Homotopy

Remark. We restraint ourselves to the arcwise connected topological spaces. Otherwise, the arcwise con-
nected components don’t have anything to do with each other.

1. DEFINITIONS

Definition. Let X be an arcwise connected topological space. A loop of base point x is a continuous map
¢:10,1] = X such that ¢(0) = ¢(1) = x.

¢, denotes the constant loop always equal to x.

¢ denotes the loop t — c(1 —t)

cc’ denotes the loop

c(2t) ift <
t s
{ 2t —1) ift >

Nl= N

Definition. Two paths ¢, ¢’ are said to be homotopic whenever there exists a continuous map H[0,1]* — X
such that

H(-,0)=c
H(,1)=/¢
H(Oa'):H(la'):I

We then denote ¢ ~ c'.
Lemma. ~ is an equivalence relation. We denote the class of ¢ by [c].

Proof. Transitivity is obtained through concatenation. O

Definition. The set of all homotopy classes is the fundamental group 71 (X, z). Va,2’ € X, m (X, z) =
m (X, '), so we denote w1 (X) the fundamental group.

Proof. Let v ~ cand v ~ ¢/ and H, H' be continuous maps as in the definition. Then ¢ ~ ¥ through

B H(2t,s) ift <
H(t,s) = H(1 —t,s). ¢ ~ vy through HH'(t,s) = . This proves that the group
H'(2t—1,s)ift > 3

law is well defined. Moreover if c1, g, c3 are loops, (c1¢2)(c3) = (¢1)(cacs) through

alfh) ift <2

H(t,s) =14 co(4t —s—1)if 12 <t < 22

03(4t2—js—2) if 21—5 <t
[cz] is a neutral element because cc, ~ cyc ~ ¢ (left to the reader). ¢ ~ ¢, so [¢] is the inverse of [¢] for the
law group.

Finally, let v be a path from x to 2/, [¢] — [yc7] is an isomorphism between 71 (X, ) and m (X, 2'). O

Definition. A topological connected set is said to be simply connected if its fundamental group is reduced
to the neutral element.

Lemma. R"™ is simply connected through H(t,s) = sc(t) for all loop c.

Let f be a continuous map between two arcwise connected topological spaces X and Y then if ¢ ~ ¢/,
foc~ focd and foed ~ (foc)(focd). Thus f induces a map f. : m(X,2) — m (Y, f(x)) such that
filed) = fule)fe(d'). Thus, we have a morphism between 71 (X, z) and 71 (Y, f(z)). If f is a homeomorphism,
f+ is an isomorphism of inverse (f~1),.



2. SOME FUNDAMENTAL GROUPS

Lemma. Let X and Y be two arcwise connected topological spaces. Then, if p1 and ps are the projection
from X XY, then (p1)s X (p2)« is an isomorphism between 71 (X X Y, (z,y)) and 71(X,z) x m (Y, y).

Proof. Tt is a morphism as a product of two morphisms. It is injective by taking the product of two
homotopies and surjective because the product of two loops of X and Y is a loop of X x Y. ([l

Example. The torus T? is defined as S' x S'. Therefore its fundamental group is Z>

Remark. IfY is simply connected, X XY has the same fundamental group as X, and if X andY are both
simply connected, so is X X Y.

Definition. A subset Y of an arcwise connected topological space X is said to be a deformation retract if
there exists continuous applications r : X —Y and H : X x [0,1] — X such that:

e VyeY,r(y) =y.

o Vo e X,H(x,0) =x.

o Vxe X, H(z,1)=r(x).

o VycY,vtel0,1],H(y,t) =y.

Example. S™! is a deformation retract of R™ \ {0} through r(x) and H(z,t) = b + (1—t)x.

_ =z
[zl

If YV is a deformation retract of X, ¢ the injection of Y into X and =z € Y, the iduced morphism i, :
m(Y,2) — m (X, ) is an isomorphism. Indeed, surjectivity only has to be proved. If ¢ € m(X,x) then
rocéem(Y,z) and i.(r o ¢) ~ ¢ (through the H of the definition).

Theorem. Let p: R +— St be the projection t — e*™  and for all n € Z, v, the loop t — p(nt). Then the
application n s [y,] is an isomorphism from Z to 71 (S'). Thus m (S') = Z

Lemma. If c is a loop of base point 1 in S', then there exists a path ¢ of origin 0 in R which is uniquely
determined by po ¢ = c. A such path is called a lifting of c.

Proof. If a € R, p induces an isomorphism between |a — %,a + %[ and S'\ {—p(a)}. Consequently if we
denote, p,! the inverse of this induced homeomorphism, and if ¢; and ¢ are both as in the lemma, then
Gi=cé=cop;lonla— 1% a+ 1 and thus ¢ = é.

Furthermore, for ¢ is continuous on [0, 1], it is uniformly continuous and there exists n € N such that
Vit € [0,1), if [t — /| < L, [lc(t) — ()| < 1, so c(t)e(t') # —1. Hence, if |t — | < L, py*(c(t)e(t')) is well
defined. Thus, we can define

&(t) = py <c<t>0(i)> * i}ps 1 (C <;> m)

for % <t g + , which works. a

Lemma. If H is a continuous map from [0, 1]2 to St such that H(0,0) = 1, then there ezists a continuous
map H which is untquely determined by p o H = H and H(O 0) =0.

Lemma. Two loops ¢ and v are homotopic iff ¢(1) = (1) whenever ¢ and 7 are liftings.

Proof. c and «y are homotopic through H(t, s) = p((1 — s)¢(t) + s7(t)). Conversly if ¢ and ~ are homotopic,
let H be a lifting of H, then é = H(-,0) and 4 = H(-,1) are liftings of ¢ and ~. But, then, since H(1,-) is
continuous and maps into Z, it is constant and é(1) = H(1,0) = H(1,1) = 7(1). O

Proof. (of the theorem) We conclude by letting ¢([c]) = é(1), which is well defined. Moreover if ¢ and v are
loops, and ¢ and 7 are liftings, then a(t) = ¢(2t) if ¢ < %, and (2t — 1) + &(1) otherwise, is a lifting of ¢y.
Thus ¢ is an isomorphism which inverse is n — [yy]. O

Remark. The fundamental group of R?\ {0} is Z, because it is a deformation retract of St.
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3. VAN KAMPEN’S THEOREM

Let X be an arcwise connected space, X1 and X5 two arcwise connected open subspaces of X such that
X = X7 UXs5 and Xy = X7 N X5 is a non empty arwise connected subspace of X.

Let z € Xy. We denote 1 (X;) = m1(X;, ) for i = 0,1,2, and 71 (X) = m (X, z). Let j; be the morphism
from 71(Xp) to m1(X;) induced by the injection from X, into X; for i = 1,2, and k; the morphism from
m1(X;) to m1(X) induced by the injection from X; into X.

7T1(X1) L>7T'1()()

7

7T1(XO) T) 7T1(X2)

Lemma. 71(X) is generated by ki’s and ky’s ranges.

Proof. Let v be a loop in X. [0,1] = v 1(X;) Uy~ 1(X2) is an open covering. Thus, using LEBESGUE’s
lemma, we get an integer n such that, ‘v’k €[0,n—1], [£, ] c X, for a given .
If ~ ( ) € Xy (respectively X; \ Xp), let ay be a path from ~ (n) to the base point in Xy (X;).

Let 74 (t) = 7(EL).
Then, v ~ (voa0)(@y101) - - . (@n—2Yn—1), which ends the proof since each @;—1v;; is a loop in X; or

Xo. O
Corollary. If X; and X5 are simply connected, X is simply connected.
Corollary. If m > 2, S™ is simply connected.

Proof. Let a be the point (0,...,0,1) of X =S™, and X; = X \ {a}, X2 = X \ {—a}. X; is homeomorphic
to R™! and thus simply connected. Indeed, the map

S™\ {a} — R™"1
(ml,...,xm)»—>( “”1 ,...,x’"l)

1—x, 1—x,

is an homeomorphism of inverse : (y1,...,¥m_1) £ TN S H —T
1+ 3 v3 1+ 3 v3 1+ 3 3
j=1 j=1 j=1
Moreover, Xg = X1 N X5 is arcwise connected : if zg, 21 € X, there is a circle containing those two points
which doesn’t touch a and —a. Using the lemma S™ is simply connected. (]

Theorem. (VAN KAMPEN) If h; is a morphism from 71 (X;) to a group G fori = 1,2 and if hyoj; = hyoja,
then there is a morphism h from m1(X) to G which is uniquely determined by hok; = h; fori=1,2. In
other words the following diagram is commutative:

h1 /

m(X1) e (X)

=

7T1(X0) T) 7T1(X2)

ha

Proof. Firstly, h is uniquely determined : if & is as in the theorem, and [z] € 1 (X ) usmg the lemma, [z] =
[x1] - - - [2,] where [z] = k;)([tj)]) and [t;)] € m1(Xj)), h([z]) = Ry ([tia))]) - y([tj(m]) and there-
fore, h is uniquely determined. Our goal is then to prove that if we assert h([z]) = h;(1) [ j(l))]) ey ([Em)),
it defines correctly an element of G.



1) ... [ys], where [z1],[y;] € ki(m1(X;)), let H be an homotopy between z; - - -z, and
H~1(X1) U H }(X5), using LEBESGUE’s lemma, we get n € N* such that
k k+1 I 1+1
Vkalv |:7 +:| |:a +:| C Hil(Xl)
n’ n n’ n

If[ﬂﬁ] o] =y
y1--yr. As [0,1]% =

for a given i.

For 0 <k <n,1<I<n—1,let py; be a path from the base point to H(%7 %) in the same X; than
2x+ % ifr<—3
0

<
H(E Ly and let f(z) = {

if —i<z<i
295—% 1fi<x
Then
H (ke bv) ifl=0orl=n
k I .
H( Sy ”) prt (4 max (jul, [o])) i max (jul, |o]) < X
n n

(B0, 10) g

with u,v € [f%, %} and 0 < k,l < n, is a homotopy between the two loops and H' (%, %) is the base point if
l#0,n.

Lt ana(t) = F (52, 1), () = B (S5, 1E0), g (6) = B (54, E51) and by (0) = (%, L= the
paths around the square [£, E£1] » [L Ll induced by H.

Let ap; = hi([o, l]) with ¢ such that [ay,] € 71 (X;). We define by, ¢ and dj; similarly.

Then ag, ;1 = ck’l and by, = dk+1,l wherever it is defined.

Let’s finish the proof by induction on I: as hi(z1)...hj(z;) = @o0...an-1,0 and hp(x1)... he(z,) =
ao,n—1 - - - n—1,n—1, We just need to prove that Vi > 0,a0,...an—1,1 = Q0,141 - - An—1,1+1-

Ifl =0,

_ ~1, —
T1 = 0p,0---Qky,0 "~ 50,070,0 'Ykl,oﬁkl,m

_ —1 —1 —1 -1
Lr = Qk, 141,0---Xn—-1,0 ~ 5kT,1+1,07kT,1+1,0 - -%—1,05n—1,07
and all these homotopies live either in X; or in X2

. _ -1 -1 -1 - - -1
Thus 0,0 ---0np—-1,0 = d0700070 PN Ckl’ bk1 d kr_141,0 k, 1410 Ch_1 Obn1 0=4ao,1---an—-1,1-
1 1 1 -1
Ifo<li <n-—1, ap,p-.-Qp-1, :dOZCO b . d 1lcn 1lbn 1,0 = 00,041 -+ - Gn—1,14+1-
If I =n — 1, we use the same method than for [ = 0. O

Definition. Let K1 and Ko be groups. The free product I' = K1 x Ko of K1 and Ky is the group of words
on the alphabet K1 U K.

Lemma. There are morphisms ¢1 : K1 — T and ¢2 : Ko — T such that

(i) Im(¢1) U Im(¢s) generates T
(i) If K is a group and k; : K; — K are morphisms, then there is a morphism k : T' — K which is
uniquely determined by k; = k o ¢;

In other words the following diagramm is commutative :

K -2 -7

K<~—K,
k2
Proof. Since K is a group of words without any relation we can define unambigously the image of any word

as the product of the images of its letters. O

We let K1 = m1(X;) and Ko = 71(X3) in the following propositions.
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Definition. Let G = m1(X1) *x,(x,) T(X2) := T/ < ¢1(j1(9))d2(j2(97 ")), 9 € m(Xo) >. G is called the
amalgamated product.

Lemma. We have m1(X) = G.

Proof. Let ¢; be the injection 71(X;) — T, and 6 the projection I' — G. The following diagrams are all
commutative :

(Using VAN KAMPEN’s theorem).

(By definition of T').

I‘—>7r1

\/

(By definition of G. Indeed, Vg € m1(Xo), k(1 (j1(9))@2(j2(g™"))) = k1 (2 (9)ka(izg™")) = cx.)

m(Xy) =2 @

b

7T1(X) T?Tl(Xz)

Therefgre kohok; = k; so (as w1 (X)) is generated by the images of k;) koh = Id. Moreover, h01~6090¢i = fog;
so h ok = Id. Therefore m (X) = G. O

4. EXAMPLES

e The fundamental group of C\ {ay,...a,} is the free group generated by n elements L(ay,...,an).
We prove it for two elements. The result follows by induction on n. We may very well suppose
that a; = 0 and ap = 1. Let Xo = {Rz < 2} and X; = {Rz > 1} Then X, = {1 <Rz < 2} is
homeomorphic to C and hence simply connected. m(X;) & Z. Thus m1(X) & Z x Z which is exactly
the free group generated by two elements.

e The fundamental group of the torus T? deprived of one dot x is £(a, b).
Indeed, if the loops a and b generate 7 (T?), consider two strips Sy, Sz containing a and b. You can
transform the dot into S1 NS, through a continuous deformation. Call X; = T2\ S; and Xy = T?\ S,.
Using VAN KAMPEN’s theorem, we get w1 (T? \ {z}) = L(a) {1y L(b) = L(a,b).

5



e The fundamental group of the torus T? deprived of n dots x1,..., 2, is L(a1,...,ant1)-
Surround every dot x; by a loop ¢;. The loop ¢ = ¢;...c¢, surrounds all the dots. Consider a strip
S containing ¢ and no dot. Call I the interior of ¢, X; = SUTI and X5 = SU I As ¢ = [a,b], we
get T (T2 \ {@1,...,2n}) = L(a,b) *g () L(c1,...,cn) = L(a,b,c1,. .., ¢pn1).

o The fundamental group of the torus T} ,, with & holes deprived of n dots x1, ..., zx is L(d1, . .., dok+n—1)-
Group all the dots on the first torus through deformation retracts and proceed as previously. By
induction on k, we get m (Tk,n) = L(a1,- ..,k b1,.. ., bk, c1,...,¢n)/{[a1,b1] ... [ak, bkler ... cn} =
L(dy,...,dogsn—1)-



