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ON HYPERPLANE SECTIONS OF PERIODIC SURFACES

ANTON ZORICH

Abstract. We study sections of a periodic two-dimensional surface M̂2
g , g ≥

2, in Rn by a family of parallel hyperplanes. Assuming induced map on ho-
mology H1(M2

g ;R) → H1(T n;R), where T n = Rn/Zn, of the corresponding

underlying surface M2
g is a monomorphism, and assuming n ≥ 4g−3, we show

that generically each unbounded intersection line γ follows one of a finite num-
ber of asymptotic directions; moreover, the deviation from the corresponding
straight line is bounded by lα, where l is the length of a piece of the intersec-
tion line, and the power α is strictly less than 1. We show that 1 + α is the
value of the second Lyapunov exponent of the Teichmüller geodesic flow on
the corresponding stratum of squares of holomorphic differentials.

We prove an even more precise result for a periodic surface induced as the
universal Abelian cover of the image of the Abel-Jacobi map of a surface M2

g ,
g ≥ 2, endowed with a generic complex structure. In this case all sections by
parallel hyperplanes in R2g generically follow one and the same direction. The
deviation is bounded by lα(g), where the power α(g) depends only on the genus
of the surface: 1 + α(g) is the value of the second Lyapunov exponent of the
Teichmüller geodesic flow on the principal stratum of squares of holomorphic
differentials on a surface of genus g.

1. Introduction

The study of plane sections of periodic surfaces in three-dimensional space was
initiated by S.P.Novikov in connection with problems of electron transport, see [10],
[11], [12]. S.P.Novikov conjectured that the nonclosed intersection lines as a rule
follow one and the same asymptotic direction. The conjecture was proved in [19]
for an open dense set of directions of hyperplanes, and recently the validity of
the conjecture was proved for a generic choice of the surface and the family of
parallel hyperplanes [4]. It was noticed in [19] that under certain assumptions on
the direction of a hyperplane, the deviation of any noncompact intersection line
from the asymptotic direction is uniformly bounded by a constant which does not
depend on the choice of the intersection line. According to [4], this is true in the
generic situation as well.

The three-dimensional situation is rather rigid however, as can be shown by
certain elementary topological arguments. A hyperplane section of a periodic sur-
face in Rn has much more flexibility, and three-dimensional topological arguments
are not applicable anymore. However, here one can use tools from dynamics. In
particular, using the results of H.Masur [9] and W.Veech [16], it is easy to prove
that generically (in this paper we always use the notion “generic” in the measure-
theoretical sense) the unbounded hyperplane sections of periodic surfaces follow
one of several asymptotic directions. But now the deviation from this asymptotic
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direction is not bounded by a constant anymore. This paper is a first step in the
description of the deviation.

We give the exact upper bound for the deviation in the generic situation. It turns
out that the deviation is bounded by some power α, 0 ≤ α < 1, of the length of a
piece of intersection line. The power α may obtain only a finite number of values
for a fixed genus of the underlying compact surface. These values are expressed
in terms of the second Lyapunov exponent of the Teichmüller geodesic flow on the
corresponding strata in the space of quadratic differentials.

Presumably, the picture of the deviation is much more precise, see [20] for the
corresponding conjecture.

To describe the hyperplane sections of a periodic surface is the same as to de-
scribe the dynamics of leaves of the corresponding orientable measured foliation on
the closed orientable underling surface. It is convenient to study the topological
dynamics of leaves of a measured foliation using the first return map to a transverse
interval. This first return map is an interval exchange transformation. We use the
ergodic properties of interval exchange transformations, and then we translate them
into the language of measured foliations.

2. Formulation of results

2.1. Topological dynamics of leaves of an orientable measured foliation
on a closed orientable surface. Consider a smooth closed orientable surface
M2

g of genus g ≥ 2. Choose a smooth nondegenerate Riemannian metric gij(x) on
M2

g . For any two points p0, p1 ∈ M2
g , denote by ρp0,p1 the shortest geodesic on M2

g

joining them.
Consider a closed differential 1-form ω on the surface M2

g . Throughout this
section we shall always assume that ω has isolated critical points only; moreover
we shall assume that ω has neither minima, nor maxima, only saddles. Such closed
1-form determines an orientable measured foliation with saddle point singularities.
In this subsection we shall allow ω to have multiple saddles, but we shall assume
that ω does not have saddle connections, in particular it does not have separatrix
loops.

Take some leaf γ of ω and choose a compact connected piece γp0,p1 of it, where
p0 and p1 are the starting point and the endpoint with respect to a fixed orientation
of the leaves. Let l be the length of γp0,p1 By

cp0(l) :=
[
γp0,p1 ∪ ρp1,p0

] ∈ H1(M2
g ;R) (2.1)

we shall denote the homology class of the closed loop obtained by completion of the
path γp0,p1 from p0 to p1 along the leaf γ with the path ρp1,p0 along the shortest
geodesic.

Define a critical leaf as the union of two neighboring separatrix rays correspond-
ing to the same saddle. We do not exclude critical leaves from our considerations, for
example we shall consider cycles cp0(l) corresponding to critical leaves γ, whether
the saddle occurs between the points p0 and p1 or not.

Theorem 1. Under the assumptions formulated above, for almost all orientable
measured foliations with prescribed types of saddles on a closed orientable surface
M2

g the following properties are valid.
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For any leaf γ, and any point p0 ∈ γ

lim
l→∞

1
l
cp0(l) = c

where the nonzero cycle c ∈ H1(M2
g ;R) is proportional to the cycle D[ω] Poincaré-

dual to the cohomology class of the closed 1-form ω determining the foliation.
For any φ ∈ Ann(D[ω]) ⊂ H1(M2

g ;R), φ 6= 0 any leaf γ, and any point p0 ∈ γ,
we have

lim sup
l→∞

log |〈φ, cp0(l)〉|
log l

≤ α < 1

The limits above converge uniformly with respect to γ and p0 ∈ γ, i.e., for any
ε > 0, any φ ∈ Ann(D[ω]) ⊂ H1(M2

g ;R), any leaf γ, and any point p0 ∈ γ there
exists L(ε) such that

|〈φ, cp0(l)〉| ≤ lα+ε

as l > L(ε), where L(ε) does not depend neither on γ nor on p0.

Remark 1. Speaking of “almost all” orientable measured foliations, we keep in
mind the following construction. Let ω be a closed 1-form on M2

g without minima
or maxima, and without saddle connections. Consider sufficiently small smooth per-
turbations of ω preserving the types of the saddles of ω. Consider the corresponding
neighborhood U([ω]) of the cohomology class of ω in the space of relative cohomol-
ogy of M2

g with respect to the set of saddles U([ω]) ⊂ H1(M2
g , {saddles};R). Then

for Lebesgue almost all [ω′] ∈ U([ω]) and for any small perturbation ω′ of ω rep-
resenting the cohomology class [ω′], the statement of the Theorem is valid. The
space H1(M2

g , {saddles};R) plays the role of a local coordinate chart in the space
of orientable measured foliations with prescribed singularities.

Remark 2. Actually for any φ ∈ Ann(D[ω]) ⊂ H1(M2
g ;R), outside of a linear

subspace of nontrivial codimension in Ann(D[ω]), for any leaf γ, and for any point
p0 ∈ γ, the equality

lim sup
l→∞

log |〈φ, cp0(l)〉|
log l

= α

is valid. To avoid overloading of the paper by machinery of ergodic theory, we leave
the proof of this fact for a separate paper.

2.2. The Lyapunov exponents of the Teichmüller geodesic flow. It turns
out that the values of the powers α are the “universal constants” determined by the
dynamics of the Teichmüller geodesic flow. We shall recall only some basic notions
concerning the Teichmüller geodesic flow. One can find a detailed presentation of
the subject in the original papers [5], [9], [17], [7], [18].

Recall that the moduli space Q} of holomorphic quadratic differentials is the
cotangent bundle over the moduli space M} of complex structures on a closed
surface of genus g. The Teichmüller geodesic flow is a flow on Q}.

There is a subspace S} ⊂ Q} of squares of holomorphic differentials in the
moduli space Q}. This subspace is invariant under the Teichmüller geodesic flow.
The other natural subspaces in Q} invariant under the action of the flow are the
subspaces of holomorphic quadratic differentials having the same numbers of zeros
of orders 1, 2, . . . . Thus the moduli space Q} is stratified according to possible
values of the symbol σ(q) = (n(·), ε) of the holomorphic quadratic differential q.
Here n(d), d = 1, 2, . . . , is the number of zeros of q of order d, and ε = +1 or −1
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as quadratic differential q is or is not a square of a holomorphic differential. Recall
that the total number of zeros of a holomorphic quadratic differential taken with
their multiplicities satisfies

∑
d ·n(d) = 4g− 4, where g is the genus of the surface.

Thus the number of strata in Q} is finite.
We shall denote by QD} the moduli subspace of holomorphic quadratic differen-

tials with area one.This subspace is also preserved by the Teichmüller geodesic flow.
The stratification of Q} described above induces a stratification of QD} invariant
under the action of the Teichmüller geodesic flow.

It is proved in the papers [9], [17], [7], [18] that the Teichmüller geodesic flow
is ergodic on each connected component of each stratum in the space QD}. The
corresponding invariant measures are finite and absolutely continuous.

In our current study we are interested only in the strata of squares of holomorphic
differentials. It was noticed in [18] that in general such strata may have several
connected components. Still the number of connected components is always finite
(and presumably rather small). One of the possible ways to enumerate all connected
components of a given stratum is to enumerate them by means of the extended Rauzy
classes, see [18].

We are mostly interested in the principal stratum of squares of holomorphic dif-
ferentials. This stratum consists of the squares of generic holomorphic differentials
that have only simple zeros. This stratum is connected.

We use a parametrization of the Teichmüller geodesic flow, where the leading
Lyapunov exponent equals 2. It is known that the second Lyapunov exponent is
strictly less than the first one; we denote it by 1 + ν2, where 1 ≤ 1 + ν2 < 2.

Consider a closed differential form ω under assumptions preceding Theorem 1.
It is easy to endow the surface M2

g with a complex structure for which the form
ω is the real part of a holomorphic differential. Let q be the square of this holo-
morphic differential. Consider the connected component of the stratum in QD}
containing q. Though q is not uniquely determined by the form ω, the connected
component is uniquely determined. Let 1 + ν2 be the second Lyapunov exponent
of the Teichmüller geodesic flow on this component.

Theorem 2. The power α in Theorem 1 coincides with ν2, where 1 + ν2 is the
second Lyapunov exponent of the Teichmüller geodesic flow on the corresponding
connected component of the corresponding stratum in the moduli space QD} of
quadratic differentials.

We reserve the notation α(g) = ν2(g) for the second Lyapunov exponent 1 + ν2

of the Teichmüller geodesic flow on the principal stratum of squares of holomorphic
differential on a surface of genus g.

In the Appendix, we present the list of all connected components of all strata of
squares of holomorphic differentials for surfaces of genera 2 and 3. We also present
the corresponding approximate values of α obtained by computer experiments.

2.3. Hyperplane sections of periodic surfaces. Consider a smooth surface
M̂2

g ⊂ Rn smoothly embedded in Rn. We assume that the space Rn is supplied
with the natural cubic lattice, and that the surface M̂2

g is periodic, i.e., invariant
under translations over the lattice Zn. We assume that the quotient M2

g = M̂2
g /Zn

is a smooth closed connected orientable surface of genus g ≥ 2, and that the in-
duced mapping on homology H1(M2

g ;R) → H1(Tn;R), where Tn = Rn/Zn, is a
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monomorphism. Moreover, we assume that n ≥ 4g− 3. Finally we assume that we
deal with a generic embedding satisfying the conditions above.

Now consider a generic family of parallel hyperplanes in Rn. and the induced
family of hyperplane sections of M̂2

g . The surface M̂2
g splits into a finite number of

periodic components of two types. The components of the first type are filled with
closed intersection lines, i.e., filled with intersection lines diffeomorphic to a circle.
The components of the other type are filled with nonclosed (i.e., diffeomorphic to
R) intersection lines. We are interested only in the nonclosed intersection lines.

Choose orientation on the intersection lines. Take a nonclosed intersection line
γ on M̂2

g , and fix a point p0 on it. We assume that Rn is provided with a Euclidean
structure; it induces the Riemannian metric on M̂2

g , and hence a parametrization
l on γ. Consider a compact connected piece γp0,p1 of γ, where p0 and p1 are
the starting point and the endpoint respectively for the chosen orientation of the
intersection lines. Let l be the length of γp0,p1 , i.e., p1 = p(l). By ~vp0(l) ∈ Rn we
denote the vector from p0 to p(l) = p1.

Under the quotient by Zn, the foliation by hyperplane sections obtained on
M̂2

g projects to the foliation on M2
g . The components of M̂2

g filled with compact
intersection lines project to components on M2

g filled with closed leaves. Assuming
we are in a generic situation, these components are diffeomorphic either to discs
or to cylinders. The components on M̂2

g filled with noncompact intersection lines
project to the minimal components Mi ⊆ M2

g , i = 1, . . . , q, q ≤ g, where the
leaves are everywhere dense. These components are diffeomorphic to surfaces M2

gi
,

i = 1, . . . , q, with holes. The sum of the genera g1 + · · · + gq equals g. Note that
the topology of this decomposition is stable under small perturbations of a generic
direction of the family of hyperplanes.

Theorem 3. Consider a generic periodic surface M̂2
g ⊂ Rn such that the induced

map H1(M2
g ;R) → H1(Tn;R) is a monomorphism, and n ≥ 4g − 3. Consider the

sections of M̂2
g by a family of parallel hyperplanes. For almost all directions of the

hyperplanes, the following properties are valid.
The number q of periodic components filled with nonclosed intersection lines

satisfies 1 ≤ q ≤ g.
Each periodic component of M̂2

g filled with nonclosed intersection lines deter-
mines an asymptotic direction ~ai such that for any nonclosed intersection line γ in
this component and any point p0 ∈ γ we have

lim
l→∞

1
l
~vp0(l) = ~ai, 1 ≤ i ≤ q

Consider the straight line L√′ passing through the point p0 in the direction ~ai. For

all nonclosed intersection lines γ in the periodic component and all points p0 ∈ γ
we have the inequality

lim sup
l→∞

log
(
dist(p(l),L√′)

)

log l ≤ α(gi) < 1

The limits above converge uniformly with respect to γ and p0 ∈ γ. Here 1 + α(g) is
the value of the second Lyapunov exponent of the Teichmüller geodesic flow on the
principal stratum of squares of holomorphic differentials on the surface of genus g,
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and gi is the genus of the corresponding minimal component of the quotient surface
M2

g /Zn.

Remark 3. For every nonclosed intersection line γ and any point p ∈ γ, we actually
have the equality

lim sup
l→∞

log
(
dist(p(l),L√′)

)

log l = α(gi) ,

see Remark 2.

2.4. Abel-Jacobi periodic surfaces. Now let us assume that the surface M2
g

is provided with a complex structure. Consider the Abel-Jacobi map A : M2
g →

J(M2
g ). We may consider J(M2

g ) as a real 2g-dimensional torus. Note that the
map A is an embedding. Thus we obtain a periodic surface M̂2

g in R2g induced
in the universal abelian cover of J(M2

g ). For these particular periodic surfaces the
following theorem is valid.

Theorem 4. Consider generic complex structure on a surface M2
g of genus g, the

universal abelian cover of the Abel-Jacobi map

M̂2
g −−−−→ R2g

y
y

M2
g −−−−→ T 2g = J(M2

g )

and the intersection lines of periodic surface M̂2
g with a family of parallel hyper-

planes in R2g. Under a generic choice of direction of hyperplanes, all intersection
lines follow one and the same direction:

lim
l→∞

1
l
~vp0(l) = ~a

Consider the straight line L√′ passing through some point p0 ∈ γ in direction ~a.

For all intersection lines γ and all points p0 ∈ γ, we have

lim sup
l→∞

log
(
dist(p(l),L√′)

)

log l ≤ α(g) < 1

The limits above converge uniformly with respect to γ and p0 ∈ γ. Here 1 + α(g) is
the value of the second Lyapunov exponent of the Teichmüller geodesic flow on the
principal stratum of squares of holomorphic differentials on a surface of genus g.

Remark 4. For every nonclosed intersection line γ and any point p ∈ γ, we actually
have the equality

lim sup
l→∞

log
(
dist(p(l),L√′)

)

log l = α(g) ,

cf. Remarks 2 and 3.

The theorem above is an answer to a question of I.K.Babenko.
We prove Theorem 1 in section 3. Theorem 3 is a corollary of Theorem 1; it is

proved in section 4. At the end of section 3 we also prove Theorem th:AJ, which
immediately follows from Theorem 1. In the Appendix we present the list of all
connected components of all strata of squares of holomorphic differentials for the
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surfaces of genera 2 and 3. We also present the corresponding approximate values
of α obtained by computer experiments.

3. Topological dynamics of leaves of an orientable measured
foliation on a closed orientable surface

In this section we prove Theorem 1. We start with several preliminary comments.
For any two points p0, p1 ∈ M2

g fix some path ρp0,p1 ⊂ M2
g joining them, i.e.,

ρp0,p1 : [0; 1] → M2
g , is a continuous map such that ρp0,p1(0) = p1, ρp0,p1(1) = p2.

We do not assume that ρp0,p1 depends continuously on the parameters p0 and
p1, but we assume that the lengths of the paths (in terms of the metric gij) are
uniformly bounded:

sup
p0,p1∈M2

g

l(ρp0,p1) < ∞ (3.1)

In particular, by defining ρp0,p1 as the shortest geodesic joining p0 and p1 we sat-
isfy (3.1).

Consider another family ρ′p0,p1
satisfying condition (3.1). The pair ρp0,p1 , ρ′p0,p1

defines the difference map dρ,ρ′ : M2
g × M2

g → H1(M2
g ;Z). Consider a norm on

H1(M2
g ;Z) coming from some Euclidean structure. Note that (3.1) implies the

following obvious

Lemma 1. The image of the difference map dρ,ρ′ is bounded in H1(M2
g ;Z).

Thus if Theorem 1 is valid for any particular choice of the family ρp0,p1 , it is
valid for any other family satisfying (3.1).

Throughout this section we always consider only those closed 1-forms that give
rise to uniquely ergodic foliations without saddle connections (and separatrix loops
in particular).

3.1. Asymptotic cycle. Now we can prove Theorem 1. The idea of the proof
is to reduce the two-dimensional problem of dynamics of leaves of an orientable
measured foliation to the one-dimensional problem of dynamics of the first return
map to some transverse interval. In this subsection we prove the first part of
the Theorem concerning the asymptotic cycle. In fact, part of the statement is
widely known in folklore. What is new in our proof is uniform convergence to the
asymptotic cycle for all leaves.

Note that a generic orientable measured foliation as described above is minimal,
i.e., every leaf is dense on the surface. Thus taking a transverse interval X to
the foliation, we get the first return map T : X → X. The map T is an interval
exchange transformation.

Recall the notion of interval exchange transformation. Consider an interval X,
and cut it into m subintervals X1 t · · · t Xm of lengths λ1, . . . , λm. Now glue
the subintervals together in a different order according to some permutation π ∈
Sm and preserving the orientation. We again obtain an interval X of the same
length, and hence we get a mapping T : X → X, which is called interval exchange
transformation. Our mapping is piecewise linear, and it preserves the orientation
and Lebesgue measure. It is singular at the cut points unless two consecutive
intervals separated by a cut point are mapped to consecutive intervals in the image.

Define the following piecewise-constant function c(x) on X with values in the
first homology group H1(M2

g ;R). Let x ∈ Xj , 1 ≤ j ≤ m. Consider the following
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closed path on M2
g : we start at the left endpoint of the interval X and follow the

interval X till we get to the point x. We continue by following the leaf γ passing
through x in the positive direction until we get to the interval X for the first time;
note that by definition we get to the point T (x). We complete by joining the point
T (x) to the left endpoint of X. We define the cycle c(x) ∈ H1(M2

g ;R) to be the
cycle represented by the indicated closed path:

c(x) :=
[

[0;x] ∪ γx,Tx ∪ [Tx, 0]
] ∈ H1(M2

g ;R) (3.2)

Note that for any j, 1 ≤ j ≤ m, and for any two points x1, x2 ∈ Xj we have
c(x1) = c(x2). We denote the corresponding cycle by cj ,

cj := c(xj) where xj is any point of Xj (3.3)

Recall that according to the results of [9], [16] almost all interval exchange trans-
formations are uniquely ergodic with respect to Lebesgue measure on the interval.
Assume for convenience that the length of the interval X is normalized, |X| = 1.
Then applying the ergodic theorem to the function c(x), we get

lim
k→∞

1
n

n−1∑

k=0

c(T k(x)) =
m∑

j=1

λjcj := c (3.4)

for almost all x ∈ X.
According to [14], the asymptotic cycle c in (3.4) is proportional to the Poincaré

dual D[ω], where [ω] is the cohomology class of the closed 1-form ω determining
the foliation.

In (3.4) we have a “discrete parametrization” of the leaf of our foliation by the
number n of returns to the transversal. Let us replace the discrete parametrization
by the continuous one, by the length of corresponding piece of leaf. Consider a
nondegenerate Riemannian metric on the initial surface M2

g . Define the following
function l(x) on X. Let γ be the leaf passing through the point x ∈ X. Consider
the piece γx,Tx of γ between the points x and T (x); let

l(x) := l(γx,Tx) (3.5)

be its length. The function l(x) is bounded

0 < lmin ≤ l(x) ≤ lmax < ∞ for all x ∈ X (3.6)

By l̄ we denote the ergodic mean of l(x):

lim
k→∞

1
n

n−1∑

k=0

l(T k(x)) =
∫

X

l(x) dx := l̄ (3.7)

Remark 5. The statement of the ergodic theorem can be slightly strengthened for a
generic interval exchange transformation. It follows from [22] that the limits (3.4)
and (3.7) converge for all points x ∈ X; moreover the convergence is uniform.

For any point p ∈ M2
g define x(p) ∈ X as follows. We emit the leaf γ from the

point p in the negative direction. We define x(p) to be the first intersection of γ
with the transversal X. If p ∈ X, then we define x(p) := p ∈ X. If the leaf γ hits
one of the saddles before meeting the transversal X, by convention we prolong γ
along the next separatrix in the clockwise direction. For each saddle choose some
incoming separatrix; if p is already a saddle point, we use this separatrix to follow.
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Define the path ρp0,p1 joining two points p0, p1 ∈ M2
g as follows. We start at p0,

then we follow the leaf γ passing through p0 in the negative direction untill we get
to x(p0) ∈ X. Then we join x(p0) with the left endpoint of X along the transversal
X. Then we join the left endpoint of X with x(p1) along the transversal X. Finally
we join x(p1) with p1 along the corresponding leaf. Due to (3.6), condition (3.1) is
satisfied.

Consider a point p0 in M2
g , a leaf γ passing through p0, and a piece γp0,p1 of the

leaf γ of length l emitted from p0 in the positive direction, where p1 is its endpoint.
Consider the piece γx(p0),x(p1) of the same leaf bounded by the points x(p0) and
x(p1); let l̃(p0, l) be its length. By construction and due to definition (2.1), we have

cp0(l) = cx(p0)(l̃) (3.8)

Note that (3.6) implies

|l̃(p0, l)− l| ≤ lmax (3.9)

Note that by construction there is some nonnegative integer n = n(p0, l) such that
x(p1) = Tn(x(p0)), and

l̃(p0, l) =
n−1∑

k=0

l(T k(x(p0))) (3.10)

Finally note that (3.8) and definition (3.2) imply

cp0(l) =
n−1∑

k=0

c(T k(x(p0))) (3.11)

Hence we get

lim
l→∞

1
l
cp0(l) = lim

l→∞
1

l̃(p0, l)
cp0(l) = lim

l→∞
n(p0, l)
l̃(p0, l)

1
n(p0, l)

cp0(l)

= lim
n→∞

( 1
n

n−1∑

k=0

l(T k(x(p0)))
)−1

lim
n→∞

1
n

n−1∑

k=0

c(T k(x(p0))) (3.12)

Taking into consideration (3.4) and (3.7) we obtain the desired relation:

lim
l→∞

1
l
cp0(l) =

1
l̄
c (3.13)

Moreover, according to Remark 5, the limit above converges uniformly for all p0 ∈
M2

g . We have proved the first part of Theorem 1.

3.2. Deviation from the asymptotic cycle. Recall the result from [22] con-
cerning the error term for the ergodic sum of type (3.4) corresponding to generic
interval exchange transformation. First we must recall several more notions con-
cerning interval exchange transformations.

Recall that the permutation π ∈ Sm is reducible if there exists j, 1 ≤ j < m,
such that π{1, . . . , j} = {1, . . . , j}. Otherwise π is irreducible.

The space of interval exchange transformations having the same permutation
π ∈ Sm forms a standard simplex ∆m−1 ⊂ Rm, ∆m−1 = {λ ∈ Rm | λj ≥ 0;λ1 +
· · · + λm = 1}. Note that interval exchange transformations defined by the same
permutation π and by proportional vectors λ ∼ λ′ are conjugate, so we normalize
the vector λ by setting λ1 + · · ·+ λm = 1.
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Each irreducible permutation π determines the Rauzy class: the set of permu-
tations R(π) ⊂ Sm, π ∈ R, see [13]. Each Rauzy class determines a collection of
numbers θ1 > θ2 ≥ · · · ≥ θg ≥ 0. These numbers are Lyapunov exponents of some
natural multiplicative cocycle on the space of interval exchange transformations
∆m−1 ×R(π), see [21].

By χi(x, n) we denote the number of visits of the trajectory x, T (x), . . . , Tn−1(x)
to the subinterval Xj under iterations of the interval exchange transformation T .
In other words

χj(x, n) =
n−1∑

k=0

χXj (T
k(x))

where χXj
is the characteristic function of the subset Xj ⊂ X.

Denote by χ(x, n) the vector (χ1(x, n), . . . , χm(x, n)). The following theorem is
a reformulation of the main result of [22].

Theorem 5. For any irreducible permutation π of more than two elements and for
any λ from a set of full Lebesgue measure in ∆m−1, the following property is valid.
Consider the interval exchange transformation T (λ, π) defined on the unit interval
X. For any linear function f ∈ Ann(λ) ⊂ (Rm)∗ and any ε > 0 there exists an
integer N(ε) such that for any x ∈ X, and any n > N(ε) we have

log |〈f, χ(x, n)〉|
log n

≤ θ2(R(π))
θ1(R(π))

+ ε

The number N(ε) depends on ε and on the pair (λ, π), but does not depend on the
point x ∈ X.

Hence the following limit exists and satisfies the following bound

lim sup
n→+∞

log |〈f, χ(x, n)〉|
log n

≤ θ2(R(π))
θ1(R(π))

Now consider the map

C : Rm → H1(M2
g ;R), (v1, . . . , vm) 7→ v1c1 + · · ·+ vmcm

Here the cycles ci are defined by (3.3). Note that by construction the vector λ
is mapped to the asymptotic cycle c (see (3.4)). Hence the adjoint map C∗ maps
Ann(c) to Ann(λ). Note that

C(χ(x, n)) =
n−1∑

k=0

c(T k(x))

Since the asymptotic cycle c is nonzero, and since it is proportional to the cycle
D[ω], c ∼ D[ω], Theorem 5 implies

Corollary 1. For any irreducible permutation π of more than two elements and for
any λ from a set of full Lebesgue measure in ∆m−1, the following property is valid.
Consider interval exchange transformation T (λ, π) defined on the unit interval X.
For any cocycle φ ∈ Ann(D[ω]) ⊂ H1(M2

g ;R) and any ε > 0 there exists an integer
N(ε) such that for any x ∈ X, and any n > N(ε) we have

log |〈φ,
∑n−1

k=0 c(T k(x))〉|
log n

≤ θ2(R(π))
θ1(R(π))

+ ε

The number N(ε) depends on ε and on the pair (λ, π), but does not depend on the
point x ∈ X.
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Hence the following limit exists and satisfies the following bound

lim sup
n→+∞

log |〈φ,
∑n−1

k=0 c(T k(x))〉|
log n

≤ θ2(R(π))
θ1(R(π))

Applying the same trick as in (3.9)–(3.12), we derive the second part of Theo-
rem 1 from Corollary 1. Theorem 1 is proved.

4. Hyperplane sections of periodic surfaces

Consider a smooth periodic surface M̂2
g ⊂ Rn, and a family of parallel hyper-

planes. The family of parallel hyperplanes can be defined as the family of levels of
a linear function h ∈ (Rn)∗. Now consider the quotient surface, i.e., the compact
orientable surface M2

g ⊂ Tn embedded in the n-dimensional torus Tn = Rn/Zn.
Consider the closed differential 1-form dh on Tn. Restrict the form dh to M2

g ,
setting ω := dh|M2

g
.

Consider the commutative diagram

M̂2
g −−−−→ Rn

y
y

M2
g −−−−→ Tn = Rn/Zn

By construction, the intersection lines of our hyperplanes with M̂2
g are projected

to the leaves of the foliation determined by ω on M2
g .

Assuming that the linear function h determining the direction of the hyperplanes
is generic, we may assume that the form ω has only isolated nondegenerate singu-
larities. In particular, we may assume that all the saddles are simple. We can also
assume that ω has maximal rank, i.e., all the periods of the form are rationally
independent.

In this section must to consider the case when the form ω may have minima and
maxima. It is easy to see that the foliation defined by the form ω generically does
not have saddle connections between different saddles. However, now it may have
stable separatrix loops. In this case the surface is split into several components
filled with closed leaves and several minimal components filled with everywhere
dense leaves. We are interested only in the components of the second type. We
apply the results of section 3 to these ergodic components.

4.1. Decomposition of the surface into components. In this subsection we
consider a decomposition of the surface into components, following [8].

A connected component of a singular leaf of ω passing through a saddle point
may have a loop γ, or even two loops. The integral of ω over γ is obviously zero.
Since ω is of maximal rank, it follows that the cycle γ is homologous to zero,
[γ] = 0, [γ] ∈ H1(M2

g ,Z). Hence, when we cut M2
g along γ, we obtain two closed

components M2
g = W1 ∪W2. It may happen that the restriction ω|W1 or ω|W2 is

exact on one of the components. The component W on which the form is exact may
contain other components W ′

i , obtained by the cuts over loops on leaves passing
through the other saddles inside W . Following [1], we call a maximal component
W of that type a trap. Since by definition ω is exact on any trap, all leaves are
closed inside the trap. Each trap is homeomorphic to a disk D2.
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Let us cut off all the traps. Since we did not lose any nontrivial cycles, we obtain
a surface M ′

g of genus g with several holes. The boundaries of the holes are closed
loops on singular leaves of ω, i.e., separatrix loops. When g > 1, we may still have
closed leaves inside M ′

g. Note that we have gotten rid of minima and maxima, all
critical points of ω on M ′

g are of saddle type only. Let us count the number of inner
saddles, without taking into consideration the saddles that belong to the cuts (we
remind the reader that we are assuming that ω does not have multiple saddles).

Lemma 2. There are 2g − 2 inner saddles of ω on M ′
g.

Proof. Let us temporarily paste the holes in M ′
g with disks. Consider a smooth

extension of ω to the disks, placing a single additional critical point on each disk:
maximum or minimum. Count the Euler characteristic of the closed surface of
genus g thus obtained as the algebraic sum of numbers of critical points of our
extended 1-form:

2g − 2 = (#inner saddles)
+ [(#saddles on the cuts)− (#minima + #maxima)]

Since by construction there is a one-to-one correspondence between saddles on the
cuts and cuts, the number inside the rectangular brackets equals zero. ¤

Let us proceed by performing surgery on M ′
g. Some of the 2g − 2 inner saddles

on M ′
g may have loops of singular leaves passing through them. Let us cut M ′

g

along all such loops. We recall, that any such loop γ is homologous to zero in
M ′

g. Consider the connected components M2
(1), . . . ,M

2
(q) thus obtained for which ω

restricted to M2
(i) is not exact. Each M2

(i) is a surface of genus gi ≥ 1 with several
holes.

Lemma 3. The following equation holds

g1 + · · ·+ gq = g

Proof. To prove Lemma 3 it is sufficient to show that we can construct a basis of
cycles on M2

g that does not intersect any cuts γj . Since all γj are homologous to
zero, the desired basis can be easily constructed. ¤

By necks we call maximal components Nq obtained by cutting M ′
g along loops

of critical leaves for which the restriction ω|Nq is exact. Each neck is diffeomorphic
to a cylinder with several holes. Necks are of no interest for us, since all leaves are
closed on the necks.

It is easy to see (cf. Lemma 2) that the number of inner saddles on the component
M2

(i), of genus gi, i = 1, . . . , q, equals 2gi − 2. We shall call them essential saddles.
Recall that we assume the initial embedding M2

g → Tn to be in general po-
sition. Consider a small perturbation h′ ∈ (Rn)∗ of the initial linear function
h determining the closed 1-form ω. The corresponding closed 1-form ω′ on M2

g

defines a new decomposition of the surface into components. The critical points
of ω′ are just small deformations of the initial ones. In particular, they are in
one-to-one correspondence with those of ω; the new decomposition is isotopic to
the one determined by ω. Consider some minimal component M2

(i), 1 ≤ i ≤ q,
and the collection of the essential saddles inside it. We get a well-defined map
U(h) → H1(M2

(i), {essential saddles};R) in a small neighborhood U(h) ⊂ (Rn)∗ of
the initial linear function h.



ON HYPERPLANE SECTIONS OF PERIODIC SURFACES 13

Lemma 4. For a generic choice of the embedding and of the linear function h, the
point h is a regular point of the map U(h) → H1(M2

(i), {essential saddles};R) for
every minimal component M2

(i).

Proof. Since by assumption the map H1(M2
g ;R) → H1(Tn;R) is a monomorphism,

the map H1(M2
(i);R) → H1(Tn;R) is also a monomorphism. Note that

dim H1(M2
(i), {essential saddles};R) = 4gi − 3 ≤ n (4.1)

where the inequality above is valid by assumption. Thus, supposing that we have a
generic embedding M2

g → Tn, and a generic linear function h ∈ (Rn)∗, we see that
the essential saddles are in general position. Hence the induced map

H1(M2
(i), {essential saddles};R) → Rn (4.2)

is a monomorphism. The adjoint map to the map above is the tangent map to the
map U . Lemma 4 is proved. ¤

Corollary 2. For almost all linear functions h ∈ (Rn)∗ from a sufficiently small
neighborhood V (h) ⊂ (Rn)∗ of h, the measured foliation induced on each minimal
component M2

(i) has all the properties listed in Theorem 1.

Indeed, it is easy to see that the presence of holes in M2
(i) corresponding to the

cuts over separatrix loops does not affect Theorem 1. Theorem 3 now follows from
Theorem 1.

∗ ∗ ∗
We complete this section with the proof of Theorem 4.

Proof. First note that the map A : M2
g → J(M2

g ), where g ≥ 1, is actually an
embedding. Indeed, assume that the images of two different points P1 and P2

coincide. Then the image of the divisor P2 − P1 vanishes: A(P2 − P1) = 0. Hence
due to Abel’s theorem, one can find a meromorphic function on M2

g with a simple
zero at P2 and a simple pole at P1, having no other zeros and poles. But then M2

g

is equivalent to CP 1, which leads to a contradiction.
Let z1, . . . , zg be the standard coordinates in the complex g-dimensional torus

J(M2
g ). The induced forms A∗(dzk) generate a basis of holomorphic differentials

on M2
g . Consider the universal abelian cover of J(M2

g ) as the real space R2g. The
embedding A induces an isomorphism between the dual space (R2g)∗ and the space
of harmonic differentials: for every linear function h ∈ (R2g)∗ the image A∗(dh) is a
harmonic differential on M2

g . Note that for almost all h ∈ (R2g)∗ the corresponding
harmonic differential shall have 2g − 2 nondegenerate saddles.

Consider the principal stratum of squares of holomorphic differentials; we recall,
that this stratum is connected. Due to Fubini’s theorem, we can reformulate The-
orem 1 as follows. Instead of claiming the validity of the corresponding statements
for “almost all measured foliations with prescribed singularities”, we can say that
these statements are valid for the closed 1-forms obtained as the real part of a
generic holomorphic differential. In other words, we can say that given a generic
complex structure and a generic harmonic differential corresponding to this com-
plex structure, Theorem 1 is valid for the orientable measured foliation defined by
the harmonic differential. Theorem 4 is proved. ¤
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5. Appendix. Second Lyapunov exponent of the Teichmüller geodesic
flow

The following proposition is known in the folklore (it can be extracted from [16],
[17], and [18]; from [15], or by combining results from [18] and [21]:

Consider a connected component of some stratum of squares in the space of
holomorphic quadratic differentials. All quadratic differentials in the stratum have
the same number of saddles; we denote this number by s. Let g be the genus of the
surface.

Proposition 1. The collection of Lyapunov exponents of the Teichmüller geodesic
flow confined to a connected component of the stratum of squares has the following
form:

− 2 < −(1 + ν2) ≤ −(1 + ν3) ≤ · · · ≤ −(1 + νg) ≤ −1 = · · · = −1︸ ︷︷ ︸
s−1

≤

− (1− νg) ≤ · · · ≤ −(1− ν2) < 0 < (1− ν2) ≤ · · · ≤ (1− νg)

≤ 1 = · · · = 1︸ ︷︷ ︸
s−1

≤ (1 + νg) ≤ (1 + νg−1) ≤ · · · ≤ (1 + ν2) < 2

As we already indicated in subsection 3.2, a uniquely ergodic measured foliation
determines an interval exchange transformation on a transverse segment. Consider
the corresponding permutation π. Each irreducible permutation π determines the
Rauzy class: a set of permutations R(π) ⊂ Sm, π ∈ R, see [13]. Each Rauzy class
determines a collection of numbers θ1 > θ2 ≥ · · · ≥ θg ≥ 0. These numbers are the
Lyapunov exponents of some natural multiplicative cocycle on the space of interval
exchange transformations ∆m−1 ×R(π), see [21].

An extended Rauzy class, see [18], is obtained as the union of several Rauzy
classes. Having an orientable measured foliation, one can define it as follows.
Consider the interval exchange transformations induced on all possible intervals
transverse to the foliation. Chose those of them that give rise to exchanges of the
minimal possible number of subintervals. Consider all the corresponding permuta-
tions. They form the extended Rauzy class.

As we already mentioned, the extended Rauzy classes are in one-to-one corre-
spondence with the connected components of the strata of squares of holomorphic
differentials in the moduli space QD} (see [18]).

Lemma 5. The Lyapunov exponents of the Teichmüller geodesic flow on a con-
nected component of a stratum of squares corresponding to the extended Rauzy class
Rex are related to the Lyapunov exponents discussed above as follows:

νk =
θk(R)
θ1(R)

k = 2, . . . , g

where R ⊆ Rex is any Rauzy class from the extended Rauzy class Rex.

Lemma 5 above is an elementary corollary of the results in [18] and in [21].
Lemma 5 allows to evaluate the approximate values of the second Lyapunov

exponent of the Teichmüller geodesic flow by computer experiments (cf. results
of similar computer experiments dealing with Lyapunov exponents of multidimen-
sional continued fraction algorithms [3], [2]).
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Below we present the list of all Rauzy classes with the information on θ1 and
θ2 for all connected components of all strata of squares of holomorphic differen-
tials corresponding to genera 2 and 3. Horizontal lines separate extended Rauzy
classes. We indicate the multiplicities of zeros of the corresponding holomorphic
differentials. The symbol of the quadratic differential corresponding to a holomor-
phic differential with zeros of orders (d1, . . . , dn) is (2d1, . . . , 2dn; +1). The induced
measured foliation has n saddles with 2d1 + 2, . . . , 2dn + 2 prongs correspondingly.

For genus g = 2, both strata of squares of the holomorphic differentials are con-
nected. For genus g = 3, the strata corresponding to symbols (8;+1) and (4, 4;+1)
have two connected components; the other strata are connected (see also [18]).
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Genus g = 2

Representative Cardinality Lyapunov Ratio Types
of Rauzy class of Rauzy exponents of

class zeros

π Card R(π) θ1(π) θ2(π) α =
θ2(π)
θ1(π)

(4, 3, 2, 1) 7 0.48679 0.16227 0.3333 (2)

(5, 4, 3, 2, 1) 15 0.37716 0.18857 0.5000 (1, 1)

Genus g = 3

(6, 5, 4, 3, 2, 1) 31 0.30830 0.18980 0.6156 (4)

(6, 5, 4, 2, 1, 3) 134 0.30322 0.12671 0.4179 (4)

(2, 5, 1, 3, 7, 4, 6) 509 (3, 1)0.25580 0.13307 0.5202(7, 6, 5, 4, 1, 3, 2) 261 (1, 3)

(7, 6, 5, 4, 3, 2, 1) 63 0.26096 0.17961 0.6883 (2, 2)

(7, 6, 5, 2, 1, 4, 3) 294 0.25422 0.10722 0.4218 (2, 2)

(3, 1, 6, 2, 4, 8, 5, 7) 1258 (1, 2, 1)0.22017 0.11882 0.5397(8, 7, 6, 5, 3, 2, 1, 4) 919 (2, 1, 1)

(9, 8, 3, 6, 5, 4, 7, 2, 1) 1255 0.19292 0.10644 0.5517 (1, 1, 1, 1)



ON HYPERPLANE SECTIONS OF PERIODIC SURFACES 17

6. Acknowledgments

I thank M. Kontsevich for helpful discussions. I am grateful to Forschungsinstitut
für Mathematik at ETH and to IHES for their hospitality during the preparation
of this paper.

References

[1] V.I.Arnold, Topological and ergodic properties of closed 1-forms with rationally independent
periods, English transl. in Functional Anal. Appl. 25 (1991).

[2] V.Baladi and A.Nogueira, Lyapunov exponents for non-classical multidimensional continued
fraction algorithms, Preprint (1995), 1–19.

[3] P.R.Baldwin, A convergence exponent for multidimensional continued-fraction algorithms,
Journal of Statistical Physics 66 5/6 (1992), 1507–1526.

[4] I.A.Dynnikov, Proof of Novikov’s conjecture on the semiclassical motion of an electron, in
“Solitons, Geometry, and Topology: on the Crossroad”, V.M.Buchstaber and S.P.Novikov
(eds.), Translations of the AMS, Ser. 2, vol. 179, AMS, Providence, RI, 1997.

[5] J.Hubbard and H.Masur, Quadratic differentials and measured foliations, Acta Math. 142
(1979), 221–274.

[6] M.Keane, Interval exchange transformations, Math. Z., 141, (1975), 25–31.
[7] S. Kerckhoff, H. Masur, and J.Smillie, Ergodicity of billiard flows and quadratic differentials,

Ann. of Math., 124 (1986), 293–311.
[8] A.G.Maier, Trajectories on closed orientable surfaces, Math. Sbornik, 12 (54) (1943), 71–84

(in Russian).
[9] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math., 115:1

(1982), 169–200.
[10] S.P.Novikov, The Hamiltonian formalism and a multi-valued analogue of Morse theory, Rus-

sian Math. Surveys, 37:5, (1982), 1–56.
[11] S.P.Novikov, Critical points and level surfaces of multivalued functions, Proc. of the Steklov

Inst. of Math., 166 (1984).
[12] S.P.Novikov, The semiclassical electron in a magnetic field and lattice. Some problems of

low dimensional “periodic” topology, Geometric and Functional analysis, 5, No. 2, (1995),
434–444.

[13] G.Rauzy, Echanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315–328.
[14] S.Schwartzman, Asymptotic cycles, Annals of Mathematics 66 (1957), 270–284.
[15] J.Smillie, Private communication.
[16] W.A.Veech, Gauss measures for transformations on the space of interval exchange maps,

Annals of Mathematics 115 (1982), 201–242.
[17] W.A.Veech, The Teichmüller geodesic flow , Annals of Mathematics, 124 (1986), 441–530.
[18] W.A.Veech, Moduli spaces of quadratic differentials, Journal d’Analyse Mathématique, bf 55
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