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Abstract. We start with a mini-survey on some problems of pseudoperiodic
topology.

In the main part of the paper we consider analogs of irrational winding lines
on a torus for arbitrary Riemann surfaces. These analogs are leaves of folia-
tions defined by closed differential 1-forms. We study asymptotic topological
dynamics of the winding lines. We take long pieces of leaves of the foliation
and consider the behavior of cycles obtained by joining the endpoints of each
piece by short segments.

We prove that generically there is a flag of subspaces V1 ⊂ V2 ⊆ · · · ⊆ Vg ⊆

V ⊂ H1(M2
g ; R) in the first homology group with the following properties.

The 1-dimensional subspace V1 is spanned by the asymptotic cycle. Deviation
of a cycle representing a long piece of leaf from the subspace Vj is of order
lνj+1 , j = 1, . . . , g−1, where l is the length of corresponding piece of leaf. The
bound is uniform with respect to choice of leaf and position of the piece of leaf
on it. The deviation of any leaf from the subspace V is uniformly bounded
by a constant. “Universal constants” 0 ≤ νj < 1 are represented in terms
of Lyapunov exponents of the Teichmüller geodesic flow on the corresponding
moduli space of Abelian differentials.

This statement is a corollary of an analogous statement for interval ex-
change transformations.

Structure of the paper

In the first part of the paper we present a mini-survey on some problems of
pseudoperiodic topology. It is independent from the remaining part of the paper. In
section 2 we consider foliations on Riemann surfaces defined by closed 1-forms. We
show why the interesting topological dynamics of such foliations can be represented
by a class of 1-forms obtained as real parts of Abelian differentials. In section 3
we formulate the principal results. In section 4 we reformulate the problem and
the principal results in the language of interval exchange transformations. Then we
prove the main theorem using the properties of a discrete analog of the Teichmüller
geodesic flow on the space of interval exchange transformations. In Appendix A
we discuss irreducibility of the corresponding cocycle. In Appendix B we prove
irreducibility for some particular case.
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1. Overview of some problems of pseudoperiodic topology

It is difficult to define what exactly is a “pseudoperiodic” or “quasiperiodic”
topology. However the following problem definitely belongs to the subject.

Consider an embedding of a closed compact manifold Mm into a torus T n.
Consider the embedding of the induced periodic manifold M̂m into the universal
cover R

n over T n.
M̂m −−−−→ R

n



y



yP

Mm −−−−→
i

T n

Consider now an affine subspace Al ∈ R
n.

General Problem . Describe topology of the
a) intersection M̂m ∩ Al;

b) complement M̂m\Al.

Taking various values of parameters m, n, l, and some specific embeddings Mm →֒
T n one gets different problems of pseudoperiodic topology. The current paper
mostly deals with the case when m = 2, n is large enough, and l = n − 1. In this
case the manifold Mm is just a Riemann surface, n “large enough” means n ≥ 2g,
or sometimes n ≥ 2g + 3, where g is the genus of the surface. In other words
we study hyperplane sections of periodic surfaces in R

n. Before going into details
concerning this particular case we present some outline of what is known (at least
to the author) about other combinations of parameters m, n, l, and what problems
are hidden in the general formulation above.

Figure 1. Embedding of a Riemann surface of genus 2 into a torus
T 3
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Topology of intersection of a periodic manifold

with an affine subspace

1.1. Hyperplane sections of periodic submanifolds. The special case when
l = n − 1, i.e., when we consider hyperplane sections of periodic manifolds is
exactly the study of levels of closed differential 1-forms on a closed manifold Mm.
In the several paragraphs below we present the construction due to V.I.Arnold [8]
identifying the two problems. Morally, the idea is in analogy of diagram (1) to the
corresponding diagram for the Abel–Jacobi map.

Locally a closed differential 1-form ω can be represented as a differential of a
function. The function is defined up to a constant, so locally the level hypersur-
faces of the function are well-defined. Thus a closed differential 1-form defines a
codimension-one foliation (in general with singularities) on the manifold. Speaking
about a leaf of the foliation we shall usually assume that it is connected. Thus
any two points of a leaf could be joined by a path γ such that the restriction ω|γ
vanishes, ω|γ ≡ 0. We shall include in a single class, which will be called a level of
the 1-form, all the leaves which can be joined by a path in the manifold Mm along
which the integral of the form ω is equal to zero.

Consider a linear function L : R
n → R such that the hyperplane under consid-

eration is its level surface:

An−1 = {(x1, . . . , xn) ∈ R
n | L(x) = a1x1 + · · · + anxn = const}.

Consider the exact 1-form dL on R
n. It is easy to see that dL is induced from a

closed differential 1-form λ on the torus, dL = P ∗λ (see (1)). Considering the torus
as a unit cube with the identified opposite sides we get the following coordinate
representation of the closed 1-form λ on the torus λ = a1 dx1+· · ·+an dxn. Consider
now the induced closed 1-form ω = i∗λ on the manifold Mm (see (1)). Consider the
foliation on Mm by leaves of the closed 1-form ω. By construction any hyperplane
section of M̂m is projected to a level of ω. Under certain assumptions (say, when
all ai are independent over rationals) the projection would provide diffeomorphism
of connected components.

Vise versa, having an arbitrary closed differential 1-form ω on a closed manifold
Mm we can always pull back ω from a linear form on a torus T n under some
embedding f : Mm →֒ T n. The embedding is constructed as follows. Note that we
can always represent ω as a linear combination of integer 1-forms ω = a1α1 + · · ·+
akαk, where all periods of every closed 1-form αi are integer, and the coefficients
ai are just real numbers linearly independent over rationals. Every itneger closed
1-form α on Mm determines a mapping of Mm onto a circle S1:

fα : Mm → S1, where fα : x 7→

∫ x

x0

α mod Z.

Consider also an embedding f0 : Mm →֒ T 2m+1 such that the image of the first
homology is trivial. (To construct f0 one can just embed Mm into a “large cube”
in R

2m+1 using Whitney Theorem.) Taking a direct product fα1 × · · · × fαk
× f0

of these maps we get an embedding f : Mm →֒ T n, where n = k + 2m + 1, and
T n = S1 × · · · × S1 × T 2m+1. The form ω is induced from the linear closed 1-form
λ = a1dx1+· · · akdxk on T n, ω = f∗λ. By construction every connected component
of any level of ω on Mn is isomorphic to corresponding connected component of

corresponding hyperplane section of M̂m ⊂ R
n.
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The study of topology of levels of a closed 1-form on a closed manifold was initi-
ated by S.P.Novikov in [41], [42], [43]. In particular he gave a sketch of description
of a quasiperiodic structure of such manifold. This structure depends on the degree
of irrationality of the form, that is on the number

d = dimQ〈p1, . . . , pk〉 − 1

where pi form a basis of periods of ω. (Sometimes degree of irrationality is defined
as d + 1.)

Figure 2. Quasiperiodic manifold of degree irationality 1

For d = 1 the quasiperiodic structure was described in the author’s paper [68]
under additional assumptions that ω is a deformation of a rational 1-form. For ar-
bitrary d the problem was solved by Le Tu [34]; see also the paper of L.Alaniya [1].
Morally, the quasiperiodic structure of a level of a closed 1-form of degree of ir-
rationality d is similar to a Z

d-periodic structure. But instead of having a single
topological pattern with a (singular) boundary represented by d pairs of “faces”,
there is a finite collection of possible patterns, with some compatibility conditions
for the “faces”. Note that the degree of irrationality d has nothing to do with
dimension m − 1 of patterns (here m is dimension of the manifold Mm).

The quasiperiodic structure is morally described by the following picture. Con-
sider a finite collection of completely irrational parallel affine hyperplanes in R

d,
where R

d is provided with a cubic lattice Z
d. Take a vector of lattice, and rescale it

with an irrational factor. Consider all translations of our family of hyperplanes by
the integer multiples k~t, k ∈ Z of the resulting vector ~t. The lattice Z

d is sliced now
by a periodic (with irrational period ~t) family of parallel hyperplanes. Patterns cor-
responding to the cubes inside each slice bounded by two neighboring hyperplanes
are the same; passing from one slice to the other we change the pattern; patterns
corresponding to slices obtained by translation by ~t are the same. See [34], [68] for
precise description.
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1.2. Homology theory of periodic manifolds. Another collection of problems
arising in this area is related to homology theory of (quasi)periodic or even Z-
periodic manifolds. The corresponding homology theory of periodic manifolds,
and analog of Morse Theory for closed 1-forms was constructed by S.P.Novikov
in [42]. The corresponding complexes are now defined over larger rings, say, for
a Z-periodic manifold the complex is defined over Laurent power series in one
variable. In [23] M.Farber proved sharpness of the Morse—Novikov inequalities
under certain restrictions on topology of the manifold. Further results were obtained
by A.Pajitnov [48], [47], J.-C.Sikorav [54], et al. For more references we address the
reader to the paper of A.Pajitnov in this volume. In this paper A.Pajitnov studies
the properties of Novikov’s complex under some natural restrictions, and proves
some beautiful analytic properties of the complex (say, he proves that Laurent power
series corresponding to incidence coefficients are represented by rational functions).

1.3. Plane sections of periodic surfaces in R
3. It turns out, that the extreme

case of m = l = 2, n = 3, that is the study of plane sections of periodic surfaces in
R

3, has immediate applications in solid state physics. In this case the hyperplane
sections are of dimension one, so topologically they are trivial: every nonsingular
connected component of the section is diffeomorphic to either a circle or to a line.
What is important here is the way in which the open components (the lines) are
embedded into R

3.

Figure 3. Fermi surface of tin (reproduced from [35] which
cites [2] as a source). The corresponding surface M2

g →֒ T 3 has
genus 3.

A periodic surface might be interpreted as a Fermi-surface of some metal in the
inverse lattice, and a plane — as a plane orthogonal to a constant magnetic field.
Thus the plane sections give us electron trajectories in metal in inverse lattice in
the presence of a homogeneous magnetic field. This problem was formulated by
S.P.Novikov in [42], where he conjectured that a typical open trajectory follows
a straight line (see also papers [44] and [45] of S.P.Novikov, and paper [46] of
S.P.Novikov and A.Ya.Maltsev for developments of this subject).

There are two natural approaches to this problem. We can fix a periodic surface,
and consider a family of perturbations of a hyperplane, or we can fix a direction of
hyperplanes and consider a family of perturbations of a periodic surface. Using the
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Figure 4. Fermi surface of iron (reproduced from [35] which
cites [64] as a source).

first approach the author proved in [67] Novikov’s conjecture for an open dense set
of directions of hyperplanes.

Here is a more precise formulation of the result. Fix a generic periodic surface.
If the direction of a hyperplane is a sufficiently small perturbation of a rational
direction, then every unbounded component of any nonsingular section goes along
a straight line with a bounded deviation from it. (Actually, the fact that the
trajectory really follows a straight line from +∞ to −∞, i.e., that it does not
“come back”, was specified by I.Dynnikov [17]).

A comprehensive study of the problem was performed by I.Dynnikov in [17], [18],
[20]–[22] (we address the reader to [20] for the “state of the art” in this subject).
In particular, using the second approach I.Dynnikov proved in [18] the following
statement. Let the periodic surface be a level surface of a periodic Morse function
in R

3; let a and b be the minimum and the maximum of this function. Fix a
generic direction of a family of parallel hyperplanes. There is an interval [c, d],
a < c ≤ d < b, such that for any level surface corresponding to the value outside of
[c, d] all connected components of the plane sections are closed. If c < d, then all
unbounded components of plane sections of the remaining level surfaces go along
straight lines with bounded deviations from them. However I.Dynnikov, proved
that the situation when c = d is possible, and, moreover, that for this particular
level surface the behavior of the plane sections might be much more complicated.

An example of a trajectory having nontypical behavior was constructed already
in 1982 by S.Tzarev [57], but his example corresponds to a rather particular situ-
ation. I.Dynnikov elaborated a highly nontrivial construction producing numerous
examples of nontypical behavior of trajectories (see [20] for the description of such
examples, see also [69] for some numerical simulations of Dynnikov’s examples).
Thus the following problem is still open:

Problem 1. Consider a closed orientable Riemann surface embedded into T 3; con-
sider the corresponding periodic surface in R

3. Consider the set of directions of
those hyperplanes which give “nontypical” nonsingular unbounded components of



8 ANTON ZORICH

intersections with the periodic surface. (Here “nontypical” are those open compo-
nents which are not bounded perturbations of straight lines). Is it true that this set
has measure zero in the space RP2 of all possible directions? Describe the structure
of this set. What can be said about Hausdorf dimension of this set?

Computer simulations performed by I.Dynnikov show, that even in the partic-
ular case when a periodic surface is defined as a level surface of a trigonometric
polynomial of three variables, the problem seems to be quite nontrivial. The most
recent paper of I.Dynnikov [22] is closely related to this problem — it treats the
geometry of the stability zones in the set of directions.

Figure 5. Stereographic projection of the magnetic field direc-
tions (shaded regions and continuous curves) which give rise to
open trajectories for some Fermi-surfaces (experimental results
in [35]).

1.4. Hyperplane sections of periodic surfaces in R
n. The case of m = 2,

l = n − 1 and n large enough, say n ≥ 2g + 3, corresponds to the study of plane
sections of periodic surfaces in R

n. As it was shown in section 1.1 this problem is
in some sense equivalent to the study of behavior of leaves of foliations defined by
closed 1-forms on a Riemann surface.

The closed 1-forms considered in the previous section (n = 3) have some very
specific properties. Now we consider arbitrary closed 1-forms (see section 1.1). The
three-dimensional situation is rather rigid, as can be shown by certain elementary
topological arguments. A hyperplane section of a periodic surface in R

n has much
more flexibility, and three-dimensional topological arguments are not applicable
anymore. However, here one can use tools from dynamics. In particular, using the
results of H.Masur [38] and W.Veech [59], it is easy to prove that generically (in
this paper we always use the notion “generic” in the measure-theoretical sense) the
unbounded hyperplane sections of periodic surfaces follow one of several asymptotic
directions. But now a deviation from this asymptotic direction is not bounded by a
constant anymore. This paper describes this deviation. It turns out that description
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of the deviation can be obtained by means of dynamical characteristics (namely,
Lyapunov exponents) of the Teichmüller geodesic flow

To describe the hyperplane sections of a periodic surface is the same as to de-
scribe the dynamics of leaves of the corresponding orientable measured foliation on
the closed orientable underling surface. It is convenient to study the topological
dynamics of leaves of a measured foliation using the first return map to a transverse
interval. This first return map is an interval exchange transformation. We use the
ergodic properties of interval exchange transformations, and then we translate them
into the language of measured foliations.

∗ ∗ ∗

In our approach we unfold the Riemann surface using the universal abelian cover
of the surface, and we study the asymptotic behavior of leaves on the corresponding
periodic surface. Actually, the study of asymptotic behavior of leaves of a foliation
on a Riemann surface was initiated by A.Weil, and then developed by D.V.Anosov
(see [3], [4] for complete references), N.Markley [37], and later by S.Kh.Aranson,
V.Z.Grines, E.Zhuzhoma et al (see [5] for references). In this approach one lifts
the leaves of a foliation on a Riemann surface to the universal cover, and stud-
ies their asymptotic behavior on Lobachevskii disk comparing the unfolded leaves
with geodesics. Note that in this setting a wider class of foliations and curves is
considered.

There is another problem concerning “irrational flow” on a Riemann surface.
One can consider a Morse closed 1-form ω on a Riemann surface as a multivalued
Hamiltonian, and consider corresponding Hamiltonian flow along the leaves of the
foliation. This flow was considered by V.A.Arnold for the torus [8]; Ya.G.Sinai
and K.M.Khanin proved in [55] that generically such flow on a torus is mixing.
Recently the result was generalized by K.M.Khanin and A.Nogueira [31] for the
Riemann surfaces of arbitrary genus g ≥ 2.

Remark 1. There is a significant difference between “Hamiltonian” parametrization
of leaves and one used in the present paper. We use parametrization of leaves by
length in some nondegenerate Riemannian metric, or equivalent parametrizations.
In particular, passing close to a zero of the closed 1-form is not distinguished in this
consideration, while in Hamiltonian parametrization the motion along the leaves is
logarithmically slow near simple zeros of the closed 1-form, see [8]. Moreover, in the
presence of separatrix loops homologous to zero (“traps”) the flow parametrized by
natural parameter, in some sense, “does not notice” the traps: the two currents of
the flow which are splitted by zero merge again almost as if there was no splitting.
In Hamiltonian parametrization those part of the flow which has to overpass the
“trap” merges with the other one with a considerable delay (see Remark 1 in [8]).
Morally, this delay is exactly the source of mixing property of the flow, see [55].

1.5. Plane sections of hypersurfaces. Another extreme case of the “General
Problem” above is the case of m = n − 1, l = 2, that is the case when we study
intersections of a periodic hypersurface with a 2-dimensional affine subspace. Here
the sections are again 1-dimensional, so topologically nonsingular connected compo-
nents are diffeomorphic to either a circle ot to a line. As an illustration we present
an example suggested by V.I.Arnold, see [7]. Take a level surface of the following
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periodic function in R
5:

f(x1, x2, x3, x4, x5) =

5∑

i=1

cos(2π xi)

Consider the 2-dimensional linear subspace spanned by two vectors ~v1 and ~v2 in
R

5:

~v1 =
(
1, cos

2π

5
, cos

4π

5
, cos

6π

5
, cos

8π

5

)

~v2 =
(
0, sin

2π

5
, sin

4π

5
, sin

6π

5
, sin

8π

5

)

Here is a computer simulation of the picture of level structure of f restricted to
the plane:

Figure 6. Level curves of the function
∑5

i=1 cos(2π xi) restricted
to the irrational 2-dimensional plane
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The picture has an obvious rotational symmetry of order 10. It also has transla-
tional “quasisymmetry”: if we choose a bounded region of the picture, then trans-
lating it by an appropriate vectors we will see infinitely many regions where the
picture is almost the same. (Since the region presented at figure 6 is relatively small
the quasisymmetry is not quite visible at the picture.)

When a quasisymmetry of this kind (quasicristalls) was discovered in solid states
physics about fifteen years ago, it made a sensation (see [7] for a popular introduc-
tion).

Though the example above is known for more than ten years, up to my best
knowledge, none of the following questions of V.I.Arnold concerning this or similar
examples have found an answer.

Problem 2. Are there any nonclosed intersection lines? Is the size (length, diam-
eter) of the closed intersection lines uniformly bounded?

The results of S.M.Gussein-Zade (see this volume), and of I.Dynnikov [20] seem
to be relevant to this problem.

1.6. Polyintegrable flows. As a generalization of the previous problem one can
consider a particular case of “General Problem” when parameters l, m, n obey the
following relation: m + l = n + 1. In this case the intersection of an affine plane Al

with a periodic submanifold Mm is again one-dimensional. There is a particular
case here, which was thoroughly investigated: the case when the periodic manifold
Mm is a torus T m.

One can represent an affine subspace Al as an intersection of m − 1 affine hy-
perplanes. Playing the same game as before we represent the affine hyperplanes as
level hyperplanes of linear functions L1, . . . , Lm−1 in R

n. We lift down the differ-
entials dLi to the closed 1-forms λi on the torus T n = R

n/Z
n. We pull back the

closed 1-forms λi to the forms ωi = i∗λi on the torus T m under the embedding
T m →֒ T n. (Note that the embedding i : T m →֒ T n is not linear in general!)
Taking the universal Abelian cover over T m we get m−1 exact 1-forms dFi on R

m.
Our intersection lines become the intersection lines of level hypersurfaces of m − 1
pseudoperiodic functions F1, . . . , Fm−1 on R

m.
Vice versa, having m − 1 pseudoperiodic functions F1, . . . , Fm−1 on R

m, or,
what is the same a pseudoperiodic mapping F : R

m → R
m−1, we can lift down

the differentials dFi to closed 1-forms ωi on the quotient T m = R
m/Z

m. Each
closed 1-form ωi on T m can be represented as a sum of an exact 1-form and a
linear combination of standard linear forms αi on T m = R

m/Z
m: that is ωi =

dφi +
∑

aijαj . Consider the mapping f0 : T m → R
m−1 defined by

f0 : x 7→ (φ1(x), . . . , φm−1(x))

We may always choose a large cube in R
m−1 such that the image of f0 is contained

in this cube. Thus we may consider the mapping f0 as a mapping into the torus
T m−1. Taking the direct product of the identity map T m → T m and the map f0

we get an embedding i : T m →֒ T 2m+1. Each form ωi is a pullback of a linear form
on T 2m−1 under this embedding, ωi = i∗λi.

The curves of intersection of leaves of the closed 1-forms ωi on T m have natural
parametrization by the leafwise 1-form Ω/(ω1∧· · ·∧ωm−1), where Ω is the standard
volume form on T m. Thus we get a flow along this one dimensional foliation. This
flow was introduced by V.I.Arnold in [9], where it was called a polyintegrable flow.



12 ANTON ZORICH

The study of polyintegrable flows was developed by I.Dynnikov [19], who proved
that all regular unbounded fibers of a pseudoperiodic map f : R

m → R
m−1 are

deformations of straight lines. Dynnikov also proved the number of such unbounded
regular fibers is constant and odd provided f is generic. However, it was not clear
whether there are any examples, when this number is different from 1, that is when
a fiber has several unbounded components. Such examples and further results on
polyintegrable flows were obtained by D.Panov in [50]. For more information on
polyintegrable flows see the survey of D.Panov in this volume.

A one-dimensional foliation defined by m−1 closed 1-forms on a closed manifold
Mm seems to be quite a curious object. Up to my best knowledge it was never
studied for any manifolds different from T m. It seems to be a reasonable gener-
alization of a measured foliation on a Riemann surface, where the closed 1-forms
provide a sort of transverse measure. The foliation can be parametrized similar
to the case of torus: the parametrization is given by a generic volume form Ω on
Mm “divided” by the wedge product of m− 1 1-forms under consideration. When
we fix the embedding Mm →֒ T n we can use a generic linear m-form on T n to
define m-form Ω on Mm. This parametrization of leaves enables us to consider
corresponding flow along the foliation. Similar to the case of T n the flow seems to
resemble a flow of an incompressible fluid, see [9].

None of the natural questions like decomposition of the foliation into components
sharing the same dynamical properties, topological dynamics of leaves, ergodic
properties of the corresponding flow, etc have been ever considered.

1.7. General case. The only result known to the author for arbitrary m, n, l is
the Theorem of S.M.Gussein-Zade [25] concerning density of topological invariants
(see the paper of S.M.Gussein-Zade in this volume).

Topology of complement of a periodic manifold to an affine

subspace

1.8. Unbounded components of a complement of a periodic manifold to

a hyperplane. Let an embedding Mm →֒ T n be analytic. As usual we assume
that Mm is connected. Let an affine hyperplane An−1 be completely irrational.
V.I.Arnold proved in [8] that under these assumptions the complement M̂m\An−1

contains exactly two unbounded components — one in each of the two halfspaces
defined by An−1 ⊂ R

n.
Up to my best knowledge this is the only result obtained for a complement of a

periodic submanifold to an affine subspace. The question, whether the condition of
analyticity of the embedding M̂m → R

n is essential, is still open. Some advances
in generalization of Arnold’s Theorem for smooth embeddings were obtained by
Yu.Chekanov [13].

The theorem of Arnold might be thought of as a theorem on the essential H0-
homology of the complement M̂m\An−1, whatever “essential homology” means.

Problem 3 (V.I.Arnold). Formulate and prove generalization of the theorem for

the “essential Hn−l−1-homology” of the complement M̂m\Al.

Here a proper definition of “essential homology” is part of the problem.
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2. Introduction

2.1. Decomposition of a measured foliation into minimal and periodic

components. Consider a closed 1-form ω on a Riemann surface M2
g . We assume

that ω is a Morse form, that is all zeros of ω are nondegenerate. This means
the following. Consider a small neighborhood of a zero of ω; let ω = df in this
neighborhood. A zero is called nondegenerate, if it is a nondegenerate critical point
of f . Since f is defined up to a constant, the notion is well-defined. A Morse 1-
form on a Riemann surface may have the same critical points as a function: minima,
maxima, and simple saddles.

If we fix an embedding M2
g →֒ T n, and consider closed 1-forms coming from all

linear 1-forms on T n (see section 1.1) then almost all induced 1-forms would be of
Morse type. (Throughout this section we use the notion of “almost all” 1-forms in
the same sense without referring each time to Lebesgue measure on the linear space
of linear 1-forms on R

n/Z
n.) A C1-small perturbation of a Morse form is again a

Morse form.
Consider foliation by leaves of a closed 1-form of Morse type on a Riemann sur-

face. It was shown by Maier [36] that the surface can be decomposed into several
components of two types: periodic components and minimal components. Periodic
components are filled with closed leaves of the foliation, while every nonsingular
leaf living in a minimal component is everywhere dense in it. For example standard
rational foliation on a torus has single periodic component; standard irrational foli-
ation on a torus has single minimal component. The boundaries of components are
formed from critical leaves of the foliation: separatrix loops and saddle connections.

We distinguish separatrix loops and saddle connections by the following reason.
A saddle connection, that is a singular leaf of the foliation joining two distinct zeros
of ω disappears under almost all small deformations of the form ω. In other words
almost all 1-forms do not have any saddle connections at all. The same is true
for separatrix loops representing nontrivial homology cycles. On the contrary, if a
separatrix loop represents a zero cycle in homology, it survives under any C1-small
deformation of ω.

Figure 7. Foliation near a separatrix loop

Let us prove the latter statement. Suppose we have a separatrix loop γ0 such
that the cycle [γ0] ∈ H1(M

2
g ; R) is homologous to zero [γ0] = 0 (see figure 7).

Note that a foliation defined by a closed 1-form has a transverse measure. Thus
monodromy along any closed leaf is trivial, and all leaves of the foliation passing
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close to γ0 on at least one side of γ0 are closed (see figure 7). Thus we get a whole
cylinder (or a punctured disk) filled with “parallel” closed leaves. All these closed
leaves are homotopic to each other and to the separatrix loop γ0. The separatrix
loop γ0 is one of two components of the boundary of the cylinder (punctured disk).
Since [γ] = 0 the form ω is exact on the corresponding cylinder (disc). This implies
that the leaves homologous to zero would survive under any C1-small deformation
of the initial closed 1-form. The boundary of a deformed disk contains a separatrix
loop homologous to zero — the deformation of the initial separatrix loop.

Dynamics of leaves on periodic components is trivial. The interesting part of
dynamics is represented by minimal components. Thus we can cut out all cylinders
filled by closed leaves homologous to zero. What we get in generic situation is a
collection of disjoint minimal components (see, say, [72] for justification). Every
minimal component is represented by a Riemann surface with several holes formed
by separatrix loops.

Let us shrink each hole to a point. The corresponding critical point disappears
under this operation. We get several disjoint minimal components without any
separatrix loops or saddle connections. It is easy to see that if we study the behavior
of unfolded leaves in R

n, or (what is almost the same) if we study asymptotics of
homology cycles obtained by joining the ends of long pieces of leaves, then the
operation of “shrinking the holes” does not change dynamics (see [72] for details).
(Dynamics in Hamiltonian parametrization (see Remark 1) of the same foliation
can be drastically changed by this operation.)

2.2. Closed 1-forms versa harmonic 1-forms. We claim that the closed 1-
forms obtained on minimal components after the surgery described in the previous
section are harmonic in some Riemannian metric. To show this we can use the
following criterion of E.Calabi [12]:

Calabi Theorem . A closed Morse 1-form ω on a closed manifold M is harmonic
with respect to some Riemannian metric if and only if for every nonsingular point
x ∈ M there exists a closed path ρ : [0; 1] → M through x such that ω(dγ/dt) > 0
for any t ∈ [0; 1].

The fact that a closed 1-form without separatrix loops and saddle connections
on a Riemann surface is harmonic in some Riemannian metric was independently
proved by A.Katok [27]. For Riemann surfaces an analog of Calabi Theorem was
independently proved by J.Hubbard and H.Masur for the forms having arbitrary
isolated singularities (see [26]).

Any harmonic 1-form ω0 on a Riemann surface can be represented as a real
part of a holomorphic 1-form in an appropriate complex structure. To see this
take a 1-form ω1 = ∗ω0, where ∗ is the Hodge operator. Foliations defined by
closed 1-forms ω0 and ω1 form a pair of transversal measured foliations. Thus they
define a complex structure on the Riemann surface; the 1-form ω0 + iω1 would be
holomorphic in this complex structure.

The following theorem can be considered as a dual formulation of the theorems
mentioned above:

Theorem 1. An orientable measured foliation on a closed Riemann surface is
a horizontal foliation of a holomorphic differential in some complex structure if
and only if any cycle obtained as a union of closed paths following in the positive
direction a sequence of saddle connections is not homologous to zero.



HOW DO THE LEAVES OF A CLOSED 1-FORM WIND AROUND A SURFACE 15

Theorem 1 is proved in [33].
The observations above show that interesting dynamics of “generic” foliations de-

fined by closed 1-forms on Riemann surfaces is described by the closed 1-forms which
are real parts of Abelian differentials in some complex structure on the Riemann
surface. The moduli space of Abelian differentials is already a finite-dimensional
variety (orbifold), so what we gained by this construction is that now dynamics is
described by some finite-dimensional space of parameters.

2.3. Teichmüller geodesic flow. We remind briefly the basic facts concerning
the Teichmüller geodesic flow, see [38], [62], [63]. The moduli space of holomorphic
quadratic differentials might be considered as a total space of cotangent bundle
over the moduli space of complex structures on a Riemann surface of genus g.
Morally, the Teichmüller geodesic flow is the geodesic flow on the moduli space
of quadratic differentials with respect to Teichmüller metric on the moduli space
of complex structures. (“Morally” because Teichmüller metric is not Riemannian,
but a Finsler metric.) More rigorously the Teichmüller geodesic flow is defined as
follows. There is a natural action of SL(2, R) on the moduli space of quadratic
differentials. Action of the diagonal subgroup generates the Teichmüller geodesic
flow.

The moduli space of holomorphic 1-forms (Abelian differentials) can be consid-
ered as a subvariety of the moduli space of quadratic differentials: one associates to
an Abelian differential f(z)dz a quadratic differential f2(z)(dz)2. The moduli space
of Abelian differentials on a closed complex curve of genus g is naturally stratified
by degrees of zeros of Abelian differential.

The number of zeros of an Abelian differential (counting multiplicities) on a
complex curve of genus g equals 2g − 2. Thus the strata are enumerated by un-
ordered partitions (k1, k2, . . . , ks), where k1 + · · · + ks = 2g − 2, and ki ∈ N. For
example there are only two possibilities for g = 2. Here 2g − 2 = 2, so either an
Abelian differential has two simple zeros which (partition (1, 1)), or it has one single
zero of degree 2 (partition (2)). We denote the strata of Abelian differentials by
H(k1, . . . , ks).

There is a natural function A : H(k1, . . . , ks) → R+

A(ω) =
1

2i
·

∫

M2
g

ω ∧ ω̄

The subvariety of Abelian differentials, all the strata, and the function A are
invariant under the action of the Teichmüller geodesic flow. It was proved by
H.Masur [38] and W.Veech [59] that the Teichmüller geodesic flow is ergodic on a
“unit sphere” A = 1 of each connected component of each stratum with respect to
some natural finite measure.

The following proposition is widely known in folklore (say, it can be extracted
from combination of [59], [62], and [63]; from [56]; it can be also obtained by
combining results from [63] and [70]):

Proposition 1. Consider a stratum H(k1, . . . , ks) in the moduli space of Abelian
differentials. Let g = k1 + · · · + ks be the genus of the surface.
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The collection of Lyapunov exponents of the Teichmüller geodesic flow on a con-
nected component of H(k1, . . . , ks) has the following form:

− 2 < −(1 + ν2) ≤ −(1 + ν3) ≤ · · · ≤ −(1 + νg) ≤ −1 = · · · = −1
︸ ︷︷ ︸

s−1

≤

− (1 − νg) ≤ · · · ≤ −(1 − ν2) < 0 < (1 − ν2) ≤ · · · ≤ (1 − νg)

≤ 1 = · · · = 1
︸ ︷︷ ︸

s−1

≤ (1 + νg) ≤ (1 + νg−1) ≤ · · · ≤ (1 + ν2) < 2

The numbers 0 ≤ νg ≤ · · · ≤ ν2 < 1 depend only on connected component of the
stratum H(k1, . . . , ks).

3. Formulation of results

Consider smooth closed orientable surface M2
g of genus g. Choose a smooth

nondegenerate Riemannian metric gij(x) on M2
g . For any two points P0, P1 ∈ M2

g

define a path ρ(P0, P1) ⊂ M2
g joining them. We do not assume that ρ(P0, P1)

depends continuously on parameters P0 and P1, but we will assume that the lengths
of the paths (in terms of metric gij) are uniformly bounded

(1) sup
P0,P1∈M2

g

length(ρ(P0, P1)) = const < ∞

Say, we can define ρ(P0, P1) as a shortest geodesic joining P0 and P1. We make
another choice of such family of paths later on. Since M2

g is compact it is easy to
see that all choices satisfying 1 are equivalent for our purposes.

Take some leaf γ of ω and choose a compact connected piece of it. Since we
assume the orientation of the surface is fixed, the leaves are oriented; so let P0 be
the starting point of our piece of leaf, and let P1 be the endpoint. Let l be the
length of the piece of leaf γ bounded by the points P0, P1. By cP0(l) ∈ H1(M

2
g ; R)

we will denote the homology class of the closed loop obtained by completion of the
path from P0 to P1 along the leaf γ with the path ρ(P1, P0).

Theorem 2. For almost all Abelian differentials ω in any connected component
of any stratum H(k1, . . . , ks) the foliation defined by the closed 1-form ω0 = Re(ω)
has the following properties.

There exist a flag of subspaces (depending only on ω)

V1 ⊂ V2 ⊆ · · · ⊆ Vg ⊆ V ⊂ H1(M
2
g ; R)

such that
For any leaf γ, and any point P0 ∈ γ

lim
l→∞

cP0(l)

l
= c

where nonzero asymptotic cycle c ∈ H1(M
2
g ; R) is proportional to the cycle Poincaré

dual to the cohomology class of ω0. The one-dimensional subspace V1 is spanned by
c.

For any φ ∈ Ann(Vj) ⊂ H1(M2
g ; R), φ 6∈ Ann(Vj+1) any leaf γ, and any point

P0 ∈ γ

lim sup
l→∞

log |〈φ, cP0(l)〉|

log l
= νi+1 for i = 1, . . . , g − 1
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For any φ ∈ Ann(Vg) ⊂ H1(M2
g ; R), φ 6∈ Ann(V ) any leaf γ, and any point

P0 ∈ γ

lim sup
l→∞

log |〈φ, cP0(l)〉|

log l
= 0

For any φ ∈ Ann(V ) ⊂ H1(M2
g ; R), ‖φ‖ = 1 any leaf γ, any point P0 ∈ γ, and

any length l
|〈φ, cP0(l)〉| ≤ const

where the constant depends only on the foliation, and on the choice of the norm in
the cohomology.

All the limits above converge uniformly with respect to γ and P0 ∈ γ, i.e., their
convergence depends only on l.

The numbers 2, 1 + ν2, . . . , 1 + νg are the top g Lyapunov exponents of the Te-
ichmüller geodesic flow on the corresponding connected component of the stratum
H(k1, . . . , ks), (see Proposition 1).

Conjecture 1. For any connected component of any stratum of Abelian differen-
tials all Lyapunov exponents of the Teichmüller geodesic flow except the one corre-
sponding to tangential direction to the flow are nonzero.

νg > 0

Conditional Theorem 3. Conjecture 1 implies that subspaces Vg and V in The-
orem 2 coincide. Moreover, Vg = V ⊂ H1(M

2
g ; R) is a Lagrangian subspace in the

homology, where the symplectic structure is determined by the intersection form.

Conjecture 2. For any connected component of any stratum of Abelian differen-
tials the top g Lyapunov exponents of the Teichmüller geodesic flow are distinct and
strictly greater than 1

1 > ν2 > · · · > νg−1 > 0

In other words all Lyapunov exponents except the trivial ones occur with mul-
tiplicity one.

Conditional Theorem 4. Conjecture 2 implies that the flag V1 ⊂ V2 ⊂ · · · ⊂ Vg =
V ⊂ H1(M

2
g ; R) from Theorem 2 is a complete flag of subspaces in the Lagrangian

subspace Vg.

4. Asymptotic flag determined by an interval exchange

transformation

4.1. Interval exchange transformations. Recall the notion of an interval ex-
change transformation, see [28]. Consider an interval X , and cut it into m subin-
tervals of lengths λ1, . . . , λm. Now glue the subintervals together in another order,
according to some permutation π ∈ Sm and preserving the orientation. We again
obtain an interval X of the same length, and hence we get a mapping T : X → X ,
which is called an interval exchange transformation. Our mapping is piecewise
linear, and it preserves the orientation and Lebesgue measure. It is singular at
the points of cuts, unless two consecutive intervals separated by a point of cut are
mapped to consecutive intervals in the image.

Remark 2. The study of interval exchanges was proposed by V.I.Arnold as an
interesting problem already in early sixties (see a particular case in the section
”Unsolved problems” in [6]).
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An interval exchange transformation T is completely determined by a pair (λ, π),

λ ∈ R
m
+ , π ∈ Sm. Let β0 = 0, βi =

∑i
j=1 λj , and Xi = [βi−1, βi[ so that

X = X1 ⊔ · · · ⊔ Xm. Define skew-symmetric m×m-matrix:

(2) Ωij(π) =







1 if i < j and π(i) > π(j)
−1 if i > j and π(i) < π(j)

0 otherwise

Consider the translation vector τ = Ω(π)λ. Our interval exchange transformation
T is defined as follows:

T (x) = x + τi, for x ∈ Xi, 1 ≤ i ≤ m

Note, that if for some k < m we have π{1, . . . , k} = {1, . . . , k}, then the map
T decomposes into two interval exchange transformations. We consider only the
class S

0
m of irreducible permutations — those which have no invariant subsets of

the form {1, . . . , k}, where 1 ≤ k < m.
Two interval exchange transformations sharing the same permutation π and hav-

ing proportional vectors of lengths of subintervals are obviously equivalent. Thus
speaking about the space of interval exchange transformations it is natural to nor-
malize the length of the interval to one: ‖λ‖ = λ1 + · · ·+ λm = 1. We can identify
the space of all interval exchange transformations with the product ∆m−1 ×S

0
m of

the standard (m − 1)-dimensional simplex ∆m−1 = {λ ∈ R
m
+ | ‖λ‖ = 1} with the

set S
0
m of irreducible permutations.

4.2. Interval exchange transformations versa measured foliations. We are
considering now only those measured foliations which are defined by a closed 1-form
Re(ω), where ω is an Abelian differential from some fixed stratum H(k1, . . . , ks).
A generic foliation like this is minimal, i.e., every leaf is dense on the Riemann
surface. Taking a transverse interval X to the foliation, we get the first return map
T : X → X . The map T is an interval exchange transformation.

Remark 3. The permutation π corresponding to the interval exchange transforma-
tion keeps all topological information concerning the Abelian differential ω, that
is it uniquely determines the corresponding stratum H(k1, . . . , ks), and even the
connected component of the stratum.

In section 3 we considered the following families of cycles: we choose some point
P0, then we took a piece of leaf γP0,P1 = γP0(l) of length l passing through P0 in
positive direction, and joined the endpoints P0 and P1 by a shortest geodesic to
obtain a cycle cP0(l). Let us consider a sequence of similar cycles related with a
transversal interval X .

For every x ∈ X consider a piece of leaf which has x as a starting point, and
T N−1(x) as an endpoint. In other words, emit a leaf γ from the point x in the
positive direction and follow it till it intersects with X exactly N times (we are
counting x as an intersection). Now join the endpoints of γx,T N−1(x) along X . We
get a closed path; let cx(N) be the corresponding cycle in the first homology.

Morally it is clear that asymptotic properties of cP0(l) as l → ∞ and of cx(N) as
N → ∞ are the same. To prove it rigorously we have to find the relation between
discrete parameter N and continuous parameter l. In other words, we need to
know how many intersections with X has a piece of leaf of length l, and vice versa:
we need to know what is the length of a piece of leaf obtained after N returns to



HOW DO THE LEAVES OF A CLOSED 1-FORM WIND AROUND A SURFACE 19

the transversal X . The answer is given by ergodic theorem applied to the interval
exchange transformation T : X → X .

For every point P on M2
g define a point x(P ) ∈ X on the transversal interval X as

the point of the first intersection of the leaf emitted from P in the negative direction
with the transversal X . (The definition can be easily extended to the points P on
critical leaves by some conventions, see [72].) Having a piece of leaf γP0(l) of length
l bounded by the points P0, P1, consider a piece of the same leaf having x(P0) and
x(P1) as a starting point and an endpoint correspondingly. Now the endpoints of
this modified piece of leaf are already on the interval X . Let N = N(P0, l) be the
number of intersections of γP0(l) with X , i.e. let x(P1) = T N−1(x(P0)).

We formulate the following obvious

Lemma 1. The difference between the cycles cP0(l) and cx(N) is uniformly bounded
with respect to P0 ∈ M2

g , and l ∈ R+:

‖cP0(l) − cx(N)‖ ≤ const

where x = x(P0); N = N(P0, l).

To compare parametrization of cycles by the length l and by the number N of
returns to a transverse interval consider the following function l(x) on X . Let γ be
the leaf passing through the point x ∈ X . Consider the piece γx,Tx of γ between
the points x and T (x); let

(3) l(x) := l(γx,Tx)

be its length. The function l(x) is continuous on every subinterval Xi, so it is
bounded:

0 < lmin ≤ l(x) ≤ lmax < ∞ for all x ∈ X

Recall that almost all interval exchange transformations are uniquely ergodic with
respect to Lebesgue measure on the interval (see [38], [59]). By l̄ we denote the
ergodic mean of l(x):

(4) lim
K→∞

1

N

N−1∑

K=0

l(T K(x)) =
1

|X |

∫

X

l(x) dx =: l̄

Here |X | =
∫

X
ω0.

Remark 4. The statement of the ergodic theorem can be slightly strengthened for
a generic interval exchange transformation. It follows from [71] that the limits (5)
and (4) converge for all points x ∈ X ; moreover the convergence is uniform.

We see now that parametrization of cycles by the length l and by the number
N of returns to a transverse interval are equivalent: l(x, N) ∼ Nl̄. Taking into
consideration Lemma 1 we conclude that all asymptotic properties of the families
of cycles cP (l) and of sequences of cycles cx(N) are the same. Let us show now
how the asymptotic properties of cx(N) are determined by dynamics of the interval
exchange transformation T : X → X .

Consider the function c(x) := cx(1) on X with values in the first homology group
H1(M

2
g ; R). In other words, c(x) is obtained as follows: we emit a leaf γ from x ∈ X

in the positive direction, wait till it hits X for the first time (by definition it hits
X at T (x)) and we join x and T (x) along X . Note that c(x) is constant on every
subinterval Xj; we denote the corresponding values by cj ∈ H1(M

2
g ; R).



20 ANTON ZORICH

It is easy to see that

cx(N) =
N−1∑

K=0

c(T K(x))

Applying ergodic theorem to the function c(x), we get

(5) lim
K→∞

1

N

N−1∑

K=0

c(T K(x)) =
1

|X |

m∑

j=1

λjcj =: c

for almost all x ∈ X (actually, for all x ∈ X , see Remark 4). Here λj = |Xj| are
the “lengths” of the subintervals under exchange measured by ω0:

|Xj| =

∫

Xj

ω

The ergodic mean c in (5) is called asymptotic cycle c (see [53]). We formulate
the following elementary Lemma, which actually can be extracted from [53].

Lemma 2. The asymptotic cycle c is proportional to the cycle Poincaré dual to
cohomology class of ω0,

c = |X | · D[ω0].

Proof. The cycles ci span the homology group H1(M
2
g , R) (see [72]). Thus it is

sufficient to show that for every i, 1 ≤ i ≤ m the cycle |X | · c has a proper
intersection number with ci. It is easy to see that the intersection index of the
cycles ci, cj is given by corresponding entry of the matrix Ω (see (2)): ci ◦ cj = Ωij .
Thus

ci ◦ (|X |c) = ci ◦ (

m∑

j=1

λjcj) =

m∑

j=1

λjci ◦ cj =

m∑

j=1

λjΩij = τi =

∫

ci

ω0

�

Remark 5. The Lemma above gives us the coefficient of proportionality between
the asymtotic cycle in Theorem 2 and D[ω0]:

lim
l→∞

cP0(l)

l
= lim

N→∞

cx(P0)(l(N))

l̄N
=

D[ω0]

l̄|X |

Let the length l be measured in the flat metric determined by the Abelian differential
ω. The area of the Riemann surface measured in this flat metric equals l̄|X |.
Suppose that M2

g has unit area in this metric, i.e., suppose that ω is normalized by

(1/2i)
∫

ω ∧ ω̄ = 1. Then we have

lim
l→∞

cP0(l)

l
= D[ω0]

This calculation shows that as soon as we get any information concerning asymp-
totic dynamics of the interval exchange transformation T : X → X we immediately
get information on the asymptotic dynamics of the foliation.
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4.3. Euclidean algorithm as a renormalization procedure. We need to study
very long pieces of leaves of the foliation. In order to make a leaf γ wind for a very
long time before the first return to X we should choose very short transversal X ,
this makes the cycles cj corresponding to the interval exchange transformation on
X very long. To implement this idea we consider certain procedure of shortening
transversal X , which allows us to trace modifications of cj while passing from
transversal X to a shorter one. To give an idea of such procedure we consider it
in the elementary case, when the Riemannian surface is a torus, the foliation is a
standard irrational foliation, and the initial transversal X is closed. In this case
the first return map T : X → X is just a rotation of a circle.

Consider rotation of a circle T : S1 → S1 by an angle α. Let the length of the
circle be normalized to one. Consider trajectory x, Tx, T 2x, . . . of a point x (see
figure 8). Denote the length of the arc (x, Tx) by λ = α/(2π).

x

T 5x

T 10x

TxT 6x

T 2x

T 7x

T 3x

T 8x
T 4x

T 9x

Figure 8.

Cutting the circle at the point x we get an interval X ; the rotation of the circle
generates a map of the interval X to itself which we denote by the same symbol
T : X → X . The map acts on X as follows: cut the unit interval X into two
pieces of lengths 1 − λ and λ correspondingly; shift the left piece up to the right
endpoint of the interval X and the right piece up to the left endpoint. The map
thus obtained is an interval exchange transformation of two subintervals.

Let us study how do the points of the trajectory x, Tx, T 2x, . . . accumulate near
x, say to the left from x. Since we are not interested in the points which are far from
x, we may look how do the points of the trajectory visit the arc X(1) = (x, Tx).
For the rotation presented at figure 8 the first point of the trajectory which gets

back to this arc is T 5x. Let λ(1) = {
1

λ
}, where by {y} we denote the fractional part

of y ∈ R. The length of the arc (x, T 5x) is equal to λ(1) · λ.
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The next point of the trajectory x, Tx, T 2x, . . . which gets to the arc X(1) =
(x, Tx) is the point T 10x (see figure 8); the length of the arc (T 5x, T 10x) is the
same as the length of the arc (x, T 5x). Moreover, consider the first return map T (1)

of the arc X(1) to itself. The image of a point x′ ∈ X(1) is defined as the first point
of the trajectory Tx′, T 2x′, . . . which comes back to the arc X(1). If we identify
the endpoints of the arc X(1) this map gives us a new rotation of this new circle.
If we consider the map T(1) as a map of the interval X(1) to itself we again obtain
an interval exchange transformation of two subintervals. The length of the whole
interval X(1) is equal to λ; the lengths of subintervals are equal to λ(1 − λ(1)) and
λ · λ(1).

Tracing the points of the trajectory x, Tx, T 2x, . . . closest to x from the right
we get a sequence of points at the distances λ, λ(1) · λ, λ(2) · λ(1) · λ, . . . from x.
We can also go on with the procedure of confinement to smaller and smaller arcs of
corresponding lengths. This procedure gives us not only the closest points, but the
full description of how do the points of the trajectory appear near the point x. The
“procedure” associates to a rotation of a circle (or, what is almost the same, to an
interval exchange transformation of two subintervals) a new rotation (new interval
exchange transformation). If we rescale the new interval to have the length one,
then starting with an exchange of two subintervals of the lengths λ and 1 − λ we

get an exchange of two subintervals of lengths {
1

λ
} and 1−{

1

λ
}. One can recognize

Euclidean algorithm in our “confine to a smaller arc and rescale” procedure. The
map

(6) g : λ 7→ {
1

λ
}

can be considered as a map from “the space of rotations” to itself, or what is the
same, a map from “the space of interval exchange transformations of two subin-
tervals” to itself. The map g is ergodic with respect to the invariant probability
measure

(7) dµ =
1

log 2
·

dλ

(λ + 1)

which is called the Gauss measure.

4.4. Renormalization procedure for interval exchange transformations.

Similar to the case of interval exchange transformation of two subintervals one can
construct a renormalization procedure for the interval exchanges of m subintervals.
The particular renormalization procedure which we use is based on the Rauzy in-
duction [52], [59]. The rigorous definition of this procedure is presented in [70].
Below we list only its properties — those which we use in the present paper. The
details and the proofs are contained in [70] and [71].

We assign to a given interval exchange transformation T corresponding to a pair
(λ, π) some special subinterval X(1) ⊂ X . Consider the induced map T (1) = T |X(1)

of this subinterval to itself. T (1) is again an interval exchange transformation.
Moreover, under a special choice of the subinterval X(1) ⊂ X we get an interval

exchange transformation T (1) of the same number m of subintervals X
(1)
1 , . . . , X

(1)
m .
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For a point x ∈ X
(1)
j in the “new” subinterval X

(1)
j define

Bij = number of visits of the trajectory x, Tx, . . . , T l−1(x)

to the “old” subinterval Xi before the first return

T l(x) ∈ X(1) to the “new” subinterval X(1)

(8)

We choose the subinterval X(1) ⊂ X in such a way that for any pair 1 ≤ i, j ≤ m

the number Bij is the same for all x ∈ X
(1)
j . Moreover, the vector of lengths

λ
(1)
1 , . . . , λ

(1)
m of subintervals X

(1)
1 , . . . , X

(1)
m is expressed in terms of the vector of

lengths λ1, . . . , λm as

(9) λ(1) = B−1λ

Permutation π(1) corresponding to the induced interval exchange transformation
T (1) : X(1) → X(1) is always irreducible in our induction procedure, provided that
the initial permutation π is irreducible, π ∈ S

0
m. Rescaling proportionally the

interval X(1) to unit length we get a map

G : ∆m−1 × S
0
m → ∆m−1 × S

0
m

on the space of interval exchange transformations. Actually the set S
0
m of all

irreducible permutations decomposes into subsets invariant under the map G; these
subsets are called the Rauzy classes, see [52], [59].

It was proved in [70] that for every Rauzy class R the map G is ergodic on ∆m−1×
R with respect to an absolutely continuous invariant probability measure µ. The
matrix-valued function B(λ, π) defined by (8) determines two measurable cocycles
on ∆m−1×R with respect to this measure, i.e.,

∫
log+ ‖B−1‖dµ and

∫
log+ ‖tB‖dµ

are both finite. Here and below we denote by tA the matrix transposed to matrix
A.

The map G is analogous to the map g defined by (6) (though they do not literally
coincide for m = 2). Thus morally the map G represents a sort of multidimensional
Euclidean algorithm, while the matrices B(λ, π), B

(
G(λ, π)

)
, . . . , B

(
G(k−1)(λ, π)

)

play the role of the entries of the continued fraction expansion of a real number.

Remark 6. In matrix representation of a continued fraction expansion one has el-
ementary matrices from the group SL(2, Z). Numerous multidimensional general-
izations of continued fraction algorithms use matrices from SL(n, Z). In dimension
2 the groups SL and Sp coincide, so the other way to generalize the continued
fraction algorithm is to use matrices from Sp(n, Z). One can think of the map G
as of generalization of this type.

The continued fractions are closely related to the geodesic flow on the upper
half-plane (see, say [11] for a very nice exposition of this relation). Our “Sp-
generalization” is closely related to the Teichmüller geodesic flow (which can be
considered as a generalization of the geodesic flow on the upper half-plane for
genera greater than 1).

Remark 7. The induction procedure and the renormalization map G constructed
in [70] are obtained as a modification (a “speed up”) of the Rauzy induction and
of the corresponding map T in [59]. In particular ergodicity of G is proved closely
following the original proof of W.Veech. The relation between maps T and G
is similar to the relation between additive and multiplicative continued fraction
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algorithms in [11], in particular the invariant measure corresponding to the map T
is infinite, which was the reason for construction of the modified map G.

4.5. Properties of the “continued fraction” cocycle. . The matrix-valued
function B(λ, π) defined by (8) determines two measurable cocycles on ∆m−1 × R

with respect to the measure µ, i.e.,
∫

log+ ‖B−1‖dµ and
∫

log+ ‖tB‖dµ are both
finite. Here and below we denote by tA the matrix transposed to matrix A. These
cocycles are dual to each other. They play a crucial role in our study of interval ex-
change transformations. In this section we remind briefly their principal properties.
One can find the proofs in [70], [71].

Let
(λ(k), π(k)) = Gk(λ, π)

B(k)(λ, π) = B(λ, π) · B(λ(1), π(1)) · · · · · B(λ(k−1), π(k−1))

The cocycles preserve the degenerate symplectic form (2) in the following sense:

(10) Ω(π) =
(
tB(k)(λ, π)

)−1
· Ω(π(k)) ·

(
B(k)(λ, π)

)−1

As we already mentioned above, the map G is ergodic on ∆m−1×R with respect
to absolutely continuous invariant probability measure µ analogous to the Gauss
measure (7). The cocycles tB(λ, π) and B−1(λ, π) have the following spectrum of
Lyapunov exponents which is the same for both cocycles:

θ1 > θ2 ≥ θ3 ≥ · · · ≥ θg ≥ 0 = · · · = 0
︸ ︷︷ ︸

m−2g

≥ −θg ≥ · · · ≥ −θ3 ≥ −θ2 > −θ1

Here g is an integer number determined by the Rauzy class R; topologically g is
the genus of corresponding surface.

By

(11) H1(λ, π) ⊂ H2(λ, π) ⊆ · · · ⊆ Hg(λ, π) ⊆ H(λ, π) ⊂ R
m

we denote the corresponding flag of subspaces in R
m determined by the cocycle

B−1(λ, π). These flag is defined for µ-almost all (λ, π). One has

lim
k→∞

log ‖
(
B(k)(λ, π)

)−1
v‖

k
= −θj ∀v ∈ Hj , v 6∈ Hj−1

The flag of subspaces in R
m∗ corresponding to the dual cocycle tB(λ, π) is dual

to the flag (11): for any linear function f in the annihilator of Hj , f ∈ Ann(Hj),
such that f 6∈ Ann(Hj+1), one has

lim
k→∞

log ‖tB(k)(λ, π)f‖

k
= θj+1 ∀v ∈ Ann(Hj), v 6∈ Ann(Hj+1)

The relation between the map G and the Teichmüller geodesic flow is as follows
(see [59], [62], [63]). One can consider a suspension over the space of (nonnor-
malized) interval exchange transformations — a space of zippered rectangles. One
can think of a “zippered rectangle” as of some way to cut initial Riemann surface
provided with a flat structure determined by the initial Abelian differential into
rectangular pieces. Using some restrictions on the decomposition of the Riemann
surface into rectangles it is possible to define a fundamental domain in the space
of zippered rectangles. This fundamental domain might be considered as a finite
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(ramified) covering over a connected component of a stratum H(1, . . . , ks) in the
moduli space of Abelian differentials. The Teichmüller geodesic flow has very simple
coordinate representation in this fundamental domain. Preimage of the subspace
of interval exchange transformations of an interval of unit length determines a hy-
persurface in the fundamental domain. The Teichmüller geodesic flow determines
the first return map on the hypersurface. The map G is the projection of this first
return map. In this sense the map G is a discrete version of the Teichmüller geodesic
flow.

Morally, this construction is quite visible already in the simplest case of genus
1, see [11] for a very clear presentation.

The Lyapunov exponents of the Teichmüller geodesic flow are expressed in terms
of the Lyapunov exponents of the cocycles B−1 and tB as follows:

νi =
θi

θ1
for i = 1, . . . , g

The connected components of the strata H(1, . . . , ks) are in one-to-one corre-
spondence with the extended Rauzy classes ([63]).

4.6. Function counting the visits as an additive cocycle. Having an inter-
val exchange transformation T : X → X one can consider two different sorts of
“time” related to it. The usual “additive time” enumerates the iterations of the
interval exchange transformation T , or in the other words it enumerates points of
a trajectory x, Tx, . . . , T N−1x.

There is also a “multiplicative” time, which enumerates the iterates of the in-
duction procedure G on the space of interval exchange transformations.

In the case when there are only two intervals any interval exchange transforma-
tion is equivalent to rotation of a circle. In this case the “additive time” corresponds
to rotations, while the “multiplicative time” corresponds to Euclidean algorithm.

Let us study the interaction between these two “times”.
Let T : X → X be an interval exchange transformation. Let X = X1 ⊔ · · · ⊔Xm

be corresponding partition of the interval X into subintervals under exchange. For
every index i, 1 ≤ i ≤ m, define the counting function

Si(X, T, x, N) :=

N−1∑

L=0

χXi
(T L(x))

where

χY (x) =

{

1 if x ∈ Y

0 if x 6∈ Y

Thus Si(X, T, x, N) is the number of visits of the trajectory x, Tx, . . . , T N−1x
to the subinterval Xi. Usually we shall deal with the vector

S(X, T, x, N) :=
(
S1(X, T, x, N), . . . , Sm(X, T, x, N)

)

Note that S(X, T, x, N) is an additive cocycle with respect to the discrete “additive
time”:

(12) S(X, T, x, N1 + N2) = S(X, T, x, N1) + S(X, T, T N1x, N2)
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4.7. Vector of visits as a multiplicative cocycle. Assume that the interval
exchange transformation T : X → X is uniquely ergodic. According to results
in [38] and in [59] this is the generic situation. Consider subinterval X(k) obtained
from the interval X after k iterations of the induction procedure G. The induced
map T(k) : X(k) → X(k) is defined for x ∈ X(k) as the first return of the trajectory

x, Tx, . . . to the subinterval X(k). By construction the map T(k) : X(k) → X(k)

induced by T on X(k) ⊂ X is again an interval exchange transformation of the

same number m of subintervals: X(k) = X
(k)
1 ⊔ · · · ⊔ X

(k)
m .

Consider a finite piece of trajectory x, Tx, . . . , T N−1x which starts and finishes
at the interval X(k), i.e., x ∈ X(k) and T Nx ∈ X(k). Consider consequetive visits
of this piece of trajectory to the subinterval X(k). By construction they coincide

with the trajectory x, T(k)x, T 2
(k)x, . . . , T

N(k)−1

(k) x, of the induced map T(k) where

T
N(k)

(k) x = T Nx. The counting functions S(X, T, x, N) and S(X(k), T(k), x, N(k))

corresponding to the pair of trajectories as above are related by means of the
matrix B(k) representing the induction procedure:

(13) S(X, T, x, N) = B(k) · S(X(k), T(k), x, N(k))

In this sense the counting function S(X, T, x, N) has the multiplicative properties
with respect to the “time” k. Here the “multiplicative time” stands for the iterations
of the induction procedure G.

Of course relation above is valid only for a very special choice of a point x ∈ X
(we assumed that x ∈ X(k)), and for a very special choice of “time” N (we assumed

that T Nx ∈ X(k)). Let us improve the formula to fit arbitrary choice of x and of N .
To do that let us extend the trajectory till the extension would hit the subinterval
X(k) for the first time. Then we will consider three parts of the extended trajectory.

The first part would be the part before the first visit to the subinterval X(k). The
third part would be the extension part. The second part would possibly overlap
with the third one: it would start at the first visit to X(k) and it would continue
till the end of the extended trajectory. By construction the second part starts and
finishes at X(k).

More formally, assume that the interval exchange transformation T : X → X is
minimal, and that the first k steps of the induction G are well-defined for T : X →
X . Let

N+(X, x, T, N, k) := min
0≤L

L | T L(x) ∈ X(k)

N−(X, x, T, N, k) := min
0≤L

L | T N+L(x) ∈ X(k)
(14)

We denote

x(k) := T N+

(x)

Using the additive properties (12) of S(X, T, x, N) with respect to “time” N we get

S(X, T, x, N) =

= S(X, T, x, N+) + S(X, T, T N+

x, (N − N+ + N−)) − S(X, T, T Nx, N−)
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Using (13) for the middle term we modify this relation to the following form:

S(X, T, x, N) =

= S(X, T, x, N+) − S(X, T, T Nx, N−) + B(k)S(X(k), T(k), x(k), N(k)) (15)

where x(k) = T N+

x, and T
N(k)

(k) x(k) = T N+N−

x.

4.8. Formulation of the main theorem in terms of interval exchanges.

Now we are ready to reformulate the main Theorem 2 in terms of interval exchange
transformations.

Theorem 5. For almost all interval exchange transformation (λ, π) corresponding
to any extended Rauzy class R the function S(X, T, x, N) counting visits to the
subintervals has the following properties.

For any x ∈ X

lim
N→∞

S(X, T, x, N)

N
= λ

The one-dimensional subspace H1 is spanned by λ.
For any x ∈ X and any f ∈ Ann(Hi), i = 1, . . . , g − 1,

lim sup
N→+∞

log |〈f, S(X, T, x, N)〉|

log N
=

θi+1

θ1

For any x ∈ X and any f ∈ Ann(Hg(λ, π)), ‖f‖ = 1

| 〈 f , S(X, T, x, N) 〉 | ≤ const

where the constant does not depend on f , x or N .
All the limits above converge uniformly with respect to x ∈ X.

The numbers 2, 1 +
θ2

θ1
, . . . , 1 +

θg

θ1
are the top g Lyapunov exponents of the Te-

ichmüller geodesic flow on the connected component of the stratum H(k1, . . . , ks),
corresponding to the extended Rauzy class R.

Taking into consideration correspondence between cycles cx(N) and cP (l), and
correspondence between two parametrizations (see section 4.2 we see that Theo-
rem 2 is an immediate corollary from the theorem above.

4.9. Upper bound. In this subsection we will prove the following

Proposition 2. For almost all interval exchange transformations the following
upper bound is valid:

lim sup
N→+∞

log |〈f, S(X, T, x, N)〉|

log N
≤

θi+1

θ1

for any f ∈ Ann(Hi) and any x ∈ X.

To prove Proposition 2 we will need the following Lemma, which is part of
Proposition 8 in [71].

Lemma 3. For almost all (λ, π) ∈ ∆ × R and for any ε > 0, δ > 0, r ∈ N there
exists ñ = ñ((λ, π), ε, δ, r) such that for any n ≥ ñ one can choose the sequence
of integers 0 = n0 < n1 < · · · < nr = n with the following properties: for any
1 ≤ l ≤ r

max
1≤j≤m

∣
∣
∣
log ‖B(nl−nl−1)(λ(nl−1), π(nl−1)) · ej‖

nl − nl−1
− θ1

∣
∣
∣ ≤ ε
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Moreover, for any 0 ≤ l ≤ r the number nl is close to the corresponding entry of
arithmetic progression:

∣
∣
∣
nl

n
−

l

r

∣
∣
∣ ≤ δ

Proof. One can find the detailed proof of this Lemma in [71] (see Proposition 8
in [71]). Here we present only the idea of the proof, which is quite elementary.

According to [71] for almost all interval exchange transformations (λ, π) the
columns of the matrix B(k)(λ, π) have the following asymtotic growth: for any
1 ≤ i ≤ m

lim sup
k→+∞

log ||B(k)(λ, π) · ei||

k
= θ1

Of course convergence is not uniform. Still for any ε > 0 we can choose ñ(ε) large
enough, so that the subset W of those interval exchange transformations where

∣
∣
∣
log ||B(k)(λ, π) · ei||

k
− θ1

∣
∣
∣ < ε as k > ñ(ε)

will have measure arbitrary close to the complete measure. In particular, we can
make the difference 1 − µ(W ) between two measures much less than δ.

Now consider generic interval exchange transformation (λ, π). Since the map
G is ergodic, the trajectory (λ, π),G(λ, π), . . . ,G(k)(λ, π) would have only about
(1 − µ(W ))k points outside of the set W for k large enough, which by the choice
of W is much less than δk. Hence, any interval of the length δk placed inside
the interval [0, k] ⊂ R (where n is assumed to be large enough) will contain some
integers q1, . . . such that Gq1(λ, π), · · · ∈ W . This enables us to choose nl as desired.
Lemma 3 is proved. �

Now let us prove Proposition 2.

Proof. We start with the following definition, which would be quite useful for us:

(16) n(N) := min
k≥0

k such that

N−1∑

J=0

χX(k)
(T Jx) ≤ 1

In other words, the numbers n(N) − 1 is the largest possible integer n such that
the trajectory x, Tx, . . . , T N−1x visits subinterval X(n) at least twice. The number
n(N) depends on the point x ∈ X ; still, the following Lemma shows that for large
N the asymptotic behavior of n(N) is the same for all x ∈ X .

Lemma 4. For almost all interval exchange transformations the number n(N)
obeys the following asymptotic relation:

lim
N→+∞

log N

n(N)
= θ1

The convergence is uniform with respect to the starting point x ∈ X.

Proof. To prove Lemma it is sufficient to prove that for almost all interval exchange
transformations and for arbitrary choice of ε > 0 the number n(N) obeys the
following bounds:

log N − log 2

θ1 + ε
< n(N) ≤

log N

θ1 − ε
+ 1

provided N is large enough.
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According to [71] for almost all interval exchange transformations the following
relation is valid:

lim
k→+∞

log ‖B(k)ej‖

k
= θ1

for all 1 ≤ j ≤ m. By k(ε) denote an integer such that for all k ≥ k(ε) the ratio
above differs from θ1 at most by ε. Chose any N ≥ 2 exp

(
(θ1 + ε)k(ε)

)

Let us first prove the lower bound. Let

k =

[
log(N/2)

θ1 + ε

]

By the choice of N we get k ≥ k(ε). Hence

max
1≤j≤m

‖B(k)(λ, π) · ej‖ ≤ exp
(
(θ1 + ε)k

)

Hence

max
1≤j≤m

‖B(k)(λ, π) · ej‖ ≤ N/2

We remind that piece of trajectory y, T y, . . . of any point y ∈ X
(k)
j before the

first return to X
(k)
j has length ‖B(k)(λ, π) · ej‖, and any point z ∈ X belongs to

corresponding piece of trajectory of some point y(z) ∈ X(k). Hence inequality
above implies, that trajectory of any point x ∈ X of length N will visit subinterval
X(k) at least twice. Hence k < n(N), which implies that

log N − log 2

θ1 + ε
< n(N)

The lower bound in Lemma 4 is proved.
Now let us prove the upper bound in Lemma 4. Denote

l =

[
log N

θ1 − ε

]

+ 1

By the choice of N we get l ≥ k(ε). Hence

min
1≤j≤m

‖B(l)(λ, π) · ej‖ ≥ exp
(
(θ1 − ε)l

)

Hence

min
1≤j≤m

‖B(l)(λ, π) · ej‖ ≥ N

Hence inequality above implies, that trajectory of any point x ∈ X of length N will
visit subinterval X(l) at most once. Hence n(N) ≤ l, which implies that

n(N) ≤
log N

θ1 − ε
+ 1

The upper bound in Lemma 4 is proved. �

Now we are ready to prove Proposition 2. Let (λ, π) satisfy conditions of
Lemma 3. Let it be generic in the following sense as well: assume that for n
large enough, and for any f ∈ Ann(Hi), ‖f‖ = 1, we get

log ‖B(n)(λ(n), π(n)) · f‖

n
≤ θi + ε

Finally assume that lemma 4 is also applicable to our (λ, π). Let n = n(N). Chose
n0 < n1 < · · · < nr = n as in Lemma 3.
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Let us apply (15):

S(X, T, x, N) = S(X, T, x, N+) − S(X, T, T Nx, N−)+

+ B(n1)(λ, π) · S(X(n1), T(n1), x(n1), N(n1))

where x(n1) = T N+

x is the point of the first visit of trajectory x, Tx, T 2x, . . . to

the subinterval X(n1), and T
N(n1)

(n1)
x(n1) = T N+N−

x is the point of the first visit of

trajectory T Nx, T N+1x, T N+2x, . . . to the subinterval X(n1).

Now let us apply the same trick to S(X(n1), T(n1), x(n1), N(n1)) by making n2−n1

steps of induction G. Note, that the interval
(
X(n1)

)(n2−n1)
obtained from the in-

terval X(n1) by n2−n1 steps of induction coincides with the interval X(n2) obtained
directly from X by n1+(n2−n1) steps of induction. The same is true for the interval
exchange transformation: the interval exchange transformation T(n2) obtained di-
rectly from T by n2 steps of induction coincides with the interval exchange transfor-
mation

(
T(n1)

)

(n2−n1)
obtained by (n2−n1) steps of induction from T(n1). The same

is true for the point x(n2) =
(
x(n1)

)

(n2−n1)
and the time N(n2) =

(
N(n1)

)

(n2−n1)
.

Hence

S(X(n1), T(n1), x(n1), N(n1)) =

S(X(n1), T(n1), x(n1), N
+
(n1)

) − S(X(n1), T(n1), T
N(n1)

(n1)
x(n1), N

−
(n1)

)+

+ B(n2−n1)(λ(n1), π(n1)) · S(X(n2), T(n2), x(n2), N(n2))

Let us continue this procedure recursively by unfolding our expression up to the
level r using the “times” n1, n2, . . . , nr. To avoid complicated subscripts and long
lists of arguments let us denote the terms obtained at the step l by S+

(nl−1), S−
(nl−1)

,

and S(nl) correspondingly. In this notation the step of recursion is represented by

(17) S(nl−1) = S+
(nl−1)

− S−
(nl−1) + B(nl−nl−1)(λ(nl), π(nl)) · S(nl)

Consider the pairing of f with S(X, T, x, N). Using the unfolded expression for
S(X, T, x, N), and taking the absolute value of the result we get the following
bound

∣
∣〈f , S(X, T, x, N)〉

∣
∣ =

∣
∣〈f , S(n0)〉

∣
∣ ≤

≤
∣
∣〈f , S+

(n0)
− S−

(n0)
〉
∣
∣+

+
∣
∣〈f , B(n1)(λ, π) · (S+

(n1)
− S−

(n1)
)〉
∣
∣+

+ . . . +

+
∣
∣〈f , B(nr−1)(λ, π) · (S+

(nr−1) − S−
(nr−1))〉

∣
∣+

+
∣
∣〈f , B(nr)(λ, π) · S(nr)〉

∣
∣
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which we may continue as follows

∣
∣〈f , S(X, T, x, N)〉

∣
∣ ≤

≤
∥
∥f
∥
∥ ·
∥
∥S+

(n0)
− S−

(n0)

∥
∥+

+
∥
∥tB(n1)(λ, π)f

∥
∥ ·
∥
∥S+

(n1)
− S−

(n1)

∥
∥+

. . . +

+
∥
∥tB(nr−1)(λ, π)f

∥
∥ ·
∥
∥S+

(nr−1)
− S−

(nr−1)

∥
∥+

+
∥
∥tB(nr)(λ, π)f

∥
∥ ·
∥
∥S(nr)

∥
∥

Now note that for arbitrary choice of X , T , x, and N the norm ‖S(X, T, x, N)‖
satisfies the following identity:

‖S(X, T, x, N)‖ = N

provided we use the norm

‖(v1, . . . , vm)‖ = |v1| + · · · + |vm|

In other words the norm ‖S(X, T, x, N)‖ equals the length of corresponding piece
of trajectory.

Now note that S+
(nl)

corresponds to a piece of trajectory of the map T(l) on

X(l) which does not visit the subinterval X(l+1). Hence the length of this piece of
trajectory is bounded from above by

max
1≤j≤m

‖B(nl+1−nl)(λ(l), π(l)) · ej‖

Using our particular choice of nl and the bound in Lemma 3 we get the following
bounds:

‖S+
(nl)

‖ ≤ exp
(
(θ1 + ε)(nl+1 − nl)

)
≤ exp

(
(θ1 + ε)(1 + δ)

n

r

)

Similarly

‖S−
(nl)

‖ ≤ exp
(
(θ1 + ε)(1 + δ)

n

r

)

Since the vectors S+
(nl)

and S−
(nl)

are positive we finally get

‖S+
(nl)

− S−
(nl)

‖ ≤ exp
(
(θ1 + ε)(1 + δ)

n

r

)

for any 0 ≤ l ≤ r − 1.
On the other hand assuming n is large enough we get the following bounds:

∥
∥tB(nl)(λ, π)f

∥
∥ ≤ ‖f‖ exp

(
(θp + ε)nl

)
·

Finally note that the choice of n as n(N) implies the following bound:

∥
∥S(nr)

∥
∥ =

∥
∥S(n)

∥
∥ ≤ 1
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Collecting these bounds together we can develop the bound for
∣
∣〈f, S(X, T, x, N)〉

∣
∣

as follows:
∣
∣〈f , S(X, T, x, N)〉

∣
∣ ≤

≤ ‖f‖ · exp
(
(θ1 + ε)(1 + δ)

n

r

)
+

‖f‖ exp
(
(θp + ε)n1

)
· exp

(
(θ1 + ε)(1 + δ)

n

r

)
+

. . . +

‖f‖ exp
(
(θp + ε)nr−1

)
· exp

(
(θ1 + ε)(1 + δ)

n

r

)
+

+ ‖f‖ exp
(
(θp + ε)nr

)

Note that 0 ≤ θp < θ1. Multiply the last term by exp
(
(θ1 + ε)(1 + δ)

n

r

)
the

product thus obtained dominates all the other terms. Using Lemma 4, passing to
the logarithms and taking the upper limit we get the following bound:

lim sup
N→+∞

log
∣
∣〈f , S(X, T, x, N)〉

∣
∣

log N
≤

≤ lim sup
N→+∞

log
∣
∣〈f , S(X, T, x, N)〉

∣
∣

n(N)
· lim sup

N→+∞

n(N)

log N
≤

≤ lim sup
n→+∞

log

(

‖f‖ · exp
(
(θ1 + ε)(1 + δ)

n

r

)
· exp

(
(θp + ε)n

)

)

n
·

1

θ1 − ε
≤

≤ lim sup
n→+∞

( log ‖f‖

n
+

(θ1 + ε)(1 + δ)

r
+ (θp + ε)

)

·
1

θ1 − ε
=

=
(θ1 + ε)(1 + δ)

r(θ1 − ε)
+

θp + ε

θ1 − ε

Taking into account that we can choose ε and δ arbitrary small, and r arbitrary
large, we get desired upper bound:

lim sup
N→+∞

log
∣
∣〈f , S(X, T, x, N)〉

∣
∣

log N
≤

θp

θ1

Proposition 2 is proved. �

4.10. Lower bound. In this subsection we will prove

Proposition 3. For generic interval exchange transformation (λ, π) the following
lower bound is valid:

lim sup
N→+∞

log | 〈 f , S(X, T, x, N) 〉 |

log N
≥

θp+1

θ1

for any x ∈ X and any f ∈ Ann(Hp(λ, π)), f 6∈ Ann(Hp+1(λ, π)).

To prove Proposition 2 we will use the following Lemma (see Lemma 6.1 in [71]).
Denote by v1 ∈ R

m the vector (1, 0, . . . , 0).
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Lemma 5. For almost all interval exchange transformations (λ0, π0) one can find
a collection of integers 0 = l1 < · · · < lm (depending on the interval exchange
transformation) such that the vectors v1, B

(l2)(λ0, π0) · v1, . . . , B
(lm)(λ0, π0) · v1 are

linearly independent.

We need the Lemma above to prove the following

Lemma 6. For almost all interval exchange transformation (λ, π) and for any
f ∈ Ann(Hp(λ, π)), f 6∈ Ann(Hp+1(λ, π)), one can find an infinite sequence of
integers t1 < t2 < . . . with the following properties:

1)

lim
i→+∞

1

ti
log
∣
∣
∣〈f , B(ti)(λ, π)e1〉

∣
∣
∣ = θp+1

2) There exists positive integer p (depending on the initial interval exchange
transformation T (λ, π) : X → X) such that for any i = 1, 2, . . .

X(ti+p) ⊆ X
(ti)
1

Proof. Consider generic point (λ0, π0) and apply Lemma 5 to it. By construction
vectors w1 := v1, w2 := B(l2)(λ0, π0) · v1, . . . , wm := B(lm)(λ0, π0) · v1 are linearly
independent. Let ∆0 × π0 be a simplex containing the point (λ0, π0), and sharing
the same matrices B(li)(λ′, π0) = B(li)(λ0, π0) for all 1 ≤ i ≤ m and all (λ′, π0) ∈
∆0 × π0.

Taking smaller subsimplex if necessary, we may find an integer p > 0 such that
for any (λ′, π0) ∈ ∆0 × π0 the following relation would be valid

(18) X(li+p) ⊆ X
(li)
1 for any 1 ≤ i ≤ m

Since µ(∆0 × π0) > 0, and since the map G is ergodic, trajectory of almost any
point (λ, π) under the action of the map G will visit our subsimplex infinitely many
times. By k1, k2, . . . denote these times of visits:

G(ki)(λ, π) ∈ ∆0 × π0

For each ki we can choose lji
such that

(19)
∣
∣
∣〈f , B(ki+lji

)(λ, π)e1〉
∣
∣
∣ ≥ c

∥
∥
∥

tB(ki)(λ, π)f
∥
∥
∥

since
∣
∣
∣〈f , B(ki+lji

)(λ, π)e1〉
∣
∣
∣ =

=
∣
∣
∣〈tB(ki)(λ, π)f , B(lji

)(λ(ki), π(ki))e1〉
∣
∣
∣ =

=
∣
∣
∣〈tB(ki)(λ, π)f , wji

〉
∣
∣
∣

Let ti := ki + lji
. Note that lji

is chosen from the fixed finite collection of indices
l1, . . . , lm. Thus (19) implies that

lim
i→+∞

1

ti
log
∣
∣
∣〈f , B(ti)(λ, π)e1〉

∣
∣
∣ =

= lim
i→+∞

1

ki

(

log c + log
∥
∥
∥

tB(ki)(λ, π)f
∥
∥
∥

)

· lim
i→+∞

ki

ti
= θp+1
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by the choice of f ∈ Ann(Hp), f 6∈ Ann(Hp+1). Thus we proved that condition 1
is obeyed for the sequence t1 < t2 < . . . . Condition 2 follows from (18). Lemma 6
is proved. �

Now we are ready to prove Proposition 3. Assuming the interval exchange trans-
formation (λ, π) under consideration is generic, choose the sequence of integers
t1 < t2 < . . . as in Lemma 6. We choose arbitrary x ∈ X and fix it for the rest
part of the proof.

Let

(20) lim sup
i→+∞

log |〈f, S(X, T, x, N+
(ti+p))〉|

log N+
(ti+p)

=
θp+1

θ1
+ ε

If ε ≥ 0, then Proposition 3 is proved. Suppose not.
Consider the following sequence of integers:

Ni := min
J>N

+
(ti+p)

J such that T J ∈ X(ti)

In other words wait till the first visit of the trajectory x, Tx, T 2x, . . . to the subin-
terval X(ti+p), which happens at the time N+

(ti+p), and then wait till the first visit

to the subinterval X(ti), which happens at the time Ni.
We are going to prove that

lim sup
i→+∞

log |〈f, S(X, T, x, Ni)〉|

log Ni

≥
θp+1

θ1

which will prove Proposition 3.

Proof. Note that T
N

+
(ti+p)x ∈ X(ti+p) by definition 14 of N+. By the choice of ti

we have T
N

+
(ti+p)x ∈ X

(ti)
1 in accordance with condition 2 of Lemma 6. Hence by

definition of Ni we get

S(X, T, x, Ni) = S(X, T, x, N+
(ti+p)) + B(ti))(λ, π) · e1

Since

lim sup
i→+∞

log N+
(ti+p)

ti
≤ θ1

and since by assumptions ε > 0 in (20) the second term in the sum

〈f , S(X, T, x, N+
(ti+p))〉 + 〈f , B(ti))(λ, π) · e1〉

strongly dominates the first one as i → +∞ by condition 1 of Lemma 6.
Moreover, by Proposition 2 in [71] we may assume that for any 1 ≤ j ≤ m, we

have

lim
k→∞

∣
∣
∣
∣

log ‖B(k)ej‖

k

∣
∣
∣
∣
= θ1

which implies that

(21) lim
i→+∞

log Ni

ti
= θ1
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Hence

lim sup
i→+∞

log |〈f, S(X, T, x, Ni)〉|

log Ni

=

= lim sup
i→+∞

log |〈f , B(ti))(λ, π) · e1〉|

ti
· lim

i→+∞

ti
log Ni

=
θp

θ1

where we combined condition 1 of Lemma 6 and (21) in the latter equality. Propo-
sition 3 is proved. �

4.11. Uniform bound. Finally we are going to prove

Proposition 4. For generic interval exchange transformation (λ, π) there is a
uniform bound as follows. For any x ∈ X and any f ∈ Ann(Hg(λ, π)), ‖f‖ = 1

| 〈 f , S(X, T, x, N) 〉 | ≤ const

where the constant does not depend on f , x or N .

We remind that

Ann(Hg(λ, π)) = {f | θ(f) < 0}

We start with the following elementary

Lemma 7. For almost all interval exchange transformations (λ, π) the following
property is valid. For any ε > 0 and for all sufficiently large n ∈ N

‖B(λ(n), π(n))‖ ≤ exp(εn)

Proof. According to Proposition 1 in [70] function log B(λ, π) is integrable. Hence
for almost all (λ, π)

lim
n→+∞

1

n

n−1∑

k=0

log ‖B(λ(k), π(k))‖ =

∫

log ‖B‖ dµ

Convergence of the series above implies that

1

n
log ‖B(λ(k), π(k))‖ → 0

which completes the proof of Lemma 7. �

Now we can prove Proposition 2.

Proof. We will again use formula (15) to unfold S(X, T, x, N) as we have done
already in subsection 4.9. But this time we will use not only special “multiplicative
times” ni as we have done before, but we will use all points of the trajectory
(λ, π), G(λ, π), G(2)(λ, π), . . . . We use notations from subsection 4.9, (see (17)).

S(X, T, x, N) =

=
(

S+
(0) − S−

(0)

)

+ B(λ, π) ·
(

S+
(1) − S−

(1)

)

+ B(2)(λ, π) ·
(

S+
(2) − S−

(2)

)

+ . . .

We prefer to use the notation as if we have an infinite sum. One should understand,
that actually the sum is finite: starting with some term all the other terms in the
tail are equal to zero.
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Consider the pairing of f with S(X, T, x, N). Using the expression above we can
rewrite it as follows:

∣
∣〈f , S(X, T,x, N)〉

∣
∣ ≤

≤
∣
∣〈f , S+

(0) − S−
(0)〉
∣
∣+
∣
∣〈f , B(1)(λ, π) · (S+

(1) − S−
(1))〉

∣
∣+ . . .

≤
∥
∥f
∥
∥ ·
∥
∥S+

(0) − S−
(0)

∥
∥+

∥
∥tB(1)(λ, π)f

∥
∥ ·
∥
∥S+

(1) − S−
(1)

∥
∥+ . . .

≤

+∞∑

k=0

(
∥
∥tB(k)(λ, π)f

∥
∥ · max

1≤j≤m
‖B(k)(λ, π) · ej‖

)

Chose some ε < |θ(f)|/3. According to Lemma 7 for k large enough

log max
1≤j≤m

‖B(k)(λ, π) · ej‖ ≤ εk

On the other hand by definition of a Lyapunov exponent for sufficiently large k one
has

log
∥
∥tB(k)(λ, π)f

∥
∥ ≤ (θ(f) + ε)k

Thus for sufficiently large k the positive series above is majorated by the converging
series

∑
exp(−εk). We have got a uniform bound which does not depend neither

on x nor on N , but still depends on f . It remains to note that having proved the
statement for some basis in Ann(Hg(λ, π)) we will complete the proof of Proposi-
tion 4. �

Appendix A. Irreducibility of the cocycle tB(λ, π)

Lemma 8. If θ(ej − λje0) < θ2 on some subset of nonzero measure in ∆m−1 × π
then the same is true for almost all points of this simplex.

Proof. Consider the subspace

Ann(H(2)(λ, π)) = {e |
1

k
log ‖tB(k)e‖ < θ2}

and two dimensional plane spanned by e0 and ej . The condition above is equivalent
to the condition that these two subspaces have nontrivial intersection on some
subset of nonzero measure in ∆m−1 × π. Let

dimAnn(H(2)(λ, π)) = d

We know that d ≤ m − 2 (presumably d = m − 2).
Consider a pair of vectors: one in Λd(Rm)∗, and one in Λ2(Rm)∗, representing

the subspaces Ann(H(2)(λ, π)) and 〈e0; ej〉R . The condition that the two subspaces
have nontrivial intersection is equivalent to the condition that the wedge product
of corresponding vectors vanish on some subset of nonzero measure. In other words
one-dimensional subspace

(22) L(λ, π) := Λd
(
Ann(H(2)(λ, π))

)
⊂ Λd(Rm)∗

obeys some constant linear relation on some subset U of nonzero measure.
Let r be the maximal possible dimension of such linear subspace R ⊂

(
Λd(Rm)∗

)∗

that

(23) L(λ, π) ⊆ Ann(R)
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on some subset W ⊆ U of nontrivial measure µ(W ). Note that by assumption
r ≥ 1 since the vanishing of the wedge product with 〈e0; ej〉R gives at least one
linear relation.

Note also, that since R is a maximal subspace, all the linear conditions coming
from the vanishing of the wedge product of L(λ, π) and 〈e0; ej〉R are contained in
R. This means that if for some λ relation (23) is valid, then θ(ej − λje0) < θ2 at
this point. Hence Lemma 8 would follow from the Lemma below. �

Lemma 9. Suppose on a subset of nonzero measure in ∆m−1 × π

L(λ, π) ⊆ Ann(R) ⊂ Λd(Rm)

Then the same relation is true for the whole simplex ∆m−1 × π.

Proof. We may assume that for a given subset W of nonzero measure R is the
maximal linear subspace such that the relation above is valid.

To prove this Lemma we will use the method due to W.Veech. First we have to
remind some properties of projective linear maps.

Let A be a matrix such that detA = 1, with some of the entries possibly negative.
Consider projective linear map GA : λ 7→ Aλ

‖Aλ‖ and suppose GA maps some compact

subset K ⊂ ∆m−1 into ∆m−1, Im(K) ⊆ ∆m−1. Let JA be Jacobian of GA. Then
according to (7.1) and (7.2) in [58]

sup
λ,λ′∈K

JA(λ)

JA(λ′)
≤ sup

λ,λ′∈K
1≤i≤m

(
λi

λ′
i

)m

Consider a subset ∆ǫ = {λ |λi ≥ ǫ, i = 1, . . . , m;
∑

λi = 1} Then for any K ⊆ ∆ǫ

and any matrix A ∈ SL(m) such that A(K) ⊆ ∆m−1 we get from the bound above,
that

sup
λ,λ′∈K

JA(λ)

JA(λ′)
≤

(
1

ǫ

)m

Note, that this bound does not depend neither on A nor on the subset K anymore.
We remind that Gk(λ, π0) is a projective linear map, i.e., there is a matrix

A =
(
B(k)(λ, π)

)−1
such that

Gk(λ, π0) =

(
Aλ

‖Aλ‖
, π

)

, det A = 1

Consider the set ∆G(λ, π0, k) ∈ ∆m−1 of those (λ′, π0) for which Gk uses the
same matrix A. Then Gk(λ, π0) maps ∆G(λ, π0, k) onto one of the half-simplices
(∆+(π), π), (∆−(π), π). It is known that diameters of subsimplices ∆G(λ, π0, k)
tend to zero as k → ∞ for almost all λ. Hence up to a set of measure zero we can
subdivide ∆ǫ to subsimplices ∆G(λj , π0, k), λj ∈ ∆ǫ.

Consider now our subset W . If for some ǫ > 0 we have µ(W ∩ ∆ǫ) > 0,
then, probably refining our subdivision, for any δ > 0 we will find a subsim-
plex ∆0 = ∆G(λ0, π0, k0) from our subdivision such that µ(W̄ ∩ ∆0)/µ(∆0) < δ.
Let (∆±(π), π) = Gk0 (∆G(λ0, π0, k0). Then µ(Gk0 (W ) ∩ (∆±(π))/µ(∆±(π) ≥
(1− δ/ǫm). Without loss of generality we may assume that π = π0. Since δ can be
chosen arbitrary small we can make the measure of the set W ′ = Gk0(W ) ⊆ ∆±(π)
arbitrary close to the measure of ∆±(π). In particular we may assume that W ′

intersects with W by a set of nonzero measure.



38 ANTON ZORICH

Note that the linear bundle L(λ, π) is invariant under the action of the induced
cocycle B∧d(λ, π) on the d-th exterior power Λd(Rm)∗ of R

m. Hence for all points
of W ′ we get

L(λ, π) ⊆ Ann(R′)

where R′ is the image of the subspace R under the action of the linear map on the
exterior power corresponding to the linear map A. By assumptions on maximality
of R we see that R and R′ coincide on W ∪W ′, and hence they coincide everywhere.
Thus for all points of W ′ we get

L(λ, π) ⊆ Ann(R)

Since we can make the measure of W ′ ⊆ Gk0∆±(π) arbitrary close to the measure
of ∆±(π) the relation above is valid for the whole ∆±(π). Lemma 9 �

As a byproduct of the proof we get the following

Corollary 1. If θ(ej − λje0) < θ2 on some subset of nonzero measure in ∆± ×

π0 then the induced cocycle
(
B−1(λ, π)

)∧(m−d)
possesses an invariant subbundle

P (λ, π) ⊂ Λd
R

m which is constant on every half-simplex (∆±(π) × π).
Moreover, the linear subspace P ⊂ Λd

R
m corresponding to the half-simplex ∆±×

π0 contains all vectors of the form

ej ∧ e0 ∧ ...
︸ ︷︷ ︸

d factors

Proof. �

A.1. Decomposition of the representation of Sp(2n, R) on Λ2(R2n)∗. Sym-
plectic form Ω on R

2n is an element of Λ2(R2n)∗. By definition of the symplectic
group this element is invariant under the action of the group Sp(2n, R). Thus we
get a one-dimensional invariant subspace in Λ2(R2n)∗ with the trivial action of the
group Sp(2n, R) on it.

There is a natural coupling between complementary exterior powers Λd(R2n)∗

and Λ2n−d(R2n)∗ compatible with the induced actions of the group Sp(2n, R).
Consider the element Ω∧(n−1) ∈ Λ2n−2(R2n)∗. This element is nontrivial, and
it is invariant under the action of the group. Thus the subspace

AnnΩ∧(n−1) ⊂ Λ2(R2n)∗

is also invariant under the action of the group Sp(2n, R). Since Ω∧Ω∧(n−1) = Ω∧n

is just the volume element, we see that

Ω 6∈ AnnΩ∧(n−1)

Hence the two invariant subspaces are transversal to each other.
We have got the decomposition of representation of Sp(2n, R) on Λ2(R2n)∗ into

direct sum of two representations

(24) Λ2n−2(R2n)∗ = 〈Ω〉R ⊕ AnnΩ∧(n−1)
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A.2. Decomposition of the induced cocycles on Λ2(R2n/Ker(Ω))∗ and on

Λ2(R2n/Ker(Ω)). Recall that a permutation π of m elements determines skew-
symmetric m×m-matrix Ω(π), see (2). Matrix Ω(π) provides us with the “degenerate
symplectic form” in the fibers of (∆m−1 ×R)×R

m. This form is preserved by the

cocycle
(
B(k)

)−1
, see (10). Form Ω is in general degenerate. Since Ω is preserved

by the cocycle the subbundle Ker(Ω) is invariant under the action of the cocycle;
it is constant on every simplex ∆m−1 × π, where π ∈ R.

Recall that an interval exchange transformation (λ, π) determines a close ori-
entable surface M2

g and an orientable measured foliation on it. The genus of the
surface and the number and the types of the saddles are completely determined by
combinatorics of the permutation. We will always consider only those permutations
which correspond to the surfaces of genera g ≥ 2.

There is natural local identification between the space R
m
+ of interval exchange

transformations with fixed permutation π ∈ S
0
m and the first relative cohomology

H1(M2
g , {saddles}; R) of corresponding surface M2

g with respect to the set of saddles
of corresponding foliation.

Under local identification of the space of interval exchange transformations with
relative cohomology H1(M2

g , saddles; R) the quotient over the subspace Ker(Ω)

coincides with the absolute cohomology H1(M2
g ; R). The symplectic structure in-

duced by Ω(π) on the quotient space coincides with the intersection form on coho-
mology.

Consider now the quotient cocycle. Consider the cocycle induced from the quo-
tient cocycle on Λ2(Rm/Ker(Ω))∗. According to the previous subsection the in-
duced cocycle would have a pair of invariant subbundles, see (24). Each subbundle
is constant on every simplex ∆± × π.

We may apply a parallel construction to the dual cocycle as well. Now we are
ready to formulate several conjectures concerning cocycles B−1(λ, π) and tB(λ, π).

A.3. Conjectures on irreducibility of the cocycles B−1(λ, π) and tB(λ, π).
We will formulate all the statements for the cocycle tB(λ, π) assuming the analogous
statements for the cocycle B−1(λ, π).

Conjecture 3. For any Rauzy class R corresponding to genus g ≥ 2 the induced
cocycle on Λ2(Rm/Ker(Ω))∗ does not have any invariant subbundles constant on
every ∆± × π other then those determined by decomposition (24) of representation
of symplectic group into irreducible ones.

In fact we have a stronger conjecture.

Conjecture 4. For any Rauzy class R the induced cocycle on the exterior power
Λd(Rm/Ker(Ω))∗ for any d = 1, 2, . . . , 2g does not have any other invariant sub-
bundles which are constant on every ∆±×π then those determined by corresponding
decomposition of the representation of the symplectic group Sp(2g, R) on Λd

R
2g into

irreducible ones.

The most strong conjecture, which implies 4 is as follows.
Consider any permutation π0 ∈ S

0
m. Consider the map ∆± × π0 → ∆± × π0

induced from the map G on ∆±×R(π0). Denote the corresponding cocycle induced
from the cocycle B−1(λ, π) by A(λ). Let G be the closure of the group generated
by all matrices of the form A(k)(λ), where k ∈ N and λ ∈ ∆± × π0.
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Conjecture 5. The closure G of the group generated by all matrices of the form
A(k)(λ) coincides with the group Sp(2g, R).

We have no idea how to prove Conjecture 5. On the contrary it is not that
difficult to prove Conjecture 4 for any particular Rauzy class R. In Appendix 1 we
present the proof of Conjecture 4 for the Rauzy class R(4, 3, 2, 1).

Lemma 1 immediately implies the following

Conditional Theorem 6. For any permutation π for which Conjecture 4 is valid
and for almost all λ from the simplex ∆± × π one has

θ(ej − λje0) = θ2 for any 1 ≤ j ≤ m

Proof. Since the action of the induced cocycle on Ω(π) ∈ Λd(Rm/Ker(Ω))∗ is trivial
we see, that

θ(Ω(π), tB∧2) = 0

On the other hand �

Appendix B. Proof of irreducibility of the cocycle for the Rauzy

class R(4, 3, 2, 1)

B.1. Explicit form of geometric structures related to R(4, 3, 2, 1). In this
section we will prove validity of Conjecture 4 for the particular extended Rauzy
class R(4, 3, 2, 1). This Rauzy class corresponds to an orientable measured foliation
with a single 6-prongs saddle on a surface of genus 2.

In this particular case skew-symmetric bilinear form Ω(π) is nondegenerate, so
we even do not need to consider the quotient cocycle. For π = (4, 3, 2, 1) matrix
Ω(π) has the form

Ω(4, 3, 2, 1) =







0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0







In the basis e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 in Λ2(R4)∗ vector
ω(4, 3, 2, 1) representing skew-symmetric bilinear form Ω(4, 3, 2, 1) has the following
components:

ω(4, 3, 2, 1) = (1, 1, 1, 1, 1, 1) ∈ Λ2(R4)∗

The natural coupling between Λd(R2n)∗ and Λ2n−d(R2n)∗ in our case determines
the symmetric bilinear form Ψ(π) on Λ2(R2n)∗; its value on a pair of bivectors
ei ∧ ej and ek ∧ el equals

(25) Ψ(ei ∧ ej , ek ∧ el) = det ei ∧ ej ∧ ek ∧ el

Thus in the standard coordinates in Λ2(R4)∗ the matrix of this bilinear form equals

Ψ(π) =











0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0











The invariant subspace of codimension one

Ann (ω(4, 3, 2, 1)) = {φ |Ψ(φ, ω) = 0} ⊂ Λ2(R4)∗
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is determined in components as

Ann (ω(4, 3, 2, 1)) = {φ |φ12 − φ13 + φ14 + φ23 − φ24 + φ34 = 0}

We will use the basis

a1 = e1 ∧ e2 − e3 ∧ e4

a2 = e1 ∧ e3 + e3 ∧ e4

a3 = e1 ∧ e4 − e3 ∧ e4

a4 = e2 ∧ e3 − e3 ∧ e4

a5 = e2 ∧ e4 + e3 ∧ e4

(26)

in Ann (ω(4, 3, 2, 1)) ⊂ Λ2(R4)∗.

B.2. Choice of concrete trajectories. We choose three trajectories of the map
G more or less by chance:

The first trajectory is determined by the following path on the Rauzy graph of
the Rauzy class R(4, 3, 2, 1):

{4, 3, 2, 1}
b
→

{4, 1, 3, 2}
a
→

{3, 1, 4, 2}
b
→

{3, 1, 4, 2}
a
→ {4, 1, 3, 2}

a
→ {3, 1, 4, 2}

a
→

{4, 1, 3, 2}
b
→ {4, 2, 1, 3}

b
→

{4, 3, 2, 1}
a
→ {2, 4, 3, 1}

a
→

{3, 2, 4, 1}
b
→

{3, 2, 4, 1}
a
→

{4, 3, 2, 1}

Corresponding matrix tB equals

tB1 =







1 3 2 2
1 6 4 3
1 4 4 2
1 2 1 2







In the basis e1∧e2, e1∧e3, e1∧e4, e2∧e3, e2∧e4, e3∧e4 in Λ2(R4)∗ corresponding
matrix tB∧2

1 of the induced cocycle tB∧2(λ, π) equals

tB∧2
1 =











3 2 1 0 −3 −2
1 2 0 4 −2 −4

−1 −1 0 −1 2 2
−2 0 −1 8 0 −4
−4 −3 −1 −2 6 5
−2 −3 0 −4 4 6













42 ANTON ZORICH

The restriction of this operator to the invariant subspace Ann (ω(4, 3, 2, 1)) has the
following matrix in coordinates 26:

C1 =









5 0 3 2 −5
5 −2 4 8 −6

−3 1 −2 −3 4
2 −4 3 12 −4

−9 2 −6 −7 11









Consider the other path on the Rauzy graph of the Rauzy class R(4, 3, 2, 1):

{4, 3, 2, 1}
b
→

{4, 1, 3, 2}
a
→

{3, 1, 4, 2}
b
→ {4, 1, 3, 2}

b
→ {3, 1, 4, 2}

b
→ {4, 1, 3, 2}

b
→ {3, 1, 4, 2}

b
→

{3, 1, 4, 2}
a
→

{4, 1, 3, 2}
b
→

{4, 2, 1, 3}
a
→ {4, 3, 2, 1}

a
→

{2, 4, 3, 1}
b
→ {3, 2, 4, 1}

b
→

{3, 2, 4, 1}
a
→

{4, 3, 2, 1}

Corresponding matrix tB equals

tB2







1 6 1 2
1 12 2 3
1 8 2 2
1 3 0 2







In the basis e1∧e2, e1∧e3, e1∧e4, e2∧e3, e2∧e4, e3∧e4 in Λ2(R4)∗ corresponding
matrix tB∧2

2 of the induced cocycle tB∧2(λ, π) equals

tB∧2
2 =











6 1 1 0 −6 −1
2 1 0 4 −4 −2

−3 −1 0 −3 6 2
−4 0 −1 8 0 −2
−9 −2 −1 −6 15 4
−5 −2 0 −6 10 4











The restriction of this operator to the invariant subspace Ann (ω(4, 3, 2, 1)) has the
following matrix in coordinates 26:

C2 =









7 0 2 1 −7
4 −1 2 6 −6

−5 1 −2 −5 8
−2 −2 1 10 −2
−13 2 −5 −10 19
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Consider the third path on the Rauzy graph of the Rauzy class R(4, 3, 2, 1):

{4, 3, 2, 1}
b
→ {4, 1, 3, 2}

b
→ {4, 2, 1, 3}

b
→ {4, 3, 2, 1}

b
→

{4, 1, 3, 2}
b
→ {4, 2, 1, 3}

b
→ {4, 3, 2, 1}

b
→

Corresponding matrix tB equals

tB2







1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1







In the basis e1∧e2, e1∧e3, e1∧e4, e2∧e3, e2∧e4, e3∧e4 in Λ2(R4)∗ corresponding
matrix tB∧2

3 of the induced cocycle tB∧2(λ, π) equals

tB∧2
3 =











1 0 2 0 −2 0
0 1 2 0 0 −2
0 0 1 0 0 0
0 0 0 1 2 −2
0 0 0 0 1 0
0 0 0 0 0 1











The restriction of this operator to the invariant subspace Ann (ω(4, 3, 2, 1)) has the
following matrix in coordinates 26:

C3 =









1 0 2 0 −2
2 −1 4 2 −2
0 0 1 0 0
2 −2 2 3 0
0 0 0 0 1









B.3. Proof of irreducibility. All the matrices under consideration are integer.
In our proof of irreducibility we avoid any usage of eigenvectors and eigenvalues,
restricting ourselves to integer computations only. Mostly we will use the following
obvious

Lemma 10. If operators A1 and A2 posses common one-dimensional invariant
subspace K1 then K1 ⊂ Ker(A1A2 − A2A1).

Proof. �

Proposition 5. Cocycles B−1(λ, π) and tB(λ, π) are irreducible on ∆3 × R.

Proof. First note that cocycles under consideration are conjugate. So irreducibility
of one of them would imply irreducibility of the other.

Since

det
(

tB1
tB2 −

tB2
tB1

)
= 4

Lemma 10 implies that this two operators do not have any common invariant one-
dimensional subspace. Hence the cocycle tB(λ, π) does not have any invariant
one-dimensional subspace.

Since the cocycle tB(λ, π) is symplectic the presence of an invariant subspace
of codimension one implies the presence of a one-dimensional invariant subspace
— of the annulator of the invariant subspace of codimension one with respect to
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the symplectic form. Thus in our case the absence of invariant one-dimensional
subspaces implies the absence of three-dimensional invariant subspaces.

The absence of a two-dimensional invariant subspace of the cocycle tB(λ, π) is
equivalent to the absence of an invariant one-dimensional subspace of the induced
cocycle on the second exterior power Λ2(R4)∗ with additional condition that the
one-dimensional subspace is generated by a two-vector. Let us proceed with the
induced cocycle tB∧2(λ, π).

The one-dimensional invariant subspace generated by the vector ω(4, 3, 2, 1) =
(1, 1, 1, 1, 1, 1) does not obey the Plucker relations

p12p34 − p13p24 + p14p23

Hence this one-dimensional subspace is not generated by a two-vector. We are going
to prove that the cocycle tB∧2(λ, π) does not posses any other one-dimensional
invariant subspaces. To prove that it is sufficient to prove that the induced cocycle
on Ann (ω(4, 3, 2, 1)) does not posses any one-dimensional invariant subspaces.

The kernel Ker(C1C3 − C3C1) is spanned by the vector

Ker(C1C3 − C3C1) = 〈(
1

2
, 2, 1,

1

2
, 1)〉R

while the kernel Ker(C1C3 − C3C1) is spanned by the vector

Ker(C2C3 − C3C2) = 〈(1,
5

2
, 1,

1

2
, 1)〉R

Since these two vectors do not coincide, the operators C1, C2, C3 do not posses
common one-dimensional subspace. In other words restriction of the induced co-
cycle tB∧2(λ, π) to the subspace Ann (ω(4, 3, 2, 1)) does not have any invariant
one-dimensional subspace. This in turn implies that the cocycle tB(λ, π) dos not
have any invariant two-dimensional subspaces.

The induced cocycle on Ann (ω(4, 3, 2, 1)) preserves nondegenerate symmetric
bilinear form 25. Hence invariant subspaces of dimension d and of codimension d
appear only in pairs. Since we proved that this cocycle does not have any invari-
ant one-dimensional subspaces, it does not posses any four-dimensional invariant
subspaces as well.

It remains to prove that the restriction of the induced cocycle tB∧2(λ, π) to the
subspace Ann (ω(4, 3, 2, 1)) does not have any invariant two-dimensional subspace.
This would imply the absence of any invariant three-dimensional subspaces. This
would mean that there are no nontrivial invariant subspaces in Ann (ω(4, 3, 2, 1))
at all. This would mean that there are no other nontrivial invariant subspaces in
Λ2(R4)∗ than the one spanned by ω(4, 3, 2, 1) and the annulator to it.

To prove that the restriction of the induced cocycle tB∧2(λ, π) to the sub-
space Ann (ω(4, 3, 2, 1)) does not have any invariant two-dimensional subspace
it is sufficient to prove that the induced cocycle on the second exterior power
Λ2Ann (ω(4, 3, 2, 1)) does not posses any invariant one-dimensional subspaces. Con-
sider matrices D1, D2, D3 corresponding to our three paths. It is easy to check that
two-dimensional kernel Ker(D1D2 − D2D1) is transversal to the four-dimensional
kernel Ker(D1D3 − D3D1). Hence according to Lemma 10 the induced cocycle
on the second exterior power Λ2Ann (ω(4, 3, 2, 1)) does not posses any invariant
one-dimensional subspaces.
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It remains to prove that the induced cocycle tB∧3(λ, π) on the third exterior
power Λ3(R4)∗ does not posses any invariant subspaces. This is true due to duality
between Λ3(R4)∗ and (R4)∗. Proposition 5 is proved. �
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the trajectory of flows on closed surfaces. III., Izvestija Ross. Akad. Nauk Ser. Mat., 59

(1995), no. 2, 63–96.
[5] S. Kh. Aranson, V. Z. Grines, E. V. Zhuzhoma, On the geometry and topology of flows and

foliations on surfaces, and the Anosov problem, Mat. Sbornik 186 (1995), no. 8, 25–66.
[6] V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial

mechanics, Russian Math. Surveys 18 (1963) no. 6, 85–191.
[7] V. I. Arnold, Huygens and Barrow, Newton and Hooke. Pioneers in mathematical analysis

and catastrophe theory from evolvents to quasicrystals. Birkhäuser Verlag, Basel, 1990. 118
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