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Abstract. We present an approach for counting the Teichmüller volumes of the
moduli spaces of Abelian differentials on a Riemann surface of genus g. We show
that the volumes can be counted by means of counting the “integer points” in the
corresponding moduli space. The “integer points” are represented by square tiled

surfaces – the flat surfaces tiled by unit squares. Such tilings have several conical
singularities with 8, 12, . . . adjacent unit squares. Counting the leading term in the
asymptotics of the number of tilings having at most N unit squares, we get the
volumes of the corresponding strata of the moduli spaces.
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1 Motivations

The situation in which one can tell nothing about a concrete dynamical sys-
tem, while one can give a reasonable description of a generic representative
of some family of dynamical systems is quite common. For numerous two-
dimensional dynamical systems like billiards in rational polygons, or mea-
sured foliations on Riemann surfaces the corresponding family of dynamical
systems is represented by some subvariety of the moduli space of Abelian
differentials on a Riemann surface. Moreover, the dynamical characteristics
of a generic two-dimensional dynamical system of such (parabolic) type are
usually expressed in terms of corresponding geometric or dynamical charac-
teristics of the moduli space.

As an illustration one can consider the study of the growth rate of the
number of closed trajectories of a rational billiard, or the similar problem of
the study of the number of geodesic saddle loops or geodesic saddle connec-
tions on a translation surface. Recently A. Eskin and H. Masur have proved
the existence of exact quadratic asymptotics cL2 for the number of types of
simple closed geodesics and for the number of saddle connections of bounded
length l ≤ L on a typical translation surface of a given geometrical type [1].
The constant in this quadratic asymptotics is expressed in terms of the vol-
umes of the corresponding strata in the moduli space of Abelian differentials.
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Another illustration is related to the study of the topological dynamics
of a generic orientable measured foliations on a Riemann surface. It is well
known that the random walk on a plane has zero mean; typical deviation
from the mean after N steps is of the order

√
N = N0.5. The power ν which

is responsible for the deviation Nν of a long leaf of a generic measured foli-
ation from the ergodic mean is determined by the corresponding Lyapunov
exponent 1+ν of the Teichmüller geodesic flow – the natural flow on the mod-
uli space of quadratic differentials [8]. The Kontsevich formula for the sum
of relevant Lyapunov exponents involves the volumes of the corresponding
strata in the moduli space of Abelian differentials.

Here I would like to present an approach for the calculation of these
volumes. This approach was proposed by A. Eskin and H. Masur, and inde-
pendently by M. Kontsevich and the author, about two years ago. During
these two years the principal advance in the calculation of the volumes was
achieved in a very recent work of A. Eskin and A. Okounkov [2]. They used
a technique of representation theory of the symmetric group, which allowed
them to write the generating function, and to obtain the desired explicit
rational numbers for numerous low-dimensional strata. However, in some as-
pects the more geometric initial approach has certain advantages, and thus
proves its right for existence. Here we illustrate this approach by treating the
two easiest examples.

2 Translation Surfaces Versus Flat Surfaces

The only closed Riemann surface which admits a flat metric is a torus. How-
ever, a Riemann surface of arbitrary genus can be endowed with a flat metric
having a finite number of cone-type singularities. Say, the surface of a cube
gives an example of a flat sphere having eight cone-type singularities with
the cone angle 3π/2 at each of them. Consider a flat Riemann surface and
puncture the singularities. We get a monodromy representation of the fun-
damental group of the punctured surface into the group of rotations SO(2):
parallel transport in the flat structure along a loop turns a vector by some
angle. Translation surfaces are those flat Riemann surfaces which have trivial
monodromy: a parallel transport of a vector along any smooth closed path
on a translation surface brings a vector to itself. Note that all cone angles of
a translation surface are integer multiples of 2π.

One may also think of translation surface as of a surface glued from do-
mains of the Euclidean plane using parallel translations. Consider the Eu-
clidean plane as a complex plane C with a complex coordinate z. The trans-
lation surface with punctured singularities gets the canonical complex struc-
ture. It is easy to check that this complex structure extends to the surface
without punctures. Moreover, by construction we can chose coordinate charts
such that all the gluing rules are just translations: z′ = z +const. Consider a
holomorphic 1-form dz, dz′, . . . in every such coordinate chart. Since on the
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Fig. 1. Gluing the corresponding segments of the boundary by vertical and hori-
zontal translations we get a translation surface. In this case it has genus g = 2 and
a single singular point of the flat metric with a cone angle 6π.

overlaps dz = dz′, we get a globally defined holomorphic 1-form ω on the
Riemann surface. Consider a singular point of the initial flat metric with a
cone angle 2(n + 1)π. One can check that the form ω has zero of order n at
this point, i.e. ω can be represented as ω = wndw in a local coordinate w.

Conversely, any holomorphic 1-form ω (or, what is the same, any Abelian

differential) on a Riemann surface determines the structure of a translation
surface. To see this structure it is sufficient to chose the coordinate charts on
the surface (with punctured zeros of ω) in which ω has the form ω = dz in
a local coordinate. Since dz = dz′ on the overlaps of the charts, we see that
z = z′ + const.

Note that any two Abelian differentials ω1, ω2 corresponding to the same
translation structure differ by a constant factor ω1 = eiϕω2. To fix this fac-
tor it is sufficient to chose a vertical direction in the flat structure of the
translation surface.

We see that studying families of translation surfaces we are essentially
studying the moduli spaces of Abelian differentials.

3 Moduli Spaces of Abelian Differentials

Consider a Riemann surface M2
g of genus g. An Abelian differential ω is a

holomorphic 1-form ω = ω(z)dz on M2
g . An Abelian differential has 2g − 2

zeros (counting multiplicities) on M2
g .

Consider the moduli space of pairs (M2
g , ω), where M2

g is a Riemann
surface of genus g and ω is an Abelian differential on it. The moduli space of

Abelian differentials on a Riemann surface of genus g is naturally stratified by
degrees of zeros of Abelian differentials. Abelian differentials in the principal
stratum have 2g − 2 simple zeros; Abelian differentials in the stratum of
complex codimension one have one zero of multiplicity 2 and 2g − 4 simple
zeros, etc. We denote the strata of Abelian differentials by H(d1, . . . , dn)
indicating the degrees d1, . . . , dk of zeros, where d1 + · · · + dk = 2g − 2.

Consider an Abelian differential ω having zeros of orders di at the points
P1, . . . , Pk of the Riemann surface M2

g . Consider the period map from a
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neighborhood of (ω) ∈ H(d1, . . . , dn) into H1(M2
g , {P1, . . . , Pn}; C), i.e. into

the first cohomology group of the Riemann surface M2
g relative to the sub-

set {P1, . . . , Pn} ⊂ M2
g . We assign to an Abelian differential ω an element

[ω] of the relative cohomology group H1(M2
g , {P1, . . . , Pn}; C) by integrat-

ing ω along closed paths and along paths connecting points Pi. Locally the
period map gives a one-to-one correspondence between H(d1, . . . , dn) and
an open domain in the vector space H1(M2

g , {P1, . . . , Pn}; C). Moreover, the
gluing rules for these linear coordinate charts on H(d1, . . . , dn) correspond to
those automorphisms of the cohomology H1(M2

g , {P1, . . . , Pn}; C) which are
induced by the diffeomorphisms of M2

g .
Note that the cohomology group with complex coefficients contains a

lattice H1(M2
g , {P1, . . . , Pn}; Z ⊕ i Z) ⊂ H1(M2

g , {P1, . . . , Pn}; C) invariant
under these automorphisms. An Abelian differential (ω) ∈ H(d1, . . . , dn) rep-
resents an integer point of the moduli space if its image under the period
map belongs to the lattice.

Consider a linear volume element in H1(M2
g , {P1, . . . , Pn}; C) and normal-

ize it so that the volume of a unit cube of the lattice is equal to one. Since the
changes of coordinates on H(d1, . . . , dn) are linear transformations preserving
the lattice, the volume element in the vector space H1(M2

g , {P1, . . . , Pn}; C)
induces the volume element dµ on H(d1, . . . , dn).

Consider an Abelian differential ω on a Riemann surface M2
g ; let Ai, Bi be

its periods. The area S(ω) of M2
g measured in the flat structure determined

by ω equals

Area in the flat metric = S(ω) =
i

2

∫

M2
g

ω ∧ ω̄ =
i

2

g
∑

i=1

(AiB̄i − ĀiBi) .

We get a homogeneous real-valued function on the moduli space of Abelian
differentials:

S : H(d1, . . . , dn) → R S(tω) = |t|2S(ω), t ∈ C .

Consider a “unit sphere”, or rather a “unit hyperboloid” H1(d1, . . . , dn) ⊂
H(d1, . . . , dn) defined as S(ω) = 1. The volume element dµ induces a volume

element dµ1 :=
dµ

dS
on this real hypersurface H1(d1, . . . , dn).

Theorem (H. Masur; W. Veech) The volumes of the strata of Abelian

differentials H1(d1, . . . , dn) with respect to the measure dµ1 are finite.

4 Counting Volume by Means of Counting Integer
Points

How can one evaluate the surface area of a complicated body in Rn? One
of the approaches is as follows: make a homothety with a huge coefficient r
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and count the number of the integer points inside the image of the body. The
asymptotics of this number is v(r) ∼ Vol(r) = crn. The desired surface area
equals

d Vol(r)

dr

∣
∣
∣
r=1

= n · c .

In other words, to compute the surface area of the body it is sufficient to
know the coefficient in the leading term of the asymptotics of the number of
integer points which got inside the stretched body.

The same approach can be applied to the calculation of the volumes of
the strata H1(d1, . . . , dn), but now we have to count the integer points ω0 ∈
H(d1, . . . , dn), such that the area S(ω0) is bounded by some huge number
N , playing the role of the radius r. The only difference with the previous
case is that S(ω0) is a homogeneous function of degree 2, so counting the
hypersurface area by derivation of the volume one has to use the additional
factor 2.

Let us study more attentively the integer points. Having an “integer”
Abelian differential [ω0] ∈ H1(M2

g , {P1, . . . , Pn}; Z ⊕ i Z) we can define a
map fω0

: M2
g → T 2 = C/(Z ⊕ i Z) by

fω0
: P 7→

(∫ P

P1

ω0

)

mod Z ⊕ i Z .

It is easy to see that fω0
is a ramified covering; moreover, it has exactly n ram-

ification points, and the ramification points are exactly the zeros P1, . . . , Pn

of ω0. Consider the flat torus T 2 as a unit square with the identified op-
posite sides. The covering fω0

: M2
g → T 2 endows the Riemann surface

M2
g with a tiling by unit squares. The tiling represents a standard square

lattice except for the vertices P1, . . . , Pn where we have correspondingly
4(d1 + 1), . . . , 4(dn + 1) squares adjacent to a vertex. Note that all the unit
squares are provided with the following additional structure: we know exactly
which edge is top, bottom, right, and left; adjacency of the squares respects
this structure in a natural way. We shall call a flat surface with such tiling
a square tiled surface. We see that the problem of counting the volume of
H1(d1, . . . , dn) is equivalent to the following:

Problem: How many different square tiled surfaces of the given topological

type one can construct using at most N ≫ 1 squares?

Note that some strata are not connected, while for some applications it is
important to know the volume of each connected component separately. In
this case the topological data is described not only by the singularity type
(d1, . . . , dn), but also by the parameters fixing the connected component.
When all di are even, this additional parameter is the spin-structure defined
by ω. The strata H(g − 1, g − 1), and H(2g − 2) have also hyperelliptic com-
ponents (see [5] for the classification of connected components of the strata
of Abelian differentials).
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5 Two Examples of Computation

To give an idea of the computation we treat here the strata H(∅) and H(2).

φ

w

h

φ

Fig. 2. A square tiled torus glued from a square tiled cylinder with the twist φ

We start with the case of the torus. In this case our square tiled surface
has no singularities at all: we have a flat torus tiled with the unit squares in
a regular way. Cutting our flat torus by a waist curve we get a cylinder with
a waist curve w and a height h. The number of squares in the tiling equals
w · h. We can reglue the torus from the cylinder with some integer twist φ.
Making an appropriate Dehn twist along the waist curve we can reduce the
value of the twist φ to one of the values 0, 1, . . . , w− 1. In other words, fixing
the integer perimeter w and height h of a cylinder we get w nondiffeomorphic
square tiled tori.

Thus the number of square tiled tori constructed by using at most N
squares is about

∑

w,h∈N

w·h≤N

w =
∑

w,h∈N

w≤N
h

w ≈
∑

h∈N

1

2
·
(

N

h

)2

=
N2

2

∑

h∈N

1

h2
=

N2

2
· ζ(2) =

N2

2
· π2

6
.

Actually, some of the tori present in the first sum are equivalent by a dif-
feomorphism, so we are counting them twice, or even several times. But this
correction does not affect the leading term, so we simply neglect it.

Taking the derivative 2 · d
dN

∣
∣
N=1

we finally get

Vol(H1(∅)) =
π2

3
.

We proceed with the stratum H(2). A square tiled surface of this type
has a single conical point with a cone angle 6π (see an example of such
surface in Fig. 1). Choose the squares adjacent to this point. Consider those
horizontal sides of them which are adjacent to the critical point. They define
six horizontal separatrix rays of our critical point.
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Note, that the sides of the squares are oriented. Gluing the squares to-
gether we respect this orientation. Among the six horizontal separatrix rays
three rays are incoming and three rays are outgoing (see Fig. 1).

Following the line defined by a separatrix ray we always follow the hor-
izontal sides of the squares of the tiling. Since the number of the squares is
finite every separatrix line is closed. Thus our separatrix rays are organized
in three separatrix loops. An outgoing ray returns at the incoming one. All
possible ways to arrange six separatrix rays into three separatrix loops are
presented at Fig. 3.

Exercise 1. Which of these diagrams is realized by the square tiled surface
from Fig. 1?

Consider now the union of those squares which are adjacent to the sepa-
ratrix loops (on Fig. 1 they have dark color). We get a square tiled surface
Ṁ ⊂ M2

g with holes. Since the complement M2
g r Ṁ does not contain any

singular point, it is formed from several square tiled cylinders. Thus the
boundary of Ṁ is decomposed into pairs of circles of the same length. In
every pair there is one “top” and one “bottom” boundary component.

Looking at the diagrams presented in Fig. 3 we see, that the left diagram
defines a surface Ṁ with a single pair of boundary components. The middle
diagram defines a surface Ṁ with two pairs of boundary components. The
right diagram defines a surface Ṁ with a single “top” boundary component,
and with three “bottom” boundary components. Since each “top” bound-
ary component must be attached to a “bottom” boundary component by a
cylinder, this diagram is not realizable by a square tiled surface.

p1

p2p3

p1

p2

p1

Fig. 3. The separatrix diagrams represent from left to right a square tiled surface
glued from a) one cylinder; b) two cylinders; c) the diagram is not realizable by a
square tiled surface.

Consider those square tiled surfaces from H(2) which correspond to the
left diagram from Fig. 3. In this case Ṁ has one “top” and one “bottom”
boundary component, so our surface is glued from a single cylinder. The
waist curve of the cylinder is of length w = p1 + p2 + p3, where p1, p2, p3 are
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the lengths of the separatrix loops. Denote the height of the cylinder by h1.
Note, that similarly to the case of torus, there is one more integer parameter
determining our square tiled surface: the twist φ of the cylinder. It has an
integer value in the interval [1, p1 + p2 + p3]. Thus the number of surfaces of
this type of area bounded by N is asymptotically equivalent to the sum

1

3

∑

p1,p2,p3,h∈N

(p1+p2+p3)h≤N

(p1 + p2 + p3) .

The coefficient 1/3 compensates the arbitrariness of the choice of enumeration
of p1, p2, p3 preserving the cyclic ordering. We can regroup the entries in the
sum above having the same length w of the waist curve of the cylinder. The
number of ordered partitions of a large integer w in the sum of three positive
integers w = p1 + p2 + p3 equals approximately w2/2. Thus we can rewrite
the sum above as follows:

1

3

∑

p1,p2,p3,h
(p1+p2+p3)h≤N

(p1 + p2 + p3) ≈
1

3

∑

w,h
w·h≤N

w · w2

2
=

1

6

∑

w,h

w≤N
h

w3

≈ 1

6

∑

h∈N

1

4
·
(

N

h

)4

=
N4

24
·
∑

h∈N

1

h4

=
N4

24
· ζ(4) =

N4

24
· π4

90
.

Consider a surface Ṁ corresponding to the middle diagram from Fig. 3. It
has two “top” and two “bottom” boundary components. Thus, topologically,
we can glue in a pair of cylinders in two different ways. However, to have a
flat structure on the resulting surface we need to have equal lengths of “top”
and “bottom” boundary components. These lengths are determined by the
lengths of the corresponding separatrix loops. It is easy to check that one of
the two possible gluings of cylinders is forbidden: it implies that one of the
separatrix loops has zero length, and hence the surface is degenerate.

The other gluing is realizable. In this case there is a pair of separatrix
loops of equal lengths p1 (see Fig. 3). The surface M2

g is glued from two
cylinders: one having a waist curve p1, and the other one having waist curve
p1+p2. Denote the heights and twists of the corresponding cylinders by h1, h2

and φ1, φ2. The twist of the first cylinder takes value in the interval [1, p1]; the
twist of the second cylinder takes value in the interval [1, p1 + p2]. Thus the
number of surfaces of 2-cylinder type of area bounded by N is asymptotically
equivalent to the sum

∑

p1,p2,h1,h2

p1h1+(p1+p2)h2≤N

p1(p1 + p2) =
∑

p1,p2,h1,h2

p1(h1+h2)+p2h2≤N

p2
1 + p1p2 .
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For any fixed relatively small h1, h2 we can replace the sum with respect to

p1, p2 by the integral. Let x1 := p1 · h1 + h2

N
and x2 := p2 · h2

N
be the new

variables, where h1, h2 are considered as parameters. After this change of
variables our sums with respect to p1, p2 become the integral with respect to
x1, x2, where we integrate over the simplex ∆ = {x1 + x2 ≤ 1 : x1 ≥ 0; x2 ≥
0}:

∑

h1,h2

∫

∆





(

x1N

h1 + h2

)2

+

(

x1N

h1 + h2

)(

x2N

h2

)



(

N

h1 + h2
dx1

)(

N

h2
dx2

)

= N4





∫

∆

x2
1 dx1dx2 ·

∑

h1,h2∈N

1

h2(h1 + h2)3

+

∫

∆

x1x2 dx1dx2 ·
∑

h1,h2∈N

1

h2
2(h1 + h2)2





=
N4

24

[
2 · ζ(1, 3) + ζ(2, 2)

]
=

N4

24

[

2 · ζ(4)

4
+

3ζ(4)

4

]

=
N4

24
· 5

4
· π4

90
.

Joining the impacts of the two diagrams and applying 2 d
dN

∣
∣
N=1

we finally
get

Vol(H1(2)) =
π4

120
.

A Volumes of Some Strata of Abelian Differentials

Computations similar to those presented above give the volumes of other
strata (connected components of the strata) of Abelian differentials for small
genera g.

The stratum H(4) has two connected components: the component Hodd(4)
contains those Abelian differentials with a single zero of order 4 which have
the odd spin structure; the component Hhyp(4) contains Abelian differentials
with a single zero of order 4 on a hyperelliptic surface. Similarly, Hhyp(6)
is the component of Abelian differentials with a single zero of order 6 on a
hyperelliptic surface (see [5] for details).

Note that the choice of normalization allows some arbitrariness. For ex-
ample, we are not numbering the zeroes. The stratum H(1, 1) with numbered

zeroes is a double covering over the same stratum with nonnumbered zeroes,
so the corresponding volume would be twice as much as one presented below.

In the normalization described above we get the following values:
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Table 1. Teichmüller volumes of low-dimensional strata of Abelian differentials

Vol(H1(∅)) = 2 · ζ(2) =
1

3
· π2

Vol(H1(2)) =
2

3!
·
9

4
· ζ(4) =

1

120
· π4

Vol(H1(1, 1)) =
2

4!
· 4 · ζ(4) =

1

2
·

1

135
· π4

Vol(Hhyp
1

(4)) =
2

5!
·
135

16
· ζ(6) =

1

6720
· π6

Vol(Hodd
1 (4)) =

2

5!
·
70

3
· ζ(6) =

1

2430
· π6

Vol(H1(1, 3)) =
2

6!
· 128 · ζ(6) =

16

42525
· π6

Vol(Hhyp
1

(6)) =
2

7!
·
2625

64
· ζ(8) =

1

580608
· π8

B Lyapunov Exponents of the Teichmüller Geodesic
Flow

Consider a stratum H1(d1, . . . , dn) of Abelian differentials on a surface of
genus g = d1 + · · ·+dn. The Lyapunov exponents of the Teichmüller geodesic
flow on a connected component of such stratum have the form

−(1 + ν1) < −(1 + ν2) ≤ −(1 + ν3) ≤ · · · ≤ −(1 + νg) ≤ −1 = · · · = −1
︸ ︷︷ ︸

n−1

≤ −(1 − νg) ≤ · · · ≤ −(1 − ν2) < 0 < (1 − ν2) ≤ · · · ≤ (1 − νg)

≤ 1 = · · · = 1
︸ ︷︷ ︸

n−1

≤ (1 + νg) ≤ (1 + νg−1) ≤ · · · ≤ (1 + ν2)

< (1 + ν1) .

The sum of the positive Lyapunov exponents in the normalization ν1 = 1
used in the formula above is equal to 2g + n − 1 (a result obtained by W.
Veech).

However, it is much more difficult to get any information about the νi.
Numerical simulations show that they are all distinct and positive. Recently
G. Forni has found a proof that all νi, 1 ≤ i ≤ g are strictly positive [3].
Knowledge of the volumes of the corresponding strata enables to compute
the values ν1 + · · ·+νg of the sums of νi by means of the Kontsevich formula.
I present the results for some low-dimensional strata. I am proud to note that
numerical simulations performed by M. Kontsevich and the author perfectly
match these exact answers.
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In the computations below I used, in particular, the volumes of the strata
H(14), H(16), and H(18) obtained by A. Eskin and A. Okounkov.

Table 2. Values of the sums ν1 + · · · + νg for the Lyapunov exponents of the
Teichmüller geodesic flow

H(2) H(1, 1) H
hyp(4) H

odd(4) H(1, 3) H
hyp(6) H(14) H(16) H(18)

4

3

3

2

9

5

8

5

7

4

16

7

53

28

839

377

235761

93428

C Conjectural Probability P (n) of n Bands
of Trajectories for a Rational Interval
Exchange Transformation

For some applications a more detailed information on the distributions of
“integer points” is required. The “integer points” which we used for the cal-
culation of the volumes represent surfaces glued from several flat cylinders.
One can calculate separately the “integer points” representing 1-cylinder sur-
faces, 2-cylinder surfaces, etc... Presumably, the corresponding proportions
give the probabilities to see a given number of bands of closed trajectories
for a “random” integer (or rational) interval exchange transformation.

Consider an interval exchange transformation T with intervals of integer
lengths λ1, . . . , λm. Every orbit of T is closed. Geometrically the number of
types of closed orbits can be seen as follows: constructing a suspension over
our interval exchange transformation we can get a square tiled surface; the
orbits of T correspond to the leaves of the vertical foliation on the surface.

Consider now the interval exchange transformations with a fixed per-
mutation π, with rational lengths λi, assuming that the denominator of all
these rational numbers is bounded by a large integer q. Consider all such
interval exchange transformations with normalized length of the interval:
λ1 + · · · + λm ≤ 1. We conjecture that the proportions of the numbers of
interval exchange transformations having 1, 2, 3, . . . types of trajectories are
asymptotically (as q tends to infinity) the same as the asymptotic proportions
of the numbers of square tiled surfaces having 1, 2, 3, . . . cylinders.

Note that while the volumes of the strata are always represented by π2g

with a rational coefficient, the impact corresponding to k-cylinder surfaces
is represented by combinations of multiple zeta values (or, a priori, by even
more complicated expressions).

As an example we consider corresponding proportions for the 770 per-
mutations in the extended Rauzy class of the permutation (7,6,5,4,1,3,2).
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As suspensions of corresponding interval exchange transformations we get
surfaces from the stratum H(3, 1). In this case a rational interval exchange
transformation has 1 to 4 bands of closed trajectories; presumably the prob-
ability P (k) to find exactly k bands of trajectories, k = 1, 2, 3, 4, is presented
by the following proportions of k-cylinder square tiled surfaces in the stratum
H(3, 1):

Table 3. Relative impact P (k), k = 1, 2, 3, 4, of the k-cylinder square tiled surfaces
to the volume Vol(H1(3, 1)).

0.19 ≈ P (1) =
3 ζ(7)

16 ζ(6)

0.47 ≈ P (2) =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

16 ζ(6)

0.30 ≈ P (3) =
1

32 ζ(6)

(

12 ζ(6) − 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5) − 250 ζ(1, 6) − 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4) − 52 ζ(2, 5) + 6 ζ(3, 3) − 82 ζ(3, 4)

+ 6 ζ(4, 2) − 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5) − 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3) − 120 ζ(1, 4, 2) − 54 ζ(2, 1, 4) − 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2) − 88 ζ(3, 1, 3) − 34 ζ(3, 2, 2) − 48 ζ(4, 1, 2)

)

0.04 ≈ P (4) =
ζ(2)

8 ζ(6)
(ζ(4) − ζ(5) + ζ(1, 3) + ζ(2, 2) − ζ(2, 3) − ζ(3, 2))

Remark 1. Following the topological intuition based on the Morse theory one
may think that generically a square tiled surface has the critical points at
distinct levels, and that it generically has the maximal possible number of
cylinders. This is wrong. For example, the square tiled surfaces having critical
points at distinct levels represent only 1 − (2ζ(5) − ζ(1, 4))/(2ζ(4)), i.e. less
than 9% of all square tiled surfaces in H(1, 1). The calculation above shows
that for the stratum H(3, 1) the square tiled surfaces having the maximal
possible number of cylinders (four in this case) represent only about 4% of
all square tiled surfaces.
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