam-
ily carries a natural structure of a complex line bun-
dle over Mg,n. The resulting tautological bundle is
denoted by Li. (It has certain ressemblance with
the “tautological bundle” over the Grassmann man-
ifold.)

Allowing to Riemann surfaces get “pinched” along
short hyperbolic geodesics (in the language of com-
plex curves we allow them now to have simple self-
intersections) we get the Deligne–Mumford compact-
ification Mg,n of the initial moduli space. The
marked points x1, . . . , xn on degenerate Riemann
surfaces (i.e. on nodal curves) are required to stay
distinct from the singular points. Thus, the line
bundles Li initially defined over Mg,n extend natu-

rally to the compactified moduli space Mg,n. The

space Mg,n is a nice complex orbifold, so for any
i = 1, . . . , n one can define the first Chern class
ψi := c1(Li). Recall that the cohomology forms a
ring, so taking a product of k cohomology classes of
dimension 2 (as the first Chern class) we can inte-
grate the resulting cohomology class over a compact
complex manifold of complex dimension k. In par-
ticular, for any partition d1+ · · ·+dn = 3g−3+n of
dimC Mg,n = 3g−3+n into the sum of nonnegative

integers, one can integrate the product ψd1

1 · · · · ·ψdn
n

over the orbifold Mg,n. Formally speaking, we
should first pass to an appropriate finite cover of
Mg,n, which is already a manifold (and not just an
orbifold), and work there. By convention, the “inter-
section number” (or the “correlator” in the physical
context)

(5) 〈τd1
. . . τdn

〉g :=

∫

Mg,n

ψd1

1 . . . ψdn

n

is defined as the integral over the corresponding
cover (which is already an integer number) divided
by the degree of the cover. Thus, any such integral
is a rational number. It is convenient to extend the
definition to any collection of nonnegative integers
(d1, . . . , dn) defining the quantity (5) as zero when
d1 + · · · + dn 6= 3g − 3 + n. Also by convention
∫

M0,3
ψ0
1ψ

0
2ψ

0
3 = 1 meaning that the “integral” of a

scalar 1 over M0,3 (which is a single point) equals 1.
Since the roles of the different marked points

are completely symmetric, the intersection num-
bers (5) are invariant under any permutations of en-
tries (d1, . . . , dn). Hence, they depend only on the
number n0 of entries di equal to 0; number n1 of di
equal to 1, etc. For example,

〈τ1τ0τ0τ0〉0 = 〈τ0τ1τ0τ0〉0 = 〈τ0τ0τ1τ0〉0 =

= 〈τ0τ0τ0τ1〉0 = 〈τ30 τ1〉0 =

∫

M0,4

ψi for i = 1, 2, 3, 4 .

As always, when there are plenty of rational numbers
indexed by partitions or such, it is useful to wrap
them into a single generating function. Namely, let
us introduce formal parameters t1, t2, . . . and define
the following generating function

Fg(t0, t1, . . . ) :=
∑

n

∑

d1,...,dn

〈τd1
· · · τdn

〉g
td1

· · · tdn

n!
.

To get rid of any fear of Fg we suggest to the reader
to write the terms of F0 corresponding to n = 3, 4, 5
to obtain after simplification:

〈τ30 〉0
t30
3!

+ 〈τ30 τ1〉0
t30t1
3!1!

+ 〈τ40 τ2〉0
t40t2
4!1!

+ 〈τ30 τ21 〉0
t30t

2
1

3!2!
.

To somebody who has never seen generating func-
tions, the above manipulation might seem quite
bizarre. However, the language of generating func-
tions proves to be extremely convenient, especially
in combinatorics, and especially, in encoding the re-
currence relations and identities.

Now let us introduce one more formal variable λ
to wrap all these generating functions into one:

F :=

+∞
∑

g=0

λ2g−2Fg .

The resulting generating function is really fa-
mous. For physicists it is a partition function in
two-dimensional quantum gravity. In mathematical
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terms, E. Witten conjectured in 1991 certain recur-
sive formula for the numbers (5) and interpreted this
recursion in the form of KdV differential equations
satisfied by F . The conjecture attracted an explo-
sion of interest in mathematical community: a single
formula interlaced quantum gravity, algebraic geom-
etry, enumerative geometry, combinatorics, topol-
ogy, and integrable systems.

By now we have several proofs of Witten’s con-
jecture based on different ideas. One of them is
due to Maryam Mirzakhani [Mi1]. She has very ele-
gantly applied the technique of symplectic geometry
and topology to moduli spaces of bordered Riemann
surfaces Mg,n(L1, . . . , Ln) discussed in the previ-
ous section and recognized in coefficients Cα in for-
mula (2) for the volumes Vg,n(L) the intersection
numbers (5) (up to a routine normalization factor).
This allowed Maryam to reduce the recurrence re-
lations for the intersections numbers contained in
Witten’s formula to recurrence relations for the vol-
umes Vg,n(L) discussed above and thus prove Wit-
ten’s conjecture.

Historically, the first proof of Witten’s conjecture
is due to M. Kontsevich, who used ribbon graphs
as a “combinatorial model” of the moduli space
to express the intersection numbers (5) as a sum
over 3-valent ribbon graphs. He deduced that af-
ter an appropriate substitution the Witten’s gener-
ating function transforms into the matrix Airy func-
tion. Another proof was suggested by A. Okounkov
and R. Pandharipande [OP]; they used the Gromov–
Witten theory of P1 and Hurwitz numbers (the num-
bers of different ramified covers of a two-dimensional
sphere of a given ramification type). Hurwitz num-
bers are related to intersection numbers (5) by the
ELSV formula [ELSV]. An alternative proof based
on the ELSV-formula is due to M. Kazarian and
S. Lando [KaL].

To present the idea of Maryam’s proof of Wit-
ten’s conjecture we have to outline briefly the rel-
evant constructions from symplectic geometry and
topology.

Momentum map and symplectic reduction.

A symplectic manifold (M,ω) is a manifoldM en-
dowed with a closed non-degenerate 2-form ω. Here
non-degeneracy means that for any point x ofM and
for any nonzero tangent vector ~v ∈ TxM one can find
a tangent vector ~w ∈ TxM such that ω(~v, ~w) 6= 0.
Linear algebra tells us that any symplectic manifold
is necessarily even-dimensional, dimR M = 2k, and
that the top exterior power ωk of the symplectic form
is a non-degenerate volume form on M2k.

Suppose that the group of rotations S1 acts on
a symplectic manifold (M,ω), and that this action

preserves the symplectic form ω. For example, rota-
tions around the origine in R2 preserve the symplec-
tic form dx ∧ dy. The circle action gt, where t ∈ S1,
defines a vector field ~v := ġt onM . For example, the
group of rotations around the origine in R2 defines
the vector field y∂x − x∂y. The symplectic form ω
has two vectors as its arguments. Plugging the vec-
tor field ~v as the first argument of ω we get already a
1-form θ(·) := ω(~v, ·). It is immediate to check that
when the action of the group S1 preserves ω, the 1-
form θ is closed, dθ = 0. It might happen that θ is
not only closed, but exact, θ = dH . From now on we
consider only this particular situation. In our exam-
ple with the circle action on the symplectic R2 we get
H = (x2 + y2)/2 as such Hamiltonian. It is imme-
diate to check that the circle action gt preserves the
function H . The orbits of the action follow the level
hypersurfaces of H (in our example with symplectic
R2 they follow the level curves (x2 + y2)/2 = const
of the Hamiltonian H).

Consider a symplectic manifold (M,ω) endowed
with a circle action as above. Suppose that the map
H :M → R is proper and that some value, say, value
0 is a regular value of H . (In the way we present this
construction, the Hamiltonian H is defined up to an
additive constant anyway.) Then all values a of H
sufficiently close to 0 are also regular, and, hence,
all sets H−1(a) for |a| < ǫ carry the structure of
diffomorphic submanifolds.

In this sense, our example with the circle action
on the symplectic R2 does not fit: the value 0 is the
minimum of the Hamiltonian H = (x2 + y2)/2, so
it is the only critical value of H . All other values
are regular, and all other submanifolds H−1(a) are
pairwise diffeomomorphic: they are represented by
circles in R2.

Since the group S1 acts along the level hyper-
surfaces, we can consider the reduced spaces Ma :=
H−1(a)/S1. We claim without proof that under cer-
tain natural assumptions we get a family of (canon-
ically) diffeomorphic compact manifolds parameter-
ized by the real parameter a ∈]−ǫ,+ǫ[ such that each
of these manifolds is endowed with its own natural
symplectic form ωa. Though the manifolds Ma for
different a are diffeomorphic, the symplectic mani-
folds (Ma, ωa) are not symplectomorphic: the sym-
plectic structure varies when we vary a. It is known
that it varies linearly in the following sense.

Similar to a complex line bundle, any circle bun-
dle defines a characteristic class in the second integer
cohomology of the base. Denote by φ ∈ H2(M0;Z)
the characteristic class of the natural circle bundle

H−1(0)
S1−→M0.

Using the natural diffeomorphism M0 → Ma,
where a ∈] − ǫ,+ǫ[, induce the symplectic form ωa

from Ma to M0 and compare its cohomology class
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[ωa] with those of ω0. Symplectic topology tells us
that

[ωa] = [ω0] + a · φ .
In a slightly more general situation when we have

a Hamiltonian action of a torus Tn = S1×· · ·×S1 on
the initial symplectic manifold (M,ω) we can repeat
the above considerations line by line. The only dif-
ference is that instead of one Hamiltonian, we now
get n independent Hamiltonians, which we consider
as a single Hamiltonian H with values in Rn. (The
resulting map H : M → Rn is a particular case of
a moment or momentum map.) The reduced space
is now defined as the quotient Ma := H−1(a)/Tn.
Finally, the linear relation for the symplectic form
ωa on Ma, where ‖a‖ ≤ ǫ, takes the form

[ωa] = [ω0] +

n
∑

i=1

ai · [φi] ,

where [φ1], . . . , [φn] are characteristic classes on n
circle bundles over M0. An immediate corollary of
the above formula is the expression for the volume
of the compact symplectic manifold (Ma, ωa) for the
natural volume form ωa∧· · ·∧ωa. Let 2m := dimMa.
Then for ‖a‖ ≤ ǫ the volume Vol(Ma) is a polyno-
mial of degree m in a = (a1, . . . , an), namely

(6) Vol(Ma) :=

∫

Ma

(ω0 +
∑

aiωi)
m =

=
∑

|α|≤m

C(α) · aα ,

where the coefficients C(α) of the polynomial are
equal to the integrals

(7) C(α) = ccomb ·
∫

M0

φα1

1 · · ·φαn

n · ωm−|α|
0

(up to a very explicit combinatorial coefficient ccomb

equal to the product of the multinomial coefficient
in the power ωm

a and the combinatorial factor de-
pending on a convention in defnition of the wedge
power).

We admit that our presentation of the momentum
map is criminal in numerous aspects. It neither pro-
vides exact references, nor gives relevant names. It
hides the beautiful general construction of a Hamil-
tonian action of a Lie group G, and the important
fact that the momentum map, actually, takes values
in the dual g∗ of the corresponding Lie algebra g.
Our only excuse is the lack of space and abundance
of excellent expositions of this beautiful subject.

Back to the intersection theory.

Return now to the moduli space Mg,n(b) of hy-
perbolic metrics with n geodesic boundary compo-
nents on a closed surface of genus g. To follow
original notations of Maryam we denote in this sec-
tion the hyperbolic lengths of the geodesic bound-
ary components by b1, . . . , bn; they have exactly the

same meaning as Li = bi used in the previous sec-
tion. Consider some decomposition P of the under-
lying topological surface into pairs of pants. We have
seen, that each pants decomposition defines Fenchel–
Nielsen coordinates {ℓαi

, ταi
}, i = 1, . . . , 3g− 3+n,

on the Teichmüller space Tg,n(b), and that the Weil–
Peterson symplectic form ωWP on Tg,n(b) (which de-
scends to Mg,n(b)), has particularly simple form (1)
in the Fenchel–Nielsen coordinates.

We have also seen that any simple closed curve
α defines a natural one-parameter family of twist
deformations of the hyperbolic metric (see the pic-
ture with the family Yτ of hyperbolic surfaces glued
from two pairs of pants after a twist τ). In Fenchel–
Nielsen coordinates, the diffeomorphisms

twt,αi
: Tg,n(b) → Tg,n(b)

defined by the simple closed curves αi involved in the
pants decomposition has particularly simple form:
the coordinate τi is transformed to τi+ t, and all the
other coordinates remain unchanged. It is clear from
the coordinate representation of the Weil–Peterson
symplectic form ωWP that it is preserved under the
twists twt,αi

(X). This implies that the vector fields
defined by any 1-parameter family of twists along a
fixed simple closed curve is Hamiltonian.

Now everything is ready to present the chain of
elegant observations which allow to Maryam Mirza-
khani fit the framework of hamiltonian reduction.
Maryam passes from the moduli space Mg,n(b) to

a larger space M̂g,n. The 2n extra dimensions of
this larger space correspond to the following extra
parameters. Now she lets the hyperbolic lengths
bi = ℓβi

(X), of n boundary components vary for
i = 1, . . . , n. She also marks a point on each of
n boundary components, getting another n new pa-
rameters. The parameters bi are now allowed to take
any nonnegative values, where bi = 0 means that
the i-th boundary component is reduced to a cusp.
Letting a marked point on the geodesic boundary
turn around i-th boundary component Maryam gets
a natural circle action gt on this new space. The
action is nontrivial even when the boundary com-
ponent is a cusp: when the hyperbolic length of the
boundary component βi becomes too short, Maryam
starts to draw a canonically chosen curve around
it; this curve is endowed with a mark point shad-
owing the marked point on the boundary. When
the boundary component degenerates to a cusp, the
canonically chosen curve becomes a closed horocycle
around the cusp; this horocycle is endowed with a
marked point which thus survives under the degen-
eration of the boundary. Considering all n boundary
components Maryam gets the torus action of Tn on

M̂g,n.
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The next observation is that the space M̂g,n is en-
dowed with a natural symplectic form generalizing
the Weil–Peterson symplectic form (here Maryam
uses the result of S. Wolpert, who showed that ωWP

admits a smooth extension to Mg,n). By construc-
tion this new symplectic form is Tn-invariant. More-
over, the function

(8) ai(X) =
b2i
2

=
ℓ2βi

(X)

2
,

where bi = ℓβi
(X) is the hyperbolic length of the

i-th geodesic boundary component, is the Hamil-
tonian function for the corresponding circle action.
We are now in the framework of the previous sec-
tion. Considering the n-tuple of Hamiltonians for n
boundary components, Maryam obtains the Hamil-

tonian (momentum map) H on M̂g,n with values
in Rn

+ induced by the Hamiltonian torus action de-
fined above. Applying the hamiltonian reduction
as in the previous section she proves that each re-
duced space Ma =

(

H−1(a1, . . . , an)
)

/Tn is sym-

plectomorphic to Mg,n(b1, . . . , bn) (where ai and bi
are related by (8)). Applying formula (6) (where
an abstract manifold Ma becomes in our context
Mg,n(b1, . . . , bn) with ai and bi related by (8))
Maryam expresses the volume Vg,n(b1, . . . , bn) of

Mg,n(b1, . . . , bn) as a polynomial in squares of bi.
When

|α| = m =
1

2
dimR Mg,n(b) = 3g − 3 + n

the coefficients C(α) of the polynomial are expressed
by formula (7) as intersection numbers

(9) C(α) = ccomb ·
∫

M0

φα1

1 · · ·φαn

n

in terms of the characteristic classes φi of circle bun-
dles.

Now Maryam makes the last two crucial remarks.
Recall the definition of the tautological bundle Li

over Mg,n: the fiber of Li over X ∈ Mg,n is the
(co)tangent space to the Riemann surface X at the
marked point xi. Choosing an infinitesimal circle in
the corresponding (co)tangent space we get a circle
bundle over Mg,n. It is a standard fact that the
first Chern class ψi of the line bundle Li and the
characteristic class of the associated circle bundle
are the same. It remains to recognize in the newly
constructed circle bundle, the one which Maryam de-
fined above (by chopping the cusps of a hyperbolic
surface inMg,n(0, . . . , 0) at the level of a canonically
chosen horocycle around the cusp and by marking
a point on every such horocycle). In other words,
the characteristic classes φi in (9) coincide with the
tautological classes ψi in (5). The tie between the
volumes Vg,n(b) = VolMg,n(b) as in (2) and the in-
tersection numbers (correlators) 〈τd1

. . . τdn
〉g is es-

tablished. Now recall, that we have already seen

certain recursive relations for the volumes Vg,n(b)
proved by Maryam (see the short description in the
paragraph preceding the Theorem embodying for-
mula (2)). Since the intersection numbers are now
related to volumes, the recursion for volumes pro-
vides certain recursion for the intersection numbers.
Maryam proves that the latter recursion implies the
one encoded by Witten’s conjecture.

The recursive relation for the Weil–Peterson vol-
umes of the moduli spacesMg,n(b) and for the inter-
section numbers 〈τd1

. . . τdn
〉 obtained by M. Mirza-

khani can be seen as one of the first manifestations
of a new technique which got the name of topological
recursion and which proves to be extremely fruitful
in numerous other topics in mathematics and physics
(see survey [Ey] of B. Eynard for more details).

3. Flat World

Very flat surfaces.

Now we return from the hyperbolic and symplec-
tic worlds to the flat world discussed in the introduc-
tion. We have seen that to construct a hyperbolic
metric on a torus, we have to allow to the hyperbolic
metric to have a cusp. To construct a flat metric
on a surface of genus different from one we have to
allow to the flat metric to have several isolated con-
ical singularities. Actually, we consider only those
flat metrics which mimic a flat metric on a torus:
namely, a parallel transport in such very flat metric
of any tangent vector along any closed curve avoid-
ing singularities brings the vector to itself.

We ask the reader to believe that similar to the
torus case all such very flat surfaces can be obtained
by the following construction. Consider a collection
of vectors ~v1, . . . , ~vn in R2 and arrange these vectors
into a broken line. Construct another broken line
starting at the same point as the first one arranging
the same vectors in the order ~vπ(1), . . . , ~vπ(n), where
π is some permutation of n elements. By construc-
tion the two broken lines share the same endpoints;
suppose that they bound a polygon as in the pic-
ture. Identifying the pairs of sides corresponding to
the same vectors ~vj , j = 1, . . . , n, by parallel trans-
lations we obtain a closed topological surface.

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

C

By construction, the surface is endowed with a flat
metric. When n = 2 and π = (2, 1) we get a usual
flat torus glued from a parallelogram. For larger
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number of vectors we might get a surface of higher
genus, where the genus is determined by the per-
mutation π. It is convenient to impose from now on
some simple restrictions on the permutation π which
guarantee, in particular, non degeneracy of the sur-
face for an open set of parameters ~vi, see [Ma1]
or [Ve].

For example, a regular octagon gives rise to a sur-
face of genus two as illustrates the cartoon above.
Indeed, identifying pairs of horizontal and vertical
sides of a regular octagon we get a usual torus with
a hole in the form of a square. We slightly cheat in
the next frame, where we turn this hole by 45◦ and
only then glue the next pair of sides. As a result we
get a torus with two isolated holes as on the third
frame. Identifying the remaining pair of sides (which
represent the holes) we get a torus with a handle, or,
in other words, a surface of genus two.

Similar to the torus case, the surface glued from
the regular octagon also inherits a flat metric, but
now the resulting flat metric has a singularity at
the point obtained from identified vertices of the oc-
tagon.

Note that the flat metric thus constructed is, ac-
tually, very flat : since we identify the sides of the
polygon only by translations, the parallel transport
of any tangent vector along a closed cycle (avoiding
conical singularities) on the resulting surface brings
the vector back to itself. In other words, our flat
metric has trivial holonomy. In particular, since a
parallel transport along a small loop around any con-
ical singularity brings the vector to itself, the cone
angle at any singularity is an integer multiple of
2π. In the most general situation the flat surface
of genus g would have several conical singularities
with cone angles 2π(d1 + 1), . . . 2π(dm + 1), where
d1 + · · ·+ dm = 2g − 2. The picture below shows a
conical singularity with the cone angle 6π.

It is convenient to consider the vertical direction
as part of the structure. A surface endowed with a
flat metric with trivial holonomy and with a choice

of a vertical direction is called a translation sur-
face. Two polygons in the plane obtained one from
another by a parallel translation give rise to the
same translation surface, while polygons obtained
one from another by a nontrivial rotation (usually)
give rise to distinct translation surfaces.

We can assume that the polygon defining our
translation surface is embedded into the complex
plane C ≃ R2 with coordinate z. The translation
surface obtained by identifying the corresponding
sides of the polygon inherits the complex structure.
Moreover, since the gluing rule for the sides can be
expressed in local coordinates as z = z̃ + const, the
closed 1-form dz is well-defined not only in the poly-
gon, but on the surface. An exercise in complex
analysis shows that the complex structure extends
to the points coming from the vertices of the poly-
gon, and that the 1-form ω = dz extends to the
holomorphic 1-form on the resulting Riemann sur-
face. This 1-form ω has zeroes of degrees d1, . . . , dm
exactly at the points where the flat metric has coni-
cal singularities of angles 2π(d1+1), . . . , 2π(dm+1).

Reciprocally, given a holomorphic 1-form ω on a
Riemann surface one can always find a local coordi-
nate z (in a simply-connected domain not containing
zeroes of ω) such that ω = dz. Such coordinate is
defined up to an additive constant. It defines the
translation structure on the surface. Cutting the
surface along an appropriate collection of straight
segments joining conical singularities we can unwrap
the Riemann surface into a polygon as above.

This construction shows that the two structures
are completely equivalent: the structure of a flat
metric with trivial holonomy plus a choice of dis-
tinguished direction is equivalent to the structure of
a Riemann surface endowed with a holomorphic 1-
form.

Families of translation surfaces and dynam-

ics in the moduli space. The polygon in our con-
struction depends continuously on the vectors ~vi.
This means that the topology of the resulting trans-
lation surface (its genus g, the number and the types
of the resulting conical singularities) does not change
under small deformations of the vectors ~vi. For every
collection of cone angles 2π(d1 + 1), . . . , 2π(dm + 1)
satisfying d1 + · · ·+ dm = 2g − 2 with integer di for
i = 1, . . . , n, we get a family H(d1, . . . , dm) of trans-
lation surfaces. Vectors ~v1, . . . , ~vn can be viewed as
complex coordinates in this space, called cohomologi-
cal coordinates. These coordinates define a structure
of a complex orbifold on each space H(d1, . . . , dm).
We have to confess that the geometry and topology
of spaces of translation surfaces is not yet sufficiently
explored.

Readers preferring algebro-geometric language
may view a family of translation surfaces with fixed
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conical singularities 2π(d1 + 1), . . . , 2π(dm + 1) as
the stratum H(d1, . . . , dm) in the moduli space Hg

of all pairs (complex curve C; holomorphic 1-form ω
on C), where the stratum is specified by the degrees
d1, . . . , dm of zeroes of ω, satisfying d1 + · · ·+ dm =
2g−2. Note that while the moduli space Hg is a Cg-
bundle over the moduli space Mg, individual strata
do not carry a structure of a vector bundle over Mg.
For example, the minimal stratum H(2g − 2) has
complex dimension 2g, while the moduli space Mg

has complex dimension 3g − 3. The very existence
of a holomorphic form with a single zero of degree
2g − 2 on a complex curve C is a strong condition
on C.

To complete the description of the space of trans-
lation surfaces we need to present one more very im-
portant structure: the action of the group GL(2,R)
on Hg preserving strata. The description of this ac-
tion is particularly simple in terms of our polygonal
model Π of a translation surface S. A linear transfor-
mation g ∈ GL(2,R) of the plane maps the polygon
Π to a polygon gΠ. The new polygon again has all
sides arranged into pairs, where the two sides in each
pair are parallel and have equal length. We can glue
a new translation surface and call it g ·S. It is easy to
see that unwrapping the initial surface into different
polygons we get the same surface g · S. Note also,
that we explicitly use the choice of the vertical di-
rection: any polygon is endowed with an embedding
into R2 defined up to a parallel translation.

The subgroup SL(2,R) ⊂ GL(2,R) preserves the
flat area. This implies, that the action of SL(2,R)
preserves the real hypersurface H1(d1, . . . , dm) of
translation surfaces of area one in any stratum
H(d1, . . . , dm). The codimension-one subspace
H1(d1, . . . , dm) can be compared to the unit sphere
(or rather to the unit hyperboloid) in the ambient
stratum H(d1, . . . , dm).

Recall that under appropriate assumptions on the
permutation π, the n vectors

~v1 =

(

v1,x
v1,y

)

. . . , ~vn =

(

vn,x
vn,y

)

as in the picture with a polygon define
local coordinates in the embodying family
H(d1, . . . , dm) of translation surfaces. Let dν :=
dv1xdv1y . . . dvnxdvny be the associated volume
element in the corresponding coordinate chart
U ⊂ R2n. It is easy to verify, that dν does not
depend on the choice of “coordinates” ~v1, . . . , ~vn,
so it is well-defined on H(d1, . . . , dm). Similarly to
the case of the Euclidian volume element, we get a
natural induced volume element dν1 on the unit hy-
perboloid H1(d1, . . . , dm). A simple exercise shows
that the action of the group SL(2,R) preserves the
volume element dν1.

The following Theorem proved independently
and simultaneously by H. Masur [Ma1] and
W. Veech [Ve] is the keystone of the theory of flat
surfaces.

Theorem (H. Masur; W. A. Veech). The total vol-
ume of every stratum H1(d1, . . . , dm) is finite.

The group SL(2,R) and its diagonal subgroup act
ergodically on every connected component of every
stratum H1(d1, . . . , dm).

Here “ergodically” means that any measurable
subset invariant under the action of the group has
necessarily measure zero or full measure. Ergodic
theorem claims that in such situation the orbit of
almost every point homogeneously fills the ambient
connected component. In plain terms, the ergodic-
ity of the action of the diagonal subgroup implies, in
particular, the following. Having almost any poly-
gon as above, we can choose appropriate sequence
of times ti such that contracting the polygon hori-
zontally with a factor eti and expanding it vertically
with the same factor eti and modifying the resulting
polygonal pattern of the resulting translation surface
by an appropriate sequence of cut-and-paste trans-
formations we can get arbitrary close to, say, regular
octagon rotated by any angle chosen in advance.

−→ =

Philosophy of “almost all” versus “all”.

Even for those classes of dynamical systems which
are sufficiently well understood, the only kind of
predictions of “what would happen after sufficiently
long time” always contain some version of the word
“typically” usually meaning “for a full measure set
of initial data”. The trouble (which, depending on
the taste, might be considered as an advantage: “do
not get distracted by details”) is that even for those
dynamical systems which are very well studied, and
where one knows, basically, everything about “typ-
ical behavior” of trajectories, one can say almost
nothing about behavior of any concrete particular
trajectory: there is no way to tell, whether your
particular starting data are “typical” or not. If you
repeat thousands of experiments with random start-
ing data and you want to establish some statistics,
you do not care about rare nontypical fluctuations.
But if you are interested in the future of some very
special asteroid B612, and only by this, most of the
methods of dynamical systems become completely
useless for you.
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The difficulty is conceptual; it is neither related
to lack of knowledge at the current state of develop-
ment of mathematics, nor to the presence of noise,
or friction, etc in realistic dynamical systems. Even
for absolutely deterministic systems, and even as-
suming all necessary mathematical abstractions like
absence of any noise or friction, the trouble persists.
The reason is that for the vast majority of dynam-
ical systems (including very smooth and nice ones)
certain individual trajectories might be extremely
sophisticated: they can cover extremely fractal sets
on a large scale of time.

For example, the map f : x 7→ {2x} homoge-
neously twisting the unit circle S1 = R/Z twice
around itself has orbits filling Cantor sets of, ba-
sically, arbitrary Hausdorff dimension between zero
and one; has nonclosed orbits avoiding certain arcs
of the circle, etc. In other words, this extremely
nice map, clearly, has trajectories with very peculiar
properties. All these properties become much more
visible using the binary representation of a real num-
ber x ∈ [0, 1[ instead of the usual decimal one. If

x =
n1

2
+ · · ·+ nk

2k
+ · · · ,

where all binary digits nk are zeroes or ones, then
the map f acts on the sequence (n1, n2, . . . , nk, . . . )
by erasing the first digit. (This operation on the
space of semi-infinite sequences of zeroes and ones is
called the Bernoulli shift).

The geodesic flow on any compact Riemann sur-
face of constant negative curvature has similar be-
havior. It was observed long ago by H. Furstenberg
and B. Weiss that the closures of individual trajecto-
ries might have arbitrary (or almost arbitrary) Haus-
dorff dimension in the range from 1 (closed trajec-
tories) to 3 (typical trajectories).

A straight-line flow on a torus Tn = Rn/Zn is an
example of a (very rare) dynamical system, where
the closure of any orbit is a nice submanifold. Let
~V = (V1, . . . , Vn) denote the direction of the flow.

The closure of any trajectory in direction ~V is a sub-
torus Tk, where 1 ≤ k ≤ n is the degree of irrational-
ity k = dimQ{V1, . . . , Vn} of the direction. Say, in
the particular case of a two-dimensional torus, when
n = 2, all trajectories of the flow in a rational direc-
tion are already closed — they are circles S1 = T1,
and the closure of any trajectory of the flow in an
irrational direction is the entire torus T2. Actually,
this is not surprising at all: torus is a homogeneous
space, and the group of automorphisms of the torus
preserving the flow acts transitively on the torus.

In a sense, up to know, there was only one known
class of dynamical systems, for which one could find
the closure of any single trajectory, and for which
all possible closures were described by a short list
of possible simple cases like in the example above.

This class is restricted to certain very special dy-
namical systems in homogeneous spaces. One of
the key statements in this theory was proved by
Marina Ratner; extremely important contributions
to this theory as well as fantastic applications to
the number theory, were developed by S. G. Dani,
G. Margulis, and by other great mathematicians, in-
cluding A. Eskin, S. Mozes, and N. Shah. The scale
of applications of this theory to different areas of
mathematics continues to extend. Indeed, homoge-
neous spaces naturally appear in various domains of
mathematics. (Both the theory and the list of ma-
jor contributors merit a separate paper rather than
a short paragraph.)

Magic Wand Theorem.

Now everything is ready to present the result of
Alex Eskin and Maryam Mirzakhani [EMi] (incor-
porating the joint results of these authors and of
Amir Mohammadi [EMiMh]).

It is known that the moduli space is not a homo-
geneous space. Nevertheless, the theorem stated be-
low proves that the orbit closures of GL(2,R) in the
space of translation surfaces are as nice as one can
only hope: they are complex manifolds possibly with
very moderate singularities (i.e. they are complex
orbifolds). In this sense the action of the GL(2,R)
and of SL(2,R) on the space of translation surfaces
mimics certain properties of the dynamical systems
in homogeneous spaces mentioned at the end of the
previous section.

Theorem ([EMi], [EMiMh]). The closure of any
GL(2,R)-orbit is a complex suborbifold (possibly
with self-intersections); in cohomological coordinates
~v1, . . . , ~vn in the ambient space H(d1, . . . , dm) of
translation surfaces it is locally represented by an
affine subspace.

Any ergodic SL(2,R)-invariant measure is sup-
ported on a suborbifold. In coordinates ~v1, . . . , ~vn
this suborbifold is represented by the intersection of
H(d1, . . . , dm) with an affine subspace, and the in-
variant measure is induced from the usual affine
measure to this intersection.

As a vague conjecture (or, better say, as a very op-
timistic dream) these properties were discussed since
long ago, and since long ago, there was not a slight-
est hint for a general proof. The only exception
is the case of surfaces of genus two, for which ten
years ago C. McMullen proved a very precise state-
ment [McM1] classifying all possible orbit closures.
He used, in particular, the hard artillery of Ratner’s
results which are applicable here. However, the the-
orem of McMullen is based on very special properties
of surfaces of genus two, which do not generalize to
higher genera.
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The proof of Alex Eskin and of Maryam Mirza-
khani is a titanic work which took many years. It ab-
sorbed numerous fundamental developments in dy-
namical systems which do not have any direct re-
lation to moduli spaces. To mention only a few,
it incorporates certain ideas of low entropy method
of M. Einsiedler, A.Katok, E. Lindenstrauss; results
of G. Forni and of M. Kontsevich on Lyapunov ex-
ponents of the Teichmüller geodesic flow; the ideas
from the works of Y. Benoit and J.-F. Quint on
stationary measures; iterative improvement of the
properties of the invariant measure inspired by the
approach of G. Margulis and G. Tomanov to the
actions of unipotent flows on homogeneous spaces;
some fine ergodic results due to Y. Guivarch and
A. Raugi.

Applications.

What can we do now, when this theorem is
proved? For example, in certain situations this the-
orem works really like a Magic Wand, which allows
to touch any given billiard in certain class of bil-
liards and in theory (and more and more often in
practice) find the corresponding orbit closure in the
moduli space of translation surfaces. The geometry
of this orbit closure tells you, basically, everything
you want to know about the initial billiard.

Consider, for example, the following windtree
model introduced by physicists P. and T. Ehrenfest
more than a century ago [Eh]. We study the bil-
liard in the plane filled periodically with the identical
rectangular obstacles as in the picture. A trajectory
might go far away, then return relatively close back
to the starting point, then make other long trips.
The diffusion rate ν describes the average rate T ν

with which the trajectory expands in the plane on a
long range of time T ≫ 1. More formally,

ν := lim
T→∞

log(diameter of trajectory of length T )

logT
.

For the usual random walk in the plane, or for a
billiard with periodic circular obstacles the diffusion
rate is known to be 1/2: the most distant point of a
piece of trajectory corresponding to segment of time
[0, T ] would be located roughly at a distance

√
T .

V. Delecroix, P. Hubert, and S. Lelièvre have re-
cently showed that for the windtree model as in the
picture the diffusion rate is 2/3. They used combi-
nation of methods of dynamics in the moduli space
and several extremely lucky coincidences.

Now, due to the work of Eskin, Mirzakhani, and
Mohammadi, one gets a feeling that a Magic Wand
about which you dreamed reading “Cinderella”, be-
came an every day tool accessible at a department
store. Moreover, it gets enhanced every month
by new results like those of A. Avila, M. Möller,
A. Eskin [AEMö] J. Chaika and A. Eskin [CkE],
S. Filip [Fi1], A. Write [Wr1].

You want to find diffusion rate for generalized
wind-tree model with periodic scatterers of the shape
of a more complicated rational polygon? To perform
this task you proceed as follows. Replace the peri-
odic billiard with an associated compact flat surface.
Touch it with the MagicWand of Eskin–Mirzakhani–
Mohammadi and find its SL(2,R)-orbit closure in
the space of flat surfaces. Run the geodesic flow
to compute the mean monodromy (Lyapunov expo-
nents) of the appropriate block of the complex Hodge
bundle, and you are done.

To be honest, in full generality, this strategy is
a new dream (though in some situations it already
works perfectly well [DZ]). We do not have yet a
classification of SL(2,R)-invariant orbifolds except
for genus two. This is a next challenging problem
which might be full of mysteries and marvels as in-
dicate most recent results of M. Mirzakhani and of
A. Write, who have recently found an invariant sub-
orbifold of completely enigmatic origin in the stra-
tum H(6) (see [Wr2]).

One should not have an impression that the the-
ory developed by A. Eskin, M. Mirzakhani, A. Mo-
hammadi and other researchers in this area is de-
signed to serve billiards. A billiard in a polygon is
just a cute way to describe certain class of dynam-
ical systems; the same kind of dynamical systems
appear in solid state physics, in conductivity theory,
in the theory of surface foliations. (For more ample
presentation of the context and of the applications
of the Magic Wand Theorem, see [Zor])

The result of A. Eskin and M. Mirzakhani also
opens a new way to study moduli spaces. We do not
know yet all possible applications of the Magic Wand
Theorem which might be obtained in this direction.

The integral calculus was partly developed by Ke-
pler (a century before Newton and Leibniz) in order
to measure the volume of wine barrels. Who could
imagine at that time that volume of a solid of revo-
lution would be discussed in any textbook of math-
ematics for beginners and that the integral calculus
would become an essential part of all contemporary
engineering. The theorem proved by Alex Eskin and
Maryam Mirzakhani is so beautiful and powerfull
that, personally, I have no doubt that it would find
numerous applications far beyond our current imag-
ination.
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