Homotopy

Remark. We restraint ourselves to the arcwise connected topological spaces. Otherwise, the arcwise connected components don't have anything to do with each other.

1. Definitions

Definition. Let X be an arcwise connected topological space. A loop of base point x is a continuous map $c:[0,1] \rightarrow X$ such that $c(0)=c(1)=x$.
c_{x} denotes the constant loop always equal to x.
\bar{c} denotes the loop $t \mapsto c(1-t)$
$c c^{\prime}$ denotes the loop

$$
t \mapsto \begin{cases}c(2 t) & \text { if } t \leqslant \frac{1}{2} \\ c^{\prime}(2 t-1) & \text { if } t \geqslant \frac{1}{2}\end{cases}
$$

Definition. Two paths c, c^{\prime} are said to be homotopic whenever there exists a continuous map $H[0,1]^{2} \rightarrow X$ such that

$$
\left\{\begin{array}{l}
H(\cdot, 0)=c \\
H(\cdot, 1)=c^{\prime} \\
H(0, \cdot)=H(1, \cdot)=x
\end{array}\right.
$$

We then denote $c \sim c^{\prime}$.
Lemma. \sim is an equivalence relation. We denote the class of c by $[c]$.
Proof. Transitivity is obtained through concatenation.
Definition. The set of all homotopy classes is the fundamental group $\pi_{1}(X, x) . \forall x, x^{\prime} \in X, \pi_{1}(X, x) \equiv$ $\pi_{1}\left(X, x^{\prime}\right)$, so we denote $\pi_{1}(X)$ the fundamental group.

Proof. Let $\gamma \sim c$ and $\gamma^{\prime} \sim c^{\prime}$ and H, H^{\prime} be continuous maps as in the definition. Then $\bar{c} \sim \bar{\gamma}$ through $\bar{H}(t, s)=H(1-t, s) . c c^{\prime} \sim \gamma \gamma^{\prime}$ through $H H^{\prime}(t, s)=\left\{\begin{array}{ll}H(2 t, s) & \text { if } t \leqslant \frac{1}{2} \\ H^{\prime}(2 t-1, s) & \text { if } t \geqslant \frac{1}{2}\end{array}\right.$. This proves that the group law is well defined. Moreover if c_{1}, c_{2}, c_{3} are loops, $\left(c_{1} c_{2}\right)\left(c_{3}\right)=\left(c_{1}\right)\left(c_{2} c_{3}\right)$ through

$$
H(t, s)=\left\{\begin{array}{l}
c_{1}\left(\frac{4 t}{1+s}\right) \text { if } t \leqslant \frac{1+s}{4} \\
c_{2}(4 t-s-1) \text { if } \frac{1+s}{4} \leqslant t \leqslant \frac{2+s}{4} \\
c_{3}\left(\frac{4 t-s-2}{2-s}\right) \text { if } \frac{2+s}{4} \leqslant t
\end{array}\right.
$$

[c_{x}] is a neutral element because $c c_{x} \sim c_{x} c \sim c$ (left to the reader). $c \bar{c} \sim c_{x}$ so $[\bar{c}]$ is the inverse of $[c]$ for the law group.

Finally, let γ be a path from x to $x^{\prime},[c] \mapsto[\gamma c \bar{\gamma}]$ is an isomorphism between $\pi_{1}(X, x)$ and $\pi_{1}\left(X, x^{\prime}\right)$.
Definition. A topological connected set is said to be simply connected if its fundamental group is reduced to the neutral element.

Lemma. \mathbb{R}^{n} is simply connected through $H(t, s)=s c(t)$ for all loop c.
Let f be a continuous map between two arcwise connected topological spaces X and Y then if $c \sim c^{\prime}$, $f \circ c \sim f \circ c^{\prime}$ and $f \circ c c^{\prime} \sim(f \circ c)\left(f \circ c^{\prime}\right)$. Thus f induces a map $f_{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(Y, f(x))$ such that $f_{*}\left(c c^{\prime}\right)=f_{*}(c) f_{*}\left(c^{\prime}\right)$. Thus, we have a morphism between $\pi_{1}(X, x)$ and $\pi_{1}(Y, f(x))$. If f is a homeomorphism, f_{*} is an isomorphism of inverse $\left(f^{-1}\right)_{*}$.

2. Some fundamental groups

Lemma. Let X and Y be two arcwise connected topological spaces. Then, if p_{1} and p_{2} are the projection from $X \times Y$, then $\left(p_{1}\right)_{*} \times\left(p_{2}\right)_{*}$ is an isomorphism between $\pi_{1}(X \times Y,(x, y))$ and $\pi_{1}(X, x) \times \pi_{1}(Y, y)$.
Proof. It is a morphism as a product of two morphisms. It is injective by taking the product of two homotopies and surjective because the product of two loops of X and Y is a loop of $X \times Y$.

Example. The torus \mathbb{T}^{2} is defined as $\mathbb{S}^{1} \times \mathbb{S}^{1}$. Therefore its fundamental group is \mathbb{Z}^{2}
Remark. If Y is simply connected, $X \times Y$ has the same fundamental group as X, and if X and Y are both simply connected, so is $X \times Y$.

Definition. A subset Y of an arcwise connected topological space X is said to be a deformation retract if there exists continuous applications $r: X \mapsto Y$ and $H: X \times[0,1] \mapsto X$ such that:

- $\forall y \in Y, r(y)=y$.
- $\forall x \in X, H(x, 0)=x$.
- $\forall x \in X, H(x, 1)=r(x)$.
- $\forall y \in Y, \forall t \in[0,1], H(y, t)=y$.

Example. \mathbb{S}^{m-1} is a deformation retract of $\mathbb{R}^{m} \backslash\{0\}$ through $r(x)=\frac{x}{\|x\|}$ and $H(x, t)=t \frac{x}{\|x\|}+(1-t) x$.
If Y is a deformation retract of X, i the injection of Y into X and $x \in Y$, the iduced morphism i_{*} : $\pi_{1}(Y, x) \rightarrow \pi_{1}(X, x)$ is an isomorphism. Indeed, surjectivity only has to be proved. If $c \in \pi_{1}(X, x)$ then $r \circ c \in \pi_{1}(Y, x)$ and $i_{*}(r \circ c) \sim c$ (through the H of the definition).
Theorem. Let $p: \mathbb{R} \mapsto \mathbb{S}^{1}$ be the projection $t \mapsto e^{2 i \pi t}$, and for all $n \in \mathbb{Z}$, γ_{n} the loop $t \mapsto p(n t)$. Then the application $n \mapsto\left[\gamma_{n}\right]$ is an isomorphism from \mathbb{Z} to $\pi_{1}\left(\mathbb{S}^{1}\right)$. Thus $\pi_{1}\left(\mathbb{S}^{1}\right) \equiv \mathbb{Z}$.
Lemma. If c is a loop of base point 1 in \mathbb{S}^{1}, then there exists a path \tilde{c} of origin 0 in \mathbb{R} which is uniquely determined by $p \circ \tilde{c}=c$. A such path is called a lifting of c.
Proof. If $a \in \mathbb{R}, p$ induces an isomorphism between $] a-\frac{1}{2}, a+\frac{1}{2}\left[\right.$ and $\mathbb{S}^{1} \backslash\{-p(a)\}$. Consequently if we denote, p_{a}^{-1} the inverse of this induced homeomorphism, and if $\tilde{c_{1}}$ and $\tilde{c_{2}}$ are both as in the lemma, then $\tilde{c_{1}}=\tilde{c_{2}}=c \circ p_{a}^{-1}$ on $] a-\frac{1}{2}, a+\frac{1}{2}\left[\right.$ and thus $\tilde{c_{1}}=\tilde{c_{2}}$.

Furthermore, for c is continuous on $[0,1]$, it is uniformly continuous and there exists $n \in \mathbb{N}$ such that $\forall t, t^{\prime} \in[0,1]$, if $\left|t-t^{\prime}\right| \leqslant \frac{1}{n}, \| c(t)-c\left(t^{\prime}\right)| | \leqslant 1$, so $c(t) \overline{c\left(t^{\prime}\right)} \neq-1$. Hence, if $\left|t-t^{\prime}\right| \leqslant \frac{1}{n}, p_{0}^{-1}\left(c(t) \overline{c\left(t^{\prime}\right)}\right)$ is well defined. Thus, we can define

$$
\tilde{c}(t)=p_{0}^{-1}\left(c(t) c \overline{\left(\frac{j}{n}\right)}\right)+\sum_{i=1}^{j} p_{0}^{-1}\left(c\left(\frac{i}{n}\right) \overline{c\left(\frac{i-1}{n}\right)}\right)
$$

for $\frac{j}{n} \leqslant t \leqslant \frac{j+1}{n}$, which works.
Lemma. If H is a continuous map from $[0,1]^{2}$ to \mathbb{S}^{1} such that $H(0,0)=1$, then there exists a continuous map \tilde{H} which is uniquely determined by $p \circ \tilde{H}=H$ and $\tilde{H}(0,0)=0$.

Lemma. Two loops c and γ are homotopic iff $\tilde{c}(1)=\tilde{\gamma}(1)$ whenever \tilde{c} and $\tilde{\gamma}$ are liftings.
Proof. c and γ are homotopic through $H(t, s)=p((1-s) \tilde{c}(t)+s \tilde{\gamma}(t))$. Conversly if c and γ are homotopic, let \tilde{H} be a lifting of H, then $\tilde{c}=\tilde{H}(\cdot, 0)$ and $\tilde{\gamma}=\tilde{H}(\cdot, 1)$ are liftings of c and γ. But, then, since $\tilde{H}(1, \cdot)$ is continuous and maps into \mathbb{Z}, it is constant and $\tilde{c}(1)=\tilde{H}(1,0)=\tilde{H}(1,1)=\tilde{\gamma}(1)$.

Proof. (of the theorem) We conclude by letting $\phi([c])=\tilde{c}(1)$, which is well defined. Moreover if c and γ are loops, and \tilde{c} and $\tilde{\gamma}$ are liftings, then $a(t)=\tilde{c}(2 t)$ if $t \leqslant \frac{1}{2}$, and $\tilde{\gamma}(2 t-1)+\tilde{c}(1)$ otherwise, is a lifting of $c \gamma$. Thus ϕ is an isomorphism which inverse is $n \mapsto\left[\gamma_{n}\right]$.

Remark. The fundamental group of $\mathbb{R}^{2} \backslash\{0\}$ is \mathbb{Z}, because it is a deformation retract of \mathbb{S}^{1}.

3. Van Kampen's theorem

Let X be an arcwise connected space, X_{1} and X_{2} two arcwise connected open subspaces of X such that $X=X_{1} \cup X_{2}$ and $X_{0}=X_{1} \cap X_{2}$ is a non empty arwise connected subspace of X.

Let $x \in X_{0}$. We denote $\pi_{1}\left(X_{i}\right)=\pi_{1}\left(X_{i}, x\right)$ for $i=0,1,2$, and $\pi_{1}(X)=\pi_{1}(X, x)$. Let j_{i} be the morphism from $\pi_{1}\left(X_{0}\right)$ to $\pi_{1}\left(X_{i}\right)$ induced by the injection from X_{0} into X_{i} for $i=1,2$, and k_{i} the morphism from $\pi_{1}\left(X_{i}\right)$ to $\pi_{1}(X)$ induced by the injection from X_{i} into X.

Lemma. $\pi_{1}(X)$ is generated by k_{1} 's and k_{2} 's ranges.
Proof. Let γ be a loop in X. [0, 1] $=\gamma^{-1}\left(X_{1}\right) \cup \gamma^{-1}\left(X_{2}\right)$ is an open covering. Thus, using Lebesgue's lemma, we get an integer n such that, $\forall k \in \llbracket 0, n-1 \rrbracket,\left[\frac{k}{n}, \frac{k+1}{n}\right] \subset X_{i}$ for a given i.

If $\gamma\left(\frac{k}{n}\right) \in X_{0}$ (respectively $X_{i} \backslash X_{0}$), let α_{k} be a path from $\gamma\left(\frac{k}{n}\right)$ to the base point in $X_{0}\left(X_{i}\right)$.
Let $\gamma_{k}(t)=\gamma\left(\frac{k+t}{n}\right)$.
Then, $\gamma \sim\left(\gamma_{0} \alpha_{0}\right)\left(\overline{\alpha_{0}} \gamma_{1} \alpha_{1}\right) \ldots\left(\overline{\alpha_{n-2}} \gamma_{n-1}\right)$, which ends the proof since each $\overline{\alpha_{i-1}} \gamma_{i} \alpha_{i}$ is a loop in X_{1} or X_{2}.

Corollary. If X_{1} and X_{2} are simply connected, X is simply connected.
Corollary. If $m \geqslant 2, \mathbb{S}^{m}$ is simply connected.
Proof. Let a be the point $(0, \ldots, 0,1)$ of $X=\mathbb{S}^{m}$, and $X_{1}=X \backslash\{a\}, X_{2}=X \backslash\{-a\}$. X_{i} is homeomorphic to \mathbb{R}^{m-1} and thus simply connected. Indeed, the map

$$
\begin{aligned}
\mathbb{S}^{m} \backslash\{a\} & \rightarrow \mathbb{R}^{m-1} \\
\left(x_{1}, \ldots, x_{m}\right) & \mapsto\left(\frac{x_{1}}{1-x_{m}}, \ldots, \frac{x_{m-1}}{1-x_{m}}\right)
\end{aligned}
$$

is an homeomorphism of inverse $:\left(y_{1}, \ldots, y_{m-1}\right) \mapsto\left(\frac{2 y_{1}}{1+\sum_{j=1}^{m} y_{j}^{2}}, \ldots, \frac{2 y_{m-1}^{m-1}}{1+\sum_{j=1}^{m-1} y_{j}^{2}}, 1-\frac{2}{1+\sum_{j=1}^{m-1} y_{j}^{2}}\right)$.
Moreover, $X_{0}=X_{1} \cap X_{2}$ is arcwise connected : if $x_{0}, x_{1} \in X_{0}$, there is a circle containing those two points which doesn't touch a and $-a$. Using the lemma \mathbb{S}^{m} is simply connected.

Theorem. (VAN KAMPEN) If h_{i} is a morphism from $\pi_{1}\left(X_{i}\right)$ to a group G for $i=1,2$ and if $h_{1} \circ j_{1}=h_{2} \circ j_{2}$, then there is a morphism h from $\pi_{1}(X)$ to G which is uniquely determined by $h \circ k_{i}=h_{i}$ for $i=1,2$. In other words the following diagram is commutative:

Proof. Firstly, h is uniquely determined : if h is as in the theorem, and $[x] \in \pi_{1}(X)$, using the lemma, $[x]=$ $\left[x_{1}\right] \cdots\left[x_{r}\right]$ where $\left[x_{i}\right]=k_{j(i)}\left(\left[t_{j(i)}\right]\right)$ and $\left.\left[t_{j(i)}\right] \in \pi_{1}\left(X_{j(i)}\right), h([x])=h_{j(1)}\left(\left[t_{j(1)}\right)\right]\right) \cdots h_{j(r)}\left(\left[t_{j(r)}\right]\right)$ and therefore, h is uniquely determined. Our goal is then to prove that if we assert $\left.h([x])=h_{j(1)}\left(\left[t_{j(i)}\right)\right]\right) \cdots h_{j(r)}\left(\left[t_{j(r)}\right]\right)$, it defines correctly an element of G.

If $\left[x_{1}\right] \ldots\left[x_{r}\right]=\left[y_{1}\right] \ldots\left[y_{s}\right]$, where $\left[x_{k}\right],\left[y_{j}\right] \in k_{i}\left(\pi_{1}\left(X_{i}\right)\right)$, let H be an homotopy between $x_{1} \cdots x_{r}$ and $y_{1} \cdots y_{r}$. As $[0,1]^{2}=H^{-1}\left(X_{1}\right) \cup H^{-1}\left(X_{2}\right)$, using Lebesgue's lemma, we get $n \in \mathbb{N}^{*}$ such that

$$
\forall k, l,\left[\frac{k}{n}, \frac{k+1}{n}\right] \times\left[\frac{l}{n}, \frac{l+1}{n}\right] \subset H^{-1}\left(X_{i}\right)
$$

for a given i.
For $0 \leqslant k \leqslant n, 1 \leqslant l \leqslant n-1$, let $p_{k, l}$ be a path from the base point to $H\left(\frac{k}{n}, \frac{l}{n}\right)$ in the same X_{i} than $H\left(\frac{k}{n}, \frac{l}{n}\right)$, and let $f(x)=\left\{\begin{array}{cl}2 x+\frac{1}{2} & \text { if } x \leqslant-\frac{1}{4} \\ 0 & \text { if }-\frac{1}{4} \leqslant x \leqslant \frac{1}{4} . \\ 2 x-\frac{1}{2} & \text { if } \frac{1}{4} \leqslant x\end{array}\right.$.
Then

$$
H^{\prime}\left(\frac{k+u}{n}, \frac{l+v}{n}\right)= \begin{cases}H\left(\frac{k+u}{n}, \frac{l+v}{n}\right) & \text { if } l=0 \text { or } l=n \\ p_{k, l}(4 \max (|u|,|v|)) & \text { if } \max (|u|,|v|) \leqslant \frac{1}{4} \\ H\left(\frac{k+f(u)}{n}, \frac{l+f(v)}{n}\right) & \text { else }\end{cases}
$$

with $u, v \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $0 \leqslant k, l \leqslant n$, is a homotopy between the two loops and $H^{\prime}\left(\frac{k}{n}, \frac{l}{n}\right)$ is the base point if $l \neq 0, n$.

Let $\alpha_{k, l}(t)=H\left(\frac{k+t}{n}, \frac{l}{n}\right), \beta_{k, l}(t)=H\left(\frac{k+1}{n}, \frac{l+t}{n}\right), \gamma_{k, l}(t)=H\left(\frac{k+1-t}{n}, \frac{l+1}{n}\right)$ and $\delta_{k, l}(t)=H\left(\frac{k}{n}, \frac{l+1-t}{n}\right)$ the paths around the square $\left[\frac{k}{n}, \frac{k+1}{n}\right] \times\left[\frac{l}{n}, \frac{l+1}{n}\right]$ induced by H.

Let $a_{k, l}=h_{i}\left(\left[\alpha_{k, l}\right]\right)$, with i such that $\left[\alpha_{k, l}\right] \in \pi_{1}\left(X_{i}\right)$. We define $b_{k, l}, c_{k, l}$ and $d_{k, l}$ similarly.
Then $a_{k, l+1}=c_{k, l}^{-1}$ and $b_{k, l}=d_{k+1, l}^{-1}$ wherever it is defined.
Let's finish the proof by induction on l : as $h_{i}\left(x_{1}\right) \ldots h_{j}\left(x_{r}\right)=a_{0,0} \ldots a_{n-1,0}$ and $h_{p}\left(x_{1}\right) \ldots h_{q}\left(x_{r}\right)=$ $a_{0, n-1} \ldots a_{n-1, n-1}$, we just need to prove that $\forall l \geqslant 0, a_{0, l} \ldots a_{n-1, l}=a_{0, l+1} \ldots a_{n-1, l+1}$.

If $l=0$,

$$
\begin{gathered}
x_{1}=\alpha_{0,0} \ldots \alpha_{k_{1}, 0} \sim \delta_{0,0}^{-1} \gamma_{0,0}^{-1} \ldots \gamma_{k_{1}, 0}^{-1} \beta_{k_{1}, 0}^{-1}, \\
\ldots \\
x_{r}=\alpha_{k_{r-1}+1,0} \ldots \alpha_{n-1,0} \sim \delta_{k_{r-1}+1,0}^{-1} \gamma_{k_{r-1}+1,0}^{-1} \ldots \gamma_{n-1,0}^{-1} \beta_{n-1,0}^{-1},
\end{gathered}
$$

and all these homotopies live either in X_{1} or in X_{2}.
Thus $a_{0,0} \ldots a_{n-1,0}=d_{0,0}^{-1} c_{0,0}^{-1} \ldots c_{k_{1}, 0}^{-1} b_{k_{1}, 0}^{-1} \cdots d_{k_{r-1}+1,0}^{-1} c_{k_{r-1}+1,0}^{-1} \ldots c_{n-1,0}^{-1} b_{n_{1}, 0}^{-1}=a_{0,1} \ldots a_{n-1,1}$.
If $0<l<n-1, a_{0, l} \ldots a_{n-1, l}=d_{0, l}^{-1} c_{0, l}^{-1} b_{0, l}^{-1} \ldots d_{n-1, l}^{-1} c_{n-1, l}^{-1} b_{n-1, l}^{-1}=a_{0, l+1} \ldots a_{n-1, l+1}$.
If $l=n-1$, we use the same method than for $l=0$.
Definition. Let K_{1} and K_{2} be groups. The free product $\Gamma=K_{1} \star K_{2}$ of K_{1} and K_{2} is the group of words on the alphabet $K_{1} \cup K_{2}$.

Lemma. There are morphisms $\phi_{1}: K_{1} \rightarrow \Gamma$ and $\phi_{2}: K_{2} \rightarrow \Gamma$ such that
(i) $\operatorname{Im}\left(\phi_{1}\right) \cup \operatorname{Im}\left(\phi_{2}\right)$ generates Γ.
(ii) If K is a group and $k_{i}: K_{i} \rightarrow K$ are morphisms, then there is a morphism $k: \Gamma \rightarrow K$ which is uniquely determined by $k_{i}=k \circ \phi_{i}$
In other words the following diagramm is commutative :

Proof. Since K is a group of words without any relation we can define unambigously the image of any word as the product of the images of its letters.

We let $K_{1}=\pi_{1}\left(X_{1}\right)$ and $K_{2}=\pi_{1}\left(X_{2}\right)$ in the following propositions.

Definition. Let $G=\pi_{1}\left(X_{1}\right) \star_{\pi_{1}\left(X_{0}\right)} \pi_{1}\left(X_{2}\right):=\Gamma /<\phi_{1}\left(j_{1}(g)\right) \phi_{2}\left(j_{2}\left(g^{-1}\right)\right), g \in \pi_{1}\left(X_{0}\right)>$. G is called the amalgamated product.

Lemma. We have $\pi_{1}(X) \approx G$.
Proof. Let ϕ_{i} be the injection $\pi_{1}\left(X_{i}\right) \rightarrow \Gamma$, and θ the projection $\Gamma \rightarrow G$. The following diagrams are all commutative :

(Using Van Kampen's theorem).

(By definition of Γ).

(By definition of G. Indeed, $\forall g \in \pi_{1}\left(X_{0}\right), k\left(\phi_{1}\left(j_{1}(g)\right) \phi_{2}\left(j_{2}\left(g^{-1}\right)\right)\right)=k_{1}\left(j_{1}(g)\right) k_{2}\left(j_{2}\left(g^{-1}\right)\right)=c_{x}$.)

Therefore $\tilde{k} \circ h \circ k_{i}=k_{i}$ so (as $\pi_{1}(X)$ is generated by the images of $\left.k_{i}\right) \tilde{k} \circ h=I d$. Moreover, $h \circ \tilde{k} \circ \theta \circ \phi_{i}=\theta \circ \phi_{i}$ so $h \circ \tilde{k}=I d$. Therefore $\pi_{1}(X) \approx G$.

4. Examples

- The fundamental group of $\mathbb{C} \backslash\left\{a_{1}, \ldots a_{n}\right\}$ is the free group generated by n elements $\mathcal{L}\left(a_{1}, \ldots, a_{n}\right)$. We prove it for two elements. The result follows by induction on n. We may very well suppose that $a_{1}=0$ and $a_{2}=1$. Let $X_{0}=\left\{\mathfrak{R} z<\frac{3}{4}\right\}$ and $X_{1}=\left\{\mathfrak{R} z>\frac{1}{4}\right\}$ Then $X_{0}=\left\{\frac{1}{4}<\mathfrak{R} z<\frac{3}{4}\right\}$ is homeomorphic to \mathbb{C} and hence simply connected. $\pi_{1}\left(X_{i}\right) \approx \mathbb{Z}$. Thus $\pi_{1}(X) \approx \mathbb{Z} \star \mathbb{Z}$ which is exactly the free group generated by two elements.
- The fundamental group of the torus \mathbb{T}^{2} deprived of one dot x is $\mathcal{L}(a, b)$.

Indeed, if the loops a and b generate $\pi_{1}\left(\mathbb{T}^{2}\right)$, consider two strips S_{1}, S_{2} containing a and b. You can transform the dot into $S_{1} \cap S_{2}$ through a continuous deformation. Call $X_{1}=\mathbb{T}^{2} \backslash S_{1}$ and $X_{2}=\mathbb{T}^{2} \backslash S_{2}$. Using Van Kampen's theorem, we get $\pi_{1}\left(\mathbb{T}^{2} \backslash\{x\}\right)=\mathcal{L}(a) \star_{\{1\}} \mathcal{L}(b)=\mathcal{L}(a, b)$.

- The fundamental group of the torus \mathbb{T}^{2} deprived of n dots x_{1}, \ldots, x_{n} is $\mathcal{L}\left(a_{1}, \ldots, a_{n+1}\right)$. Surround every dot x_{i} by a loop c_{i}. The loop $c=c_{1} \ldots c_{n}$ surrounds all the dots. Consider a strip S containing c and no dot. Call I the interior of $c, X_{1}=S \cup I$ and $X_{2}=S \cup I^{c}$. As $c=[a, b]$, we get $\pi_{1}\left(\mathbb{T}^{2} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right)=\mathcal{L}(a, b) \star_{\mathcal{L}(c)} \mathcal{L}\left(c_{1}, \ldots, c_{n}\right)=\mathcal{L}\left(a, b, c_{1}, \ldots, c_{n-1}\right)$.
- The fundamental group of the torus $T_{k, n}$ with k holes deprived of n dots x_{1}, \ldots, x_{k} is $\mathcal{L}\left(d_{1}, \ldots, d_{2 k+n-1}\right)$. Group all the dots on the first torus through deformation retracts and proceed as previously. By induction on k, we get $\pi_{1}\left(T_{k, n}\right)=\mathcal{L}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{n}\right) /\left\{\left[a_{1}, b_{1}\right] \ldots\left[a_{k}, b_{k}\right] c_{1} \ldots c_{n}\right\}=$ $\mathcal{L}\left(d_{1}, \ldots, d_{2 k+n-1}\right)$.

