
\Geometric Study of Foliations", World Sci., 1994, 479{498.ASYMPTOTIC FLAG OF AN ORIENTABLE MEASUREDFOLIATION ON A SURFACEANTON ZORICHSISSA (ISAS), via Beirut 2{4, 34013, Trieste, ITALYzorich@tsmi19.sissa.it. ABSTRACTWe state several conjectures on asymptotic \spectral properties" of transforma-tion operators involved in Rauzy induction for a generic interval exchange transfor-mation. Modulo these conjectures we get a very precise approximation for dynamicsof leaves of a generic orientable measured foliation on a surface. The main object,which we get is a ag of subspaces in the �rst (co)homology group of the surfaceof dimensions 1; : : : ; g, where g is a genus of the surface. This ag of subspacesgeneralizes asymtotic cycle; in particular the smallest subspace is spanned by theasymtotic cycle. Presumably this ag of subspaces provides a new invariant offoliation.We illustrate the conjectures by treating a speci�c example, which comes froma model of electron dynamics on a Fermi-surface suggested by I.Dynnikov.Authors belief in validity of conjectures proclaimed is strongly supported bynumerous computer experiments, which gave a�rmative results. 1.1. IntroductionIt is well known, that leaves of a generic orientable measured foliation on a sur-face M2g of genus g wind around the surface along one and the same cycle from the�rst homology group H1(M2g ;R) of the surface, which is called asymptotic cycle22.In a sense asymptotic cycle gives the �rst term of approximation of dynamics ofleaves. Here we study other terms of approximation. Computer experiments show,that taking the next term of approximation we get a two-dimensional subspace inH1(M2g ;R), i.e., with a good precision leaves deviate from asymtotic cycle not arbi-trary, but inside one and the same two-dimensional subspace in the �rst homology.Taking further steps n = 3; :::; g of approximation we get subspaces of dimension kfor the k-th step; collection of the subspaces generates a ag of subspaces in the �rsthomology group. The largest, g-dimensional subspace, gives a Lagrangian subspacein 2g-dimensional symplectic space H1(M2g ;R), with the intersection form consideredThis paper is in �nal form and no version of it will be submitted for publication elsewhere1



2 ANTON ZORICHas a symplectic form. We stop at level g since in a sense at this level we get the bestpossible approximation | it looks like the error can be in a sense uniformly bounded.Having a measured foliation generated by a generic closed 1-form on a surface, onecan consider interval exchange transformation induced by the �rst return map ona closed transversal. This interval exchange transformation would be minimal anduniquely ergodic, provided we started from a generic closed 1-form. Our hypotheticalapproximation is based on several conjectures on asymptotic \spectral properties"of transformation operators (k)A involved in Rauzy induction corresponding to thisinterval exchange transformation. The conjectures are stated in section 2.In section 3 we describe behavior of trajectories modulo conjectures on asymptotic\spectral properties" of Rauzy induction.In section 4 we list some properties of operators (k)A and suggest some speculationson possible proofs of conjectures.In section 5 we apply general constructions to some particular case arising from anexample suggested by I.Dynnikov. This example came from study of Novikov's prob-lem on electron trajectories on Fermi-surfaces in a weak homogeneous magnetic �eld.Here closed 1-form under consideration is obtained as a restriction of a speci�c 1-formon three-dimensional torus with constant coe�cients to a speci�c surface of genus 3embedded into the torus. Rauzy process in this case is periodic, which simpli�es thepicture. Besides, unfolding the torus we can \make visible" our trajectories.In section 6 we present several illustrations for sections of Dynnikov surface. 2.2. Conjectures on \spectral properties" of Rauzy inductionConsider a minimal uniquely ergodic interval exchange transformation with proba-bility vector (�1; : : : ; �n) and nondegenerate permutation � 2 Sn. To settle notationswe remind construction of Rauzy induction20. Our notations are almost the same asin10.Let us describe one step of Rauzy induction. Denote by Ii;j square n�n-matrix,which has only one nonzero entry, which equals one, at the (i; j) place. By E wedenote identity n�n-matrix. Let(1)A = 8<:E + In;��1(n) if �n > ��(n);E + I��1(n);n if �n < ��(n)Let (1)� = (1)A�1�Let �dom = (1; 2; : : : ; n) and �im = �.If �n > ��(n) modify �im by cyclically moving forward one step all those entriesoccurring after the last entry in �dom, i.e., after �dom(n). Denote the permutation



ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED FOLIATION 3obtained by (1)�im, and let (1)�dom = �dom unchanged. If �n < ��(n) modify �dom bycyclically moving forward one step all those entries occurring after the last entry in�im, i.e., after �im(n). Denote the permutation obtained by (1)�dom, and let (1)�im = �imunchanged. Let (1)� = (1)��1dom � (1)�imHere the product of permutations should be understood as a composition of operators,from right to left.Vector (1)��1dom �(1)�� and permutation (1)� determine a new interval exchange trans-formation . This interval exchange transformation is just an induction of originalinterval exchange transformation to subinterval [0; 1��[, where � = min(�n; ���1(n)).Note, that vector (1)� has L1-norm smaller then �; we do not renormalize it.By (k)�, (k)�, (k)�im, (k)�dom we denote the data obtained after k steps of Rauzyinduction. By (0)� = �, (0)� = �, (0)�im = �, (0)�dom = (1; 2; : : : ; n) we denote theinitial data. By (k)A we denote a product of k elementary matrices corresponding to�rst k steps of induction, so that (0)� = (k)A � (k)� (1)or in coordinates (0)�i = (k)Aij � (k)�j (2)Recall, that having an interval exchange transformation one can construct a Rie-mann surface and a closed (harmonic) 1-form, which de�nes a measured foliationon Riemann surface (see14 and24). Initial interval exchange transformation wouldbe generated as a �rst return map to a speci�c transversal to the foliation. Denotegenus of corresponding Riemann surface by g. Though value of g is determined bycombinatorics of permutation �, we referred to construction of Riemann surface toemphasize topological meaning of g, which is rather essential in this paper.Let (k)x1; : : : ; (k)xn be eigenvalues of (k)A enumerated according to decreasing orderof their norms: j(k)x1j � j(k)x2j � � � � � j(k)xnj.We formulate propositions and conjectures below everywhere assuming k is su�-ciently large, and initial vector � is generic. We start with reminding a well-knownfact, concerning the greatest eigenvalue.Proposition 1. The greatest eigenvalue (k)x1 is real and positive; it tends to in�nityas k tends to in�nity; it is much greater then norms of other eigenvalueslimk!1 (k)x1 = +1limk!1 (k)xi(k)x1 = 0 for i = 2; : : : ; n



4 ANTON ZORICHIn particular (k)x1 has multiplicity one. Corresponding eigenvector (k)V1 has positivecoe�cients. Being normalized in L1-norm it tends to (0)�.limk!1 (k)V1 = (0)�Conjecture 1. Eigenvalues (k)x1; : : : ; (k)xg and (k)xn�g+1; : : : ; (k)xn are all real pro-vided k is su�ciently large.Conjecture 2. Eigenvalues (k)x1; : : : ; (k)xg tend to in�nity; their ratios (k)xi+1(k)xi for i =1; : : : ; g � 1 tend to zero, i.e., (k)x1 � j(k)x2j � � � � � j(k)xgj � 1limk!1 j(k)xij =1 for i = 1; : : : ; glimk!1 (k)xi+1xi = 0 for i = 1; : : : ; g � 1Conjecture 3. Eigenvalues xn�g+1; : : : ; xn tend to zero; ratios xi+1xi for i = n� g +1; : : : ; n� 1 tend to zero, i.e., 1� jxn�g+1j � jxn�g+2j � � � � � jxnjlimk!1 xi = 0 for i = n� g + 1; : : : ; nlimk!1 xi+1xi = 0 for i = n� g + 1; : : : ; n� 1Conjecture 4. Eigenvalues (k)xg+1; : : : ; (k)xn�g can be complex, but with probability ptheir absolute values are uniformly bounded by a constant C(g; p), for any p < 1. (Asa probability measure we consider a natural measure on simplex �n�1, parametrizing�.) j(k)xij � C(g; p) for i = g + 1; : : : ; n� gIn other words (k)xg+1 � � � � � (k)xn�g � 1Conjecture 5. Pairwise products of eigenvalues (k)xi(k)xn�i+1 for i = 1; : : : ; g areclose to 1, i.e., (k)x1(k)xn � 1; : : : ; (k)xg(k)xn�g+1 � 1Note that det (k)A = 1, and hence Qni=1 (k)xi = 1.Morally we claim, that operator (k)A behaves \similar" to a high power of a sym-plectic operator with real eigenvalues.Consider a ag of subspaces (k)L1 � (k)L2 � � � � � (k)Lg, where subspace (k)Li, 1 �i � g, is spanned by eigenvectors (k)V1; : : : ; (k)Vi corresponding to \top" i eigenvaluesof operator (k)A. According to Conjecture 1 above, subspace (k)Li, where 1 � i � g, isreal and has dimension i. Consider this ag as a point of corresponding ag manifoldF1;2;:::;g(R2g).Conjecture 6. Flags (k)L1 � (k)L2 � � � � � (k)Lg have a limit as k !1 with respectto natural topology on ag manifold.



ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED FOLIATION 5Consider much more general problem. Let f : M ! M be a transitive Anosovdi�eomorphism. Let f� be induced mapping in cohomology. It is known, that thelargest by absolute value eigenvalue x1 of f� is real, and that 1=x1 is also eigenvalueof f�; corresponding eigenvectors are called Ruelle|Sullivan classes of f , they arePoincar�e dual one to the other.Problem 1. Does f� have any other \spectral properties" (may be under some addi-tional assumptions on f)? Are there any generalizations of Ruelle|Sullivan classes,say, some invariant subspaces in cohomology? 3.3. Hypothetical behavior of leaves of orientable measured foliationHaving an interval exchange transformation one can associate to it a Riemann sur-face and a holomorphic 1-form (see14 and24), which determines a measured foliationon the surface. By construction we have a speci�c transversal to the foliation; �rstreturn map to this transversal induces initial interval exchange transformation. Wemay assume, that we started from orientable measured foliation, and then choosing atransversal got interval exchange transformation; in any case, what we are interestedin is homological behavior of leaves of corresponding measured foliation.Recall, that one can associate to each subinterval under exchange a cycle in the�rst homology group of a surface. The cycle Ni, corresponding to subinterval Xiis represented by the following closed pass on our surface M2g : we start at the leftendpoint of the intervalX (i.e., at the left endpoint of our transversal), and go to theright along transversal till we get to some point x 2 Xi inside subinterval Xi. Thenwe follow (in positive direction) leaf of foliation starting at the point x till we hitour transversal for the �rst time at the point T (x), where T is our interval exchangetransformation. Then we go to the left along interval X till we come back to its leftendpoint.Choose some basis c1; : : : ; cm in the �rst homology group of M2g with real coe�-cients. In fact we do not care, whether it is a basis in absolute or relative homology, sowe do not want to specify dimension m precisely. It would be convenient to organizeour cycles in a n�m-dimensional matrix N as follows: row number i of matrix Nis just our cycle Ni represented in components N1i ; : : : ; Nmi with respect to the basisc1; : : : ; cn.Let us trace how Rauzy induction a�ects the cycles Ni. Denote the cycles obtainedafter k steps of Rauzy induction by (k)Ni. (Note, that ordering of the subintervals,and hence of the cycles, is determined by permutation (k)�dom.) We use initial basisc1; : : : ; cm in homology to decompose cycles (k)Ni in components. It is easy to see,that (k)N = (k)AT � (0)N (3)



6 ANTON ZORICHor in coordinates (k)N qj = (0)N qi � (k)Aij (4)where index q enumerates components of cycles, and indices i and j enumerate cycles.Remark 1. We would like to emphasize, that according to transformation rule Eq. 4columns of matrixN are transformed as covariant objects with respect to linear trans-formation de�ned by matrix (k)AT , while vector (k)� of lengths (k)�i of subintervals istransformed as a contravariant object with respect to the same linear transformation(c.f. Eq. 1 and Eq. 2). In other words, if we consider Eq. 4 as an action of a linearoperator (k)R with matrix (k)AT on covariant objects, then Eq. 1 and Eq. 2 de�ne anaction of adjoint operator on contravariant objects.Probably we had to choose operator (k)R with matrix (k)R = (k)AT as a startingobject in our presentation, otherwise \unexpected transposition" leads to some con-fusion. On the other hand these would lead to contradiction with existing notationsin10 and other papers.Matrix (k)AT of our transformation has the same collection (k)x1; : : : ; (k)xn of eigen-numbers as (k)A. According to Conjecture 2 eigennumbers (k)x1; : : : ; (k)xg are all dis-tinct. Denote corresponding eigenvectors by (k)W1; : : : ; (k)Wg. We have a naturalprojection to one-dimensional subspaces spanned by these eigenvectors.Consider eigen(co)vector (k)Vi, where 1 � i � g, of adjoint operator (havingmatrix (k)A�1) corresponding to eigennumber 1(k)xi . Note, that it coincides witheigen(co)vector of inverse to adjoint operator (having matrix (k)A) corresponding toeigennumber (k)xi. Normalize our eigenvectors so that under a natural pairing (ofcovariant and contravariant objects) we geth(k)Wi; (k)Vii = 1 for any i = 1; : : : ; g (5)Let us use Eq. 5 to rewrite Eq. 3 and Eq. 4 for the columns (k)N q, q = 1; : : : ;m ofmatrix (k)N .(k)N q = (k)x1h(0)N q; (k)V1i � (k)W1 + � � �+ (k)xgh(0)N q; (k)Vgi � (k)Wg +O(1) (6)We remind, that according to Conjectures 3 and 4 the tail in Eq. 6 is small withrespect to the leading terms, since projections to eigenvectors (k)Wn�g+1; : : : ; (k)Wnwould be multiplied by corresponding eigennumbers (k)xn�g+1; : : : ; (k)xg, which tendto zero, while projections to the \middle" eigenvectors (k)Wg+1; : : : ; (k)Wn�g would bemultiplied by eigennumbers, which presumably remain bounded.Consider the following cycles (k)Z1; : : : ; (k)Zg in the �rst homology group (samewhere cycles Ni live):(k)Zi = h(0)N1; (k)Viic1 + � � �+ h(0)Nm; (k)Viicm (7)



ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED FOLIATION 7We are interested, actually, in the rows of matrix (k)N , representing cycles in the�rst homology group of our surface. Combining equation Eq. 6 with de�nition Eq. 7we obtain (k)Ni = (k)x1(k)W i1 � (k)Z1 + � � �+ (k)xg(k)W ig � (k)Zg +O(1) (8)We are going to analyze now equation 8, which is a key equation in this section.According to Proposition 1 we have (k)x1 � j(k)xij for i = 2; : : : ; n. Hence the �rstterm of approximation in Eq. 8 is de�ned by cycle (k)Z1. This means, that if we willrescale cycles (k)Ni by 1=(k)x1 we get(k)Ni = (k)W i1 � (k)Z1 + o(1) (9)i.e., cycle (k)Ni is proportional to (k)Z1 with a coe�cient of proportionality (k)W i1 upto an error, which tends to zero as k ! +1. We would like to note that this result isbased only on Proposition 1, it does not depend on conjectures, so it is quite rigorous.Still for this case we get nothing new. According to the same Proposition 1 one haslimk!+1 (k)V1 = (0)�Hence Eq. 7 leads to limk!+1 (k)Z1 = (0)�1 � (0)N1 + � � �+ (0)�n � (0)Nni.e., cycle (k)Z1 tends to asymptotic cycle (see22).Recall now, that according to Conjecture 2 we have (k)x1 � � � � � j(k)xgj � 1.Hence if we take leading r terms in approximation Eq. 8, 1 � r � g, we get(k)Ni � (k)x1 � (k)W i1 � (k)Z1 + � � �+ (k)xr � (k)W ir � (k)ZrIn other words up to a relatively small error all the cycles belong to a r-dimensionalsubspace in the �rst homology group spanned by cycles (k)Z1; : : : ; (k)Zr. Comparethis r-dimensional subspace with one obtained after some other number k0 of stepsin Rauzy induction. New cycles (k0)Z1; : : : ; (k0)Zr may change, since they are de�nedin terms of eigen(co)vectors (k0)V1; : : : ; (k0)Vr, which may change. Still, according toConjecture 6, the space (k0)Lr generated by eigen(co)vectors (k0)V1; : : : ; (k0)Vr is closeto the space (k)Lr generated by eigen(co)vectors (k)V1; : : : ; (k)Vr in the sense of naturaltopology of Grassmann manifold Gr(Rn). Hence (see de�nition Eq. 7) of cycles Zi)subspaces generated by cycles (k)Z1; : : : ; (k)Zr and (k0)Z1; : : : ; (k0)Zr would be also close.Denote the subspace of the space of �rst homology of M2g with real coe�cientsspanned by cycles (k)Z1; : : : ; (k)Zr by (k)Hr. We showed that Conjectures 1, 2, 3, 4,and 6 imply the following statement:Main Conjecture. Flags (k)H1 � (k)H2 � � � � � (k)Hg have a limit as k ! 1 withrespect to natural topology on ag manifold.



8 ANTON ZORICHWe checked this statement by computer experiments with small genuses (up togenus 5) using Mathematica package25. We used random initial data, and high pre-cision to be able to take approximately a thousand steps in Rauzy induction andcompared relative di�erences in Plucker coordinates. Typical result for the tail of thesequence is 10�10 for small genuses.
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Figure 1. Computer simulation of \trajectory" for the case, when \asymptoticcycle" equals zero. Initial permutation � = (6; 5; 3; 8; 7;4; 2; 1) corresponds to asurface of genus 3. Number of iterations is 100.000.The other obvious computer experiment is as follows. Chose arbitrary two dimen-sional vectors N1; : : : ; Nn, playing a role of cycles, which satisfyP�iNi = 0. Considera \trajectory" for some large number of iterations of interval exchange transforma-tions. According to Main Conjecture our \trajectory" is supposed to follow a straightline with direction Z2. This hypothetical straight line becomes already visible (see�gure 1) starting with 100000 iterations for small genuses; for greater values of g andn one has to take more iterations. 4.4. Properties of operators (k)A and some speculations on possible proofsof conjecturesRemind some properties of operators (k)A.Given an interval exchange transformation T corresponding to a pair (�; �), � 2Rn+, � 2 Sn, set �0 = 0, �i = Pij=1 �j , and Xi = [�i�1; �i[. De�ne skew-symmetric



ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED FOLIATION 9n�n-matrix S(�) as follows:S(�)ij = 8><>: 1 if i < j and ��1(i) > ��1(j)�1 if i > j and ��1(i) < ��1(j)0 otherwise (10)Consider a translation vector � = S(�)� (11)Our interval exchange transformation T is de�ned as follows:T (x) = x+ �i; for x 2 Xi, 1 � i � nTo each permutation � 2 Sn we assign n�n-matrix which we will denote by P (�):P (�)i;j = 8<:1 if j = �(i);0 otherwise (12)Our �rst comment is that operators (k)A preserve skew-symmetric scalar product S(�)in the following sense (see15):P T ((k)�dom)S((k)�)P ((k)�dom) = (k)AT � S((0)�) � (k)A (13)In particular for those values of k, when (k)� = (0)� and (k)�dom = (0)�dom, Eq. 13simpli�es as follows: S((0)�) = (k)AT � S((0)�) � (k)A (14)i.e., for those values of k operators (k)A preserve \degenerate symplectic form" S((0)�).The other comment concerns kernels of operators S((k)�) (see Eq. 11). Recall con-struction of a Riemann surface and a measured foliation on the surface correspondingto a given interval exchange transformation (see14 and24). Due to this constructionour initial interval exchange transformation ((0)�; (0)�) is represented as a �rst re-turn map to a transversal generated by the measured foliation. Enumerate saddlesP1; P2; : : : ; Ps on our surface. Assign to each endpoint of subintervalsXi; i = 1; : : : ; nunder exchange corresponding saddle. To each saddle point P assign a vectorK 2 Rnas follows: Kj = 8><>: 1 if P is assigned to the left endpoint of Xj ;�1 if P is assigned to the right endpoint of Xj ;0 otherwise (15)We got s vectors K1; : : : ;Ks corresponding to saddles P1; : : : ; Ps.



10 ANTON ZORICHProposition 2. Vectors Ki, i = 1; : : : ; s belong to the kernel of operator S(�), i.e.,S(�)Ki = 0 :Kernel of operator S(�) has dimension s�1; it coincides with a linear span of vectorsK1; : : : ;Ks.Since a step of Rauzy induction can be considered as induction to a proper subin-terval of the transversal of the �rst return map, we get a natural identi�cation ofsaddles corresponding to interval exchange transformations ((k)�; (k)�). Consider vec-tors (k)Ki ; i = 1; : : : ; s corresponding to interval exchange transformation obtainedafter k steps of Rauzy induction.Proposition 3. Operator (k)A maps vector (k)Ki to vector (0)Ki:(k)A((k)Ki) = (0)Ki for i = 1; : : : ; s :Construction of a Riemann surface in14 and24 by given interval exchange transfor-mation in fact provides us with a natural basis in the �rst relative (co)homology ofthe surface with respect to subset of saddle points. Recall, that a measured foliationin this construction is obtained as a foliation of leaves of a closed 1-form. Note, thatvalues �i represent integrals over the basic relative 1-cycles. Note also, that values�i of the translation vector in Eq. 11 represent integrals of the 1-form over cycles Ni(see previous section). Consider the following terms of exact sequence of a pair (setof saddle points)�(Riemann surface M2g ):� � � ! H0(saddles;R)! H1(M2g ; fsaddlesg;R)! H1(M2g ;R)! H1(saddles;R) = 0Under identi�cation with cohomology suggested above, Eq. 11 can be consideredas a mapping from relative to absolute cohomology from the exact sequence of thepair, while the set of vectors Ki de�ned by Eq. 15 represents image of the mappingH0(saddles;R)! H1(M2g ; fsaddlesg;R). Moreover, under identi�cation of our space(where vector � lives) with the �rst cohomology of the surface, skew symmetricmatrixS(�) represents intersection form on (co)homology.Recall construction of Veech24 of pseudo-Anosov maps related to given intervalexchange transformation. (See also14.) Having an interval exchange transformationconsider a collection of rectangles, such that their bottom edges are represented byintervals under exchange. Mark proper points on the side edges of rectangles (see24),and de�ne some gluing rules, so that after proper identi�cation of sides, the unionof rectangles gives a closed Riemann surface provided with a complex structure andclosed di�erential form Re(dz), which determines our measured foliation.Rauzy induction for interval exchange transformation is naturally generalized in24to corresponding modi�cation of our collection of rectangles. Under Rauzy inductionthe \building" of rectangles grows high and becomes more narrow. Suppose afterk0 steps of Rauzy induction we come back to initial permutation, i.e., (k0)� = (0)�,



ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED FOLIATION 11and (k0)�dom = (0)�dom. It is shown in24, that under a special choice of parameters(lengths of the sides of rectangles and heights of the marked points) one can contractthe resulting \building" in vertical direction in � times and expand in horizontaldirection in � times to get initial \building" of rectangles, which produces a pseudo-Anosov di�eomorphism.For those numbers k0 of iterations of Rauzy induction, which give initial per-mutation, operators (k0)A preserve the space Ker(S(�)) = Im(H0(saddles;R) (seepropositions 2 and 3). Moreover, they act on this space as identity mapping. Henceaction of (k0)A on the quotient space is well de�ned and coincides with the mapping ofthe �rst cohomology, induced by pseudo-Anosov di�eomorphism. Thus Conjectures 4and 5 are valid at least for these speci�c values k = k0.In the next section we illustrate how our conjectures work for the easiest case,when Rauzy process is periodic. We hope, that in general, quasiperiodic case, thewhole picture is similar. 5.5. Electron trajectories in Dynnikov's exampleIn this section we want to illustrate ideas of section 3 by treating a particularmeasured foliation. On the one hand the structure of Rauzy induction is very easyfor this case. On the other hand this example has some independent interest since itcame from the framework of S.Novikov problem on behavior of electron trajectorieson a Fermi-surface in the presence of a weak homogeneous magnetic �eld (see16, 17, 26,and4).We remind briey mathematical formulation of initial problem16, 17. Let M̂2g � R3be a periodic surface in R3, i.e., a surface invariant under translations of cubic latticein R3. Consider its intersection lines with a plane ax+by+cz = const. What can onesay about behavior of these lines? S.Novikov conjectured, that generically nonclosedcurves as de�ned go along a straight line in the plane.It was proved in26, that for a �xed embedding conjecture is valid for an open denseset of directions of planes (union of neighbourhoods of rational directions). For thisset of directions all curves can not deviate too far from the lines along which they go| they all belong to stripes of �nite width. Paper4 assumes that our surface is a levelsurface of a periodic function, and proves that for any �xed direction of a plane thesame behavior of curves is valid for all but at most one level of the function. Thereis an example due to S.Tzarev, when Novikov's conjecture is not valid.We need to reformulate the problem as follows. Consider a closed surface M2g ofgenus g (\Fermi-surface") embedded into a three-dimensional torus T 3. We identifytorus T 3 with the space R3 factored over a cubic lattice. Having a closed 1-form withconstant coe�cients a dx+b dy+c dz on T 3 one can con�ne it to the surface. One gets



12 ANTON ZORICHa closed 1-form on the surface, which generically has nondegenerate singularities. This1-form determines a measured foliation onM2g . Consider universal covering R3 ! T 3and induced covering M̂2g ! M2g . Consider leaves of induced measured foliation onthe surface M̂2g . By construction they can be obtained as intersection lines of M̂2gwith a plane ax+ by + cz = const.Generically measured foliation on a surface obtained by construction above splitsinto several minimal components (tori with holes). For a long time it was not knownwhether one can get in this way a minimal foliation. We can assume, that homologicalclass of a surface is equal to zero in the second homology of torus (the case when itis nonzero is trivial). Hence, due to a remark by J.Smillie, the image of asymptoticcycle of foliation equals zero in the �rst homology of torus. This means that curvesin R3 obtained by unfolding of leaves of a minimal uniquely ergodic foliation do nothave any natural asymptotic direction. Hence examples of minimal foliations in thisproblem could lead to quite peculiar behavior of leaves.A family of examples of minimal measured foliations on a surface of genus 3 as re-quired was recently constructed in5. One of the tools in the construction is a processsimilar to Rauzy induction. We treat the case, when this process is periodic. Param-eters, determining the surface, and the slope of the plane are obtained as componentsof an eigenvector of the transformation matrix D (which is morally similar to matrixA in Rauzy induction) corresponding to a period of the process.Remark 2. We want to make a following side remark. The space of interval exchangetransformations arising from foliations determined by closed 1-forms on a surface ofgenus g has dimension 4g�4. Dimension of a subspace, which comes from Dynnikovconstruction is 2g � 1. It follows from the construction, that there are open sets(in topology of the subspace), for which interval exchange transformation is alwaysnonminimal, which gives an estimate for dimension of stratum of nonminimal intervalexchange transformation in the space of all interval exchange transformations.We chose a transversal on Dynnikov surface and considered interval exchange trans-formation induced by foliation. In this example we have a surface of genus g = 3,the 1-form has 2g � 2 = 4 saddles, so we have interval exchange transformation ofn = 4g� 3 = 9 intervals. One can easily evaluate cycles N1; : : : ; N9 (see constructionin section 3). It would be convenient for us to consider images of these cycles inH1(T 3;R), so we will identify cycles Ni with vectors in R3.For completeness of presentation we display numerical data for this example. Un-der particular choice of transversal one has the following picture: interval exchangetransformation has permutation� = (3; 8; 5; 2; 7; 4; 9; 1; 6)and vector � � (0:558; 2:871; 1:227; 1:558; 0:700; 0:368; 2:730; 0:558; 0:141) :



ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED FOLIATION 13Matrix N of cycles given in natural coordinates in H1(T 3;R) is as follows:N = 0BBBBBBBBBBBBBBB@ �1 �2 �6�1 0 �10 1 20 �1 �20 1 30 �1 �21 0 11 2 51 0 0
1CCCCCCCCCCCCCCCA (16)Having such data it is easy to get computer pictures for the leaves of our foliation(unfolded in R3). Figure 2 illustrates a piece of curve obtained by random choice ofinitial point.
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Figure 2. A piece of leaf after 100 000 returns to the transversal. Unit ofmeasurement is one unit of our cubic lattice. Starting point is at the origin.It is easy to see, that the leaf goes rather close to a straight line. Still one shouldnot think, that our leaf just goes straight in one direction | it walks along the lineto and fro many times (see section 6 for more details). We stress once more, thatsuch behavior of the leaf can not be explained by means of asymptotic cycle whichis equal to zero in the �rst homology of the torus.



14 ANTON ZORICHThe \straight line" behavior of leaves immediately follows from our Main Conjec-ture in the end of section 3. Consider images of the subspaces H1;H2;H3 in the �rsthomology H1(T 3;R) of the torus. We know, that asymptotic cycle, which spans H1maps to zero. Hence the image of H2 is a one-dimensional subspace inH1(T 3;R) (un-less it also maps to zero, which is not the case in our example). This one-dimensionalsubspace gives the direction of the line, which one sees at �gure 2. One can alsocheck, that two-dimensional image of H3 coincides with the plain ax+ by + cy = 0.Fortunately Rauzy process for interval exchange transformation in our example isso simple, that we can prove all conjectures in this particular case. After 12 steps theprocedure starts to go cyclically with a period 162. Here is the list of eigennumbersof the matrix Acycle = (12)A�1 � (174)A corresponding to a cycle in Rauzy induction:x1 � 25520; x2 � 1260; x3 � 20; x4 = x5 = x6 = 1; x7 � 0:05; x8 �0:0008; x9 � 0:00004. Taking a large power of this matrix one gets a picture as inConjectures above.We checked cyclic behavior of Rauzy induction in this example as follows: havinginitial data from Dynnikov process we got approximate initial data for interval ex-change transformation with precision su�cient to be sure in �rst several hundred ofsteps. Then using computer we generated Rauzy process for our data, and got in-formation on probable length of cycle (162) and number of starting steps (12) beforegoing cyclically. We calculated corresponding matrices (12)A and (174)A; this matricesare integer, so they were calculated precisely. Then we checked that these integermatrices obey some algebraic equation containing matrix D of period of Dynnikovprocess, which proved that interval exchange transformation obtained from periodicpoint in Dynnikov process gives periodic point (with period 162) in Rauzy induction.Unfortunately we do not see any mapping or any other direct relations between Dyn-nikov process and Rauzy induction, though morally they represent one and the sameprocess (it was noticed by J.Smillie). In particular we can not prove in general, thatperiodic Dynnikov process generates periodic process in Rauzy induction.Let us give some explanation of the properties of eigennumbers of matrix Acycle.For simplicity take (12)� and (12)� as initial data. Then Rauzy process would be purelycyclic with period 162, i.e., (162)� = (0)� (17)(162)�dom = (0)�dom (18)(0)� = (162)A � (162)� = (162)x1 � (162)� (19)i.e., � is exactly the eigenvector of (162)A corresponding to largest eigennumber (162)x1.Consider matrix S = (0)S de�ned by Eq. 10. Due to Eq. 17 (162)S = S, and dueto Eq. 18 change of coordinates in Eq. 12 determined by (162)�dom is trivial | it is



ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED FOLIATION 15identity matrix. Hence in our case Eq. 13 simpli�es as follows:S = ((162)A)T � S � (162)A (20)It means that transformation (162)A preserves three-dimensional kernel of operator S(see proposition 2). Moreover, due to Eq. 17, Eq. 18, and using proposition 3 wesee, that operator (162)A acts on the space KerS as identity mapping. This way weget three unity eigenvalues x4 = x5 = x6 = 1 (cf. Conjecture 4).We have a well-de�ned action of operator (162)A on the quotient space R9=KerS,since we factorize over invariant subspace. On the quotient space we have skew-symmetric bilinear form, which comes from skew-symmetric bilinear form on R9 de-termined by matrix S. On the quotient space our bilinear form is already nondegen-erate, and according to Eq. 20 we get a symplectic operator on this six-dimensionalvector space. This explains why x1 = 1=x9, x2 = 1=x8, x3 = 1=x7 (cf. Conjecture 5).Taking powers of matrix (162)A we will get a picture of distribution of eigennumbersas in Conjectures 2 and 3.Let us discuss behavior of ags (k)L1; (k)L2; (k)L3. It is easy to see, that for kq = 162�qwe have (k1)Li = (k2)Li = � � � def= Li for i = 1; 2; 3Consider some intermediate k, say, k = 162 � q + r, where 0 < r < 162. Then(k)A = (kq)A � (r)A. Note, that (r)A is nondegenarate operator. Since we have a �nitenumber of possible values for r, we can get any uniform estimates for action of (r)A, somorally we can consider this operator as a \small perturbation of identity operator"with respect to \signi�cant" operator (kq)A (assuming kq is su�ciently large).More precisely we can express this idea as follows. Suppose we have a linearprojection operator P : X ! X on a �nite-dimensional vector space X, which mapsthe whole space to some invariant subspace Y � X, i.e., Im(P ) = Y , and P (Y ) = Y .Let Q be an automorphism of the vector space X. Then composition P � Q (�rstapply Q, then P ) is again projection to the subspace Y , i.e. Im(P �Q) = Y , and foralmost all automorphisms Q one has (P �Q)(Y ) = Y .Morally operator (kq)A acts as a projection P to the subspace Li for i = 1; 2; 3depending how many steps (1,2, or 3) of approximation we want to consider, whileoperator (r)A plays a role of automorphism Q. This idea can be easily formalizedin our case, which implies that intermediate subspaces (kq+r)Li, where i = 1; 2; 3converge to Li as q tends to in�nity. 6.6. Appendix. Sections of Dynnikov surfaceThis is just to present several illustrations to section 5. Consider a section ofDynnikov surface in R3 by a plane ax + by + cz = const, where coe�cients a; b; c



16 ANTON ZORICHare as in section 5. Consider a square in the (x; y) plane with a side d. Cut aparallelogram from the plane ax + by + cz = const which projects to our squareunder projection along z-axes. A piece of section of Dynnikov surface which got intoour parallelogram splits into several connected components. Take one of them. Herewe present two pictures of such components for di�erent values of d (we measure din terms of units of our lattice). On the �rst picture the visible area coincides withaccessible area and equals 40 � 40 units, i.e., d = 40.
Accessible area is 40x40 units

Figure 3. Slice of Dynnikov surface.Problem 2. It would be rather interesting to know, how many connected compo-nents has a generic section of Dynnikov surface: one, two, �nite number, or countablenumber?It would not be interesting to show the whole picture for large values of d. Sinceour components are just unions of pieces of trajectories, we would see just a strait linefor large values of d. Figure 4 demonstrates only a small part of the whole picture,as if we use a zoom. Here d = 500, while we see only a piece of the picture whichgets inside a 50 � 50 square.The picture presented is schematic | it is represented by a plane graph. Theactual picture is obtained by replacement of edges of the graph by thin ribbons, andby proper conjugation of the ribbons near the vertices.
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Accessible area is 500x500 units

Graphic area is 50 units

Number of vertices: 6869 

Number of branches: 1858 

Starting point: t= 1.763092 at interval 3

Figure 4. Slice of Dynnikov surface.The second picture illustrates, that our trajectories may \wonder along the line"in a quite complicated way. Lacunas in the graph would be �lled up after enlargingthe size of the rectangle under consideration. But the picture shows, that trajectorieshave to go far enough before they come back and �ll up the lacunas. 7.7. AcknowledgementsWe wish to thank I. Dynnikov for communicating his example long before it becameaccessible even as a written text, and J. Smillie for numerous discussions, and helpfulcomments.
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