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ABSTRACT. The topological structure is described of the level surfaces of a Morse
1-form which is close to a rational one on a closed oriented manifold.

Applications are indicated to the investigation of the motion of an electron in a
reciprocal lattice in a homogeneous magnetic field.

Figures: 3. Bibliography: 11 titles.

§1. Introduction. A problem of S. P. Novikov

In 1981, in the paper [1] and the survey article [2], S. P. Novikov initiated the construc-
tion of an analogue of Morse theory, in which instead of functions one considers closed
differential 1-forms with nondegenerate singularities (Morse-Novikov theory). In these
papers a number of problems were formulated, and the important concept of a quasiperi-
odic manifold was introduced. This, as Novikov pointed out to the author, needs to be
made rather more precise in the following way.

We consider a finite set A (the set of indices) and a sequence, infinite in both directions,
of indices : Z — A (a; € A, © € Z). To any mapping ¢: A — R we assign the number-
valued function on the line f, ,: R — R, the value of which on the interval [¢;¢ + 1] is
equal to p(a;).

DEFINITION 1. The sequence « of indices is called quasiperiodic if, for every mapping
©, the function f, , is almost periodic in the sense of Weyl.

Let us now suppose that to every index 3 € A there is associated a compact manifold
Mg whose boundary consists of two components dMg = Ng oUNpg,; which are in general
not connected. We shall call the sequence « of indices admissible if Ny, o = Ng,_ 1 for
every + € Z. Any admissible sequence of symbols determines a glued manifold M(a) =
(J, M,, with the natural identification.

DEFINITION 2. A manifold M is said to be quasiperiodic if it can be glued together
from a finite collection of compact manifolds Mg, B € A, by means of an admissible
quasiperiodic sequence of symbols a: Z — A.

NOVIKOV'S CONJECTURE. A nonsingular level surface of a Morse 1-form having
degree of trrationality 2 is a quasiperiodic manifold.

In this paper we give proof of Novikov’s conjecture in the case when the Morse form
w of irrationality degree 2 is close to a rational one. The first results about level surfaces
of such forms were obtained in the author’s paper [11].
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The author thanks S. P. Novikov for posing the problem and for his interest in the
work.

We now explain some concepts which will be used later.

A point z of a manifold M is called a singular or critical point of a given 1-form w
on M if the form w(z) is degenerate on T, M: that is, if it is equal to zero on each
vector of the tangent space T, M. From now on we shall consider only closed 1-forms. A
closed 1-form w is locally the differential of some function: w = df. The singular points
of the form w and of the function f coincide. A singular point of the closed form is
called nondegenerate if it is a nondegenerate one for f. We shall be considering closed
differential 1-forms with nondegenerate critical points on a closed connected orientable
manifold. Such forms we shall call Morse forms.

A Morse form determines a distribution of codimension 1 on the manifold. By the
theorem of Frobenius, the integrability of the distribution follows from the property that
the form is closed. We shall include in a single class, which henceforth will be called a
level of the form, all the integral surfaces which can be joined by a path in the manifold
M along which the integral of the form w is equal to zero. We note that, in contrast to
paths on the integral surfaces of the distribution, on which the restriction of the form w
is identically zero, the restriction of the form w to the path here referred to need not by
any means be identically zero. Hence we shall call each of the indicated classes a level
surface of the form w, or a leaf of the form w. It will be proved later that in the case
when the Morse form w has no critical points of indices 0,1,n — 1, or n, and in particular
when there are no singular points at all, a leaf of the form w turns out to be connected;
that is, every leaf consists of a single integral surface of the distribution. In the presence
of points with extreme indices this is generally speaking not the case. The aim of the
present paper is to describe the topological structure of the level surfaces of a Morse
form w.

We define the degree of irrationality of a closed 1-form to be the number of rationally
independent integrals of it over all possible cycles. More precisely: let v,...,vs be
a system of generators of the fundamental group n;(M), and let u; = f'n w, where
w € (M) and dw = 0. Then the dimension of the vector space {uy,...,us)q over the
field Q is called the degree of irrationality of the form w and is denoted by rkw. Thus
rkw = rk(uy,...,us). We remark that, in fact, the degree of irrationality is determined,
not by the whole system of generators of the fundamental group m; (M), but simply by
a family of cycles Bi,..., 5 which realize generators of the group H;(M;Z) or, more
precisely still, H;1(M;Z). If we consider the family of integrals v; = i) 3, w of the form w
over these cycles, then

rk(uy, ..., us) = rkw = rk{vy,...,u).

The structure of a leaf of the form w is strongly dependent on the degree of irrationality
of w.

Forms with degree of irrationality 1 will be called rational To every rational Morse
form w we shall associate a map f,: M — 8!, f,(z) = f:o w (mod. g.c.d.(u1,.--,us)),
where zq is some fixed point of the manifold M, and the u; are the integrals over the
cycles of a basis. Since w = df,,, the points which are critical points of the map f,, will
be exactly those which are critical for the form w. The level surfaces of the form w will
be the level surfaces of the map f,,. On the circle S! there will be a finite collection of
critical values by, ..., by, to which correspond singular level surfaces. Assuming that an
orientation on the circle has been fixed, between every two critical values b;_; and b; we
choose one regular value: b;_1 < a; < b;, by < a; < b;. The nonsingular leaves (that
is, the inverse images f!(a;) of noncritical values) will be closed orientable manifolds
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of codimension 1. Just as in classical Morse theory, the manifold M™ is glued together
out of elementary bordisms (see [7])

M™ = f;l[alag] U f;1[0203] U---u f::l[a'malL

only in our case the “upper” boundary fJ!(a;) of the last bordism fJ'[amai] is glued
to the “lower” boundary f;!(a;) of the first bordism f;![ajap]. (Having fixed once
for all an orientation of S', we can speak of the “upper” and “lower” boundaries of a
bordism.) By cutting the manifold M™ along a nonsingular leaf L"~1! = f;1(a;), we
obtain a bordism V™, not connected in general, 8V = Ly U Ly, where Ly = L; = L™ ™1,
with a “genuine” (i.e. with values in R) Morse function f, on it, such that f,{r, = const
and f,|r, = const. Thus in the case when the Morse form w has degree of irrationality
1, rkw = 1, the structure of the leaves of w is described by classical Morse theory.

If one raises the degree of irrationality of the form w, the picture becomes considerably
more complicated. In the simplest case, when w has no critical points, a leaf of w will be a
covering of some connected closed orientable manifold which is a leaf of an approximating
rational form wg. The monodromy group of this covering will be the group Z*~!, where
k = rkw (see [2] and [3]). (The topological construction presented in §2, Remark 3, is the
basis for further constructions, and underlies the proof of this assertion.) In particular, if
the degree of irrationality of w is equal to 2 and w has no critical points, then a leaf of w
is a Z-covering of a compact manifold L™~!. To put it differently, a leaf of the form w can
be glued together from Z copies of a bordism W™~!, where W™~! is obtained by cutting
the manifold L”~!, the base of the covering, along a submanifold of codimension 1. The
leaf of the form w will have a periodic structure. However, if we permit the existence of
critical points for the form w, rkw = 2, then a leaf of it will no longer be a covering of a
compact manifold. But it turns out that, in the case when w is close to some form with
degree of irrationality 1, it is possible to endow a leaf of the form w with a quasiperiodic
structure (cf. [2] and [3]). The precise formulation and proof of this theorem for degree
of irrationality 2 are presented in §§3 and 4. A generalization to the case of arbitrary
degrees of irrationality is presented in §5. In the final §6 we consider one application of
the theory of Morse forms to the study of the motion of an electron in an inverse lattice
in a uniform magnetic field (see also [2] and [11]).

§2. General construction. The Morse form without critical points

Suppose that on the connected closed oriented manifold M™ we are given a Morse form
w, 1.e. a closed differential 1-form with nondegenerate singular points. In this section
we consider the simplest case, when w has no singular points at all. Suppose that the
degree of irrationality of w is equal to k. Henceforth we shall suppose throughout that a
Riemannian metric on the manifold M™ has been specified. In the presence of a metric,
the form w defines a gradient vector field and a phase current on M™. If w has no critical
points, then the phase current has no singularities.

The plan of our constructions is this. Using the form w, we construct a form wy ap-
proximating it, which has degree of irrationality 1 and is without critical points (Lemma
1). A leaf of this form is a connected closed oriented submanifold L™~! of codimension
1. Since wg has no critical points, a twisted product structure L"~! — M™ — Sl is
defined on M™. By using a certain special basis of the cycles in 71 (M) (Lemma 2), we

construct a Z-covering p: M" Z M (Lemma 3) under which the degree of irrationality
of the forms wg and w is reduced by one (Lemma 4). We obtain an exact form p*wq
without critical points, which defines on M" a direct product structure M" = ["~! xR,
allowing us to project onto the leaf L»~! of the form p*wo. The covering p: M™ — M
is constructed in such a way that the leaves of the forms p*wy and p*w on M™ remain



638 A. V. ZORICH

the same as those of wp and w on M™ (Lemma 4). The projection of a leaf of the form
p*w onto the leaf L1 of the form p*wo along the phase trajectories gives us a covering
with monodromy group Z*¥~!, where k — 1 = rk(p*w) = rkw — 1 (Theorem). As an
elementary illustrative example, one can consider an irrational spiral on a torus (a leaf
of w) covering a rational spiral.

We shall say that the form wg approrimates the form w if the phase trajectories of wg
are everywhere transverse to the leaves of w.

LEMMA 1 (construction of an approximating form). For every Morse form w of
degree of irrationality k without critical points, there exists an approrimating form wy of
degree of irrationality 1 which also has no critical points. The form wg can be chosen in
such a way that w is represented as a sum of k rational forms, w = wg+ o1+ -+ ag-1.

<« We express the cohomology class of w in terms of an integral basis in H'(M;R),
[w] = le Aile'], where A; € R, & € 1;(M), and all the integrals of the forms &’ are
whole numbers. Then rkw =rk{Ay,..., \;)q = k. By reindexing the forms in the basis,
if necessary, we arrange that the coefficients Ay, ..., Ay are rationally independent. In the
sum Ell Ai[€*] we replace the coefficients Mgy, Aky2, ..., A; by their rational expansions
in terms of the first k coefficients. Grouping together the terms with the same A,
1 <1 < k, we obtain

l k
Wl =D Nl =D Ale’).
i=1 7=1

We note that all the integrals of the forms ¢’ are rational. We represent A; as p; A1 /q;+6;,
where 2 < 7 < k, and p;/g; € Q and §; € R are sufficiently small. For the forms
ai,...,o0k_, we take the forms 6302, . .., 6x©* respectively, and we set wg = w—zg ;7.
The smallness of the numbers §; means first that the form wp has the same critical points
as w (see the analogous theorem in [5]); that is, it has none at all; and second that wy
approximates w. »

REMARK 1 (the minimal integral of a rational form). By definition, for a form

wp with degree of irrationality 1 we have rk{u;,...,us) = 1, where u; = f,“ wo are
the set of integrals over cycles of a basis. Thus there is a greatest common divisor
R(wp) = g.c.d.(ug,...,us) of the numbers uy,...,us. Evidently R(wp) is a divisor of

the integral of wg along an arbitrary path «, because ~ is a composition of cycles in the
basis, and the integral of wp along < is an integer linear combination of the numbers
u;. It is not difficult to construct a cycle along which the integral is equal to R(wp).

In fact, since R(wp) = g.c.d.(uy,...,us) there exists a collection of integers n; such
that R(wg) = nius + --- + nsus. Then the relation fj wp = R(wg) will hold for the
cycle v = A" - -+ - 47+, for instance. This also shows that for a form wg with degree

of irrationality 1 there exists a least (in absolute value) integral amongst all possible
integrals over cycles: we denote this by R(wg). All the other integrals are divisible by
R(w()).

LEMMA 2 (construction of a special basis of the cycles). Suppose there exist a form
w with degree of irrationality k and a form wg with degree of irrationahity 1. If the degree
of irrationality of the difference (w — wp) i3 equal to k — 1, then one can choose a set of
generators vi,...,%: in the group m (M) such that fm wog =0 fori>1 and f%w =0
for i > k. (Nondegeneracy of the forms is not assumed.)

< Starting from an arbitrary set of generators oi,...,0s € m1(M) we construct a
set of generators o)), o},...,0, € 71 (M), where the extra cycle oy gives the minimal
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integral f% wg = R(wp) of the form wy, and the cycles o} are obtained by “correcting”

the corresponding cycles o; with the requisite power of 03: so o] := g, - (09) ™™, where
n; = (fa,- wo)/R(wo). For the set of generators o, 07, ..., 0} the relation [, wo = 0 holds
for1 <1 <s, 1

Using the decomposition of w into the sum of rational forms w = wg+ a1+ -+ ag—
obtained in Lemma 1, we repeat the constructions for the forms «; in succession, and we
obtain the required set of generators. »

REMARK 2 (connection between rational forms and integral homology and cohomol-
ogy). In the sequel, it will be very useful for us to know the precise connection between
differential forms with degree of irrationality 1 and integral cohomology.

To a form wp with degree of irrationality 1, wg € Q1(M), dwy = 0, we associate
the cohomology class of the form [{1/R(wo))wo] € H'(M;R). The form (1/R{wp))wo
is integer-valued: that is, its integral along any path is equal to a whole number.
Thus the cohomology class [(1/R(wg))wo) can be regarded as a class from H!(M;Z),
[(1/R(wo))wo] € H (M; Z).

We shall call a cycle z € H;(M;Z) (or a cocycle ¢ € H'(M; Z)) indivsible [10] if it is
not an integer multiple of any other cycle (cocycle): z # n - 2, where n € Z and |n| > 1.
For example, the cocycle [(1/R(wp))wo] € H'(M;Z) is indivisible, since there exists a
cycle upon which the cocycle [(1/R(wp)})wo] takes the value 1. The cycle D[(1/R(wp))wo]
which is Poincaré dual to it is, clearly, also indivisible. We make a convention that in
future, when it will not cause confusion, we shall denote the cycle D[(1/R{wg))uwg] by
D[(.UO].

If wg is a Morse form, then any nonsingular leaf of it will be a realization by a manifold
of the cycle D[(1/R(wo))wo] € Hn—1(M™; Z), where we consider that [(1/R(wg))wg] €
HY (M Z).

On the other hand, we can embed the group H*(M;Z) in H(M;R), since H'(M; Z)
has no torsion. This means that any cocycle z from H!(M;Z) can be regarded as a
cocycle from H'(M;R). By the de Rham isomorphism this in turn can be realized
by a closed 1-form on M, and the form which realizes it can be chosen to be a Morse
form. A nonsingular leaf N of this form will be a realization by a manifold of the
cycle [N] = D((1/R(z))z) € Hp—1(M"™;Z), which is the dual of the original cocycle
z € HY(M™; Z), taken with the normalizing coefficient 1/R(2). The coefficient is chosen
in such a way that the minimal value over all cycles of the cocycle (1/R(z))z € H}(M™; Z)
is equal to one.

Suppose now that in the manifold M™ we are given a smooth orientable submanifold
N™1 of codimension 1 whose homology class [N] € H,_1(M™; Z) is not equal to zero.
By cutting the manifold M™ along N"~! we obtain a bordism W™ which is not connected
in general, and has a boundary consisting of two identical components OW™ = N’ UN"',
where N’ and N" are diffeomorphic to N. On the bordism W™ we can construct a
Morse function f which is constant on the upper and lower boundary and is such that
the differential df is compatible with gluing W™ along the boundary (see [5]). On carrying
out this gluing, we obtain a closed differential 1-form df on M™ with degree of irrationality
1 (df is not exact, because f is a function on the bordism W™ and not on the manifold
M™). The cohomology class of this form [df] € H'(M™ R) is given, apart from a
real coefficient A € R, by the cohomology class of the cocycle D[N"~!] € H!(M"; Z),
[N"~1] € H,_1(M";Z), where the cocycle D[N"~!] is regarded as a real-valued one:
[df] = A- D[N™~1]. We note that the original manifold N"~! is not in general a leaf of
the form df, even though df|y = 0. The point is that a leaf L of the form df realizes
an indivisible cycle [L] € H,_1(M;Z). The submanifold N realizes a cycle which is a



640 A. V. ZORICH

multiple of the cycle [L], [N} = m[L]. Therefore N is a disjoint union of m leaves of the
form df (which also, in general, are not connected).

LEMMA 3. Suppose that on the manifold K there is a closed 1-form g with degree

of trrationality 1. There exists a covering map p: K 2 K with monodromy group Z such
that the form p*po on the covering space K is ezact, rk(p*wo) = 0. (Nondegeneracy of
©o 18 not assumed.)

<« We shall find it useful to construct such a covering by several methods.

a) We can construct a formal covering from a normal subgroup (see {8}), namely the
subgroup of cycles over which the integral of the form g is zero. When we quotient the
group w1 (K) by this subgroup, the cycles with identical integrals are identified together
into a single class. Thus the quotient group is isomorphic to the group (R(wo))z = Z.
The exactness of the form p*yq is evident.

b) It is known that an indivisible cycle of codimension 1 in a connected closed ori-
entable manifold K™ can be realized by a connected submanifold. We consider the indi-
visible cycle D[(1/R{po))wo] € Hn—1(K; Z) and we realize it by a connected submanifold
N7~1 By cutting the manifold K™ along the submanifold N®~!, we obtain a bordism W
with two identical boundary components W = NUN. On W, the form ¢ is exact. By
gluing together Z copies of W, we obtain the required covering K = - - -UWUWUWU- ...

¢) From the form pg we construct the map f,,: K™ — S1. The standard Z-covering

exp: R — S induces a Z-covering p: K™ Z K" and a map F': K — R which covers

foo- We have p*(df,,) = dF, and since df,, = o, the form p*pp is exact, p*pp = dF
(see [10]), and

kK £ R
pl L exp
Kk T g1

It is not hard to see that K is exactly the fibered product K = K xg1 R. »

Suppose that on the connected closed orientable manifold M™ we are given a Morse
form w with degree of irrationality k& without critical points. Let wp be an approximating
rational form as given by Lemma 1.

LEMMA 4. On the covering space M, where p: M 2 M is constructed from the form
wo in accordance with one of the prescriptions in Lemma 3, the form p*w has a degree of
irrationality which is one less than that of w, tkp*w = k—~1 =rkw—1. The restriction of
the projection p to a connected component of a leaf of the form p*w s a diffeomorphism
of connected components of leaves of the forms p*w and w.

<« Using the decomposition of the form w in Lemma 1, we have w = wo+a1+- - -+ag_1,
where rk a; = 1. Since [p*wo] = 0, we have rkp"w < k£ — 1. Since all the cycles except v
in the set of generators ~,...,v € 71(M) constructed in Lemma 2 can be lifted to M
(see Lemma 3a)), the relation rkp*w = k — 1 holds.

It is clear that the restriction of the projection p to a connected component of a leaf
of the form p*w is a covering over a connected component of a leaf of w. The integral of
w along any closed path in a leaf of w is equal to zero. From the rational independence
of the forms occurring in the decomposition w = wo+ a1+ - -+ ok—1, it follows that any
integral of wp along a closed path in a leaf of w is also equal to zero. Thus (see Lemma
3a)) our covering map is a diffeomorphism. »

THEOREM (see [3]). Suppose that on the closed connected orientable manifold M™
we are given a closed 1-form w of degree of irrationality k without critical points. Then a
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leaf of the form w 1s connected, and is a covering space over a connected closed orientable
submanifold, which is a leaf of an approzimation form with degree of irrationality 1. The
monodromy group of the covering is the group Z*1.

<« We construct a covering p: M Z, M over our manifold from the prescription in
Lemma 3. Since the leaves of the forms wy and w are identical with those of p*wg and
p*w respectively, it is sufficient to show that a leaf of p*w is a Z-covering of a leaf L™~!
of p*wo. We obtain this covering by projecting the leaf of p*w along phase trajectories
onto a leaf L of p*wg. The projection is possible, since M = L x R. The elements of
the monodromy group are generated by the cycles ~g,...,~% from the set of generators
1,-- ., of Lemma 2, when these have been lifted to M and realized in the leaf L of
p*wo (w1 (M) = m (L x R) = m1(L)). We note that any leaf of the covering we have
constructed belongs entirely to a single phase trajectory. If we measure distance on this
phase trajectory by the integral of w along it, then an arbitrary cycle v € 71 (L) acts on
the leaf by a translation of f,y w along the phase trajectory. »

REMARK 3 (selection of the periodic structure). We now note a consequence, which
we shall often use later on, of the theorem we have just proved. Suppose that the degree
of irrationality of the form w in the theorem is equal to 2. Then, on the covering manifold
M of the Z-covering p: M™ — M which we constructed from the approximating form
wp, the degree of irrationality of the form p*w is equal to 1 {Lemma 4), rk p*w = 1. Since
the manifold M is the product of a leaf L of the form p*wo with a line, M™ = L x R, it
follows that M™ is contractible to L*~!, which means that the degree of irrationality of
the restriction p*w|; of the form p*w to the leaf L™= is also equal to 1. It was proved in

the theorem that a leaf of p*w is a Z-covering over L™=!, When we use this covering 7 to
lift the form p*w|;,_, from the leaf L™=! of the approximating form to the leaf of p*w,
it is not difficult to see that we obtain an exact form m*(p*w|;j.—:1), k7™ (p*w{z._1) = 0.
Therefore 7 is the covering of the manifold L"~! constructed from p*w| jn-1 by the
prescription in Lemma 3, or, what is exactly the same, the covering of the manifold
L™~1 constructed from the rational form w|p.-1. By using the second variant of the
proof of Lemma 3, we are able to give a short description of the construction of the
periodic structure of a leaf of w. We recall that a generator of the monodromy group Z
of our covering 7 acts by translation along phase trajectories by a distance R(w|pn-1)
(see the theorem).

In order to select a periodic structure on a leaf of a form w of degree of irrationality 2
without critical points, we have to consider the restriction of w to a leaf L™ ! of an ap-
proximating rational form, and realize a cycle dual to the cocycle [w|pn-1] € H(L"~1; Z)
by a connected submanifold N*~2 c L™~1. After that we have to transport N2 along
phase trajectories onto the leaf of w, and then transport it throughout the manifold M™,
moving it along phase trajectories by a distance which is a multiple of R(w|r). The leaf
of w turns out to be sliced into identical bordisms. We note that this bordism itself, and
both components of its boundary, are connected.

§3. Absence of critical points of indices 0,1,n — 1, n.
Degree of irrationality 2

We now pass over to the fundamental case, where the Morse form w has critical points.
Now, in contrast with the case where there are no critical points, the form with degree of
irrationality 1 playing the part of an approximating form will be fixed once for all. In the
framework of our theory only those forms with degree of irrationality greater than 1 are
considered which are sufficiently close to the chosen form with degree of irrationality 1.
In attempts to carry over the method we used in the case without critical points—that
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is, the approximation of the given Morse form w, rkw = k, by a form with degree of
irrationality 1—the constructions introduced below fail to work in general.

Therefore we suppose given a Morse form wg with degree of irrationality 1 on the
closed connected orienabie manifold M™, and we fix this form once and for all. We shall
assume that to every critical value of the function f,,: M™ — S! there corresponds
only one critical point. We know that a nonsingular leaf of a Morse form with degree
of irrationality 1 is closed and oriented. In this section we shall impose an additional
condition on the form wyg, requiring that it have no critical points of indices 0, 1, n—1, or
n. In the first place, this condition ensures that we have a constant number of connected
components in an arbitrary leaf of the form wp, since Morse surgery with indices different
from 0, 1, n — 1, and n has no effect on the number of connected components of a
level surface. The other thing which the absence of critical points with extreme indices
guarantees us is the following. As was shown in §2, specifying a Morse form without
critical points on a manifold makes it possible (when a Riemannian metric has been
chosen) to project along the phase trajectories of the form. Now, when the Morse form
has acquired critical points, we can still project, but only locally: projection can be
carried on only until we run into a critical point. If the Morse form wg has no eritical
points with indices 0, 1, n — 1, or n, then an arbitrary separatrix disk will intersect an
arbitrary leaf of wp in a sphere of codimension (in the leaf) not less than 2. This means
that by slightly perturbing a general path in a leaf of wy, we can always move it off a
given separatrix disk or family of disks. This gives us a way of transporting the displaced
path onto another leaf along the phase trajectories, since none of the phase trajectories
we need will run through the corresponding critical point or collection of points. In this
section we shall make essential use of these two special properties of a Morse form wy
without critical points of extreme indices.

Suppose now that on the manifold there is another form w; with degree of irrationality
1, which in general will not be a Morse form. The only case of interest to us is that where
the cohomology classes [wp], [w1] € H1(M™;R) of the forms wg and w; are independent.
We consider the form wg + ew;, where € € R. For sufficiently small €, wp + ew; is
a Morse form, and has exactly as many critical points (with the same indices) as has
wg. {The proof is completely analogous with the proof of the corresponding fact for
functions; see [5].) We shall not be considering values of the parameter for which the
degree of irrationality of wg + ew; is equal to 1, because the structure of the leaves of
such a form is completely described by classical Morse theory. (The set of such values of
the parameter is countable.) Thus the degree of irrationality of wg + cw; is equal to 2,
rk{wp + ew;) = 2. Suppose that the form wg has m critical points, to which correspond
the critical values by,...,b,, of the function f,,: M™ — S1. We select a set of regular
values a1,...,am, such that a; < b; < a;4; for 1 <¢ < m and a,, < b, < a1, and we
consider the set of nonsingular leaves L; = f;ol (a;) of wy. (We recall that, having fixed
an orientation for the circle §* in the mapping f,,,: M™ — 5!, we have given a meaning
to the double inequalities z < y < 2.)

We consider the restriction (wp + ewy)|z, of the form (wo + €w;) to the level surface
L; = f;}(a;) of wo. Then

rk(wo + ew1)|r, = rk(ewi|r,) = rkw|L,.

It is asserted that for any leaf L; the degree of irrationality of the restriction of w; to L;
is equal to 1, rkwi |, = 1. This is proved in exactly the same way as in Remark 3 of §2,
with only this difference: when one wants to project a path in the covering space M"
along the phase trajectories of the form p*wg, one may have to perturb the path a little
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in order to move it off the required separatrix disks. With the same restriction, we can
apply the theorem of §2 and prove that a leaf of the form wg + ew; is connected.

We now explain the plan for the construction of a quasiperiodic structure in the case
when the Morse form wg + ew; with degree of irrationality 2 has no critical points with
extreme indices.

As long as we are between two critical values b,_; and b; in the manifold M™, the
situation is no different from the case where there are no critical points. In the same
way as there, we can project a leaf of the form wp + €w; onto the leaf L; of the form wy,
and the projection will be a local diffeomorphism. The projection admits path lifting,
provided only that we do not traverse the limits b;,; and b; in the course of the lifting.
In the same way as in §2, in the leaf L?‘l of wp we construct a submanifold which
realizes a cycle dual to the cocycle [w;|z,}, and we denote this submanifold by N;*[ %: s0

[N %] = Dwi|z,] (see Remark 3 in §2). We note that we can choose the submanifold
N; 1 to be connected. As before, we shall transport the submanifold N;; into the leaf
of wg + gwq, thus slicing out identical bordisms, which we denote by Ws,, in that leaf.
The bordism Wj; is diffeomorphic to the leaf L?—l cut along the submanifold NZ"I_ 2,
Generally speaking, however, we can only transport the submanifold N;, around the
leaf of w whilst we remain within the bounds of the critical values ;_; and b;. In the
part of the leaf of wg + gw; which lies between the bounds b; and b;, we shall slice out
another bordism Wy(;,1). The problem is how to pass through the critical value. This
will be done in the following fashion. The submanifold N; ; will be chosen in such a way
that it does not intersect the left separatrix disk of the tth critical point of wy, that is,
the critical point immediately above the leaf L;.

We explain why such a choice is possible. As the level surface L; of the form wyp
approaches the ¢th critical point, the linear dimension of the sphere § = L; N D, 1 tends
to zero, and with it the quantity

T2
d:= max / wils
Il’-'v"zés T

also tends to zero. Since R(wi|r,) does not change in this process, we can wait until
d becomes less than R(wy|r,), replace the form w;|r, by a cohomologous Morse form
which is close to it, and choose a nonsingular leaf N™~2 of the latter which does not
intersect the sphere S. It is clear that the relation [N"~2] = Dwq}, ~-1] holds in L;, but

in general the submanifold N"~2 is not as yet connected.

We now use the fact that the index of the critical point is different from 0, 1, n — 1
and n, and that therefore the codimension in M™ of the left separatrix disk D;  is
greater than one. This indicates that the codimension of the sphere S in L, is greater
than one, and hence that we can always pull off S any path lying in L; and joining
two connected components of the submanifold NV (see, for example, Lemma 4.5 in [5]).
By considering a narrow tubular neighborhood (in L;) of the new path, we can glue
together the two connected components of N by means of the handle H{‘—l which so
arises. The surface N’ C L; so constructed will comprise fewer connected components
than vV, but [N'] = [N]. By thoroughly applying the gluing technique, and verifying that
the original submanifold N"~2 is a realization of an indivisible cycle, we finally obtain a
connected submanifold which we denote by N;'{ >. By construction [NI'7?] = Dlwilr,};
and N[ 2N 8 = @. Thus the promised submanifold N;; C L; has been constructed.

We transport the submanifold ¥, ; along the phase trajectories of the form wg + ew;
into the leaf L; 1 of the form wg: we denote the result of the transport by Ni410 C Liy .
The transport is well-defined, since the forms wg and wg + £wy, being near one another,
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have nearby separatrix disks, and since the submanifold N;; does not intersect the
corresponding separatrix disk of wg + ew;. It is not hard to show, using the feasibility of
transporting (perturbed) closed paths from the surface L; to L;4; and vice versa, that
the submanifold N{‘_,_"l?o - L;‘_[ll we have constructed realizes a cycle which is dual to the
cocycle [wi|g,, ).

In every pair L;, L,+; of leaves of wqg, therefore, we have distinguished a pair of
submanifolds N;'[" 2 L:"l and N{f[l?o - L;‘_;ll. These submanifolds can be projected
to one another along the phase trajectories of the form wg+£w;, and each of them realizes
in its own leaf a cycle dual to wy. On cutting the leaf L, along the submanifold N; 1, we
obtain a bordism Ws;, which we shall call regular. We glue together sufficiently many of
the bordisms Wy; to get the submanifold V; o wholly inside the glued manifold, and we
cut the assembly along the submanifold &, 9. We obtain a bordism Wj;_; with “lower”
boundary N, and “upper” boundary N, ;. We shall call this a transitional bordism.

It is now not hard to describe how to pass through the critical point. On projecting
the submanifold NV; ; from the leaf L; of the form wp into a leaf of the form wg + ew;, we
shall mark off regular bordisms W3, in the leaf of wg + cw;, exactly as in Remark 3 of §2.
The separatrix disk D; 1, of the ith critical point of wg + ew, intersects the chosen leaf of
wg + €w; in a finite collection of spheres. (By “leaf” here one understands, in actual fact,
a specific connected part of a leaf cut out by the bordism f'[b;—1b:].) Each sphere is
wholly contained in its own regular bordism WQ"l-“l. Moving “upwards from below”, and
marking off bordisms Wy;, we at some instant cover the sphere near the critical point.
Thereupon we mark off a transitional bordism W5;,; on the leaf of the form wg + €wi,
and then begin to mark off successive regular bordisms Wy; 2. The passage through the
critical point has been accomplished.

The construction we have carried out demonstrates the truth of the

THEOREM (degree of irrationality 2; no critical points with extreme indices). For
sufficiently small € € R, a nonsingular leaf of the form wg + ew; is glued together from
bordisms W;, 1 < 7 < 2m, according to the following scheme:

"'UW2¢—2UW21—1UWinWmU"'LjVﬁ}'UWmH UWaiaU---

Two series of identical bordisms Wa; and Wa, 2 are glued together by a single transitional
bordism Wa, 1. After the last series of bordisms, which is a series of Wap,’s, a transitional
bordism W, is glued on, and then a new cycle begins.

We note that the series consisting of consecutive regular bordisms Wy; (the leaf L; cut
along a submanifold) is a “sufficiently large piece” of a Z-covering over the leaf L; of the
form wyg.

We now demonstrate the properties of continuity and quasiperiodicity possessed by
the structure which we have assembled.

We take a small piece of a phase trajectory of the form wp + w1, located sufficiently
far from the critical points. On it we shall measure distance by the integral of the form
wp + €w;. Then if on the chosen piece of phase trajectory we space out a number of
points at equal intervals of length € - R(w]|L,), all the points will turn out to be on one
leaf of the form wp + €w; (see the proof of the theorem in §2). The quantity R(wi|z;)
does not depend upon the choice of the leaf L, of the form wp. We shall assume that a
quasiperiodic structure has been assigned to the above-mentioned leaf of wp +ew;. Then
to each of the selected points on the chosen phase trajectory there corresponds a regular
bordism Wj; containing that point; to an ordered set of the points there corresponds a
certain portion of the quasiperiodic structure.
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W2m

FIGURE 1. To the sequence of points

{...,I__g,x_l,Io,.’E]_,CBQ,I3,$4,...}
—_ —_— e e

there corresponds the portion

oUW oUW UWo UWa, UWo, UWa, 1 UWa, 40U -
—_— 1 i o o

of the quasiperiodic structure

Using the remark we have made, we can give the following description of the quasiper:-
odic structure of the leaves of the form wg + cw;.

We construct a circle S! on which m disjoint intervals I; of unit length are marked
out (see Figure 1). Here m is the number of critical points of wy. We consider some
point zg on the circle, and we construct a sequence of points {z;}, —oo < j < oo, where
each point z; is obtained from zy by turning through an angle j/{, ! being the length of
the circle. To each point x; we associate one of the bordisms W;, 1 < 7 < 2m, according
to the following rule: if z; lies in one of the intervals I;, we assign to it the transitional
bordism Ws;y1; if z; is enclosed between I; and I;41, then we assign to it the regular
bordism Wy;;2. To the boundary point of the interval I; denoted by a heavy dot in
Figure 1 there corresponds a bordism Ws; with glued-in singularity. By choosing other
points of the circle in place of the initial point g, we obtain different sequences.

ASSERTION. With every such sequence, considered as a set, one can associate in a
unique way a leaf of the form wo+ew,. The correspondence between points of the sequence
{z;} and bordisms W; describes the quasiperiodic structure of the leaf associated with the
set {z;}. In this sense the correspondence between sequences {z;} and leaves of wo +€wy
18 continuous.

Finally, we note that as ¢ — 0 the ratio of the lengths of the segments enclosed between
the intervals I;_; and I; (that is, the relative numbers of identical bordisms in the series
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of Wy;’s) tends to the ratio of the lengths of the corresponding segments [b;_;, b;] on the
circle in the map f,,: M™ — S,

§4. Critical points with indices 1, n — 1 and 0, n.
Degree of irrationality 2

In this section we remove the restrictions on the indices of the critical points of the
Morse form wg. The critical points with indices 0 and n, however, give essentially nothing
new, so we shall assume for the present that only critical points with indices 1 and n — 1
have been introduced. We are interested in knowing what happens to a leaf of the form
wo + €w; as one passes through critical points with these indices.

Now a leaf of the form wy, like one of the form wqy + £w;, is nonconnected in general.
Moreover, the restriction of the form w;|z, to certain leaves of wg, or to their connected
components, may happen to be an exact form, and in this case compact connected
components may occur in a leaf of wg +ew;. Let us consider an illustrative example. We
consider the height function h on the bordism W (Figure 2).

On gluing together the boundary components 2~1(0) and h~!(1) of W, we obtain a
pretzel with the Morse form wg = dh on it, rkwg = 1. In Figure 2 the level lines of a
certain form wg + ew; are drawn at constant “distance” (in the sense of the new form
wo +€w; ) from one another. Although the level lines themselves remain exactly the same
as those of wg, the “heights” (in the sense of the form wg + £w; ) of the bordisms V' and
V'’ {shaded in Figure 2) have become unequal. No path « along which the integral of w,
is nonzero can be pushed down into any leaf of wp: it “hangs up” on the critical points
with indices 1 and n — 1. Therefore, in spite of the fact that rk(wp + ew1) = 2, the
restriction of w; to an arbitrary leaf of wy is exact, and every leaf of wgy + ew; consists of
a countable collection of compact connected components.

Our problem is to assign a quasiperiodic structure to any noncompact connected
component of wy + ew;y.

FIGURE 2

Let us consider a connected component V of an elementary bordism f!laiai+1],
a; < b; < a;41, containing a critical point of index 1. (A point of index n — 1 becomes
a point of index 1 if one interchanges the “top” and “bottom”, i.e. if one changes
the orientation of the circle S* in the mapping f,,: M™ — S1.) If the index of the
critical point is equal to one, then the “upper” boundary L:‘_;ll = (fuolv) {@it1) of
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the bordism V intersects the separatrix disk D:‘il in a sphere S™~2, and the “lower”
boundary L?~! = (f,,|v) " !(a;) intersects the separatrix disk Dil) ; in a pair of points
5% = zg U z,. We are only interested in the case where w; |z, , is not exact. (Exactness
of w1|L,,, entails exactness of wi|y,; but this means that the leaves of wp + ew; in the
bordism V will be compact.)

Let us consider the sphere $"~2 formed by the intersection of the separatrix disk
D:-fl_zl with the leaf L;y; of wo. It is important that we distinguish four types of critical
points of index 1 (n — 1):

a) The cycle realized by the sphere [S™72] is not homologous to zero in the group
Hn_g(L::ll; Z) and is not homologous to the cycle D{w;|z,,,]-

b) The cycle realized by the sphere [S™~2] is not homologous to zero, but is homologous
to D{wl IL.'+1]'

If the cycle [S" %] € Hp—2(Lit+1; Z) is homologous to zero, then the leaf L; of the form
wp consists of two connected components, and we consider the following two possibilities:

c¢) The form wy|z, is exact on one of the components.

d) w1, is nonexact on both components.

Before we move on to a description of each of these cases, we remark upon the special
nature of critical points of index 1 (n — 1) in relation to our constructions. The leaves
L; and L;y; of wp do not now enjoy the same properties, because an arbitrary path can
be transported from L; to L;y; along the phase trajectories (after possibly being moved
off the points (zg U z1) = S® = dD; 1), while it is not always possible to transport a
path from L;;, to L;: the path may be linked with the sphere S"~2 = 9D, g. We shall
select the submanifolds N; ;1 = Dfwi|z,] in the leaves L;, in accordance with general
principle, and then lift them to L;;;. The submanifolds N;+; ¢ so obtained may prove
to be nonconnected, and the relation [N,y o] = D[w|z,,,] may fail to hold.

a) Dlwilr,,,] # [S™ % # 0. In this case, the component L, of the leaf of wp is
connected. We show that the restriction wy |y, is not exact. In fact, since the cycles [S™ 2]
and Dfwi|z,,,] are not homologous, their independence follows from their indivisibility.
But then we can construct a cycle v which does not intersect the sphere S?~2 and is
nontrivially linked with D{wi|z,,,]. On lowering ~ from L;1+y to L;, we obtain a cycle
along which the integral of w1, is not equal to zero.

In L;, as always, we select a submanifold N; ., [N;,1] = D{wi]|r,], which does not
contain the points zy and z; of the left separatrix disk, o Uz; = D, N L;. On
projecting the submanifold N;; onto L;+1, we obtain the submanifold N;410. Now,
however, we obtain only the following relation:

D[wllLH-l] =n [Ni+1,0] + ng[S”_z],

where g.c.d.(ry,n2) = 1.

We now show how we can choose a transitional bordism W, .1 in the given case. As
before, we glue together sufficiently many of the regular bordisms Ws,,o (the leaf L1,
cut along the connected submanifold N;41 ;). Then we make n; cuts along a submanifold
Nit+1,0 and ng cuts along spheres $™~2 in such a way that we obtain a bordism with
“upper” boundary N,,;; and “lower” boundary consisting of n; copies of N;;3 0 and
ng copies of S”~2. After gluing over all the spheres S™~2 with disks, we obtain the
transitional bordisms Wy, 1.

In the course of the transition through a critical point of index 1 of this type, the
following takes place in a leaf of the form wp + cw; (see Figure 3). A sequence of regular
bordisms W3, 2 (the leaf L; 11, cut along N, 1) is glued to a transitional bordism Wa; 4
along its “upper” boundary N, 1; and ny sequences of regular bordisms Wy, (the leaf



648 A. V. ZORICH

FIGURE 3

L;, cut along N; ;) are glued to its lower boundary, each sequence being glued to its own
component N;11 0 of the “lower” boundary of the bordism Wy, 4,

ni
Waiy1 = Nix11 U | | Nizro
Jj=1

Thus, a leaf of the form wgy + ew; can “split” into several series of the same type at
transitional bordisms of this kind.

b) Dlwilr,,,] = [S™2]. In the case when the cycle realized by S*~2 is not homologous
to zero but is homologous to D[wi|L,,,], the component L; of the leaf of the form wy
will be connected, but the form w;|z, will be exact. The boundary of the transitional
bordism W, 4, will consist of the submanifold V41,1 alone. Moving “downwards” in the
leaf of wg + ew;, we glue the last (“lowest”) regular bordism Wz, to the film Wy, ;.
The leaf of wg + ew; “terminates” at a critical point of this form. To a component L; of
a leaf of wg there will correspond components diffeomorphic to L; of leaves of wg + ew;.

c¢) [$72?] = 0. In this case the leaf L, consists of two connected components L, and
L}, and the form w, is exact on one of them. Compact connected components occur
in the leaf of wg + ew;: they correspond to the component L of the leaf of wy and
are diffeomorphic to this. In the component L; we select, as always, a submanifold
N; 1, [N;1] = D|w| L;]. Then we transport it to L;,;, and obtain a submanifold ¥, ¢
there, [N;4+1,0] = Dlw1|L,,,], after which we carry out the usual construction. Thus the
transition through a critical point of this type, in the sense of determining a quasiperiodic
structure, is completely analogous to the transition through a critical point of index
different from 0, 1, n — 1, and n.

d) [S™~2] # 0. If the restriction of the form w; is not exact on both the components L;
and L! of the leaf of wo, then we choose one submanifold in each component: N;, C L,
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[N{,] = Dlwi|r/] and N}'; C L, [N}/;] = D[wi|ry]. When projected into the leaf Ly,
these submanifolds give a pair of submanifolds (N, ; o U N/} o} C Lit1. It is not hard
to prove the validity of a relation

D[wl|Li+1] = nl[N£+1,0] U n2[N;£1—1,0]'

The transitional bordism Ws; 4 is constructed in complete analogy with case a), only
now none of the components of the boundary will be glued over with disks any more.
To each of the n; components N/ 41,0 of the lower boundary of the bordism Wy;4; we
glue its own series of bordisms Wy, (the leaf L], cut along NV ;); and to each of the ng
components N/, , , we glue a series of bordisms Wy (the leaf L, cut along N;',). To the
upper boundary N;;;; of the transitional bordism Wy, we glue a series of bordisms
Waito (the leaf L;y,, cut along N;41,1). In passing through a critical point of this type,
the leaf again “splits”.

Now that we have shown how the transition through a critical point of index 1 (n—1)
is carried out locally, we are in a position to assign a quasiperiodic structure to a level

surface of a form w.
/ wp = 0} .

We set
h:= G.C.D. [wl; H:=L.C.M.R(w1|r,,),

ecAnn(wo) 1.

Ann(wp) := {c € H(M;Z)

We also set

where L;; is the jth connected component of the :th leaf of the form wg. We shall
construct the bordisms from which we shall glue together the level surface of w. We
begin with the regular ones. The number of these will, as before, be equal to the number
of critical points. Now, however, they will generally speaking be nonconnected.

We consider a leaf L; of the form wg, L; = |J ;5 L;;. We suppose that the restriction
wi|L,; of the form w; to the jth connected component L;; of the leaf L, is not exact. As
before, we cut L,; along the submanifold NV;; ;. We obtain a bordism W;;. After this, we
glue together H/R(w,|y,;) copies of W;;, and we take the disjoint union of R{w;|r,;)/h
copies of the bordism so obtained. Such a bordism W;; can be cut out of the leaf of w
by lifting the submanifold »,; ; from L;; to the leaf of w, displacing the cut so obtained
along the phase trajectories through a height ¢H (in the sense of the integral of the
form w) and replicating this pair N,vjil, ]\7{].’1 of cuts R(wi|r,;)/h times by successive
displacements through the height ch. 3

If wy|r,,.is exact, then L;; is covered by a compact component L;; of the leaf of w.
For W;‘j we take H/h copies of the component L-J- of w, suspended one above another at
a height of h.

Taking the disjoint union |J B W,-J‘ over all the connected components j of L;, we obtain
the 7th regular bordism. The transitional bordisms are constructed analogously, by use
of the “local stockpiles” made above. To each critical point, however, there will now
correspond H/h different transitional bordisms.

In every connected component of every cylinder fw‘ol]bi, b;+1[ we now distinguish, as
before, a segment of a phase trajectory. Using the transitional bordisms, we glue together
the segments along the leaves of the form w, and we obtain a graph of the connected
components of the level surfaces of the map f,,. For any closed path ¢ in the graph
which is such that [c] € Ann(wp), a relation [ w; = k- €h is satisfied, where k € Z. It is
not hard to show that, by modifying the transitional bordisms (which results in changes
to the gluing of the segments in the graph of connected components), we can arrange
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that f w; = O for every closed path c in the graph such that [¢] € Ann{wp). But this
permits us, when we are selecting the quasiperiodic structure, to replace the graph of
the connected components of the level surfaces of f,,, by a single circle.

Therefore a quasiperiodic structure on the level surfaces of the form w can be described
in the following way. On a circle, m segments of length H are selected, and each of them
is subdivided into H/h equal parts. The length of the circle is much greater than H,
and is incommensurable with H. The totality of segments of the circle plays the role
of the indexing set (see Definition 1 in the Introduction). To each segment on the
circle, a bordism is assigned: to the longer segments there correspond regular bordisms,
and to each of the short segments of length 2 we assign its own transitional bordism.
The correspondence looks like that in Figure 1, but now every short segment is divided
into H/h equal parts, and to each of these parts there corresponds its own transitional
bordism. We fix a point zg on the circle, and start moving in both directions along
the circle from the point zg in steps of length H, marking out points z;, z2,... in one
direction and points z_;, _2,... in the other. By assigning to every point the selected
interval in which it lies, we obtain an admissible quasiperiodic sequence, from which we
glue up a quasiperiodic manifold which is a leaf of the form w. Every such sequence of
points {z;} uniquely defines a leaf of w. The sequences of points {z;} and {z!} which
thus correspond to the same leaf are those, any only these, for which the point zj, is
obtained from z¢ by a displacement through kh, where k& € Z. Thus on each leaf we can
define H/h nonequivalent quasiperiodic structures.

We have therefore proved the

THEOREM. For any rational Morse form wg on a compact manifold, and any rational
form wy, a level surface of the form wo+ew, for sufficiently small e € R i3 a quasiperiodic
manifold.

§6. Morse forms with an arbitrary degree of irrationality

In this section we describe the structure of a leaf of a form w which is close to a rational
one, when w has an arbitrary degree of irrationality k. As the constructions below will
make clear, the special case rkw = 2 considered above turns out to be a key one, since
almost all the constructions of the general case rkw = k reduce to it.

Form without critical points. Description of the analogues of bordisms. We begin
the study of the structure of a leaf in the case of degree of irrationality k, as in the
foregoing, with an analysis of the simplest case, where the Morse form w, rkw = k, has
no critical points at all. According to the theorem in §2, a level surface of such a form is
a Z¥~1_covering over a compact leaf of an approximating rational form wp, and thus has
a “ZF~l-periodic structure”. We shall make this structure explicit (see the analogous
construction for £ = 2 in Remark 3 of §2).

By applying Lemma 1 from §2, we express the form w as a sum of k£ independent
rational forms w = wp + a1 + -+ + ox_1. The restriction of w to a leaf L of the
approximating rational form wg will be represented as a sum of k—1 independent rational
forms, w|p = o1l + - + @k-1]L-

In the cohomology classes of the forms «;|; we consider Morse forms of, so that
HY(L;R) 2 [w|z] = [@}] + - + [a)_,]- For each rational form o] we construct a map
far: L — S'. We consider the map

F,:L—8'x...x8'=T1k1,
h—\/—-/
k—1

in which F,: 2 for (z) X -+ X for _ (2).
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Now in the torus T%~1, which is the range of the map F,,, we shall define a “singular
set” X. We denote by X; C T*~! the union of all the sets

Stx...x8'xbx 8! x ... x 8%,
e m—— ———
j~1 k—1—j

where b is any critical value of the map fa;_, and where 1 < 7 < k — 1. We denote by
Xy € T*~1 the union of all the subsets of the form

Sl - x8txb' x 8t x - x 8 xb"x 8t x - xS,
N ——— et

7j—1

im1
where b’ x b is any critical value of the map ot % far: L= SlxSl and1 <j<i<k-1.
In the same manner we define the sets X3, X4,...,Xx—1. The set X4_; is the set of
critical values of the map F, = fa; X -+ X fo . It follows from Sard’s lemma that each

of the sets X;, and therefore also their union X = U'f_l X, has measure zero in T%1.
Thus the set 7%~1 \ X has measure 1. The points of T%~! \ X will for us play the role
of the regular values of a Morse function.

We choose a point z € T~ !\ X. We denote by z; the projection of z on the circle S!
corresponding to the map fq, so that £ =21 X --- X zg—; € §1 x--- x 81 = T*~1. The
inverse image F;!(T*~?) of the torus T 2 = S x .- x 8! x z; x S x --- x §! will be
called the ith boundary or zth cut, and denoted by ;N?~2. The cut with index ¢ realizes
a cycle which is dual (in L) to the cocycle [(1/R(c}))af]. Every cut is a nonsingular level
surface of the corresponding form. We note that, by construction, an arbitrary subset
of the cuts we have chosen will either intersect in a submanifold, or not intersect at all.
We consider the universal covering Exp: R¥~! — T%~1 over the torus 7%~ which is
the range of the function F,,, and we consider the lattice Exp~*(z) ¢ R*¥~! which is
the inverse image of the selected point z. Given the covering Exp: R¥~1! 2 T*=1, the

- k~1 ~ -
map F,: L — T*=! induces a covering 7: L >~ L and a map F,: L — R*¥~!, The

following diagram is commutative:

Fo

j; RN RF-1
™ l Zk-1 Exp,l,Zk_1
L B e

In other words, L is the fibered product L xpx—: R¥~! with respect to the morphisms
F,: L — T* 1 and Exp: R¥~! — T%-1_ All the forms n*a/, and therefore also the form
7*(w|L), are exact on the total space L of the covering 7. Thus the covering space L is
diffeomorphic to a leaf of the form w in the manifold M. The inverse image F;1(7¥1)
of an elementary cell I*~! of the lattice Exp~'(z) in the space R*¥~1 will be called an
“elementary piece”. The leaf L of w is glued together from elementary pieces in a way
which is induced by the gluing together of R*~! from elementary cells. We note that the
“elementary piece” (the analogue of a bordism) is the manifold L (the leaf of the form
wp) sliced open along all the k£ — 1 cuts.

We have therefore proved that a leaf of a Morse form w with degree of irrationality
k, rkw = k, which has no critical points, possesses a (k — 1)-periodic structure. An
“elementary piece” is obtained by slicing a leaf L of an approximating rational form wg
along k — 1 cuts. The cuts are chosen in such a way that any subset of them either
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does not intersect, or intersects in a submanifold. In other words, all the “edges” of the
elementary piece are submanifolds.

Transition from one periodic structure to another. By choosing the “regular” point
z in the torus T%~!, we obtained the lattice Exp~!(z) in the space R¥~1. By taking
another “regular” point y, we obtain a new lattice Exp_l(y). An elementary cell I
of the original lattice turns out to be cut into 2¥~! parallelepipeds. We shall assume
that the point y was chosen in such a way that all the vertices of the parallelepipeds so
obtained correspond to “regular” points of the torus. We shall denote by {; No}1<j<i—1
the family of cuts corresponding to the point = and the cell Iy, and by {; N1}1<,;<kx—1 the
family corresponding to the point y and the cell J;. On the manifold L?~! two periodic
structures appear, generated by the lattices Exp~!(z) and Exp~'(y). By a transition
from one periodic structure to the other we shall meaa the following construction. In
the space RF~! we take a hyperplane dividing R*~! into two half-spaces R&~! and
R'f_l. We fill the half-spaces incompletely with cells Iy and I; respectively. We fill the
remaining “strip” with parallelepipeds obtained by intersecting Iy and I;. The structure
we have indicated on R*~! will induce a transition from one periodic structure on the
manifold L to the other. The “elementary pieces” corresponding to Iy and I; will be
called regular, and the “pieces” corresponding to the intersections Io N I; will be called
transitional. The “regularity” of the vertices of the parallelepipeds Ip N I; implies that
all the “edges” are submanifolds for the transitional “pieces” also. (In other words, every
subset of every mixed family {;N; 4}1<;<k—1, ¢ =0, 1, either intersects in a submanifold
or does not intersect at all; that is, the mixed family {; V; s }1<;j<k-1 also gives a “family
of cuts”.)

The general case. We now pass on to the general case, in which the rational Morse
form wg has singularities. We investigate the structure of a level surface of a form w with
degree of irrationality k under the hypothesis that w is close to wy. As we did earlier,
we stipulate that to each critical value of the function f,,: M — S' constructed from
wg there corresponds a single critical point. To avoid unwieldy constructions, we restrict
ourselves to the case when wg has no critical points of extreme indices 0, 1, n — 1, and n.
We shall also assume that w is represented in the form w = wg + €wk—1, where rkw = £k,
rkwg =1, and rkwyg_; =k — 1.

We represent the form wy_; as a sum of k¥ — 1 independent rational forms, wx—; =
a1+ -+ak_q (see Lemma 1 in §2). Then w = wg+&(a; +- - -+ak-1), and the restriction
of w to an arbitrary leaf L; of wg is a sum w|, = €(a1|r, + -+ + @k—1|r,), where all
the forms a;|z, remain independent on every leaf L;. For each form «; we construct
pairs of submanifolds ;/V; o and ;N;,1 in the nonsingular leaves L; of wy (exactly as we
constructed the submanifolds N; o and N, ; from the rational form w; in §3),

[;N:o] = [;Ni1] = Dlojlr,) € Haoo(L}™ 15 2).

We shall suppose, for simplicity, that no two submanifolds ;N; o and ;/V,; intersect.
Then, in the cohomology class of each form [e|.,] € H!'(L;; R) we can choose a Morse
from e ; for which the submanifolds ;/V; o and ; N;; are leaves. On the leaves L, of wg
we define maps F;: L; — T*~1, where
Fi=foay, % X fap 1.0 Li = 8 x o x S

Since the “sets of regular values” of the functions F; have measure 1, we can arrange by
means of a small perturbation of the submanifolds ;N; ¢ and ;N; 1 (simultaneously in
all the leaves L; of wg) that every family {;N; q}1<;<k—1, ¢ = 0, 1, shall define a family
of cuts of the corresponding manifold L;, for 1 <7 < m, m being the number of critical
points of wy.
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By combining the methods of §3 with constructions from the first part of the present
section, we obtain the following description of the structure of a leaf of w. In RF~! we
select a family of parallel hyperplanes generated by periodic repetition of a collection of
m planes. (Here m is the number of critical points of wp.) Between two neighboring
hyperplanes a lattice in R*¥~! is selected. The transition from lattice to lattice through
a hyerplane is described above. The cells of lattices enclosed between similar planes are
similar (that is, the cells also repeat after every m planes).

Every such lattice structure describes the structure on the corresponding leaf of w.
This correspondence is continuous. To the regular cells of a lattice there correspond the
regular “elementary pieces” Kj;, and to the transitional ones there correspond the tran-
sitional “pieces”. In contrast with the case rkw = 2, there will be 25— — 1 “transitional
pieces” corresponding to each critical point. We recall that the cuts were chosen in such
a way that any “edge” of either a regular or a transitional piece is a submanifold.

§6. Application. The motion of an electron
in a reciprocal lattice in a homogeneous magnetic field

In this section, some physical applications of the theory of Morse forms will be demon-
strated. It was shown in [2] that the problem of investigating the semiclassical motion
of an electron in a reciprocal lattice in a homogeneous magnetic field (a problem of
S. P. Novikov) can be reformulated in terms of a Morse 1-form on a two-dimensional
submanifold M? of the torus T2, and this reformulation allows one to answer a number
of questions. In the present section we shall describe the motion of an electron in the
case when the homogeneous magnetic field is close to a rational one (the field is called
rational if it is aligned with some vector of the reciprocal lattice).

We elucidate the physical nature of the problem (see [2]). In the absence of a magnetic
field, an electron in the lattice I' moves with constant quasimomenta p,, ps, p3, defined
modulo the reciprocal lattice, and has a dispersion law e(p;, p2,p3). The collection of
quasimomenta can thus be regarded as a point of the torus 7% = R3/I'. In a weak
magnetic field, one can consider the semiclassical motion of the electron in the space of
quasimomenta, given by the Hamiltonian ¢ = e(p+ £A), where A is the vector potential.

Let p’ = p+ £A. The motion of the electron in a uniform magnetic field H is determined

by the intersection of a surface £(p’) = const with a plane orthogonal to the magnetic
field.

ASSERTION. Suppose that the weak magnetic field in the lattice is rational (that is,

the vector H 1s aligned with some vector of the dual lattice) and is orthogonal to the
nonsingular Fermi surface €(p’) = const only at isolated points. Suppose further that

for any two such points lying in a single plane orthogonal to the vector H, the vector
Joining them belongs to the reciprocal lattice. Then in a nearby uniform magnetic field
the motion of a particle in p'-space occurs in a flat strip of finite width.

We shall denote a nonsingular level surface (p’) = const by M2 C R3, and call it a

Fermi surface. The plane, orthogonal to the magnetic field H, in which the motion of
the electron occurs can be considered as a level surface of the form Q0 = H,dp!, + Hodp,, +
H3dp}, with constant coefficients. We denote the restriction of the form {} to the Fermi
surface by & = () ar2- We assume that the form « has only nondegenerate critical points

(the field H is orthogonal to the Fermi surface only at isolated points).
So our problem is to investigate the behavior of the level surfaces of the restriction
@ = Q) yy2 of the form (2 with constant coefficients on a triply periodic surface M? in R3,
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under the hypothesis that & is a Morse form. We note that the objects we are considering
admit quotienting by the lattice I'. As a result of the quotienting we obtain a compact
manifold M? (the quotient of the Fermi surface A?) in the torus 7% = R3/TI", M2 C T3.
To the exact form 1 there will correspond a closed form Q = H; dp} + Hadph + Hsdph
on the torus T2, and to the exact form @ on M, there will correspond a closed form w

on M?. If the field H is rational, then the degree of irrationality of the form 1 is equal
to 1, and then rkw < rk{2 = 1. As was shown in §1, from this follows the compactness
of the level surfaces of the form w on the Fermi surface M? in the torus 7. Thus a leaf
of the form w is a collection of circles, and in the universal covering space R® — T2 the
level surfaces of the form w will be either closed or periodic. So the trajectories of an
electron in p’-space in the original rational field are either closed or periodic (see [2]).

) We can now proceed to the proof of the assertion formulated above. We shall denote by
® the form corresponding to a uniform magnetic field which is close to the rational field

H, and by ¢ = <i>| a2 its restriction to a Fermi surface. Just as in the general situation
(see §1), we construct from the rational from w a map f,: M? — S! which determines a
dissection of the Fermi surface into a composite of elementary bordisms. The condition
in the assertion guarantees that to every critical value of f, there corresponds only
one critical point. We consider a connected component W of the elementary bordism
determined by the map f,, with a saddle-shaped critical point. The boundary of W has
the form of a union of three components, each of which realizes some cycle in 7. There
is the following

LEMMA. At least one of the three cycles is homologous to zero in the torus T3.

Suppose, for example, that the cycles a and 7 lie on one level surface. Suppose
neither of them is homologous to zero in 7. Since a and B do not intersect, and both
are embedded in T2 (the leaf () = 0), we have @ = +3.- So ~ is either 0 or 2a. But
since ~ is embedded without self-intersections in 72 (the leaf 1 = 0) in which we can
also realize the cycle a, the possibility v = 2« is excluded, and this proves the lemma.

It follows from the proof of the lemma that the remaining two cycles are homologous.
Further, a connected component of the elementary bordism can be represented as a
cylinder with a hole cut out (the boundary of this hole being our null-homologous cycle).

In every elementary bordism we now take one connected component of a level surface
of the form w, realizing a cycle which is homologous to zero in T2, Then for every form
© close to w there will exist closed level surfaces which are close to the one chosen for w
and which also realize cycles homologous to zero in the torus. We cut the Fermi surface
along such leaves of the form ¢. We assert that for any connected component N, the
image of the map i,: Hy(N;Z) — H;(T3;Z) induced by the embedding i: N — T has
at most two generators. In fact, V can be represented as the result of gluing together a
collection of cylinders and cylinders with holes (the top of the last one being glued to the
bottom of the first), i.e. it is a torus with a number of holes. This means that when we
transfer to the covering space R3 over T3, for any connected component N of the surface
covering IV, there exist two parallel planes between which N is enclosed. Since any leaf
@ = 0 is contained in some connected component {V , this leaf in R® will be enclosed in
the strip formed by the intersection of the plane ® = 0 with the pair of planes chosen
for N.
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