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Introduction by the Organisers

The workshop Flat surfaces and Dynamics on moduli space brought together over
53 participants, many of them very young and active. (We did not take statistics,
but we believe the average age of the participants to be below 35.) This area is
currently extremely active. There were a number of major results presented at the
conference that were obtained less than five months since the previous conference
on a similar subject at ICERM (Providence). This included the example of a
new GL2(R)-invariant suborbifold of an absolutely mysterious origin found by
Mirzakhani and Wright, and a strategy for proving the existence (and, actually,
genericity) of infinite cyclic Veech groups presented by Hamenstädt.

The background and topics of this workshop included dynamical systems, geo-
metric topology, and algebraic geometry, as reflected in the following summary of
some of the main lines of research.

The description of orbit closures of various flows on the moduli spaces is a guid-
ing problem in this field. Major progress has been made in this direction recently.
The talks of Aulicino, Bainbridge, Filip, Mohammadi, Nguyen and Wright pre-
sented progress on the SL2(R)-orbit closures. Smillie and Weiss reported on the
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corresponding problem for the horocycle flow. Counting problems on billards and
the connection to intersection theory on moduli spaces were addressed by Athreya,
Chen, Goujard, and Zograf.

The geometry of individual flat surfaces is also an active topic, both from the
viewpoint of dynamics (as reported by Chaika, Lelièvre) and group theory (see
the talks on Veech groups by Lehnert, Weitze-Schmitthüsen). The dynamics of
translation surfaces of infinite type is a new branch in this field and has developed
recently. Progress in this direction was reported on by Hooper, Treviño, and
Valdez.

Ties with algebraic geometry varying from Shimura curves to p-adic origamis
were discussed by Grushevsky, Herrlich, Kappes, Mondello, and Mukamel. The
talks of Delecroix, Eskin, Fei Yu, Hubert were devoted to various aspects of the
study of the Lyapunov exponents of the Hodge bundle and dynamical Hodge de-
composition: from the relation to the Harder–Narasimhan filtration to applications
to windtree billiards.

Talks in the conference unified the dynamical counterparts of such subjects as
multidimensional diophantine approximations and random walks on groups as in
the talks of Bufetov, Cheung, Gouëzel, to the geometric ones such as the counting
of closed geodesics and study of nonclosed geodesics in the moduli space, and
evaluating the lengths of the corresponding systols. These latter subjects were
discussed in the talks of Boissy, Hamenstädt, and Lenzhen.

There was a broad variety of techniques in the presentations including a beau-
tiful artistic movie of Davis using dancing to illustrate the cutting sequences of
the flow in the double pentagon and multi-zooming software used by Athreya.

We have extraordinarily strong women colleagues in our area. Eight of them
participated in the conference; the results of those who were unable to come, such
as Maryam Mirzakhani, were presented by their collaborators.

The participants intensely discussed mathematics and worked between the talks
and in the evenings. We expect to see many new results to soon emerge from these
discussions.
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Abstracts

Invariant measures for Linear Cocycles

Alex Eskin

(joint work with Christian Bonatti, Amie Wilkinson)

Let G denote the group SL(2,R). (The results in this note apply to actions of
any semisimple group with finite center, but since all of our applications involve
SL(2,R) we will restrict ourselves to that case). Let

gt =

(

et 0
0 e−t

)

, U+ =

(

1 ∗
0 1

)

, U− =

(

1 0
∗ 1

)

,

and let A = {gt : t ∈ R}, P = AU+.
In this paper, we consider the following situation. Suppose G acts on a space

X , preserving a measure ν. (In fact, we may relax the assumption that ν is G-
invariant: some sort of product structure is enough). We will always assume that
ν is ergodic with respect to the action of G. Let H be a vector space, and let
α : G×X → GL(H) be a linear cocycle over the action of G, i.e α is a measurable
map satisfying

α(g1g2, x) = α(g1, g2x)α(g2, x) for all g1, g2 ∈ G and ν-almost-all x ∈ X .

Then G acts on X ×H via

(1) g(x,v) = (gx, α(g, x)v).

We think of X ×H as a bundle over X , and denote the fiber over x ∈ X (which
is isomorphic to H) by H(x). We denote the action of g ∈ G on H(x) by (g)∗, so
for v ∈ H(x), (g)∗v ∈ H(gx).

The Osceledets multiplicative ergodic theorem states that for ν-almost every
x ∈ X there exists a gt-equivariant splitting

(2) H(x) =

m
⊕

j=1

Vj(x),

and real numbers λ1 > · · · > λm (called the Lyapunov exponents of α) such that
for v ∈ Vj(x),

lim
|t|→∞

1

t
log

‖(gt)∗v‖
‖v‖ = λj .

Definition 1 (ν-measurable almost invariant splitting). We say that the cocycle
α : G×X → H has a ν-measurable almost invariant splitting if there exists n > 1
and for ν-a.e x ∈ there exist nontrivial subspaces W1(x), . . . ,Wn(x) ⊂ H(x) such
that Wi(x) ∩Wj(x) = {0} for 1 ≤ i < j ≤ n and also for a.e g ∈ G and ν-a.e.
x ∈ X,

α(g, x)Wi(x) =Wj(gx) for some 1 ≤ j ≤ n .

The map x→ {W1(x), . . . ,Wn(x)} is required to be ν-measurable.
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We note that the splitting (2) does not satisfy the conditions of Definition 1
since the Vj are (in general) equivariant only under gt, and not under all of G.

Definition 2 (Strongly irreduclible cocycle). A cocycle α : G×X → H is strongly
irreducible with respect to the measure ν if is does not admit a ν-measurable almost
invariant splitting (as in Definition 1).

Let P1(H) be the projective space of H (i.e. the space of lines in H). Then
G also acts on X × P1(H) via the formula (1). The space X × P1(H) may not
support a G-invariant measure, but since P is amenable and P1(H) is compact,
it will always support a P -invariant measure. In particular, for any P (or G)
invariant measure ν on X , there will be a P -invariant measure ν̂ on P1(H) which
projects to ν under the natural map X × P1(H) → X .

We can now state our main theorem.

Theorem 3. Suppose G acts on X preserving an ergodic measure ν, and suppose
α : G × X → GL(H) is a strongly irreducible cocycle. Let ν̂ be any P -invariant
measure on X × P1(H) which projects to ν. Then, if we disintegrate

dν̂(x,v) = dν(x) dηx(v),

then the measures ηx on P1(H)(x) are in fact supported on P1(V1)(x) where as in
(2), V1(x) is the Lyapunov subspace corresponding to the top Lyapunov exponent
of α. In particular, if V1 is one-dimensional, ν̂ is unique.

Flat surfaces and strata. Suppose g ≥ 1, and let β = (β1, . . . , βm) be a
partition of 2g − 2, and let H(β) be a stratum of Abelian differentials, i.e. the
space of pairs (M,ω) whereM is a Riemann surface and ω is a holomorphic 1-form
on M whose zeroes have multiplicities β1 . . . βm. The form ω defines a canonical
flat metric on M with conical singularities at the zeros of ω. Thus we refer to
points of H(β) as flat surfaces or translation surfaces. For an introduction to this
subject, see the survey [Zo2].

Affine measures and manifolds. Let H1(β) ⊂ H(β) denote the subset of
surfaces of (flat) area 1. There exists an natural SL(2,R) action on H1(β) which
has been studied extensively.

An affine invariant manifold is a closed subset of H1(β) which is invariant under
the SL(2,R) action and which in period coordinates (see [Zo2, Chapter 3]) looks
like an affine subspace. Each affine invariant manifold M is the support of an
ergodic SL(2,R) invariant probability measure νM. Locally, in period coordinates,
this measure is (up to normalization) the restriction of Lebesgue measure to the
subspace M, see [EMirz] for the precise definitions. It is proved in [EMM] that
the closure of any SL(2,R) orbit is an affine invariant manifold; this is analogous
to one of Ratner’s theorems in the theory of unipotent flows. (In genus 2, this
result was previously proved by McMullen [McM]).

We will need the following:

Theorem 4 ([EMM, Theorem 2.3]). Let Nn be a sequence of affine manifolds, and
suppose νNn

→ ν. Then ν is a probability measure. Furthermore, ν is the affine
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measure νN , where N is the smallest submanifold with the following property:
there exists some n0 ∈ N such that Nn ⊂ N for all n > n0.

In particular, the space of ergodic P -invariant probability measures on H1(β) is
compact in the weak-star topology.

The Kontsevich-Zorich cocycle. We consider the Hodge bundle whose
fiber above the point (M,ω) is the cohomology group H1(M,R) (viewed as a 2g-
dimensional real vector space). If we choose a fundamental domain for the action
of the mapping class group Γ, then we have the cocycle α̃ : SL(2,R)×H1(β) → Γ
where for x in the fundamental domain, α̃(g, x) is the element of Γ needed to return
the point gx to the fundamental domain. Then, we define the Kontsevich-Zorich
cocycle α(g, x) by

α(g, x) = ρ(α̃(g, x)),

where ρ : Γ → Sp(2g,Z) is the homomorphism given by the action on homology.
The Kontsevich-Zorich cocyle can be interpreted as the monodromy of the Gauss-
Manin connection restricted to the orbit of SL(2,R), see e.g. [Zo2, page 64].
Recent papers in which the Lyapunov spectrum of the Kontsevich-Zorich cocyle
over affine measures plays a major role include [Au1], [Au2], [Ba1], [Ba2], [BM],
[CM1], [CM2], [DM], [EKZ], [EKZ2], [EMat], [Fo2], [F3], [FM], [FMZ1], [FMZ2],
[FMZ3], [KZ1], [GH1], [GH2], [Ma], [MY], [MYZ], [MMY], [Mö], [T] and [W].

The following theorem answers a question asked in [MMY].

Theorem 5. Let Nn be a sequence of affine manifolds, and suppose the affine
measures νNn

converge to the (affine) measure ν (as in Theorem 4). Then the
Lyapunov exponents of νNm

converge to the Lyapunov exponents of ν.

The proof of Theorem 5 depends on Theorem 3 and the following theorem of
S. Filip:

Theorem 6 ([Fi]). Let α(·, ·) denote (some exterior power of) the Kontsevich-
Zorich cocycle restricted to an affine invariant submanifold M. Let νM be the
affine measure whose support is M, and suppose α has a νM-measurable almost-
invariant splitting. Then, the subspaces Wi(x) in Definition 1 can be taken to
depend continuously on x ∈ M.

In fact it is proven in [Fi] that the dependence of the Wi(x) on x is polynomial
in the period coordinates.

Simplicity of Lyapunov Spectrum of Teichmüller curves. Recall that a
Teichmüller curve is a closed SL(2,R) orbit on H1(β). Teichmüller curves (which
are submanifolds of real dimension 3) are the smallest possible affine manifolds;
any other type affine manifold has dimension greater than 3.

As a consequence of some recent results, we obtain the following:

Theorem 7. All but finitely many Teichmüller curves in H(4) have simple Lya-
punov spectrum.

Theorem 7 was shown in [MMY] to follow from a conjecture of Delecroix and
Lelièvre (stated in [MMY]). Our proof below is unconditional; however it is much
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less explicit and is completely ineffective. It also depends on the very recent results
of Filip [Fi] and Nguyen-Wright [NW].

Proof of Theorem 7. Suppose there exist infinitely many Teichmüller curves
Nn ⊂ H1(4) with multiplicities in the Lyapunov spectrum. By Theorem 4, the Nn

have to converge to an affine manifold N (in the sense that the affine measures νNn

will converge to the affine measure νN ). Furthermore, N cannot be a Teichmüller
curve (since by Theorem 4, N must contain all the Nn for n sufficiently large, and
thus dimN > 3). By the main theorem of [NW], the only affine submanifolds of
H1(4) which are not Teichmüller curves are the connected componentsH(4)odd and
H(4)hyp and the Prym locus. But, by by [AV], all of these have simple Lyapunov
spectrum. This contradicts Theorem 5. �
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Is there a p-adic Wollmilchsau?

Frank Herrlich

The aim of this talk was to introduce a p-adic analogue of a special class of trans-
lation surfaces, namely origamis (or square-tiled surfaces). We want to know for
which origamis such a p-adic analogue exists; specifically we ask this question for
a prominent member of this class, the so called “Eierlegende Wollmilchsau” [2].

An origami is a (usually singular) translation surface which can be obtained by
gluing finitely many squares. Equivalently it is a finite covering π : X → E of
compact Riemann surfaces where E is a torus and π is ramified over at most one
point (the image of the vertices of the squares). Recalling the equivalence between
compact Riemann surfaces and complex projective nonsingular curves this defini-
tion carries over to arbitrary fields.

Let now K be a p-adic field, which in this talk means a field extension of Qp which
is contained in Cp.

The theory of rigid analytic spaces which is based on the Tate algebra of con-
vergent power series and the concept of affinoid domains endow every algebraic
variety X with an analytic structure (called Xan); in particular it provides us with
a p-adic analogue of a compact Riemann surface:

Definition/Theorem. A projective nonsingular curveX overK is called aMum-
ford curve if one of the following equivalent conditions holds:
(i) There is a subgroup G ⊂ PGL2(K) acting discontinuously on some open do-
main Ω ⊂ P1(K) such that Xan ∼= Ω/G.
(ii) Xan can be covered by finitely many “disks with holes”, i. e. subdomains of
K of the form “large disk minus finitely many disks of smaller radius”.
(iii) The reduction mod p of X is totally degenerate.

Here the reduction of X is a projective curve X̄ over the residue field of K; in a
first approximation it is the variety defined by reducing mod p the coefficients of
the equation defining X . X̄ is totally degenerate if all its irreducible components
are rational.

Now we can define the key notion of this talk:

Definition. A p-adic origami over K is a covering π : X → E of Mumford curves
over K such that E is of genus 1 and π is ramified over at most one point.
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Any complex origami O = (π : X → E) defines a Teichmüller curve CO in the
moduli spaceMg, where g is the genus of X . The curve CO contains points defined
over a number field, more precisely points corresponding to a covering which has a
model π0 : X0 → E0 over a number field F . Since F is also contained in the p-adic
field Q̄p, we can tensor the model with Q̄p and obtain a covering πp : Xp → Ep of
curves over Q̄p, and we can ask whether this is a p-adic origami.

More conceptually it is known that the curve CO is defined over a number field
F , i. e. is obtained from a curve CO,0 in Mg(F ) by tensoring with C. Then the
question whether O defines a p-adic origami can be formulated as follows:

Question. Given an origami O, does CO,p = CO,0 ⊗ Q̄p intersect the locus of
Mumford curves in Mg(Q̄p)?

It should be noted that, due to a result of Lütkebohmert [4], a Teichmüller curve
cannot completely be contained in the locus of Mumford curves. On the other
hand, this locus is an analytically open subset, thus in particular of the full di-
mension 3g − 3.

The main tool to answer the above question for a specific origami is the follow-
ing result of K. Kremer which provides a complete classification of normal p-adic
origamis:

Theorem. ([3], Thm. 5.1) Any normal p-adic origami is of the form Ω/Γ → Ω/G
where G is a discontinuous subgroup of PGL2(K) which is generated by a finite
noncyclic group D and a hyperbolic element γ with a relation γσγ−1 = σ̃ for two
(not necessarily distinct) elements σ, σ̃ ∈ D; moreover Γ is a normal free subgroup
of G of finite index.

For p > 5, the only candidates for D are the dihedral groups Dn (for n ≥ 3), and
the tetrahedral group A4; for p ∈ {2, 3, 5} there are a few more possible groups.
Note that, since Γ is normal and free, the quotient homomorphism ρ : G → G/Γ
must be injective on D. Using this observation we obtain the answer to the ques-
tion in the title as a corollary to Kremer’s theorem:

Corollary. The Teichmüller curve defined by the Wollmilchsau does not contain
p-adic origamis (for any prime p).

Proof. Recall that the Wollmilchsau is the normal origami W = (π : X → E)
of degree 8 with Galois group Q8, the quaternion group of order 8. This group
consists of 6 elements of order 4 and one element of order 2, which is the square
of every element of order 4. Thus Q8 has no proper noncyclic subgroup, and it
is itself not isomorphic to a subgroup of PGL2(K) (not even for p = 2). On the
other hand, if W would induce a p-adic origami, the finite noncyclic group D in
the theorem would have to be isomorphic to a subgroup of G/Γ; we have seen that
this is impossible.

More details and explicit examples of p-adic origamis can be found in the survey
article [1] and in Kremer’s paper [3].
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Critical Exponents and Schreier Graphs of Veech Groups

Ralf Lehnert

Veech groups are discrete subgroups of SL2(R) assigned to translation surfaces.
Hence they act by Moebius transformations on the hyperbolic plane H and are
called Fuchsian groups. For a Fuchsian group Γ the Γ-orbit of any base point in
H accumulates only at the boundary ∂H. The set of these accumulation points is
called the limit set Λ(Γ) and Fuchsian groups can be characterized by its size. If
Λ(Γ) is finite, the group is called elementary, otherwise non-elementary. A non-
elementary group is either of the first kind or of the second kind if the limit set is the
whole boundary or not, respectively. A refinement of this classification is achieved
by considering the critical exponent δ(Γ) := inf{a ∈ R | ∑γ∈Γ e

−aρ(i,γi) < ∞},
where ρ denotes the hyperbolic metric on H.

While the critical exponent of elementary groups is at most 1
2 the critical ex-

ponent of finitely generated Fuchsian groups of the first kind is exactly 1. It is
well-known that finitely generated Fuchsian groups of the first kind have finite
co-volume and thus are lattices. Translation surfaces having a lattice Veech group
are called Veech surfaces. The main result of the talk is the following:

Theorem 1. There exist translation surfaces, whose Veech group has critical ex-
ponent strictly between 1

2 (maximal critical exponent of elementary groups) and 1
(critical exponent of lattices).

Since there is no translation surface known having a Veech group of the second
kind the natural candidates for the theorem are the infinitely generated Veech
groups of the first kind. Translation surfaces with such Veech groups are con-
structed by McMullen ([1]) and independently by Hubert and Schmidt ([2]). We
will concentrate on the second mentioned approach. Hubert and Schmidt looked
at special points on the surface: a point P such that all geodesics emanating from
a singularity and passing through P will end in a singularity is called a connec-
tion point. They proved that the Veech group of a translation cover of a Veech
surface X ramified over the singularities and a non-periodic connection point P is
infinitely generated of the first kind. We will denote the lattice Veech group of X
by Γ.

A result of Gutkin and Judge ([3]) implies that this Veech group is commensu-
rable to Π := StabΓ(P ). Commensurable groups have the same critical exponent.
This is why we want to estimate δ(Π).
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Figure 1. The root-looped 4-valent tree.

For the lower bound we observe that the property of the connection point
guarantees that there are many parabolic elements in Π. By [4] the existence of a
parabolic element and the fact that Π is non-elementary is sufficient for δ(Π) > 1

2 .
Using graph-periodic manifolds Roblin and Tapie ([5]) find a criterion for the

upper bound: if the Cheeger constant c(G) of the Schreier graph G of Π\Γ is
strictly positive, then δ(Π) < 1.

The Cheeger constant of a graph G with vertex set V is defined as c(G) :=

inffiniteM⊂V (
||∂M||
||M|| ).

In our situation the vertices of the Schreier graph can be identified with the
points of the Γ-orbit of P . We analyze translation coverings of translation surfaces
L obtained from L-shaped polygons by identifying opposite sides ramified over the
one singularity of L and a fixed connection point P . In [6] McMullen showed that
for particular side lengths these surfaces are Veech surfaces and every Veech surface
of genus 2 with one singularity up to the action of GL2(R) is of this form. We
prove 1 by proving that the Schreier graph of Π\Γ in this case indeed has strictly
positive Cheeger constant. This is done in 4 steps:

(1) choose a finite generating set S of Γ containing large powers of the vertical
and horizontal parabolic elements: Ak, Bl ⊂ S

(2) remove all edges but the edges corresponding to the elements Ak or Bl.
(3) Since this graph is no longer connected observe:

c(G) = inf{c(C) | C connected component of G}.
(4) define a complexity function on points of ΓP (= on the vertices) to prove

that every connected component either is the infinite 4-valent tree or the
root-looped 4-valent tree illustrated in Figure 1. Since both these graphs
have Cheeger constant 2

3 this finishes the proof.

More details to this talk can be found in my dissertation or in [7]
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Totally non-congruence Veech groups in H(4)

Gabriela Weitze-Schmithüsen

We study the Veech groups of a special class of translation surfaces called square-
tiled surface or origamis. They are always subgroups of SL(2,Z) of finite index.
How far are they from being a congruence group? Recall that a subgroup Γ of
SL(2,Z) is a congruence group of level l if and only if the natural morphism
pl : SL(2,Z) → SL(2,Z/lZ) preserves the index, i.e. [SL(2,Z) : Γ] = [SL(2,Z/lZ) :
pl(Γ)]. For a general subgroup Γ of SL(2,Z) we measure by the index of the image
pl(Γ) in SL(2,Z/lZ) the deficiency of Γ from being a congruence group of level l.
If the index is small, then Γ is far away from being a congruence group. If the
index equals 1 for all l, we call Γ a totally non-congruence group.

In [5] Klaus Wohlfahrt generalised the notion of the congruence level to ar-
bitrary finite index subgroups of SL(2,Z) which are not necessarily congruence
groups. He assigned to such a group Γ the number L, today called Wohlfahrt
level, which is the least common multiple of the cusp widths of Γ. If Γ is a congru-
ence group, then its minimal congruence level and the Wohlfahrt level coincide.
We have shown in [4] that in general the index [SL(2,Z/lZ) : pl(Γ)] becomes max-
imal, if l equals the Wohlfahrt level L. In particular, Γ is a totally non-congruence
group, if and only if [SL(2,Z/LZ) : pL(Γ)] = 1. We furthermore showed using
the classification of origamis in H(2) by Hubert/Lelièvre and McMullen (see [1]
and [3]) that if X is an origami in H(2), then [SL(2,Z/LZ) : pL(Γ)] is 1 or 3.
We generalise this statement using the classification of Lanneau/Nguyen (see [2])
to the Prym locus in H(4). Recall that this locus consists of those translation
surfaces X which allow an affine homeomorphism f−I with derivative −I which
has four fixed points, i.e. the quotient X/f−I is of genus 1.

The main tool in the proof is a criterion found in [4] which assures that a group
Γ is a totally non-congruence group. Consider for this the cusps of Γ at ∞ and at
0. Let b∞ and b0 be the widths of these cusps, respectively, and let b be the least
common multiple of b∞ and b0. Furthermore consider a conjugate Γ′ = AΓA−1

(A ∈ SL(2,Z)) of Γ and define b′ for Γ′ similarly to b. If b and b′ are relatively prime,
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then Γ and its conjugate Γ′ are totally non-congruence groups. This criterion is
convenient for Veech groups of origamis, since two origamis in the same orbit have
conjugated Veech groups. All we have to do is to find two representatives of the
orbit, such that the horizontal and vertical cylinder decomposition assures that we
have the desired property for the cusp widths. This works for about half of the
cases. A modification of the criterion gives us for the remaining cases in the Prym
locus of H(4) that their Veech groups satisfy [SL(2,Z/LZ) : pL(Γ)] = 3. The
figure above shows two representatives for one of the types of orbits that occur.
Here the cusp widths b∞ and b0 are 13 and 13 in the first example, and 11 and 2
in the second example.
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Veech groups of infinite type surfaces

Ferrán Valdez

(joint work with Camilo Ramı́rez Maluendas)

Let S be a translation surface, that is, such that the transition functions of the
corresponding structure are translations. We are interested in the so called tame
translations surfaces. These are characterized by the following property: if Ŝ de-
notes the metric completion of S with respect to the natural translation invariant
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flat metric inherited from the plane, then Ŝ \ S consists only of cone angle sin-
gularities (of finite or infinite total angle). As a consequence of Gauss-Bonnet’s
theorem, all compact translation surfaces are tame. On the other hand, a surface
is said to be of infinite type if its fundamental group π1(S) is not finitely generated.
Infinite type tame translation surfaces naturally appear when studying classical
dynamical systems such as (irrational) polygonal billiards [5] or Wind-tree mod-
els [2]. Wild translation surfaces also exist and appear naturally when studying
classical dynamical systems, such as Baker’s maps [1]. Henceforth all translation
surfaces taken into consideration will be tame and of infinite type, unless stated
otherwise.
The main object of our interest regarding tame infinite type translation surfaces
is the Veech group Γ(S) < GL+

2 (R) of S. This group of matrices is formed by
all the differentials of affine diffeomorphisms of S that preserve orientation. More
precisely, we are interested to describe, when the topological type of S is fixed,
the different groups Γ(S) that appear as we vary the tame translation surface
structure. The following results describes what should be expected:

Theorem 1. [3] The Veech group of a tame flat surface is either:

(1) countable and formed by matricesM satisfying ||Mv|| < ||v|| for all v ∈ R2

(i.e. without contracting elements),
(2) conjugated to the group of matrices:

P :=

{(

1 t
0 s

)

| t ∈ R, s ∈ R+

}

,

(3) conjugated to P ′, the group generated by P and −Id or,
(4) equal to GL+

2 (R).

It is not difficult to see that if Γ(S) = GL+
2 (R), then S is either a plane or a

ramified covering (over only one point) of a plane. The description we are aim to
has already been carried out for the simplest infinite genus surface without planar
ends:
Theorem 2. [3] Any subgroup G of GL+

2 (R) satisfying assertion (1), (2) or (3)
of Theorem 1 can be realized as Veech group of a tame flat surface S of infinite
genus and only one end.

Recall that infinite genus orientable surfaces without planar ends are charac-
terized, up to homeomorphism, by the closed, compact, metrizable and totally
disconnected topological space Ends(S), the space of ends of S [4]. Given its
topological properties, we can always think of Ends(S) as a closed subspace of
the Cantor set C that emerges middle-thirds removal procedure performed on an
interval. Reciprocally, for every closed subspace X of the Cantor set C there exists
a surface S such that Ends(S) is homeomorphic to X . Our first result states that
all non countable Veech groups of tame translation surfaces appear in all infinite
genus surfaces without planar ends.

Theorem 3. Let X be any closed subspace of the Cantor set. Then there exists
infinite genus tame translation surfaces S and S′ such that their Veech groups
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Γ(S1) and Γ(S2) are conjugated to P and P ′ respectively. Moreover S and S′ have
no planar ends and Ends(S) = Ends(S′) is homeomorphic to X.

The proof of this theorem is based in a simple but delicate construction that
starts with X and a connected subgraph G(X) of the infinite binary tree whose
space of ends is precisely X . Then, using G(X) as guide we glue copies of an
infinite genus and one end tame translation surface to obtain S1 and S2.

Question 4. Let X be any closed subspace of the Cantor set. Can any countable
subgroup G of GL+

2 (R) without contracting elements be realized as the Veech group
of a tame translation surface of infinite genus, without planar ends and such that
Ends(S) is homeomorphic to X?

If we were to order infinite genus surfaces without planar ends by their topo-
logical complexity, we would obtain a spectrum with two extremities. At one
extremity, say the left one, we would have the so called Loch Ness monster, which
has only one end, and at the other extremity we would have the so called blooming
Cantor tree, whose space of ends is homeomorphic to the Cantor set. Our main
result implies that question 4 has a positive answer for both extremities of the
aforementioned spectrum.

Theorem 5. Let G be a countable subgroup of GL+
2 (R) without contracting el-

ements. Then there exists a tame translation surface S, homeomorphic to the
blooming Cantor tree, whose Veech group Γ(S) is precisely G.

The proof of this theorem is based in a simple but delicate construction used to
prove theorem 2. The rough idea is to a produce Loch Ness monster whose Veech
group is G, that will play the role of building block, and then glue countably many
copies of this monster in a G equivariant affine way that mimics the structure of
an infinite binary tree.

Final remarks. Surprisingly, the question we pose is still open for the so called Ja-
cob’s ladder, that is, S has two ends, each of which has genus. In particular, there
is no known example of a tame Jacob’s ladder whose Veech group is a lattice. On
the other hand, the translation surfaces obtained in theorems 2, 3 and 5 have all
infinite area. Almost nothing is know for finite area but infinite type translation
surfaces. In particular:

Question 6 (Pascal Hubert). Does there exist an infinite genus but finite area
translation surface S such that its Veech group is a lattice?
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Orbit closures of translation surfaces

Alex Wright

We begin with a list of examples of orbit closures of translation surfaces.

(1) Spaces of covers of tori branched over 1 point.
(2) Spaces of covers of tori branched over more than 1 point.
(3) Closed orbits not arising from tori, for example the orbit of the regular

octagon. Spaces of covers of surfaces on a given closed orbit.
(4) Eigenform loci in genus 2 (Calta [1], McMullen [4],). Prym eigenform loci

in genus at most 5 (McMullen [5]).
(5) Strata. Spaces of double covers of surfaces in a given stratum of quadratic

differentials. Branched covering constructions over these.

Recall

Theorem 1 (Eskin-Mirzakhani-Mohammadi [2]). Every orbit closure is an affine
invariant submanifold.

For an orbit closure M, we define

rank(M) =
dim(M)− (dimension of rel deformations in M)

2
.

The first four examples above have rank 1.
We also define the (affine) field of definition k(M) to be the smallest field such

that M can be locally defined by linear equations with coefficients in this field.
We say that M is arithmetic if k(M) = Q. Above, examples 1, 2, and 5 are
arithmetic.

Conjecture 2 (Mirzakhani’s covering conjecture). If M is arithmetic, it arises
from a covering construction.

Conjecture 3 (Mirzakhani’s arithmeticity conjecture). If M is higher rank (i.e.,
rank(M) > 1), then M is arithmetic.

Some evidence for the covering conjecture will be given in David Aulicino’s talk.
This talk is about the arithmeticity conjecture.

Theorem 4 (Wright [8]). rank(M) · degk(M) ≤ g.

Here g is the genus. This result shows that larger orbit closures are indeed
more arithmetic. An immediate corollary is that the arithmeticity conjecture is
true in genus 3. (It was previously known to be true in genus 2 as a particular
consequence of work of McMullen [6].)
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Theorem 5 (Wright [9]). Say (X,ω) ∈ M, and the cylinders in some direction
on (X,ω) have circumferences c1, . . . , ck. Then

k(M) ⊂ Q[c2/c1, . . . , ck/c1].

An immediate corollary is that in a nonarithmetic orbit closure, every cylinder
on every surface is parallel to another, with irrational ratio of circumferences.

Theorem 6 (Möller [7], Filip [3]). Any nonarithmetic orbit closure parameterizes
surfaces with “some real multiplication.”

The above three results indicate just a hint of why a nonarithmetic higher rank
orbit closure would be strange and interesting.

Previously we had believed that intricate inductive arguments might establish
the arithmeticity conjecture. However, we have found a counterexample.

Joint work in progress with Mirzakhani. There is a nonarithmetic rank 2
orbit closure in the stratum of genus 4 translation surfaces with a single singularity.

We had previously believed that, if such an object existed, it would have to have
a rank 1 orbit closure in its boundary which displayed rank 2 behaviour. This is
indeed what occurs in the new orbit closure: We find in the boundary a new rank
1 orbit closure of genus 2 translation surfaces with one marked point.
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Higher Rank Orbit Closures in Hodd(4)

David Aulicino

(joint work with Duc-Manh Nguyen, Alex Wright)

1. Introduction

It is a long standing problem to understand the SL(2,R) orbit closures of transla-
tion surfaces in moduli space. Most recently, a significant breakthrough was made
in the work of Eskin and Mirzakhani, and Eskin, Mirzakhani, and Mohammadi,
[4, 5] where they showed that every orbit closure is an affine invariant manifold.
This made the work stated in this abstract possible.

Before the theorems of [4, 5], there was already progress in genus two. Work
of McMullen [6] and Calta [3] showed that in H(2) either the orbit is closed, i.e.
it is a Teichmüller curve, or it is dense in the stratum. In H(1, 1), they showed
that there are intermediate dimensional orbit closures given by Prym eigenforms.
Otherwise, the orbit is again either a Teichmüller curve or dense in the stratum.

In H(4) there are two connected components: Hhyp(4) and Hodd(4). It was
shown by Nguyen and Wright [7], that all orbits in Hhyp(4) are either Teichmüller
curves or dense in Hhyp(4).

We prove that the Prym locus is the unique intermediate dimensional orbit
closure in Hodd(4). Recall that the Prym locus Q̃(3,−13) is the canonical double
covering of the stratum of quadratic differentials on the torus with a triple zero
and three simple poles.

Theorem 2 ([1] Thm. 1.1). The only proper higher rank affine invariant sub-

manifold of Hodd(4) is the Prym locus Q̃(3,−13).

This theorem and its complete proof can be found in [1].

3. Background

Let (X,ω) be a translation surface written as a pairing of a Riemann surface
carrying an Abelian differential. Let Σ denote the finite set of singularities of ω
on X . Let {γ1, . . . , γn} ⊂ H1(X,Σ,Z) be a basis for relative homology. Period
coordinates are defined by the map

Φ : (X,ω) 7→
(∫

γi

ω

)

∈ Cn.

By [4, 5], period coordinates provide local coordinate charts for the orbit closure
M of (X,ω).

We consider the tangent space to an affine manifold in a subspace of relative
cohomology, i.e. TC(M) ⊂ H1(X,Σ,C). We can restrict to the real tangent space
corresponding to TR(M) ⊂ H1(X,Σ,R). Then there is a canonical projection

p : H1(X,Σ,R) → H1(X,R),
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which can be restricted to the tangent space to yield p(TR(M)) ⊂ H1(X,R). It was
proven in [2], that p(TR(M)) is symplectic so, in particular, it has even dimension.
We define the rank of an orbit closure following [8], to be half the dimension of
p(TR(M)).

In the stratum H(4), p is an isomorphism. Hence, the dimension of TR(M) is
either 2, 4, or 6. If p(TR(M)) has rank one, then the orbit is a Teichmüller curve,
and if it has rank three, then the orbit is dense in the connected component.
Therefore, it suffices to study orbit closures with rank two.

4. Sketch of the Proof

The main tool used in the proof of Theorem 2 is the cylinder deformation theorem
of [8]. In order to take advantage of the extra dimensions in the orbit closure, [8]
is used to guarantee the existence of a translation surface on which we can stretch
and twist some, but not all, of the cylinders. Then we consider all possible cylinder
diagrams and prove that every rank two orbit closure contains a translation surface
that decomposes into three cylinders, the maximum possible in H(4).

By analyzing all of the three cylinder diagrams, we are able to show that some
cannot lie in a rank two orbit closure, and those that do, must exhibit symmetries
that allow the translation surface to admit a double cover to a torus carrying a
quadratic differential in the stratum Q(3,−13).
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[2] Avila, Artur and Eskin, Alex and Möller, Martin, Symplectic and Isometric SL(2,R)-
invariant subbundles of the Hodge bundle, arXiv 1209.2854 (2012).

[3] Calta, Kariane, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc.
17(4) (2004), 871–908.

[4] Eskin, Alex and Mirzakhani, Maryam, Invariant and stationary measures for the SL(2,R)
action on moduli space, arXiv 1302.3320 (2013).

[5] Eskin, Alex and Mirzakhani, Maryam and Mohammadi, Amir, Isolation Theorems for
SL(2,R)-invariant submanifolds in Moduli space, arXiv:1305.3015 (2013).

[6] McMullen, Curtis T., Dynamics of SL2(R) over moduli space in genus two, Ann. of Math.
(2) 165(2) (2007), 397–456.

[7] Nguyen, Duc-Manh and Wright, Alex, Non-Veech surfaces in Hhyp(4) are generic,
arXiv:1306.4922 (2013).

[8] Wright, Alex, Cylinder deformations in orbit closures of translation surfaces, arXiv
1302.4108 (2013).

GL+
2
(R) -orbit closures in Prym eigenform loci

Duc-Manh Nguyen

(joint work with Erwan Lanneau)

Given a positive integer g ≥ 2, and let κ = (k1, . . . , kn) be an integral vector
such that ki > 0 and k1 + · · ·+ kn = 2g − 2, we denote by H(κ) the moduli space
of pairs (X,ω), where X is a Riemann surface of genus g, and ω is a holomorphic
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one-form having exactly n zeros with orders k1, . . . , kn. An element of H(κ) is
called a translation surface. There exists a “natural” action of GL+

2 (R) on H(κ).
For numerous applications, especially the computation of various invariants re-
lated to the dynamics of this action, the knowledge of orbits closures is crucial.
It has been observed that H(κ) has several similarities with locally homogeneous
spaces. It was conjectured that any orbit closure is a “nice” submanifold of H(κ).
This conjecture was verified in genus two by the work of McMullen [7], its reso-
lution in full generality has been announced recently by Eskin, Mirzak hani, and
Mohammadi [1, 2], and Filip [3, 4].

It is well known that there exist in any stratum H(κ) two types of orbits, those
are dense (the closure is the whole stratum) and those are closed (the closure is the
orbit itself). For a long time, little is known about the existence of GL+

2 (R)-orbits
that are neither closed nor dense. In his classification of orbit closure in genus two,
McMullen pointed out the existence of such intermediate orbits, they belong to
the set or Riemann surfaces whose Jacobi variety admits a real multiplication by
Q or a quadratic field. Following McMullen, we call such subsets Prym eigenform
loci. Latter McMullen showed that similar loci also exist in genus 3, 4, 5, and there
are infinitely many primitive closed orbits contained in those loci (see [6]).

The techniques developed by McMullen to classify the orbit closures in genus
two do not generalize easily to higher genus. The purpose of this talk is to introduce
an alternative proof of McMullen’s classification in genus two (for the case of Prym
eigenforms) not involving the result by Eskin-Mirzakhani-Mohammadi, which can
be used to obtain the same classification in the Prym eigenform loci in genus 3, 4, 5.
Our proof relies on the following properties of the Prym eigenforms

(1) Prym eigenforms are completely periodic in the sense of Calta, which
means that whenever one has a regular closed geodesic in a Prym eigen-
form, the direction of this geodesic is actually periodic, e.g. any geodesic
ray in this direction is either a closed geodesic or terminates at a singu-
larity.

(2) Those loci are invariant by moving in the leaves of the kernel foliation,
e.g. up to the action of GL+

2 (R), a neighborhood of any Prym eigenform
consists of surfaces having the same absolute coordinates and the relative
coordinates are slightly changed.

The key idea of the proof is to use the action of the horocycle flows in two distinct
directions, and a result on the topological stability of cylinder decompositions.

It is worth noticing that the result is not new, since it can be easily obtained
by using Eskin-Mirzakhani-Mohammadi’s result. Nevertheless, we would like to
emphasize on the fact that our proof is “almost” elementary, and can be used to
show that there only exist finitely many closed orbits in each component of the
Prym eigenform loci in genus three.
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Eigenform certification in three ways

Ronen E. Mukamel

(joint work with Abhinav Kumar)

A particularly rich class of flat surfaces arises from the study of eigenforms for
Jacobian endomorphisms. For a compact Riemann surface X of genus g and a
totally real field K of degree g over Q, we will say that the Jacobian Jac(X) admits
real multiplication by K if there is a holomorphic homomorphism T : Jac(X) →
Jac(X), self-adjoint with respect to the Rosati involution, which generates a ring
isomorphic to an order in K. We will call a holomorphic one-form ω ∈ Ω(X) an
eigenform for real multiplication if Jac(X) admits real multiplication by a field K
generated by T with T stabilizing ω up to scale.

McMullen described genus two eigenforms as polygon cut-and-paste and showed
that they exhibit remarkable dynamical properties.

Theorem 1 (McMullen). If (X,ω) is a genus two eigenform with double zero,
then the Veech group SL(X,ω) is a lattice.

Since then, there have been many results demonstrating that eigenforms are
central examples in the study of translation surfaces and dynamics on moduli
spaces of quadratic differentials. For instance, Möller proved a strong converse to
McMullen’s theorem for higher genus surfaces with lattice Veech group.

Eigenforms for real multiplication can also be described as algebraic one-forms
on algebraic curves. In this talk, we will demonstrate several methods for verifying
that an algebraic one-form on an algebraic curve is an eigenform and prove the
following theorem.

Theorem 2. The algebraic one-form ω = dw/z on the genus two algebraic curve
X defined by the Weierstrass equation

z2 = 24 + 52w − 8w2 − 12w3 − 2w4 + w5

is an eigenform for real multiplication by Q(
√
3).
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Our first method is numerical. We compute the periods of dw/z to high pre-

cision and verify that they satisfy an appropriate Q(
√
3)-linear relationship. This

method is relies the tools in Magma related to analytic Jacobians and provides
strong evidence that our Main Theorem is true even though it does not give a
proof.

In our second method, we numerically sample an explicit algebraic correspon-
dence on X using the tools related to the Abel-Jacobi map in Magma. Interpo-
lation then gives an exact equation with integer coefficients which can be used to
prove our Main Theorem using only rigorous arithmetic in number fields.

In our final method, we use Teichmüller theory and the equations for the Hilbert
modular surfaces given by Elkies and Kumar. This method can also be used to
prove our Main Theorem as well as to give an explicit algebraic model for the
the image of SL2(R)-orbit of (X,ω) in the moduli space of genus two Riemann
surfaces.

Shimura curves in the locus of Jacobians of curves of low genus

Samuel Grushevsky

(joint work with Martin Möller)

In this talk we presented our joint work, partly in progress, with Martin Möller,
on constructing infinitely many examples of Shimura curves contained in the locus
of Jacobians. Some results have appeared in [1], with further work forthcoming.

Working over the complex numbers, we recall that a Shimura subvariety of
the moduli space Ag = Sp2g(Z)\ Sp2g(R)/U(g) of principally polarized abelian
varieties is a subvariety induced by a homomorphism G → Sp2g(R) for some
algebraic group G. A well-known conjecture states that for genus g sufficiently
large there do not exist (non-zero dimensional) Shimura subvarieties contained
generically in the locus of Jacobians of smooth curves. This conjecture has seen a
lot of work, with progress towards proving it by Viehweg, Zuo, Möller, and most
recently by Lu and Zuo who proved that such one-dimensional subvarieties do not
exist under some additional hypothesis (being of Mumford type).

On the other hand, a number of Shimura curves contained in the loci of Ja-
cobians of low genus curves were described as loci of curves admitting certain
automorphisms by many authors including Mumford, Oort, de Jong, Moonen,
Noot, and others — but the list of such examples is finite.

Working in genus 3, where the locus of Jacobians is dense in A3, we construct
infinitely many Shimura curves contained in the locus of hyperelliptic Jacobians,
which is codimension one in A3. We prove

Theorem 1 ([1]). For any fixed u ∈ Q[i], the family of abelian threefolds given by

period matrices of the form





t+ iu2 u2/2 iu
u2/2 t u
iu u i



, where t is the parameter lying

in a suitable translate of the upper half-plane, defines a Shimura curve contained
in the locus of hyperelliptic Jacobians of genus 3.



Flat Surfaces and Dynamics on Moduli Space 895

We further conjecture that these are the only Shimura curves contained in the
locus of hyperelliptic Jacobians of genus 3. To discover these curves, and to have
a basis for the conjecture, we develop new techniques and criteria allowing us to
obtain restrictions on possible Shimura curves contained in the zero loci of modular
forms. Further applying these techniques and expanding modular forms in Fourier
series near various strata of the toroidal compactification of A3 in particular shows
that any such Shimura curve must have degeneration of the type above.

Working in genus 4, which is the first case when the locus of Jacobians is not
dense in Ag, we construct, generalizing a geometric construction of Pirola using
Prym varieties of triple covers, the following examples:

Theorem 2. There exist infinitely many Shimura curves contained in the locus
of Jacobians of genus 4 curves.
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Cutting out arithmetic Teichmüller curves in genus two with theta
functions

André Kappes

(joint work with Martin Möller)

A square-tiled surface is a flat surface (X,ω) that admits a map p : X → E to
an elliptic curve E (usually taken to be the square torus) such that p is branched
over at most one point and p∗dz = ω. Affinely deforming the square-tiled surface
yields an algebraic curve in Mg, an arithmetic Teichmüller curve. It is a hard
combinatorial problem to decide, which square-tiled surfaces generated the same
Teichmüller curve.

So far, a classification has only been obtained for square-tiled surfaces in the
stratum ΩM2(2), i.e. whose map p is doubly ramified at one point [4], [2]; the
invariants in this case are the degree d of a minimal map to a torus and a second
invariant ε, the spin. The Euler characteristics of the associated Teichmüller curves
Wd2,ε been computed in [1], [3].

In our work in progress, we give an approach to describe the Teichmüller curves
in ΩM2(1, 1), i.e. generated by square-tiled surfaces, where p is simply ramified
at two points. There is an additional invariant: M , the torsion order in Jac(E) of
the difference of the images of the ramification points. Conjecturally, d, M and ε
classify all arithmetic Teichmüller curves in ΩM2(1, 1). A refined version of this
conjecture, due to Zmiaikou [6], also gives precise values of the Euler characteristics
in the case M = 1.

If (X,ω) is a square-tiled surface of genus 2, then its Jacobian Jac(X) is isoge-
nous to a product of elliptic curves. A reformulation of this fact says that Jac(X)
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admits multiplication by the pseudo-quadratic order

od2 = {(a, b) ∈ Z2 | a ≡ b mod d},
where d is the degree of a minimal map p : X → E. Thus, Jac(X) corresponds to a
point in a pseudo-Hilbert modular surface Xd2 = H2/SL(od2 ⊕ o

∨
d2) parametrizing

abelian surfaces whose endomorphism ring contains od2 .
We formulate algebraic conditions that cut out the Teichmüller curve generated

by (X,ω) inside Xd2 . In the case of ΩM2(2), this has been done by Möller and
Zagier [5] using derivatives of theta functions evaluated at Weierstraß points. The
case ΩM2(1, 1) is more involved as we need to pass to the universal family of
abelian surfaces Ad2 → Xd2 . We cut out the branch locus of a square-tiled surface
with torsion orderM in Ad2 by the following three conditions: that such points be
on the curve, embedded via the Abel-Jacobi map into its Jacobian, that they be a
zero of the first eigendifferential with respect to multiplication by od2 , and that they
map to M -torsion points under the projection to the elliptic curve. Note that the
push-forward of the branch locus to Xd2 gives the class of the union of Teichmüller
curves (possibly with multiplicities) – at least if M > 2. For M ∈ {1, 2}, we also
cut out the reducible locus and the curves Wd2,ε.

The three conditions can be recast in terms of the classical Riemann theta
function

ϑ : H2 × C2 → C, (z, u) 7→ ϑ(z, u), (Z, u) 7→
∑

x∈Z2

eπix
TZx+2πixTu

pulled back to Ad2 : A point x ∈ Ad2 is on the curve if and only if it is in the
vanishing locus of ϑ, and x is a zero of the first eigendifferential if and only if
∂ϑ
∂u2

(x) = 0.
Having defined a suitable compactification of Ad2 and Xd2 , we can compute the

class of the branch locus by writing it as the triple intersection of three divisor
classes in the Chow ring of Ad2 . These classes can be explicitly calculated, and
the push-forward is a linear combination of the Hodge classes coming from the
two projections of Ad2 to the universal family of elliptic curves. As one result
of our methods, we are able to compute the Euler characteristic of the union of
Teichmüller curves with invariant d (for odd d), ε andM = 1, and thereby confirm
the counting part of Zmiaikou’s conjecture; the problem of irreducibility of this
locus remains however to be settled.
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On cohomological dimension of the moduli space of Riemann surfaces

Gabriele Mondello

The moduli space Mg of Riemann surfaces of genus g ≥ 2 is can be looked at from
several perspectives.

As an orbifold, it make sense to consider its de Rham cohomology. Because
Mg is not compact, its top-degree de Rham cohomology group vanishes and so
one could wonder what is the highest degree for which it does not. In order to
make this quantity invariant under finite unramified covers, one needs to consider
de Rham cohomology with coefficients in a (real or complex) flat vector bundle.

This invariant cohdimdR(Mg), called de Rham cohomological dimension ofMg,
was computed by Harer in [4]. It turns out that cohdimdR(Mg) = 4g − 5, and so
quite smaller than dimR(Mg) = 6g − 6.

But Mg has also the structure of complex analytic orbifold, and so it makes
sense to speak of its Dolbeault cohomology with coefficients in a holomorphic vec-
tor bundle and of its Dolbeault cohomological dimension. As before, being Mg

non-compact and connected, we know that the top-dimensional group always van-
ishes but quite a stronger vanishing is suspected to hold.

Expectation (Looijenga): cohdimDol(Mg) = g − 2.

While cohdimDol(Mg) < 3g − 3 is the only known bound for general g, still
some evidence supports this conjecture:

(a) it is verified for g = 2, 3, 4, 5 (see [7], [3]);
(b) it implies Diaz’s result [2] that no compact holomorphic subvariety of Mg

can have (complex) dimension bigger than g − 2;
(c) it implies Looijenga’s vanishing [5] of tautological cohomology classes above

degree g − 2;
(d) it implies the above mentioned Harer’s vanishing result for de Rham co-

homology.

In this talk we sketch the proof of the following result (which is clearly non-
optimal, at least for g = 2, 3, 4, 5).

Theorem A. For all g ≥ 2 we have

cohdimDol(Mg) ≤ 2g − 2 .



898 Oberwolfach Report 15/2014

As the Dolbeault cohomological dimension behaves additively for projectivized
vector bundles, the above statement is equivalent to the following.

Theorem A’. For all g ≥ 2 we have

cohdimDol(PHg) ≤ 3g − 3

where Hg = {(C,ϕ) |C ∈ Mg, ϕ ∈ H1,0(C)} is the holomorphic Hodge bundle.

Now, PHg has a well-known holomorphic stratification by multiplicities of the
zeroes of ϕ: the typical locally closed stratum of (complex) codimension 2g−2−k
(up to finite unramified cover) looks like PH(m1,m2, . . . ,mk), that is the space of
triples (C,P, [ϕ]), where C ∈ Mg, P ⊂ C is a subset of k ≥ 1 distinct points P =
{p1, . . . , pk} and ϕ vanishes at pi of order mi ≥ 1, so that m1 + · · ·+mk = 2g− 2.

The first step is to show the following result, which might be interesting on its
own (though it is non-optimal already in genus 2, and for PH(4) and PH(3, 1) in
genus 3, when the strata are affine and so have cohdimDol = 0, see [6]).

Theorem B. For all g ≥ 2 and all k and m• we have

cohdimDol(PH(m1, . . . ,mk)) ≤ g .

The second step is to find an open cover of PHg adapted to the above stratifi-
cation (i.e. with the same combinatorics) and such that the statement of Theorem
B extends to each open subset. Because the stratification goes down to codimen-
sion 2g − 3 at most, one can conclude that the projectivized Hodge bundle has
cohomological dimension at most (2g − 3) + g = 3g − 3.

Due to [1], the proof of Theorem B can be reduced to producing a real-valued
exhaustion (i.e. bounded from below and proper) function ψ on PH(m1, . . . ,mk)
such that a semi-definite negative subspace W− ⊂ T(C,P,[ϕ])PH(m1, . . . ,mk) of its

complex Hessian i∂∂ψ is at most g-dimensional at every point (C,P, [ϕ]).
Such a ψ is constructed using the area function of the flat metric |ϕ|2 on C

with conical singularities at P and the length functions (still relative to the metric
|ϕ|2) associated to short saddle connections on C (i.e. smooth |ϕ|2-geodesics on
C joining couples of conical points).
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Orbit closures in Teichmüller dynamics and extremal cycles in
algebraic geometry

Dawei Chen

(joint work with Izzet Coskun)

Let X be a normal projective variety. Let D =
∑n

i=1 aiZi be a divisor, i.e. a
linear combination of codimension-one subvarieties Zi ⊂ X . Define an equivalence
relation “≡” for divisors, called numerical equivalence: D ≡ D′ if D · C = D′ · C
for every curve C ⊂ X , where D ·C is the intersection number of D and C. Define
the effective cone of X by

Eff(X) = {D =

n
∑

i=1

aiZi | ai ≥ 0}/ ≡ .

By definition, Eff(X) has a convex structure. If the class of a divisorD spans a one-
dimensional face of Eff(X), we call D an extremal effective divisor. Understanding
Eff(X) amounts to finding out all the extremal effective divisors on X .

The effective cone governs the birational geometry of X . For instance, the
canonical divisor class of X is contained in the interior of Eff(X) if and only if X
is of general type, which is a higher dimensional analogue of curves of genus ≥ 2.
On the other hand, Eff(X) may fail to be closed or finite polyhedral, see [K, II
4.16] for an example of the latter.

Here we focus on the case when X is the Deligne-Mumford moduli space Mg,n

of stable genus g curves with n ordered marked points. Since the 1980s, motivated
by the problem of determining the Kodaira dimension of Mg,n, many authors have

constructed families of effective divisors on Mg,n. For example, Harris, Mumford
and Eisenbud [HM, H, EH], using Brill-Noether and Gieseker-Petri divisors showed
that Mg is of general type for g > 23.

Although we know many examples of effective divisors onMg,n, the structure of

Eff(Mg,n) remains mysterious in general. In particular, for a long time it was not

known whether there exist g and n such that Eff(Mg,n) is not finitely generated.
In [CC], we study the case of genus one. By exhibiting infinitely many extremal

effective divisors on M1,n for every n ≥ 3, we are able to show that Eff(M1,n) is
not finitely generated. The construction of those extremal divisors is motivated
by the strata of quadratic differentials in genus one.

Let a = (a1, . . . , an) be a collection of n integers satisfying
∑n

i=1 ai = 0, not all
equal to zero. Consider the stratum of quadratic differentials Q(a) parameterizing
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quadratic differentials q on smooth genus one curves E such that

(q)0 − (q)∞ =

n
∑

i=1

aipi,

where p1, . . . , pn ∈ E are distinct. We do not require q to have simple poles only.
Denote by Da the closure of the projection of Q(a) in M1,n. Then Da is an

effective divisor on M1,n.
Assume that n ≥ 3 and that gcd(a1, . . . , an) = 1. The main result of [CC] says

that Da is an extremal effective divisor on M1,n. Moreover, these Da provide

infinitely many extremal divisors, and hence Eff(M1,n) is not finitely generated.
Here we present the outline of a proof that works for the nonvarying strata

Q(k,−1k) and Q(k, 1,−1k+1) in the sense of [CM] (see [CC] for a different proof
that works in general). Take a Teichmüller curve C in such a nonvarying stratum
Q(a). Since we know the sum of Lyapunov exponents of C by [CM, Section 8],
one can check that C ·Da < 0 in this case. Since the union of Teichmüller curves
forms a (Zariski) dense subset in Da, it follows that Da is extremal.

As a concluding remark, SL(2,R)-orbit closures in the strata of abelian and
quadratic differentials provide a number of algebraic cycles in Eff(Mg,n), based
on the recent breakthrough [EM] and [F]. These cycles are insufficiently studied
from the viewpoint of algebraic geometry. It would be interesting to figure out their
intersection-theoretic properties and extremality in the cone of effective cycles.
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Counting special trajectories for right-angled billiards

Jayadev S. Athreya

(joint work with Alex Eskin and Anton Zorich)

In our work [1, 2] we study counting problems for special trajectories on families
of right-angled billiards. Namely, we assume that the billiard table is a topological
disk endowed with a flat metric, and that the boundary of the disk is piecewise
geodesic such that the angle at every corner of the boundary is an integer multiple
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of π
2 . We consider families of polygons sharing the same interior corner angles

(

π
2 k1,

π
2 k2, . . . ,

π
2 kn

)

. Actually, it will be convenient to consider a slightly larger
space B(k1, . . . , kn) of “directional billiards” distinguishing a billiard table Π and
the same table turned by angle φ. The measure in the space B(k1, . . . , kn) is
the product measure of Lebesgue measure arising from the side lengths and the
angular measure dφ.

We count the number of generalized diagonals of bounded length in such bil-
liards (that is, the number of trajectories of bounded length which start in some
fixed corner Pi and arrive to some fixed corner Pj , and the number of closed
billiard trajectories of bounded length. Note, that closed regular trajectories are
never isolated in rational billiards: they always form bands of “parallel” closed tra-
jectories of the same length. Thus, when counting closed trajectories one actually
counts the number of such bands. By convention we always count non-oriented
generalized diagonals and non-oriented closed billiard trajectories.

In this report, we mention two representative results.

Theorem 1. For any right-angled billiard Π outside of a zero measure set in
any family B(k1, . . . , kn) the number Nij(Π, L) of generalized diagonals of length
at most L joining a pair of fixed corners Pi, Pj with angles π

2 has the following
quadratic asymptotics as L→ ∞:

(1) Nij(Π, L) ∼
1

2π
· L2

Area of the billiard table
.

The fact that this asymptotics does not depend at all on the billiard table is
at the first glance counterintuitive. What is even more surprising is that it is
universal: it is the same not only for almost all billiard tables inside each family,
but it does not vary even from one family to another! In particular, though the
shape of two polygons of the same area can bbe quite different, the number of
trajectories of length at most L joining the right-angle corner Pi to the right-angle
corner Pj is approximately the same for both polygons, and in fact is approximately
the same as the number of trajectories of length at most L joining two corners of
the usual rectangular billiard of the same area when L≫ 1.

The situation becomes more complicated when we consider other types of
corners of the billiard. Consider, for example, an L-shaped billiard table. Let
P1, . . . , P5 be the right-angle corners of the L-shaped billiard, and let P0 be the
corner with the interior angle 3π

2 .

Theorem 2. For almost any L-shaped billiard Π the number Ni0(Π, L) of gener-
alized diagonals of length at most L joining a fixed corner Pi with angle π

2 and the

corner P0 with angle 3π
2 has the following quadratic asymptotics as L→ ∞:

(2) Ni0(Π, L) ∼
2

π
· L2

Area of the billiard table
.

The naive intuition does not help: the angle 3π
2 at the corner P0 is three times

larger than in the previous case, while the constant in the asymptotics for the num-
ber of generalized diagonals is four times larger than in the previous statement.
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Currently we have no idea how to obtain this factor 4 without using techniques of
the Teichmüller geodesic flow, Lyapunov exponents of the Hodge bundle, and the
computation of volumes of the moduli spaces of meromorphic quadratic differen-
tials with at most simple poles on CP1.
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Cries and whispers in windtree models

Vincent Delecroix

(joint work with Anton Zorich)

The windtree model is a billiard in the plane introduced by P. and T. Ehrenfest [3]
and J. Hardy and J. Weber [5]. Identical rectangular scatters of size a× b are dis-
posed regularly along the lattice Z2. A particle moves in the complement of these
rectangles and bounces elastcally off on the rectangular scatterers (see Figure 1).

We denote by φa,bt (x, θ) the flow of the billiard.

Figure 1. Original windtree model.

Figure 2. An exotic windtree model.
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It was shown by V. Delecroix, P. Hubert and S. Lelièvre[2] that the escape rate
of particles is of the order of t2/3, much faster than for a random walk for which
it is of the order of t1/2. And more precisely:

lim sup
t→∞

d((x, θ), φa,bt (x, θ))

log t
= 2/3.

where d(., .) is any reasonable distance on R2×S1. This result is true with respect
to any parameters a, b of the rectangular scatterers, for almost every angle θ and
any departure position x.

The exponent 2/3 is an exponent of the Kontsevich-Zorich cocycle. The fact
that we have an explicit number in that case comes from the work of A. Eskin,
M. Kontsevich and A. Zorich [4].

In 2012, J.-C. Yoccoz asked to the author what diffusion coefficients arise when
one changes the shape of obstacles. Using volume computations in [1] we were able
to express this exponent for obstacles with only right angles and a horizontal and
vertical symmetry (see an example in Figure 2). Because of the 4-fold symmetry,
we have 4m corners with angle π/2 and 4(m − 1) corners with angle 3π/2 for
some positive integer m. We proved together with A. Zorich that the diffusion
gets smaller as the obstacle gets more complicated and more precisely

lim sup
t→∞

d((x, θ), φt((x, θ))

log t
=

(2m)!!

(2m+ 1)!!
.

Where k!! = k · (k− 2) · (k− 4) · · · . The above result is valid for almost all lengths
of the obstacle once the shape is fixed. Let us remark that we recover the exponent
2/3 of the windtree model when m = 1.
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Homologous cylinders in flat surfaces: Geometry of configurations and
Siegel–Veech constants

Elise Goujard

(joint work with Max Bauer)

We study the geometry of configurations of homologous cylinders in a flat surface
using ratios of Siegel–Veech constants. These ratios can be interpreted geometri-
cally as the mean area of a cylinder in a configuration C, the proportion of large
cylinders (that fill a large part of the area of the surface) of type C and the prob-
ability for a cylinder to be large. For a fixed configuration of homologous (resp.

ĥomologous) saddle connections in a stratum of Abelian (resp. quadratic) differ-
entials, we obtain formulas for these ratios, that depend only on the dimension of
the stratum and on the number of cylinders in the configuration.

For the family Q(1k,−1l) in genus g, we obtain more precise results: we are
able to explicit the relation between Siegel–Veech constants and volumes of the
boundary strata. This extends the results of Athreya, Eskin and Zorich in [AEZ]
to genera g ≥ 1.

Statement of results:
Let S be a flat (translation or half-translation) surface. Let C be an admissible

configuration of saddle connections for the stratum containing S (see [EMZ] and
[MZ] for the definition and the classification of configurations of saddle connections
for Abelian and quadratic differentials).

We consider the following numbers:

• Ncyl(S,R, C) = Card{γ of type C, γ fills a cylinder, |γ| ≤ R}
• Narea(S,R, C) = 1

Area of S

∑

γ of type C,
|γ|≤R

area of the cylinder(s) filled by γ

• Ncyl(S,R, C, p) = Card{γ of type C, |γ| ≤ R, area of the cylinders filled
by γ is at least part p of the area of S}

• N1
cyl(S,R, C, p) = Card{γ of type C, |γ| ≤ R, area of one distinguished

cylinder filled by γ is part p of the area of S}
Then the associated Siegel–Veech constants

c∗(C) = lim
R→∞

N∗(S,R, C)
πR2

exist for almost every flat surface S, and depend only on the connected component
of the stratum containing S (and C, p), following [EM].

The ratios of Siegel–Veech constants can be interpreted geometrically as follows:

• carea(C)
ccyl(C)

: Mean area of a cylinder in configuration C

• ccyl(C, p)
ccyl(C)

: Proportion of large cylinders in configuration C
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•
c1cyl(C, p)
ccyl(C)

: Probability for a fixed cylinder in configuration C for being

large.

Theorem 1. Consider a stratum of Abelian or quadratic differentials, of complex
dimension d. Let C be an admissible configuration with q cylinders for this stra-
tum. Let n be the complex dimension of the boundary strata for this configuration
(n = d− q − 1). Then:

carea(C)
ccyl(C)

=
1

d− 1
(1)

ccyl(C, p)
ccyl(C)

=
B(1 − p;n, q)

B(n, q)
= (1− p)n

q−1
∑

k=0

(

n− 1 + k

k

)

pk(2)

c1cyl(C, p)
ccyl(C)

= (1 − p)d−2(3)

Note that since ratios (1) and (3) depend only on the dimension of the stratum,
summing on all configurations in the stratum we obtain the formulas already found
by Vorobets in [Vo].
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Enumeration of 1-cylinder configurations and distribution of genomic
distance

Peter Zograf

A 1-cylinder configuration is a gluing of the boundary circles of the cylinder by
means of an interval exchange map. Such a gluing is described by a pair of per-
mutations σ, τ ∈ Sn, where σ is a cycle of length n and τ is arbitrary. The cycle
type of the commutator στσ−1τ−1 is called the type of the configuration and is
denoted by µ = [1m12m2 . . .].

Two different approaches to the enumeration of 1-cylinder configurations of a
given type µ are proposed. The first one is based on the Frobenius formula [4]:
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Proposition 1. The number N(µ) of 1-cylinder configurations of type µ is given
by

N(µ) =
1

|Aut(µ)|

n
∑

r=1

r!(n − 1− r)!χr(µ) ,

where |Aut(µ)| = 1m1m1!2
m2m2! . . ., and χr(µ), r = 0, . . . , n − 1, are the coeffi-

cients of the polynomial

n
∑

r=1

(−1)rχr(µ)x
r =

(1− x)m1(1− x2)m2 . . .

1− x
.

Another approach is in the spirit of [1] and utilizes a combinatorial recursion
for the numbers N(µ). In terms of the generating function

F (s, t1, t2, . . .) =
∞
∑

n=1

∑

µ⊢n

N(µ)sn−1tm1

1 tm2

2 . . .

one has

Proposition 2. Put

M1 =
∞
∑

i=2

i−1
∑

j=1

(

(i− 1)tjti−j
∂

∂ti−1
+ j(i− j)ti+1

∂2

∂tj∂ti−j

)

.

Then F satisfies the evolution equation

∂F

∂s
=M1F

that, together with the initial condition F |s=0 = t1, determines F uniquely. (Equiv-
alently, F is explicitly given by the formula F = esM1t1.)

Put ti = t and consider the following specialization of F :

F (s, t, t, . . .) =

∞
∑

n=1

n
∑

k=1

hn,ks
n−1tk .

The numbers hn,k first appeared in genomics in the Bafna-Pevzner approach to
genome comparison and genome rearrangements [3] and were later called the
Hultman numbers (cf. http://oeis.org/A164652). Namely, hn,k is the number
of genomes build from the same set of n genes at the genomic (2-break) distance
n− k from the original one. The limiting distribution of the Hultman numbers is
a relevant question in bioinformatics [2]:

Proposition 3. As n → ∞ the numbers hn,k become normally distributed in k
with the mean and variance both equal to logn.
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The set of uniquely ergodic interval exchanges with a fixed
permutation on 4 (or more) letters is path connected

Jon Chaika

(joint work with Sebastian Hensel)

Theorem 1. Let π be an irreducible, non-degenerate permutation on 4 or more
letters. The set of uniquely ergodic interval exchange transformations with permu-
tation π is path connected as a subset of ∆.

Remarks (1) This is not a statement about foliations. 4 interval exchange
transformations (IETs) correspond to foliations in H(2). The set of arational
foliations or uniquely ergodic foliations is not path connected in H(2).
(2) The theorem does not hold for permutations on 3 or fewer letters.
(3) We prove the theorem for the permutation (4321). Then we work to extend to
more general permutations. Indeed the paths we build in permutations on more
letters spend most of their time in 3-dimensional slices that are secretly 4-IETs.

2. Strategy

2.1. Basic idea. We have two uniquely ergodic IETs with permutation (4321).
We start with the straight line path P1 connecting them. Inductively given a path
connecting Pn that connects the two IETs we improve it to a path Pn+1 that
“looks better”. All of these paths probably have plenty of points that are not even
minimal. However, in the limit:
(a) We get a set that only contains uniquely ergodic points.
(b) This limiting set is a path.

These two issues are overcome by the same mechanism.

2.2. Paths that look better. It is easier to tackle approximate minimality then
unique ergodicity. Indeed for an interval exchange to be non-minimal it has to
have a periodic orbit or split into two disjoint components. These can be seen in a
finite number of steps. This requires that the IET has two distinct discontinuities
in the same orbit. When this occurs we can check whether this will cause non-
minimality. So if T ∈ Pn, δ, δ

′ are discontinuities of T so that T i(δ) = δ′ for
i < mT,n then this is not a cause of non-minimality. To do this we use Rauzy
induction.
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2.3. Properties of Rauzy induction. We refer to the excellent introduction [2]
for a comprehensive treatment of Rauzy induction. We restrict out attention to
stating some properties:

Rauzy induction is an almost everywhere defined map on the space of IETs. It
is like a Gauss map for IETs; the gauss map can provide the terms in the continued
fraction expansion of a number. These numbers tell us finer and finer information
about the rotation: the behavior of its orbits, the region the rotation angle could
be chosen in, nearby periodic rotations that are close to the rotations, etc. The
same is true for Rauzy induction which provides matrices M(T, n) that capture
much of this data. For instance:

M(T, n)∆ = {M(T, n)R4
+ ∩∆}

= {S : Ri(S) is coarsely the same as Ri(T ) for i ≤ n}.
Moreover non-minimal IETs are guaranteed to be points where Rauzy induction

is not defined, though unlike the Gauss map the converse is not true. This is
necessary for our construction.

So the planes where some power of Rauzy induction is not defined identify
candidates for non-minimality. Moreover they are stratified by the power of Rauzy
induction that is not defined on them.

Our procedure is to improve our paths by making them cross the fail planes of
higher powers of Rauzy induction at good points. In fact we have an algorithm.
The input are two “adjacent” fail planes of Rauzy induction. The output is the
next fail plane of Rauzy induction the path will cross and the point at which it
crosses it.

Figure 1. A schematic: The red line is Pi. The blue is Pi+1.
The solid lines denote a simplex of Rauzy induction. The dotted
line is a fail plane in that simplex.

2.4. Features. We choose the point of crossing carefully. So a crossing of a fail
plane we have chosen will be on all future paths. The crossings cause columns
to be added together frequently and many columns to interact. The consecutive
failure points get all the columns to interact.

To obtain unique ergodicity we use a criterion of Veech:

Theorem 3 (Veech [1] p.225). Suppose that T is an IET so that Rn(T ) is defined
for all n ≥ 1, and such that

⋂

n≥1M(T, n)∆ = {T }. Then T is uniquely ergodic.
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This criterion is also connected to how we get paths in the limit: we define to
greater and greater depth the sub-simplices that the path travels through. If our
simplices are getting smaller than the paths can wiggle less.

3.1. Some issues. Some of our simplices which border early crossed fail planes
will essentially be very close to being lines. In order to have our limit object be a
path at the point on such a early fail plane we use the fact that consecutive failure
points get all the columns to interact. Indeed, as we follow the point on this early
fail plane, 3 columns are pointing in roughly the same direction. When we cross
to the other side of some future fail plane the other column interacts with them
and then points in roughly the same direction.

3.2. Generalizing to higher permutations. There is a key definition for gen-
eralizing:

Definition 4. An IET S is called a secret 4-IET at level k if there exists M(T, r)
a matrix of Rauzy induction with r ≤ k, v a nonnegative vector with at most 4
non-zero entries so that L(S) =M(T, r)v.

We prove that the set of Secret 4-IETs at level k are path connected. Moreover
the paths we build are unions of paths of secret IETs at level ki except possibly
at the endpoints. Also the paths extend to paths at the endpoints.
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Unique ergodicity without moduli spaces

Rodrigo Treviño

Let (S, α) be a flat surface. By that I mean that S is a Riemann surface and α a 1-
form on S which is holomorphic. That this defines a flat surface is a standard fact;
one can consult Zorich’s excellent introduction to the area to see how this is done
[7]. The form α defines two dynamical systems on S, called the horizontal and
vertical flows. One obtains them by integrating the unit vector fields in kerℑ(α)
and kerℜ(α), respectively, away from the zeros of α. This is well-defined by a
theorem of Frobenius since α is holomorphic and therefore closed. Both of these
flows preserve the Lebesgue measure on S since, away from the zeros of α, they
are locally defined as isometries. Since we can rotate the vector fields and obtain
one from the other, it does not matter much which one we study. However, to
be consistent, whenever I mention a translation flow I will refer to the horizontal
flow. I will make the following two assumptions about the surfaces (S, α) which I
am willing to consider:

Finite area: Specificaly, we have that 2
i

∫

S α ∧ ᾱ <∞.
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Non-facetiousness: For almost every point p ∈ S we have that the trans-
lation flow starting at p is defined for all time.

The so-called Barak Weiss surface, (S = {z ∈ C : |z| < 1}, dz), is facetious since
the translation flow for any point is defined only for some time T < 2. Note
that compact flat surfaces satisfy the above assumptions. As for non-compact
surfaces of finite area, by a theorem of Strebel, parabolicity is sufficient to satisfy
the non-facetious condition. See [6, Remark 1].

Deformations of the flat metric turn out to be very profitable tools to study
translation flows. In particular, for any (S, α) satisfying the above assumptions,
we can define a one-parameter family of flat surfaces obtained by shortening the
direction of the horizontal flow while stretching the direction of the vertical flow,
thereby deforming the flat metric of (S, α). More specifically,

gt : (S, α) 7→ (S, αt) = gt(S, α) where αt = e−tℜ(α) + ietℑ(α),
is called the Teichmüller deformation.

Recently I have been trying to understand when the translation flows on sur-
faces satisfying the above two conditions are uniquely ergodic, and this is what
my talk is about. It highlights the use of the evolving geometry given the Te-
ichmüller deformation. Moreover, it is motivated by the recent trend of studying
the geometry and dynamics of flat surfaces of infinite genus.

Suppose (S, α) ∈ Hg is a compact flat surface of genus g belong to the moduli
space Hg of flat surfaces of genus g. In this case, the one-parameter family of
surfaces (S, αt) is called the Teichmüller orbit of (S, α). In this case, the answer
to the unique ergodicity question is answered by a theorem of Masur [5].

Masur’s criterion. Suppose the translation flow on (S, α) is not uniquely er-
godic. Then the Teichmüller orbit gt(S, α) leaves every compact subset of Hg.

The geometric spirit of Masur’s criterion is the following: if the geometry of our
one-parameter family of surfaces does not degenerate as the deformation continues,
then the translation flow is uniquely ergodic. Indeed, recurrence to a compact
subset of Hg implies that the geometry converges along a subsequence (S, αtk). It
is this geometric spirit which I aim to generalize for surfaces satisfying the finite
and non-facetious assumptions above.

Theorem 1 ([6]). Let (S, α) be a flat surface of finite area. Suppose that for any
η > 0 there exist a function t 7→ ε(t) > 0, a one-parameter family of subsets

Sε(t),t =

Ct
⊔

i=1

Si
t

of S made up of Ct < ∞ path-connected components, each homeomorphic to a
closed orientable surface with boundary, and functions t 7→ Di

t > 0, for 1 ≤ i ≤ Ct,
such that for

Γi,j
t = {paths connecting ∂Si

t to ∂Sj
t }
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and
δt = min

i6=j
sup

γ∈Γi,j
t

distt(γ,Σ)

the following hold:

(1) Area(S\Sε(t),t) < η for all t > 0,
(2) distt(∂Sε(t),t,Σ) > ε(t) for all t > 0,

(3) the diameter of each Si
t , measured with respect to the flat metric on (S, αt),

is bounded by Di
t and

∫ ∞

0

(

ε(t)−2
Ct
∑

i=1

Di
t +

Ct − 1

δt

)−2

dt = +∞.

Moreover, suppose the set of points whose translation trajectories leave every com-
pact subset of S has zero measure. Then the translation flow is ergodic.

Theorem 1, although it may seem quite complicated, it is not, and it is ex-
pressed purely in terms of evolving geometric quantities. As such, it is indepen-
dent of moduli spaces and of topological type of the surface being considered, as
long as it has finite area. It should be mentioned that the proof of the theorem
uses Forni’s set-up and, moreover, is inspired by his proof of the spectral gap for
the Kontsevich-Zorich cocycle for gt-invariant measures [2, §2]. It should also be
mentioned that, usually, one can expect to be able to upgrade the result to unique
ergodicity. This is done in all examples of applications mentioned below.

In the case that (S, α) is a compact surface, Theorem 1 can be expressed as
follows. Denote by δt the systole of (S, αt), i.e., the length of the shortest closed
geodesic on (S, αt).

Theorem 2 ([6]). Let S be a compact flat surface of finite area. If
∫ ∞

0

δ2t dt = ∞,

then the translation flow is uniquely ergodic.

Theorem 2 generalizes Masur’s criterion and a theorem of Cheung-Eskin [1].
It is in contexts where non-compact surfaces appear that Theorem 1 is most

useful and showcases its strength, since there is no moduli space for such surfaces.
In any case, having something playing the role of a moduli space to help keep
track of the evolving geometry is always useful. I will mention two applications of
Theorem 1 which have been implemented.

Flat surface models of ergodic systems [4]. In joint work with K. Lindsey,
we create a dictionary that brings together Bratteli diagrams, cutting and stacking
transformations and flat surfaces. Although a very special version of this has
been considered by Bufetov before, our general point of view is a new way of
constructing flat surfaces which satisfy both conditions above. In fact, one could
argue that any flat surface satisfying the two conditions above can be obtained
through this construction using a Bratteli diagram, and that a generic flat surface
from this construction is of infinite genus. It is possible to control the deforming
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geometry by the shift operation on the Bratteli diagram and thus Theorem 1
has been translated to this setting and new unique ergodicity results have been
obtained. One can ask whether the space of all Bratteli diagrams serves a good
role as a moduli space for all flat surfaces with the above properties and whether
a version of Masur’s criterion holds in this setting. The answer is a careful and
self-restrained yes, since there are a few surprises. This is work in progress.

Covers of surfaces of infinite type [3]. In joint work with P. Hooper, we
study flows on surfaces of infinite genus and finite area and bundles of covers
thereof. The usurper moduli space in this case is (SL(2,R)× C)/SL(S, α), where
SL(S, α) is the Veech group and C is a Cantor set which depends on the types of
covers one is considering. One of the main results is that, if the translation flow
on the base surface has a non-divergent Teichmüller orbit on SL(2,R)/SL(S, α),
then almost every cover in C (with respect to some SL(S, α)-invariant probability
measure) has a uniquely ergodic translation flow. One of the reasons this may be
significant is that pseudo-Anosov maps in general will not lift to a cover. However,
we can still retrieve unique ergodicity for almost every cover.

References

[1] Y. Cheung and A. Eskin, Unique ergodicity of translation flows, Fields Institute Communi-
cations. 51 (2007), 213–221.

[2] G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus,
Annals of Mathematics 155 (2002), 1–103.

[3] P. Hooper and R. Treviño, Covers of surfaces of infinite type: random and evil, Preprint.
[4] K. Lindsay and R. Treviño, Flat models of ergodic systems, Preprint.
[5] H. Masur, Interval exchange transformations and measured foliations, Annals of Mathe-

matics 115 (1982), 169–200.
[6] R. Treviño, On the ergodicity of flat surfaces of finite area, Geometric and Functional

Analysis 24 (2014), 360–386.
[7] A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. (2006), 437–583.

Generalized Gauss map for simultaneous approximation

Yitwah Cheung

(joint work with Nicolas Chevallier)

Associated to any θ ∈ Rd is an increasing sequence of positive integers defined by

q0 = 1, qk+1 = min{n > qk : dist(nθ,Zd) < dist(qkθ,Z
d)}

where the distance is taken with respect to the Euclidean norm on Rd.
We also have an associated sequence

rk = dist(qkθ,Z
d), k = 0, 1, . . .

which strictly decreases to zero.
Define

C(θ) = lim
k→∞

ln qk
k

and C∗(θ) = lim
k→∞

− ln rk
k
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whenever the limits exist. In the case d = 1, the existence of the limit C(θ) for
a.e. θ ∈ R (with respect to Lebesgue measure) was shown by Khintchine; the
precise value of the constant was computed by Levy. The Khintchine-Levy result
is nowadays a standard exercise in textbooks on ergodic theory. Indeed, we have

C(θ) = C∗(θ) =
π2

12 ln2

for Lebesgue almost every θ ∈ R.
Our work-in-progress extends Khintchine-Levy theorem to higher dimensions.

Theorem 1. There are constants C and C∗ such that for almost every θ ∈ Rd,
C(θ) = C and C∗(θ) = C∗.

Let X denote the space of unimodular lattices in Rd+1. There is a natural
identification of X with SLd+1 R/ SLd+1 Z. Let µH denote the pullback of Haar
measure under this identification. There is a well-known normalization that yields

µH(X) =
ζ(2) · · · ζ(d + 1)

d+ 1
.

Let S be the subset of X consisting of lattices Λ ⊂ Rd+1 that have a pair of vectors
e1 = (u1, h1) and e2 = (u2, h1) ∈ Rd × R such that

‖u1‖ = |h2|, |h1| < ‖u1‖, and ‖u2‖ < |h2|
and such that ±e1 and ±e2 are the only nonzero elements of Λ in B̄(0, r)× [−r, r]
where r = ‖u1‖ = |h2|. Note that S is an (open) submanifold of codimen-
sion one. Moreover, it is transverse the flow induced by the left action of gt =
diag(et, . . . , et, e−dt), allowing us to realize X as a suspension over S.

Let µ be the measure on S induced by µH . Then it can further be shown that

C + C∗ =
ζ(2) · · · ζ(d + 1)

µ(S)
.

The measure dµ admits a surprisingly simple explicit representation with suitably
chosen coordinates.

Examples of horocyle invariant measures on the moduli space of
translation surfaces, I and II

John Smillie, Barak Weiss

We give examples showing that for the horocycle flow acting on the moduli
space of translation surfaces, invariant measures and orbit-closures need not be
given by linear equations. We describe orbit closures which are manifolds with
non-empty boundary and with infinitely generated fundamental group, and also
examples which at almost every point are described by non-linear equations. This
is in contrast with the situation for the action of G = SL2(R) on these spaces, for
which work of McMullen (in genus two), and Eskin-Mirzakhani-Mohammadi (for
arbitrary stratum) showed that such examples do not arise.
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Classification results for the G-action on the two genus two strata H(2) and
H(1, 1) were obtained in celebrated work of McMullen. In two recent breakthrough
papers, Eskin-Mirzakhani (for measures) and Eskin-Mirzakhani-Mohammadi (for
orbit-closures) obtained a local picture valid in every stratum. They showed that
orbit-closures are cut out of an immersed linear submanifold (which may have self-
intersections) by one quadratic equation corresponding to the area-one condition,
and the measures are obtained from the Lebesgue measure on a linear submanifold
by a coning off construction. In fact the results of Eskin-Mirzakhani-Mohammadi
yield new information in the genus-two case as well, as they also deal with all
stationary measures and all B-orbit-closures, where B ⊂ G is the upper triangular
group. We show that the picture for the horocycle action is significantly more
complicated.

Rigidity of the Kontsevich-Zorich cocycle and Hodge theory

Simion Filip

In this talk, I will discuss some applications of Hodge-theoretic methods to Te-
ichmüller dynamics. It is based on the papers [1, 2].

The main tool is the natural variation of Hodge structure over a Teichmüller
disk. The local differential geometry is the same as in the classical case, going
back to Griffiths. However, to obtain consequences at the global level one needs
the finite measure invariant under SL2 R.

Several results follow. On the dynamical side, one proves a version of Deligne
semisimplicity adapted to the SL2 R setting, as well as the usual one. Using further
dynamical tools, one finds that measurable invariant bundles are necessarily rigid
- in period coordinates they must be polynomial. This implies that measurable
and real-analytic algebraic hulls must coincide.

On the algebraic side, we first find that affine manifolds parametrize Riemann
surfaces whose Jacobians have extra endomorphisms (typically, real multiplica-
tion). For Teichmüller curves, this was first proved by Möller in [4].

One then considers the mixed Hodge structure that comes from the zeros of
the 1-form. This is an extra structure on the relative cohomology, coming from
the relative periods of the holomorphic 1-forms. Using again subharmonicity tech-
niques, we find that the mixed Hodge structure splits. Geometrically, this means
that certain naturally defined points on (factors of) the Jacobians must be torsion.
In the case of Teichmüller, this result was proved by Möller in [3].

The torsion interpretation of the last result implies that affine manifolds are
given by Hodge-theoretic conditions. In particular, they must be algebraic vari-
eties.

To discuss the methods, recall first that we have a family of Riemann surfaces
over some stratum. Their first cohomology groups form a local system called the
Kontsevich-Zorich cocycle. It also has a holomorphic subbundle, given by the
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holomorphic 1-forms on the Riemann surfaces. This endows the cocycle with a
natural positive-definite metric, called the Hodge metric.

The curvature of the bundles considered, as well as their tensor powers, are
very special. Specific parts of the bundle have negative curvature. This, in turn,
implies that norms of sections are locally subharmonic functions.

With a version of the maximum principle, one could conclude that global sec-
tions of the bundle must have constant norm. This is not directly available because
Teichmüller disks are not compact. The method thus uses subharmonicity for ran-
dom walks on the group SL2 R. The finite invariant measure replaces compactness.

The above method proves the semisimplicity properties of the Kontsevich-Zorich
cocycle. Further rigidity follows from considering the stable and unstable foliations
on the affine manifold. Namely, one finds that measurable SL2 R-invariant bundles
must be polynomial along each of the foliations. Assembling these facts, it follows
that the bundles are given by polynomials in period coordinates, in particular are
real-analytic.

The paper [1] deals with the mixed Hodge structure on the cohomology of flat
surfaces. Namely, recall that period coordinates are given by the first relative
cohomology group of the surfaces, denoted H1

rel. The holomorphic 1-forms also
have relative periods, thus providing a canonical subspace inside the relative co-
homology group, denoted F 1.

The space H1
rel has a rational structure coming from the integer cohomology,

while the space F 1 is of transcendental origin, given by integrals of 1-forms. How-
ever, over an affine manifold these spaces are forced to be in a rather good position.
Namely, for 1-forms which are in the tangent space of the affine manifold, the rel-
ative and absolute periods are constrained by linear equations.

The constrains are obtained as follows. Given a holomorphic 1-form α living
in the pure cohomology H1, there are two ways to lift it to H1

rel. One is using
the tangent space of the affine manifold, the other is using the space F 1 naturally
living in H1

rel. Using subharmonicity techniques, one finds that these two lifts
must agree. This yields the claimed linear relations.

Finally, one can put all the above equations into a global geometric form.
Namely, ones has a bundle of (factors of) the Jacobians, and canonically defined
points on them. The linear relations can be interpreted as those points being
torsion.

This geometric interpretation implies that affine manifolds are completely de-
termined by algebro-geometric conditions. Therefore, they must be algebraic va-
rieties, in fact defined over Q.
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Loci in strata of meromorphic quadratic differentials with fully
degenerate Lyapunov spectrum

Pascal Hubert

(joint work with Julien Grivaux)

Lyapunov exponents of the Teichmüller flow have been studied a lot since the
work of Zorich [8] and Forni [5]. Their understanding is important for applications
to the dynamics of interval exchange transformations and polygonal billiards. A
big breakthrough is the Eskin-Kontsevich-Zorich formula for the sum of positive
Lyapunov exponents [4]. Given a SL(2;R) invariant suborbifold of a stratum of
quadratic differentials, they relate the sum λ+1 + · · · + λ+g to the Siegel-Veech
constant of the invariant locus. We will only be interested in the bundle with fiber
H1(X,R) over a Riemann surface X.

By a theorem of Kontsevich and Forni, the sum λ+1 + · · ·+λ+g is also the integral
over the invariant locus of the curvature of the Hodge bundle along Teichmüller
discs ([5], [4]). Using this interpretation, every Lyapunov exponent is computed
for cyclic covers of the sphere branched over 4 points ([3], [6], [2]). For some cyclic
covers, Forni-Matheus-Zorich remarked that the sum λ+1 + · · ·+λ+g is equal to zero.
This surprizing fact means that the complex structure of the underlying Riemann
surface is constant along the Teichmüller disc. Forni-Matheus-Zorich ask whether
it is possible to construct other invariant loci with this property. We give a simple
explanation of this phenomenon discovered by Forni-Matheus-Zorich.

Theorem 1. There exist closed GL(2;R) invariant loci of quadratic differentials
of arbitrarily large dimension with zero Lyapunov exponents.

This result can be interpreted in the following way: the projection of such a
locus to the moduli space of compact Riemann surfaces is a point. The situation
for strata of abelian differentials is completely different: there are finitely many
invariant suborbifolds with fully degenerate Lyapunov spectrum, and they are
arithmetic Teichmüller curves (see [7], and [1]).

Proof. To prove Theorem 1, one has to construct SL(2;R) a suborbifold of a stra-
tum with a constant complex structure. To provide examples, we start with a
locus in genus zero (for instance a stratum), and make a cover ramified over three
points. The branched locus moves in an equivariant way when the quadratic differ-
entials varies on the sphere. For instance, one can choose poles of the differentials.
Since, there is only one complex structure on CP1 minus three points, the complex
structure is constant on the cover. This implies that the curvature of the Hodge
bundle is equal to zero, therefore the Lyapunov exponents satisfy

λ+1 = · · · = λ+g = 0.
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�

A more precise statement can be given for pillow-tiled surfaces (covers of the
sphere ramified over 4 points).

Corollary 2. Let (X, q, π) be a pillow-tiled surface such that the covering map
π is Galois. Then the Lyapunov exponents of the Teichmüller disc of (X, q) are
equal to zero if and only the branching locus of π contains at most three points.
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Lyapunov exponents and Harder-Narasimhan filtrations on
Teichmüller curves

Fei Yu

Let Mg be the moduli space of Riemann surfaces of genus g, and ΩMg → Mg

the bundle of pairs (X,ω), where ω 6= 0 is a holomorphic 1-form on X ∈ Mg.
Denote ΩMg(m1, ...,mk) →֒ ΩMg the stratum of pairs (X,ω), where ω(6= 0) have
k distinct zeros of order m1, ...,mk respectively([KZ03]).

There is a nature action of GL+
2 (R) on ΩMg(m1, ...,mk), whose orbits project

to complex geodesics (Teichmüller geodesic flows) in Mg. The projection of an
orbit is almost always dense. Fix an SL2(R)-invariant, ergodic measure µ on ΩMg.
The Lyapunov exponents for the Teichmüller geodesic flow on ΩMg measure the
logarithm of the growth rate of the Hodge norm of cohomology classes under the
parallel transport along the geodesic flow ([KZ97],[Zo06])):

1 = λ1 ≥ λ2 ≥ ...λg ≥ 0

If the stabilizer SL(X,ω) ⊂ SL2(R) of a given form is a lattice, then the
projection of its orbit gives a closed, algebraic Teichmüller curve C. After suitable
base change and compacfication, we can get a universal family f : S → C, which
is a relative minimal semistable model with disjoint sections D1, ..., Dk; here Di|X
is a zero of ω when restrict to each fiber X ([CM11]).

We can use the algebraic geometry technique to study the question from dy-
namical system since the following formula links the sum of Lyapunov exponents
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and degree of Hodge bundle on Teichmüller curves (originally by Kontesvich for
Teichmüller geodesic flows. cf.[KZ97],[Fo02],[BM10]).

g
∑

i=1

λi =
2degf∗ωS/C

2g(C)− 2 + |∆|
It is surprising that the relative canonical bundle formula of the Teichmüller

curve is very simple and elegant([CM11], [EKZ11]):

ωS/C ≃ f∗L ⊗O(
∑

i

miDi)

Here L ⊂ f∗ωS/C be the line bundle whose fiber over the point corresponding to
X is Cω, the generating differential of Teichmüller curves.

There are many nature vector subbundles of the Hodge bundle f∗ωS/C :

L ⊗ f∗O(
∑

diDi) ⊂ L⊗ f∗O(
∑

miDi) = f∗ωS/C

One can construct many filtrations of Hodge bundle by using these subbundles
([YZ12a]).

By using those filtrations, we can get an upper bound of the slope of each graded
quotient for the Harder-Narasimhan filtration of f∗(ωS/C) of Teichmüller curves in

each stratum. For a vector bundle V , define µi(V ) = µ(grHN
j ) if rk(HNj−1(V )) <

i ≤ rk(HNj(V )). Write wi for µi(f∗(ωS/C))/deg(L).
1 = w1 ≥ w2 ≥ ...wg

For a Teichmüller curve which lies in ΩMg(m1, ...,mk), we have inequalities
([YZ12b]):

wi ≤ 1 + aHi(P )

Here ai is the i-th largest number in {− j
mi+1 |1 ≤ j ≤ mi, 1 ≤ i ≤ k}, P is the

special permutation and Hi(P ) ≥ 2i− 2.

Table 1. Genus 3 case: λi for whole stratum(cf.[KZ97]) and wi

for all Teichmüller geodesic curves in this stratum(cf.[YZ12a],
[YZ12b]).

zeros component λ2 λ2 w2 w3

∑

wi

(4) hyp 0.6156 0.1844 3/5 1/5 9/5
(4) odd 0.4179 0.1821 2/5 1/5 8/5
(3,1) 0.5202 0.2298 2/4 1/4 7/4
(2,2) hyp 0.6883 0.3117 2/3 1/3 2
(2,2) odd 0.4218 0.2449 1/3 1/3 5/3
(2,1,1) 0.5397 0.2936 1/2 1/3 11/6
(1,1,1,1) 0.5517 0.3411 ≤ 1/2 ≤ 1/2 ≤ 2

Now we have λi measuring the stability of dynamical system and wi measuring
the stability of algebraic geometry. The numerical λi for whole stratum and wi
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for all Teichmüller curves in this stratum are listed in Table 1. Are there some
relations between them? In fact we make the following conjecture:

Conjecture: The polygon of Lyapunov exponents lies below the Harder-
Narasimhan polygon on Teichmüller curves.

That is for any 1 ≤ k ≤ g
g
∑

i=k

λi ≤
g
∑

i=k

wi

(or equivalence to say
k
∑

i=1

λi ≥
k
∑

i=1

wi). When the equality is reached, we also

conjecture if
k
∑

i=1

λi =
k
∑

i=1

wi (and wk 6= wk+1), then f∗ωS/C split to SL2-invariant

of rank k and rank g − k vector bundle. It can be considered as the inverse of
Kontsevich’s formula.

We can prove two simple corollaries 1)wg ≥ 0; 2)wi = 0 =⇒ λi = 0 by using
the Simpson corresponding and Kontsevich’s formula.

We also hope that wi can be defined for any Teichmüller geodesic flows, and it is
compatible with the definition on Teichmüller curves (some continuity properties),
then we can discuss the same conjecture for all Teichmüller geodesic flows.

The conjecture is inspired by the Katz-Mazur theorem(cf.[Ma72],[Ma73]) which
tells us that the Hodge polygon lies below the Newton polygon on the crystalline
cohomology.
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Entropy of random walks on hyperbolic groups

Sébastien Gouëzel

(joint work with Frédéric Mathéus and François Maucourant)

Let Γ be a nonamenable finitely generated group. The main examples we have
in mind are the free group F2; the surface group π1(Mg) with g ≥ 2; the modular
group Modg; higher rank groups such as SL(n,Z). We are interested in the fol-
lowing question: how can one construct random elements of Γ? Moreover, if there
are different answers to this question, how are they related?

The first answer is geometric. Assume that Γ acts by isometries on a space
(X, dX). Taking a basepoint x∗ ∈ X , this gives a left-invariant distance d(γ, γ′) =
dX(γx∗, γ

′x∗) on Γ. A random point in Γ can be constructed by taking a large
n, and then choosing a point uniformly in the ball B(e, n), i.e., according to
the measure νn = 1

|B(e,n)|

∑

γ∈B(e,n) δγ . Usually (for instance in all the above

examples), the space X comes with a natural compactification, and the sequence
of measures νn converges to a measure ν∞ supported on ∂Γ.

The second answer is probabilistic. Consider a probability measure µ, supported
on the generators of the group. Let n be large, and let g1, . . . , gn be i.i.d. elements
of Γ, chosen according to µ. The product Zn = g1 · · · gn is a random element of
the group, distributed according to µ∗n. When n tends to infinity, this sequence
of measures converges to a measure on the boundary ∂X , denoted by µ∞, called
the hitting measure of the random walk. The drift ℓ of the random walk is defined
as the almost sure limit of lim d(e, Zn)/n (it exists by Kingman’s theorem).

To compare these two notions, one can try to compare at finite time, i.e., see
how µ∗n and νℓn are related. Or one can compare the resulting measures µ∞ and
ν∞ on ∂X .

In F2, with its standard set of generators and the corresponding word distance,
let µ be the uniform measure on the generators. It is then easy to check that the
measures µ∞ and ν∞ coincide (they are the uniform measure on the boundary).
It is widely expected that this is essentially the only case where this happens,
and that in general µ∞ and ν∞ should be singular. This is easy to check in
the case of SL(n,Z): the measure ν∞ is supported on measures with maximally
degenerate Lyapunov spectrum, while the Lyapunov exponents of a random walk
are all different (if the support of the random walk generates the group, which we
always assume). However, this is generally hard to prove, since the measures µ∗n

share many qualitative and quantitative properties.
Our main result is that, in hyperbolic groups away from the free group, the

measures are mutually singular, as expected:
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Theorem 1. Let Γ be a surface group, or more generally any hyperbolic group
which is not virtually free, endowed with a word distance. Let µ be a finitely
supported symmetric probability measure on Γ. Then the measures µ∞ and ν∞
are mutually singular.

This result is obtained as a consequence of a stronger quantitative theorem,
involving the notion of entropy. The entropy h of a random walk is the exponential
growth rate of its typical support, i.e.,

h = lim
n→∞

logmin{|K| : µ∗n(K) ≥ 1/2}
n

.

Let v denote the growth rate of balls, i.e., v = limn−1 log |B(e, n)|. Since the walk
at time n is essentially supported by the ball B(e, ℓn), one has h ≤ ℓv (this is
the fundamental inequality of Guivarc’h). If the inequality is strict, this means
that the walk is supported by an exponentially small subset of B(e, ℓn), i.e., it is
concentrated in a very narrow subset of the group (and, therefore, µ∗n and νℓn
are very different). This is the content of the following theorem (which implies the
previous one):

Theorem 2. Let Γ be a surface group, or more generally any hyperbolic group
which is not virtually free, endowed with a word distance. Let µ be a finitely
supported symmetric probability measure on Γ. Then it satisfies h < ℓv.

The proofs rely on rigidity properties of cocycles on the boundary of hyperbolic
groups and, in a crucial way, on the fact that the word distance is integer-valued.

On the modulus of continuity for spectral measures in substitution
dynamics

Alexander Bufetov

(joint work with Boris Solomyak)

The talk gives first quantitative estimates on the modulus of continuity of the
spectral measure for weak mixing suspension flows over substitution automor-
phisms, which yield information about the “fractal” structure of these measures.
The main results are, first, a Hoelder estimate for the spectral measure of almost
all suspension flows with a piecewise constant roof function; second, a log-Hoelder
estimate for self-similar suspension flows; and, third, a Hoelder asymptotic ex-
pansion of the spectral measure at zero for such flows. Our second result implies
log-Hoelder estimates for the spectral measures of translation flows along stable
foliations of pseudo-Anosov automorphisms. A key technical tool in the proof of
the second result is an “arithmetic-Diophantine” proposition, which has other ap-
plications. In the appendix this proposition is used to derive new decay estimates
for the Fourier transforms of Bernoulli convolutions.
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Small dilatations of pseudo-Anosov homeomorphisms on hyperelliptic
strata of Abelian differentials

Corentin Boissy

(joint work with Erwan Lanneau)

1. Introduction

1.1. Pseudo-Anosov homeomorphisms and translation surfaces. By defi-
nition, a pseudo-Anosov homeomorphism φ on a surface S defines a pair of mea-
sured foliations µS , µU on S: the stable one, contracted by a factor θ > 0 by φ,
and the unstable one, dilated by the same factor. Such pair of measured foliation
defines a pair (X, q), where X is a Riemann surface homeomorphic to S, and q
is a quadratic differential, that we usually call flat surface. In particular, the set
of conjugacy classes of pseudo-Anosov homeomorphism is in one-to-one bijection
with closed orbits of the Teichmüller geodesic flow.

When the foliations µS , µU are orientable, the corresponding quadratic differ-
ential is the square of an Abelian differential ω, and (X,ω) is a translation surface.

1.2. Minimization problem. The set of dilatatations for fixed genus is a discrete
subset of R, and hence, admits a minimum δg. The value δg is unknown except for
g = 1 and g = 2. The value δ+g , which corresponds to pseudo-Anosov homeomor-
phism with orientable foliations, is also unknwown, except for some small values
of g (see [8, 6]). From [10], we know that δg tends to one when g tends to infinity.
Note that a recent result of McMullen [9] gives the minimal value of the spectral
radius of matrices inM2g(Z), with a reciprocal characteristic polynomial, although
it is not known if this minimum corresponds to a pseudo-Anosov homeomorphism
or not.

In [5], Farb proposes a natural refinement of the minimization problem: com-
pute the minimal dilatation δ(H(k1, . . . , kr)) associated to a stratum H(k1, . . . , kr)
of the moduli space of translation surface. Note that these strata are not con-
nected in general (see [7]), so it is natural to ask for the minimal dilatation δ(C),
for C ⊂ H(k1, . . . , kr) a connected component.

1.3. Constructing pseudo-Anosov homeomorphisms in a stratum. For a
fixed connected component of a stratum, there is a well known construction of
pseudo-Anosov homeomorphisms due to Veech (see [11]). We give a sketch of this
construction. Consider a Rauzy diagram D associated to the component, and let γ
be a closed path in D, with endpoints a permutation π. By the usual Rauzy–Veech
operations, we associate to γ a matrix M . Choose γ such that the matrix M is
primitive. Let λ be a positive eigenvector for the Perron-Frobenius eigenvalue θ
of M and let τ be an eigenvector for the eigenvalue θ−1 of M . One can show
that the pair (π, λ+ iτ) is a suspension data which defines a translation surface S.
By construction and the usual properties of the Rauzy–Veech induction, the pair
(π, 1θλ+ iθτ) defines the same surface S, and therefore, one gets a pseudo-Anosov
homeomorphism of dilatation θ.
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This construction provides an easy way to build pseudo-Anosov homeomor-
phisms in a given connected component of stratum. However, any pseudo-Anosov
homeomorphism constructed in this way fixes a horizontal separatrix. Hence, not
all pseudo-Anosov homeomorphisms of a stratum can be obtained in this way.

2. Minimization of the dilatation in hyperelliptic strata

2.1. Statement of the result.

Theorem 3 (B-Lanneau).

• Let g ≥ 2. The smallest dilatation of a pseudo-Anosov homeomorphism in
Hhyp(2g − 2) is the largest root of the polynomial:

X2g+1 − 2X2g−1 − 2X2 + 1

• Let 2 ≤ g ≤ 15. The smallest dilatation of a pseudo-Anosov homeomor-
phism in Hhyp(g − 1, g − 1) is the largest root of the polynomial:

X2g+2 − 2X2g − 2Xg+1 − 2X2 + 1 for g even

X2g+2 − 2X2g − 4Xg+2 + 4Xg + 2X2 + 1 for g odd

3.1. A variation of the Veech construction. A variation of the construction
given in Paragraph 1.3 is the following: for a permutation π =

( a1,...,ad

b1,...,bd

)

, we define

s(π) =
(

bd,...,b1
ad,...,a1

)

. Instead of considering closed paths in the Rauzy diagram, we
consider nonclosed paths from a permutation π to s(π). We obtain, similarly as

previously, the datum (π, ζ) that defines a translation surface, with
(

− 1

θ
0

0 −θ

)

in

the Veech group.
We have the following result.

Proposition 4 (B-Lanneau). Any pseudo-Anosov homeomorphism on a hyperel-
liptic connected component can be obtained by the previous construction provided
that its dilatation is smaller than 2.

See also [3, 4] for another construction of pseudo-Anosov homeomorphisms on
a hyperelliptic connected component.

4.1. Sketch of the proof. Now we give a short sketch of the proof of Theorem 3.
From the previous proposition, it follows that we need to study all paths γ in the
Rauzy diagram, from a permutation π to s(π). There are two cases when the
associated dilatation can be easily controlled.

(1) When the path γ passes through the “center” of the Rauzy diagram, i.e.
the permutation πn = ( 1 ... n

n ... 1 ). In this case, we show that the pseudo-
Anosov can also be constructed by the usual Veech construction. In this
case, it was shown in [1] that the dilatation is bounded from below by 2.

(2) When the path γ starts from one of the two “main loops” of the Rauzy
diagram, i.e. permutations obtained from πn by the Rauzy moves Rk

t

or Rk
b . In this case, we can bound from below the dilatation by the one

corresponding to a finite number of paths, for which the matrix can be
explicitely computed. Then, in the case when n is even (corresponding to
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the stratum H(2g − 2)), one can actually compute the minimum (when n
is odd, this corresponds to H(g− 1, g− 1), and the computations are more
complicated. In this case, a computer assisted proof gives the result for
small n).

Of course, there are many paths that correspond to neither of the two previous
situations. In this case, there is a natural way to change the path γ (in fact,
its starting point). This is done by a kind of “left-right” Rauzy–Veech induction
on (π, ζ), that preserves the corresponding translation surface, and therefore the
pseudo-Anosov homeomorphism. We have the following result, which concludes
the proof of the Theorem 3.

Proposition 5. If the dilatation is smaller than 2, the above left-right Rauzy–
Veech induction eventually leads to a starting point in the big loop of the Rauzy
diagram.
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Typical properties of periodic orbits for the Teichmüller flow

Ursula Hamenstädt

Consider the moduli space H of area one abelian differentials for a closed ori-
ented surface S of genus g ≥ 2. The Teicmüller flow Φt acts on H preserving a
Borel probabiliy measure λ in the Lebesgue measure class.

Periodic orbits γ for the Teichmüller flow onH are countable and can be ordered
by their length. Indeed, if h = 4g − 4 is th entropy of the Lebesgue measure λ
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with respect to the flow Φt then as R → ∞, the number of periodic orbits γ of

period at most R is asymptotic to ehR

hR .
Let P be the set of all periodic orbits on H.

Definition 1. A subset Q ⊂ P is called typical if

♯{γ ∈ Q | ℓ(γ) ≤ R} ∼ ehR

hR
.

In the talk, we introduce three different properties for periodic orbits.
First, the Lyapunov exponents of the Kontsvich Zorich cocycle on H. are de-

fined. It was shown by Avila and Viana that the Lyapunov spectrum is simple.
This means that there are precisely g different positive exponents 1 = λ1 > · · · >
λg > 0.

A periodic orbit γ determines up to conjugation a matrix A(γ) ∈ Sp(2g,Z).
Let eα1(γ) ≥ · · · ≥ eαg(γ) be the absolute values of the g largest eigenvalues, in
decreasing order and define

Aǫ = {γ | ℓ(γ) = R,
1

R
|αi(γ)− λi| < ǫ.

A symplectic matrix A ∈ Sp(2g,Z) determines a trace field K(A) which is a
number field of degree at most g over Q. The Galois group of a number field of
degree k ≤ g over Q field is a subgroup of the symmetric group in g elements. Call
the field full if its degree equals g and if its Galois group equals the symmetric
group. Define

B = {γ | K(A(γ)) is full}.
If the trace field A ∈ Sp(2g,Z) if full then A defines a Hilbert modular variety

which is contained in the moduli space Ag of principally polarized abelian varieties
of rank g. The composition J of the canonical projection of H onto the moduli
space of Riemann surfaces with the Torelli map maps the Teichmüller disc T (γ)
generated by a periodic orbit γ into Ag. Define

C = {γ | J T (γ) is not contained in a Hilbert modular variety}.
We discuss the following.

Theorem 2. The following are typical properties for periodic orbits.

(1) For ǫ > 0 the set Aǫ.
(2) The set B.
(3) For g ≥ 3 the set C.
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Limit sets of Teichmüller geodesic rays in the Thurston boundary

Anna Lenzhen

(joint work with Chris Leininger, Kasra Rafi)

We describe a method for constructing measured laminations which are minimal
but not uniquely ergodic. The laminations are constructed as limits of explicit
sequences of simple closed curves on the surface that form a quasi-geodesic in
the curve complex and hence, by a theorem of Klarreich, are minimal, filling and
measurable. Analogous to continued fraction coefficients associated to an irrational
real number, any lamination ν in our family has an associated infinite sequence
of positive integers {ri} that can be chosen essentially arbitrarily and encode the
arithmetic properties of ν. One important consequence of the explicit nature of our
construction is that we can adjust the values of {ri} to produce different interesting
examples. In particular, we show that if the sequence ri grows fast enough then
the lamination ν is not uniquely ergodic.

Although our construction is general in spirit, we carry out detailed compu-
tations in the case of the five-times punctured sphere. This case is already rich
enough for us to observe some interesting phenomena. Our lamination ν is a limit
of a sequence of simple closed curves γi defined as follows. Let ρ be a finite order
homeomorphism (rotation counter-clockwise by 4π/5) of a five-times punctured
sphere S and D a Dehn twist. We then set φr = Dr ◦ ρ and define

Φi = φr1 ◦ . . . ◦ φri and γi = Φi(γ0)

Theorem 1. There exists R > 0 so that if the powers ri are larger than R,
then the path {γi} is a quasi-geodesic in the curve complex and hence the limiting
lamination exists, is minimal and filling. Furthermore, if ri grow fast enough,
namely if ri+1 ≥ 4i+2ri, then the limiting lamination ν is not uniquely ergodic.

We are interested in understanding a Teichmüller geodesic where ν is topolog-
ically equivalent to the vertical foliation of the associated quadratic differential.
(Recall that there is a one-to-one correspondence between measured laminations
and singular measured foliations). Let ∆(ν) be the simplex of all possible pro-
jectivized measures on ν. In the case of the five-times punctured sphere, if ν
is minimal and not uniquely ergodic then ∆(ν) is one dimensional, that is, it is
homeomorphic to an interval. The endpoints of this interval are projective classes
associated to ergodic measures on ν, denoted να and νβ . Every other measure is
in the form ν̄ = cανα + cβνβ for positive real numbers cα and cβ . Note that the
projective class of ν̄ depends only on the ratio of cα and cβ .

Now fix any point X in Teichmüller space. There is a unique Teichmüller
geodesic

g = g(X, ν̄) : [0,∞) → T (S)

starting from X so that the vertical foliation associated to g is in the projective
class of ν̄. We examine the limit set Λ(g) of this geodesic in the Thurston boundary
of Teichmüller space.
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By appealing to the results of Rafi [2, 3], we can determine how the coefficients
{ri} effect the behavior of this Teichmüller geodesic. In particular, at any time
t, we can describe the geometry of the surface g(t) using the numbers ri. As a
result, we can control the limit set of g.

Theorem 2. Let ν̄ = cανα + cβνβ and g = g(X, ν̄) be as above. If ri satisfy
certain growth conditions, then

Λ(g) = ∆(ν),

for any value of cα and cβ.

Note that, in particular, even when ν̄ = να is an ergodic measure, the limit set
still includes the other ergodic measure νβ.
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Torsion and the Veech dichotomy

Matt Bainbridge

(joint work with Philipp Habegger, Martin Möller)

In this talk, we discuss some of the ideas which go into proving the following
finiteness statement for Teichmüller curves in the generic stratum of genus-three
holomorphic one-forms.

Theorem 1. There are at most finitely many Teichmüller curves in the generic
stratum ΩM3(1, 1, 1, 1) having cubic trace field.

There first ingredient in the proof is a global torsion bound for Teicumüller
curves in this stratum. Given (X,ω) generating an algebraically primitive (mean-
ing the degree of the trace field is equal to the genus of X) Teichmüller curve,
Möller’s torsion condition says that for any two zeros p and q of ω, we have
n(p− q) = 0 in Jac(X) for some n ∈ N. We call a n which works for any two zeros
a torsion bound for (X,ω).

Theorem 2. There is a uniform torsion bound for all algebraically primitive Te-
ichmüller curves in ΩM3(1, 1, 1, 1).

The proof is heavily computer aided and roughly amounts to finding all subtori
of a certain subvariety of an algebraic torus.

The finiteness theorem then follows from:

Theorem 3. For any g, a uniform torsion bound for all algebraically primitive
Teichmüller curves in ΩMg(1

2g−2) implies that this stratum only contains finitely
many such curves.
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The main idea is to use conformal geometry together with the torsion bound to
constrain the geometry of any one-form (X,ω) generating a Teichmüller curve in
this stratum. Any cylinder on (X,ω) is parallel to a finite collection of cylinders
which fill X . Veech showed that these cylinders have rationally commensurable
moduli. We use the above torsion bound to give strong constraints on these moduli.
More precisely, fix a periodic direction on (X,ω). Let Γ be the dual graph, whose
edges correspond to cylinders of (X,ω). We call a maximal set of edges which is
not disconnected by removing any vertex a block of cylinders.

Theorem 4. Suppose (X,ω) satisfies the torsion condition with torsion bound N .
Then for each block of cylinders, there are at most finitely many possibilities for
the vector of moduli (up to scaling).

The idea is to consider a different one-form η on X defined by a torsion di-
visor D supported on the zeros of ω. Specifically, η is the pullback of the form
dz/z by the meromorphic function f with (f) = ND, This form η has cylinders
which satisfy obvious linear equations with integral coefficients bounded by N .
Near the boundary of moduli space, these cylinders have moduli close to those of
corresponding cylinders of ω, yielding many linear equations which these moduli
satisfy.

Orbit closures for the SL(2,R) action on moduli space

Amir Mohammadi

(joint work with A. Eskin, M. Mirzakhani)

We prove results about orbit closures and equidistribution for the SL(2,R) action
on the moduli space of compact Riemann surfaces, which are analogous to the
theory of unipotent flows. The proofs of the main theorems rely on the measure
classification theorem of [6] and a certain isolation property of closed SL(2,R)
invariant manifolds which are developed in our joint work.

Suppose g ≥ 1, and let α = (α1, . . . , αn) be a partition of 2g − 2, and let
H(α) be a stratum of Abelian differentials, i.e. the space of pairs (M,ω) where
M is a Riemann surface and ω is a holomorphic 1-form on M whose zeroes have
multiplicities α1, . . . , αn. The form ω defines a canonical flat metric on M with
conical singularities at the zeros of ω. Thus we refer to points of H(α) as flat
surfaces or translation surfaces. For an introduction to this subject, see the survey
[13].

The space H(α) admits an action of the group SL(2,R) which generalizes the
action of SL(2,R) on the space GL(2,R)/SL(2,Z) of flat tori.

Affine measures and manifolds. The area of a translation surface is given
by

a(M,ω) =
i

2

∫

M

ω ∧ ω̄.
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A “unit hyperboloid” H1(α) is defined as a subset of translation surfaces in H(α)
of area one. For a subset N1 ⊂ H1(α) we write

RN1 = {(M, tω) | (M,ω) ∈ N1, t ∈ R} ⊂ H(α).

Definition 1. An ergodic SL(2,R)-invariant probability measure ν1 on H1(α) is
called affine if the following hold:

(i) The support M1 of ν1 is an immersed submanifold of H1(α), i.e. there
exists a manifold N and a proper continuous map f : N → H1(α) so that
M1 = f(N ). The self-intersection set of M1, i.e. the set of points of M1

which do not have a unique preimage under f , is a closed subset of M1

of ν1-measure 0. Furthermore, each point in N has a neigborhood U such
that locally Rf(U) is given by a complex linear subspace defined over R in
the period coordinates.

(ii) Let ν be the measure supported on M = RM1 so that dν = dν1da. Then
each point in N has a neighborhood U such that the restriction of ν to
Rf(U) is an affine linear measure in the period coordinates on Rf(U), i.e.
it is (up to normalization) the restriction of the Lebesgue measure λ to the
subspace Rf(U).

Definition 2. We say that any suborbitfold M1 for which there exists a measure
ν1 such that the pair (M1, ν1) satisfies (i) and (ii) an affine invariant submanifold.

Note that in particular, any affine invariant submanifold is a closed subset of
H1(α) which is invariant under the SL(2,R) action, and which in period coordi-
nates looks like an affine subspace. We also consider the entire stratum H(α) to
be an (improper) affine invariant submanifold. It follows from [7, Thm. 2.2] that
the self-intersection set of an affine invariant manifold is itself a finite union of
affine invariant manifolds of lower dimension.

Notational Conventions. In case there is no confusion, we will often drop
the subscript 1, and denote an affine manifold by N . Also we will always denote
the affine probability measure supported on N by νN .

Let P ⊂ SL(2,R) denote the subgroup

(

∗ ∗
0 ∗

)

. The following theorem is the

main result of [6]:

Theorem 3 ([6]). Let ν be any P -invariant probability measure on H1(α). Then
ν is SL(2,R)-invariant and affine.

Theorem 3 is a partial analogue of Ratner’s celebrated measure classification
theorem in the theory of unipotent flows, see [10].

We now state the following orbit closure theorem from [7].

Theorem 4 ([7]). Suppose x ∈ H1(α). Then, the orbit closure Px = SL(2,R)x
is an affine invariant submanifold of H1(α).

The proof of this theorem utilizes Theorem 3 together with an “avoidance”
principle which is established in [7]. In the theory of unipotent flows such avoidance
principles are obtained using polynomial like behavior of unipotent flows, [11]
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and [2]. Here, however, the polynomial like behavior of unipotent flows is poorly
understood the following serves as a replacement.

The Main Proposition and Countability For a function f : H1(α) → R,
let

(Atf)(x) =
1

2π

∫ 2π

0

f(atrθx).

Following the general idea of Margulis, the strategy of the proof is to define a
function which will satisfy a certain inequality involving At, [4] and [3]. In fact,
the main technical result of [7] is the following:

Proposition 5. Let M ⊂ H1(α) be an affine submanifold. (In this proposition
M = ∅ is allowed). Then there exists an SO(2)-invariant function fM : H1(α) →
[1,∞] with the following properties:

(a) fM(x) = ∞ if and only if x ∈ M, and fM is bounded on compact subsets

of H1(α) \M. For any ℓ > 0, the set {x : f(x) ≤ ℓ} is a compact subset
of H1(α) \M.

(b) There exists b > 0 (depending on M) and for every 0 < c < 1 there exists
t0 > 0 (depending on M and c) such that for all x ∈ H1(α) and all t > t0,

(AtfM)(x) ≤ cfM(x) + b.

(c) There exists σ > 1 such that for all g ∈ SL(2,R) with ‖g‖ ≤ 1 and all
x ∈ H1(α),

σ−1fM(x) ≤ fM(gx) ≤ σfM(x).

The proof uses the recurrence properties of the SL(2,R) action proved by in [1],
and also the fundamental result of Forni on the uniform hyperbolicity in compact
sets of the Teichmüller geodesic flow [8, Cor. 2.1]; combining these two facts we
get “expansion on average”, see [9].

In the case M is empty, a function satisfying the conditions of Proposition 5
has been constructed in [5] and used in [1].

In fact, we show that the constant b in Proposition 5 (b) depends only on
the “complexity” of M, see [7, §8]. This fact is used in for the proof of the
following. This proposition is needed for the proof of Theorem 4, Another proof
of Proposition 6 is given in [12].

Proposition 6. There are at most countably many affine manifolds in each stra-
tum.
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Cutting sequences on Bouw-Möller surfaces

Diana Davis

Given a translation surface with edges labeled, consider a geodesic flow in some
direction, and record the bi-infinite sequence of edges that the trajectory cuts
through. This is called a cutting sequence.

For a given translation surface, our goal is to characterize all possible cutting se-
quences. For the square torus, the cutting sequences are called Sturmian sequences,
and the characterization is well known [4]. For the regular octagon surface, John
Smillie and Corinna Ulcigrai have given a characterization of the closure of the
space of all cutting sequences [5], [6].

The strategy in each of these cases and in the present work, to work towards our
eventual goal of characterizing all possible cutting sequences, is to use symmetries
of the surface to obtain new trajectories from a given trajectory, and thus obtain
new cutting sequences from a known cutting sequence. We study Veech surfaces
[7], whose group of symmetries has three types of elements: rotations and reflec-
tions, which induce a permutation on the edge labels, and the parabolic element,
which acts as a “twist,” or “shear.” We can do this because the cylinders of Veech
surfaces have commensurable moduli.

Our specific goal is to determine the effect of the parabolic element of the
Veech group on trajectories and their associated cutting sequences on surfaces
whose cylinders all have the same modulus.

Definition 1. Let τ be a trajectory on a Veech surface whose cylinders all have
modulus M , and let c(τ) be its associated cutting sequence. Let τ ′ be the image
of τ under the parabolic whose derivative is ( 1 M

0 1 ), and let c(τ ′) be its associated
cutting sequence. A sandwiched edge label is one that has the same label on either
side, as does A and only A in the sequence . . . CACDDBA . . ..
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Theorem 2 ([2]). Let τ be a trajectory on a double regular n-gon surface, n odd,
with θ ∈ [0, π/5]. To obtain c(τ ′) from c(τ), keep the sandwiched edge labels. (In
this talk, we show a video that demonstrates this result using human dancers.)

The double regular polygon surfaces are an n-indexed family of Veech surfaces.
One might ask if there is any larger family of such surfaces. The so-called Bouw-
Möller surfaces are such a family, an (m,n)-indexed family of Veech surfaces
wherein every cylinder has the same modulus. These surfaces were discovered
algebraically by Irene Bouw and Martin Möller [1], and then Pat Hooper gave a
polygon decomposition for the surfaces [3], and then Alex Wright showed that the
surfaces are the same in all cases [8].

Definition 3. A semi-regular polygon is an equiangular 2n-gon whose edge lengths
alternate between two different values, possibly 0. The polygon decomposition of the
(m,n) Bouw-Möller surface is a collection of m semi-regular 2n-gons, whose edge
lengths are chosen so that each cylinder has the same modulus. The even-numbered
edges of each polygon are glued to one other polygon, and the odd-numbered edges
to another polygon; see [3].

The Bouw-Möller surfaces are a large family of Veech surfaces, and the double
regular polygon surfaces are a subfamily, the case m = 2. Our goal is to charac-
terize all cutting sequences on these surfaces, using their symmetries, as above.

These surfaces exhibit a surprising and beautiful symmetry, which is that the
(m,n) Bouw-Möller surface is affinely equivalent to the (m,n) Bouw-Möller sur-
face. In this talk, we explicitly demonstrate how to cut up the (3, 5) surface, which
consists of two regular pentagon and a regular decagon, and reassemble it into a
sheared version of the (5, 3) surface, which consists of two equilateral triangles,
two semi-regular hexagons, and a regular hexagon. We also show how to cut up
the (5, 3) surface and reassemble it into a sheared version of the (3, 5) surface. A
dissection of this kind does not appear anywhere in the literature, though a recipe
is given in [3].
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Immersions and the space of all translation surfaces

W. Patrick Hooper

For this talk, a translation surface is a topological surface equipped with an atlas
of charts to the plane so that the transition function are translations. Note that
this definition means that our surfaces have no singularities, and all translation
surfaces other than quotients of the plane are incomplete. Our translation surfaces
will be pointed, i.e., they come with a choice of a basepoint. Our goal is to place a
topology on the spaceM of all translation surfaces, which includes incomplete sur-
faces of infinite topological type, and to draw connections to associated dynamical
systems.1

Immersions

Let D be a simply connected subset of a translation surface containing the base-
point. An immersion of D into a (pointed) translation surface S is a continuous
map D  S which sends the basepoint of D to the basepoint of S, and which acts
as a translation in local coordinates.

We remark that the restriction of the notion of immersion to the space M̃ of
all pointed simply connected translation surfaces yields a partial ordering on M̃.
The following result discusses the structure of this ordering.

Theorem 1. Let 0 denote the degenerate translation surface consisting of a single
point; it immerses in everything. The set M̃ ∪ {0} equipped with the partial order

 forms a complete lattice, i.e., each subset of M̃ ∪ {0} has a supremum and an

infimum in M̃ ∪ {0}.

Topologies on moduli spaces

We use immersions to define the immersive topology on M̃. A sequence of simply
connected translation surfaces S̃n ∈ M̃ converges to S̃ ∈ M̃ if the following two
statements hold:

• For every K ⊂ S̃ homeomorphic to a closed disk which contains the base-
point in its interior, there is an N so that K  S̃n for n > N .

• For every Ũ ∈ M̃, if Ũ  S̃n for infinitely many n, then Ũ  S̃.

(We just state the notion of convergence of sequences here because sequences
are more relevant to this discussion, but each statement above corresponds to
collection of open sets. See [Hoo13b] for a formal definition of the topology.)

1Support was provided by N.S.F. Grant DMS-1101233 and a PSC-CUNY Award (funded by
The Professional Staff Congress and The City University of New York).
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There is a canonical disk bundle over Ẽ → M̃, where the fiber over a surface
S̃ ∈ M̃ is a copy of S̃. As a set, we have

Ẽ = {(S̃, p) : S̃ ∈ M̃ and p ∈ S̃}.

In the immersive topology on Ẽ , a sequence (S̃n, pn) ∈ Ẽ converges to (S̃, p) ∈ Ẽ if
both of the following hold:

• The sequence S̃n converges to S̃ in the immersive topology on M̃.
• For one (or equivalently all) closed disk K ⊂ S containing p and the

basepoint, the immersions ιn : K  S̃n (which exist for n sufficiently

large) satisfy dn
(

pn, ιn(p)
)

→ 0 as n→ ∞, where dn is the metric on S̃n.

(Again, see [Hoo13b] for a formal definition.)

Given topologies on M̃ and Ẽ , there is a canonical way to topologize the space
M of all (pointed) translation surfaces. Namely given a translation surface S ∈ M,

we consider its universal cover S̃ ∈ M̃ and consider all lifts of the basepoint of S
to S̃. So, a sequence of translation surfaces Sn ∈ M converges to S ∈ M if both
of the following hold:

• The sequence of universal covers S̃n converges to S̃ in M̃.
• A point p̃ ∈ S̃ is a lift of the basepoint of S if and only if there is a
sequence p̃n ∈ S̃n, with each p̃n a lift of the basepoint of Sn, so that
(S̃n, p̃n) converges to (S̃, p̃) in Ẽ .

We also topologize the translation surface bundle E over M, but we will not define
it here. (See [Hoo13a] for formal definitions.)

We will now highlight some of the main results from [Hoo13a] involving these
topologies.

Theorem 2. The immersive topologies on M̃, Ẽ , M and E are second countable
and Hausdorff.

In particular, note that convergent sequences have unique limits. Furthermore,
there is only one obstruction to finding a convergent subsequence of a sequence in
M:

Theorem 3. For any ǫ > 0, the set of surfaces in M for which the basepoint’s
open ǫ-neighborhood is isometric to the open ǫ-ball in the plane is compact.

Dynamics

We would also like to utilize this topology to understand related dynamical
systems. The straight line flow on M in the direction of θ moves the basepoint in
direction θ at unit speed. Similar straight-line flows can be defined on the spaces
M̃, Ẽ , and E , and it can be shown that these flows are continuous wherever they
are defined. The general linear group GL(2,R) also acts on these spaces, and it
can be shown that the actions are jointly continuous. As a consequence to this,
we can prove a result about how affine automorphisms behave under limits.
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Theorem 4. If Sn converges to S in M, and there is a sequence φn : Sn → Sn of
affine automorphisms whose derivatives converge in GL(2,R) and the the images
under φn of the basepoints converge to some point (S, p) ∈ E, then S has an affine
automorphism with the limiting derivative which sends the basepoint to p.

We have the following analog of Masur’s criterion for unique ergodicity [Mas92].

Theorem 5. Suppose S ∈ M is a translation surface of area one. If there is a
sequence of times tn → ∞ and a sequence of basepoints sn of S so that under
the Teichmüller flow gtn(S, sn) converges to a unit area surface in M, then the
vertical straight line flow in the vertical direction is uniquely ergodic.

This result can be deduced from work of Treviño [Tre14], but has not yet ap-
peared.
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Slope gaps for golden L diagonals

Samuel Lelièvre

(joint work with Jayadev Ateyra, Jon Chaika)

There is a limiting distribution for (appropriately renormalized) gaps between
successive slopes of diagonals on the golden L in the following sense:

Theorem 1. Let ΛR be the set of diagonals with slope 0 ≤ s ≤ 1 and x coordinate
in [0, R], SR the set of their slopes and GR the set of gaps between successive slopes
in SR. There exists a function f : [0,+∞) → [0,+∞) such that ∀a, b ∈ R with
a < b,

limR→+∞
♯ (GR ∩ (a, b))

♯GR
=

∫ b

a

f.

This probability density function for the limiting distribution of slope gaps
is computed explicitely. It is piecewise analytic with 8 pieces (7 jumps in the
derivative), and is zero on [0, 1].

This is proved by constructing a Poincaré section for the horocyclic flow hs =
(

1 0
−s 1

)

acting on the SL(2,R) orbit of L, which is GH · L ∼ G/Γ, where G =

SL(2,R) and Γ is the Veech group of the golden L, which is the Hecke group H5, a

(2, 5,∞) triangle group. In coordinates (a, b), where ga,b =

(

a b
0 a−1

)

represents
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ga,b · L, the section, made of surfaces M ∈ G · L with a horizontal long diagonal
of length < 1, corresponds to the triangle Ω with vertices (0, 1), (1, 1), (1,−ϕ̄),
where ϕ̄ denotes 1

ϕ (= ϕ− 1).

The return map is piecewise affine in these coordinates and the return time is
piecewise defined by

R(a, b) =











1
a(a+b) if (a, b) ∈ Ω1

1
a(aϕ̄+b) if (a, b) ∈ Ωϕ

1
ab if (a, b) ∈ Ω∞

.

The function f is then given by

f(t) =

∫

{(a,b), R(a,b)<t}

R(a, b) dadb,

which gives explicit piecewise defined expressions.

Reporter: Quentin Gendron
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Université de Provence
39, Rue Joliot-Curie
13453 Marseille Cedex 13
FRANCE

Prof. Dr. Samuel Grushevsky

Department of Mathematics
Stony Brook University
Math. Tower
Stony Brook, NY 11794-3651
UNITED STATES

Prof. Dr. Ursula Hamenstädt
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LATP (Mathématiques)
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Fakultät für Mathematik
Karlsruher Institut f. Technologie (KIT)
76128 Karlsruhe
GERMANY



Flat Surfaces and Dynamics on Moduli Space 941

Alex M. Wright

Department of Mathematics
The University of Chicago
5734 South University Avenue
Chicago, IL 60637-1514
UNITED STATES

Prof. Dr. Jean-Christophe Yoccoz
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