
Homotopy
Remark. We restraint ourselves to the arcwise connected topological spaces. Otherwise, the arcwise con-
nected components don’t have anything to do with each other.

1. Definitions

Definition. Let X be an arcwise connected topological space. A loop of base point x is a continuous map
c : [0, 1]→ X such that c(0) = c(1) = x.
cx denotes the constant loop always equal to x.
c̄ denotes the loop t 7→ c(1− t)
cc′ denotes the loop

t 7→

{
c(2t) if t 6 1

2

c′(2t− 1) if t > 1
2

Definition. Two paths c, c′ are said to be homotopic whenever there exists a continuous map H[0, 1]2 → X
such that  H(·, 0) = c

H(·, 1) = c′

H(0, ·) = H(1, ·) = x

We then denote c ∼ c′.

Lemma. ∼ is an equivalence relation. We denote the class of c by [c].

Proof. Transitivity is obtained through concatenation. �

Definition. The set of all homotopy classes is the fundamental group π1(X,x). ∀x, x′ ∈ X,π1(X,x) ≡
π1(X,x′), so we denote π1(X) the fundamental group.

Proof. Let γ ∼ c and γ′ ∼ c′ and H, H ′ be continuous maps as in the definition. Then c̄ ∼ γ̄ through

H̄(t, s) = H(1− t, s). cc′ ∼ γγ′ through HH ′(t, s) =

{
H(2t, s) if t 6 1

2

H ′(2t− 1, s) if t > 1
2

. This proves that the group

law is well defined. Moreover if c1, c2, c3 are loops, (c1c2)(c3) = (c1)(c2c3) through

H(t, s) =


c1( 4t

1+s ) if t 6 1+s
4

c2(4t− s− 1) if 1+s
4 6 t 6

2+s
4

c3( 4t−s−2
2−s ) if 2+s

4 6 t

[cx] is a neutral element because ccx ∼ cxc ∼ c (left to the reader). cc̄ ∼ cx so [c̄] is the inverse of [c] for the
law group.

Finally, let γ be a path from x to x′, [c] 7→ [γcγ̄] is an isomorphism between π1(X,x) and π1(X,x′). �

Definition. A topological connected set is said to be simply connected if its fundamental group is reduced
to the neutral element.

Lemma. Rn is simply connected through H(t, s) = s c(t) for all loop c.

Let f be a continuous map between two arcwise connected topological spaces X and Y then if c ∼ c′,
f ◦ c ∼ f ◦ c′ and f ◦ cc′ ∼ (f ◦ c)(f ◦ c′). Thus f induces a map f∗ : π1(X,x) → π1(Y, f(x)) such that
f∗(cc

′) = f∗(c)f∗(c
′). Thus, we have a morphism between π1(X,x) and π1(Y, f(x)). If f is a homeomorphism,

f∗ is an isomorphism of inverse (f−1)∗.
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2. Some fundamental groups

Lemma. Let X and Y be two arcwise connected topological spaces. Then, if p1 and p2 are the projection
from X × Y , then (p1)∗ × (p2)∗ is an isomorphism between π1(X × Y, (x, y)) and π1(X,x)× π1(Y, y).

Proof. It is a morphism as a product of two morphisms. It is injective by taking the product of two
homotopies and surjective because the product of two loops of X and Y is a loop of X × Y . �

Example. The torus T2 is defined as S1 × S1. Therefore its fundamental group is Z2

Remark. If Y is simply connected, X × Y has the same fundamental group as X, and if X and Y are both
simply connected, so is X × Y .

Definition. A subset Y of an arcwise connected topological space X is said to be a deformation retract if
there exists continuous applications r : X 7→ Y and H : X × [0, 1] 7→ X such that:

• ∀y ∈ Y, r(y) = y.
• ∀x ∈ X,H(x, 0) = x.
• ∀x ∈ X,H(x, 1) = r(x).
• ∀y ∈ Y,∀t ∈ [0, 1], H(y, t) = y.

Example. Sm−1 is a deformation retract of Rm \ {0} through r(x) = x
||x|| and H(x, t) = t x

||x|| + (1− t)x.

If Y is a deformation retract of X, i the injection of Y into X and x ∈ Y , the iduced morphism i∗ :
π1(Y, x) → π1(X,x) is an isomorphism. Indeed, surjectivity only has to be proved. If c ∈ π1(X,x) then
r ◦ c ∈ π1(Y, x) and i∗(r ◦ c) ∼ c (through the H of the definition).

Theorem. Let p : R 7→ S1 be the projection t 7→ e2iπt, and for all n ∈ Z, γn the loop t 7→ p(nt). Then the
application n 7→ [γn] is an isomorphism from Z to π1(S1). Thus π1(S1) ≡ Z.

Lemma. If c is a loop of base point 1 in S1, then there exists a path c̃ of origin 0 in R which is uniquely
determined by p ◦ c̃ = c. A such path is called a lifting of c.

Proof. If a ∈ R, p induces an isomorphism between ]a − 1
2 , a + 1

2 [ and S1 \ {−p(a)}. Consequently if we

denote, p−1a the inverse of this induced homeomorphism, and if c̃1 and c̃2 are both as in the lemma, then
c̃1 = c̃2 = c ◦ p−1a on ]a− 1

2 , a+ 1
2 [ and thus c̃1 = c̃2.

Furthermore, for c is continuous on [0, 1], it is uniformly continuous and there exists n ∈ N such that

∀t, t′ ∈ [0, 1], if |t− t′| 6 1
n , ||c(t)− c(t

′)|| 6 1, so c(t)c(t′) 6= −1. Hence, if |t− t′| 6 1
n , p−10 (c(t)c(t′)) is well

defined. Thus, we can define

c̃(t) = p−10

(
c(t)c

(
j

n

))
+

j∑
i=1

p−10

(
c

(
i

n

)
c

(
i− 1

n

))
for j

n 6 t 6
j+1
n , which works. �

Lemma. If H is a continuous map from [0, 1]2 to S1 such that H(0, 0) = 1, then there exists a continuous

map H̃ which is uniquely determined by p ◦ H̃ = H and H̃(0, 0) = 0.

Lemma. Two loops c and γ are homotopic iff c̃(1) = γ̃(1) whenever c̃ and γ̃ are liftings.

Proof. c and γ are homotopic through H(t, s) = p((1− s)c̃(t) + sγ̃(t)). Conversly if c and γ are homotopic,

let H̃ be a lifting of H, then c̃ = H̃(·, 0) and γ̃ = H̃(·, 1) are liftings of c and γ. But, then, since H̃(1, ·) is

continuous and maps into Z, it is constant and c̃(1) = H̃(1, 0) = H̃(1, 1) = γ̃(1). �

Proof. (of the theorem) We conclude by letting φ([c]) = c̃(1), which is well defined. Moreover if c and γ are
loops, and c̃ and γ̃ are liftings, then a(t) = c̃(2t) if t 6 1

2 , and γ̃(2t − 1) + c̃(1) otherwise, is a lifting of cγ.
Thus φ is an isomorphism which inverse is n 7→ [γn]. �

Remark. The fundamental group of R2 \ {0} is Z, because it is a deformation retract of S1.
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3. Van Kampen’s theorem

Let X be an arcwise connected space, X1 and X2 two arcwise connected open subspaces of X such that
X = X1 ∪X2 and X0 = X1 ∩X2 is a non empty arwise connected subspace of X.

Let x ∈ X0. We denote π1(Xi) = π1(Xi, x) for i = 0, 1, 2, and π1(X) = π1(X,x). Let ji be the morphism
from π1(X0) to π1(Xi) induced by the injection from X0 into Xi for i = 1, 2, and ki the morphism from
π1(Xi) to π1(X) induced by the injection from Xi into X.

π1(X1)
k1 // π1(X)

π1(X0)

j1

OO
k0

::

j2
// π1(X2)

k2

OO

Lemma. π1(X) is generated by k1’s and k2’s ranges.

Proof. Let γ be a loop in X. [0, 1] = γ−1(X1) ∪ γ−1(X2) is an open covering. Thus, using Lebesgue’s
lemma, we get an integer n such that, ∀k ∈ J0, n− 1K,

[
k
n ,

k+1
n

]
⊂ Xi for a given i.

If γ
(
k
n

)
∈ X0 (respectively Xi \X0), let αk be a path from γ

(
k
n

)
to the base point in X0 (Xi).

Let γk(t) = γ(k+tn ).
Then, γ ∼ (γ0α0)(α0γ1α1) . . . (αn−2γn−1), which ends the proof since each αi−1γiαi is a loop in X1 or

X2. �

Corollary. If X1 and X2 are simply connected, X is simply connected.

Corollary. If m > 2, Sm is simply connected.

Proof. Let a be the point (0, . . . , 0, 1) of X = Sm, and X1 = X \ {a}, X2 = X \ {−a}. Xi is homeomorphic
to Rm−1 and thus simply connected. Indeed, the map

Sm \ {a} → Rm−1

(x1, . . . , xm) 7→
(

x1
1− xm

, . . . ,
xm−1

1− xm

)

is an homeomorphism of inverse : (y1, . . . , ym−1) 7→

 2y1

1+
m−1∑
j=1

y2j

, . . . , 2ym−1

1+
m−1∑
j=1

y2j

, 1− 2

1+
m−1∑
j=1

y2j

 .

Moreover, X0 = X1∩X2 is arcwise connected : if x0, x1 ∈ X0, there is a circle containing those two points
which doesn’t touch a and −a. Using the lemma Sm is simply connected. �

Theorem. (Van Kampen) If hi is a morphism from π1(Xi) to a group G for i = 1, 2 and if h1◦j1 = h2◦j2,
then there is a morphism h from π1(X) to G which is uniquely determined by h ◦ ki = hi for i = 1, 2. In
other words the following diagram is commutative:

G

π1(X1)
k1 //

h1

55

π1(X)

h

;;

π1(X0)

j1

OO
k0

::

j2
// π1(X2)

k2

OO h2

EE

Proof. Firstly, h is uniquely determined : if h is as in the theorem, and [x] ∈ π1(X), using the lemma, [x] =
[x1] · · · [xr] where [xi] = kj(i)([tj(i)]) and [tj(i)] ∈ π1(Xj(i)), h([x]) = hj(1)([tj(1))]) · · ·hj(r)([tj(r)]) and there-
fore, h is uniquely determined. Our goal is then to prove that if we assert h([x]) = hj(1)([tj(i))]) · · ·hj(r)([tj(r)]),
it defines correctly an element of G.
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If [x1] . . . [xr] = [y1] . . . [ys], where [xk], [yj ] ∈ ki(π1(Xi)), let H be an homotopy between x1 · · ·xr and
y1 · · · yr. As [0, 1]2 = H−1(X1) ∪H−1(X2), using Lebesgue’s lemma, we get n ∈ N∗ such that

∀k, l,
[
k

n
,
k + 1

n

]
×
[
l

n
,
l + 1

n

]
⊂ H−1(Xi)

for a given i.
For 0 6 k 6 n, 1 6 l 6 n − 1, let pk,l be a path from the base point to H( kn ,

l
n ) in the same Xi than

H( kn ,
l
n ), and let f(x) =


2x+ 1

2 if x 6 − 1
4

0 if − 1
4 6 x 6

1
4

2x− 1
2 if 1

4 6 x

.

Then

H ′
(
k + u

n
,
l + v

n

)
=


H
(
k+u
n , l+vn

)
if l = 0 or l = n

pk,l (4 max (|u|, |v|)) if max (|u|, |v|) 6 1
4

H
(
k+f(u)

n , l+f(v)n

)
else

with u, v ∈ [− 1
2 ,

1
2 ] and 0 6 k, l 6 n, is a homotopy between the two loops and H ′

(
k
n ,

l
n

)
is the base point if

l 6= 0, n.
Let αk,l(t) = H

(
k+t
n , ln

)
, βk,l(t) = H

(
k+1
n , l+tn

)
, γk,l(t) = H

(
k+1−t
n , l+1

n

)
and δk,l(t) = H

(
k
n ,

l+1−t
n

)
the

paths around the square [ kn ,
k+1
n ]× [ ln ,

l+1
n ] induced by H.

Let ak,l = hi([αk,l]), with i such that [αk,l] ∈ π1(Xi). We define bk,l, ck,l and dk,l similarly.

Then ak,l+1 = c−1k,l and bk,l = d−1k+1,l wherever it is defined.

Let’s finish the proof by induction on l: as hi(x1) . . . hj(xr) = a0,0 . . . an−1,0 and hp(x1) . . . hq(xr) =
a0,n−1 . . . an−1,n−1, we just need to prove that ∀l > 0, a0,l . . . an−1,l = a0,l+1 . . . an−1,l+1.

If l = 0,

x1 = α0,0 . . . αk1,0 ∼ δ−10,0γ
−1
0,0 . . . γ

−1
k1,0

β−1k1,0,

· · ·
xr = αkr−1+1,0 . . . αn−1,0 ∼ δ−1kr−1+1,0γ

−1
kr−1+1,0 . . . γ

−1
n−1,0β

−1
n−1,0,

and all these homotopies live either in X1 or in X2.
Thus a0,0 . . . an−1,0 = d−10,0c

−1
0,0 . . . c

−1
k1,0

b−1k1,0 · · · d
−1
kr−1+1,0c

−1
kr−1+1,0 . . . c

−1
n−1,0b

−1
n1,0

= a0,1 . . . an−1,1.

If 0 < l < n− 1, a0,l . . . an−1,l = d−10,l c
−1
0,l b
−1
0,l . . . d

−1
n−1,lc

−1
n−1,lb

−1
n−1,l = a0,l+1 . . . an−1,l+1.

If l = n− 1, we use the same method than for l = 0. �

Definition. Let K1 and K2 be groups. The free product Γ = K1 ? K2 of K1 and K2 is the group of words
on the alphabet K1 ∪K2.

Lemma. There are morphisms φ1 : K1 → Γ and φ2 : K2 → Γ such that

(i) Im(φ1) ∪ Im(φ2) generates Γ.
(ii) If K is a group and ki : Ki → K are morphisms, then there is a morphism k : Γ → K which is

uniquely determined by ki = k ◦ φi
In other words the following diagramm is commutative :

K1
φ1 //

k1

��

Γ

k}}
K K2

φ2

OO

k2

oo

Proof. Since K is a group of words without any relation we can define unambigously the image of any word
as the product of the images of its letters. �

We let K1 = π1(X1) and K2 = π1(X2) in the following propositions.
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Definition. Let G = π1(X1) ?π1(X0) π1(X2) := Γ/ < φ1(j1(g))φ2(j2(g−1)), g ∈ π1(X0) >. G is called the
amalgamated product.

Lemma. We have π1(X) u G.

Proof. Let φi be the injection π1(Xi) → Γ, and θ the projection Γ → G. The following diagrams are all
commutative :

G

π1(X1)
k1 //

θ◦φ1

55

π1(X)

h

;;

π1(X0)

j1

OO
k0

::

j2
// π1(X2)

k2

OO θ◦φ2

EE

(Using Van Kampen’s theorem).

π1(X1)
φ1 //

k1

��

Γ

kzz
π1(X) π1(X2)

φ2

OO

k2

oo

(By definition of Γ).

Γ
k //

θ

��

π1(X)

G
k̃

<<

(By definition of G. Indeed, ∀g ∈ π1(X0), k(φ1(j1(g))φ2(j2(g−1))) = k1(j1(g))k2(j2(g−1)) = cx.)

π1(X1)
θ◦φ1 //

k1

��

G

k̃zz
π1(X) π1(X2)

θ◦φ2

OO

k2

oo

Therefore k̃◦h◦ki = ki so (as π1(X) is generated by the images of ki) k̃◦h = Id. Moreover, h◦k̃◦θ◦φi = θ◦φi
so h ◦ k̃ = Id. Therefore π1(X) u G. �

4. Examples

• The fundamental group of C \ {a1, . . . an} is the free group generated by n elements L(a1, . . . , an).
We prove it for two elements. The result follows by induction on n. We may very well suppose
that a1 = 0 and a2 = 1. Let X0 = {Rz < 3

4} and X1 = {Rz > 1
4} Then X0 = { 14 < Rz < 3

4} is
homeomorphic to C and hence simply connected. π1(Xi) u Z. Thus π1(X) u Z ?Z which is exactly
the free group generated by two elements.

• The fundamental group of the torus T2 deprived of one dot x is L(a, b).
Indeed, if the loops a and b generate π1(T2), consider two strips S1, S2 containing a and b. You can
transform the dot into S1∩S2 through a continuous deformation. Call X1 = T2\S1 and X2 = T2\S2.
Using Van Kampen’s theorem, we get π1(T2 \ {x}) = L(a) ?{1} L(b) = L(a, b).
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• The fundamental group of the torus T2 deprived of n dots x1, . . . , xn is L(a1, . . . , an+1).
Surround every dot xi by a loop ci. The loop c = c1 . . . cn surrounds all the dots. Consider a strip
S containing c and no dot. Call I the interior of c, X1 = S ∪ I and X2 = S ∪ Ic. As c = [a, b], we
get π1(T2 \ {x1, . . . , xn}) = L(a, b) ?L(c) L(c1, . . . , cn) = L(a, b, c1, . . . , cn−1).

• The fundamental group of the torus Tk,n with k holes deprived of n dots x1, . . . , xk is L(d1, . . . , d2k+n−1).
Group all the dots on the first torus through deformation retracts and proceed as previously. By
induction on k, we get π1(Tk,n) = L(a1, . . . , ak, b1, . . . , bk, c1, . . . , cn)/{[a1, b1] . . . [ak, bk]c1 . . . cn} =
L(d1, . . . , d2k+n−1).
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