Strict Dieudonné Algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1. Review of saturation of Dieudonné complexes and Dieudonné algebras

- 2. Strict Dieudonné algebras
- 3. Comparison with Witt vectors

1.1 Saturated Dieudonné Complexes

Definition

M : Dieudonné complex. It is saturated if : 1) *M* is p-torsion free 2) $F : M^n \simeq \{x \in M^n | dx \in pM^{n+1}\}$

Recall

The functor $DC_{sat} \hookrightarrow DC$ has a left adjoint

 $Sat: DC \rightarrow DC_{sat}$ $M \mapsto Sat(M)$

1.2 Dieudonné Algebras

Definition

A Dieudonné algebra is a Dieudonné complex (A, F, d) such that :

- $A^i = 0, \forall i < 0 \tag{1}$
- $(A, d) \in CDGA$ (2)

- $\forall x \in A^0, Fx \equiv x^p \pmod{pA^0}$ (3)
- $F(xy) = F(x)F(y) \quad \forall x, y \in A$ (4)

1.3 DA_{sat}

Definition

 $A \in DA$ is saturated if it is saturated as a Dieudonné complex. Similarly, it is strict if it is strict as a Dieudonné complex.

Recall If $A \in DA_{sat}$, there is $V : A^i \to A^i$ such that :

$$VF = FV = p$$

 $Fdv = d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1.3 DA_{sat}

Proposition If $A \in DA_{sat}$, then V satisfies :

```
xV(y) = V(F(x)y)
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

If R is an \mathbb{F}_p -algebra, then F and V on W(R) satisfy the equation above. Thus W(R) is a Dieudonné algebra concentrated in degree 0.

1.3 DA_{sat}

Corollary

 $\forall r \geq 0, ImV^r + Im(dV^r) \subseteq A \text{ is a differential graded ideal of } A.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Corollary

If we define $W_r(A)^i := A^i / [V^r(A^i) + dV^r(A^{i-1})]$, then $W_r(A)$ is a CDGA, and we have a homomorphism $A \to W_r(A)$ which is given by the projections.

2.1 W(A)

Construction $A \in DA_{sat}$. Let $W_{n+1}(A) \twoheadrightarrow W_n(A)$ be the quotients.

We have the following diagram :

 $... \rightarrow \mathcal{W}_{n+1}(A) \rightarrow \mathcal{W}_n(A) \rightarrow ... \rightarrow \mathcal{W}_1(A) = A/(V\!A + dV\!A) \rightarrow 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We then define $\mathcal{W}(A) := \varprojlim \mathcal{W}_n(A)$.

More explicitly, we have, for all *i*, $WA^i = \{x_n \in W_nA^i | Rx_{n+1} = x_n\}.$

2.1 W(A)

Proposition If $A \in DA_{sat}$, then $WA \in DA_{sat}$

Proof.

It is easy to check that WA is a CDGA. We already know that $WA \in DC_{sat}$.

For each $n, F : W_n A \to W_{n-1}A$ is multiplicative. Therefore F is multiplicative in the inverse limit.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Then, the crucial point is $Fx \equiv x^p \mod p$ if $x \in WA^0$

2.1 WA

Lemma

 $A \in DC_{sat}$ which is also a CDGA and such that F is multiplicative. We also assume that for each $x \in A^0$, we have $Fx \equiv x^p \mod VA^0$. Then F satisfies the following : $\forall x \in A^0, Fx \equiv x^p \mod pA^0$.

Lemma (Recall)

If $A \in DC_{sat}$, then $W_1(\rho_A) : W_1(WA)^0 \simeq W_1A^0$, i.e.

 $\textit{A}^0\textit{/}\textit{VA}^0 \simeq \mathcal{W}\textit{A}\textit{/}\textit{V}\mathcal{W}\textit{A}^0$

2.1 WA

Corollary If $A \in DA_{sat}$ then $WA \in DA_{str}$

Scholium $DA_{str} \hookrightarrow DA_{sat}$ has a left adjoint. $DA_{str} \hookrightarrow DA$ has a left adjoint.

Proof.

We have canonical maps

$$\mathit{Hom}_{\mathit{str}}(\mathcal{W}A, B)
ightarrow \mathit{Hom}_{\mathit{sat}}(A, B)$$

given by precomposition with ρ_A .

To construct a map in the other direction, we use the functor \mathcal{W} $f: A \to B \mapsto \mathcal{W}(f): \mathcal{W}A \to \mathcal{W}B = B$

3.1 Universal property of Witt vectors

Definition

 δ - ring : commutative ring R equipped with δ : R \rightarrow R such that

$$\delta(x+y) = \delta(x) + \delta(y) - \sum_{0 < i < p} \frac{(p-1)!}{i!(p-i)!} x^i y^{p-1}$$
$$\delta(xy) = x^p \delta(y) + \delta(x) y^p + p \delta(x) \delta(y)$$
$$\delta(0) = \delta(1) = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

If (\mathbf{R}, δ) is a δ -ring, then $\phi(\mathbf{x}) = \mathbf{x}^p + p\delta(\mathbf{x})$ is a ring homomorphism which satisfies $\phi(\mathbf{x}) \equiv \mathbf{x}^p \mod p$

3.1 Universal property of Witt vectors

Proposition

If R is a p-torsion free ring equipped with $\phi : R \rightarrow R$ such that

$$\forall x, \phi(x) \equiv x^p \mod pR,$$

then (\mathbf{R}, δ) is a δ -ring, where $\delta(\mathbf{x}) = \frac{\phi(\mathbf{x}) - \mathbf{x}^{p}}{p}$

Corollary If $(A, d, F) \in DA_{sat}$, then (A^0, δ) is a δ -ring, where $\delta(x) = \frac{Fx - x^{\rho}}{\rho}$.

(日) (日) (日) (日) (日) (日) (日)

3.1 Universal property of Witt vectors

Lemma

If *R* is a reduced \mathbb{F}_p -algebra, then W(R) is *p*-torsion free.

Proposition

If B is a reduced \mathbb{F}_p -algebra and A is a δ -ring, then we have a canonical bijection :

$$Hom_{Ring}(A, B) \cong Hom_{\delta-Ring}(A, W(B))$$

That means : any ring homomorphism $u : A \rightarrow B$ lifts uniquely to a ring homomorphism $A \rightarrow W(B)$ compatible with F.

(日) (日) (日) (日) (日) (日) (日)

Lemma

If $A \in DA_{sat}$, then $R = A^0 / VA^0$ is a reduced \mathbb{F}_p -algebra.

Proposition

Let $A^* \in \mathbf{DA}_{str}$ and $R = A^0 / VA^0$. Then there is a unique ring isomorphism $u : A^0 \to W(R)$ which makes the two diagrams commute :

(日) (日) (日) (日) (日) (日) (日)

Corollary

Let B be p-torsion free, $\phi : B \to B$ a ring homomorphism which satisfies $\phi(b) \equiv b^{\rho} \mod p$. If $A \in DA_{str}$, then any ring homomorphism $f_0 : B \to A^0 / VA^0$ admits a unique lift $f : B \to A^0$ such that $f \circ \phi = F \circ f$.

Proposition

・ロト・雪ト・ヨト・ヨー のへで

Lemma

Let $f : R \to R'$ be a homomorphism of \mathbb{F}_p -algebras, where R' is reduced. If $g : WR \to WR'$ makes the two following diagrams commute

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$WR \xrightarrow{g} WR'$	$WR \xrightarrow{g} WR'$
$ \begin{array}{c} \Big _{\pi} & \Big _{\pi} \\ R \xrightarrow{f} & R' \end{array} $	$ \begin{array}{c} \downarrow_{F} & \downarrow_{F} \\ WR \xrightarrow{g} WR' \end{array} $

then we have g = W(f).