Homotopy

Remark. We restraint ourselves to the arcwise connected topological spaces. Otherwise, the arcwise connected components don't have anything to do with each other.

1. Definitions

Definition. Let X be an arcwise connected topological space. A loop of base point x is a continuous map $c: [0,1] \rightarrow X$ such that c(0) = c(1) = x.

 c_x denotes the constant loop always equal to x. \bar{c} denotes the loop $t \mapsto c(1-t)$

cc' denotes the loop

$$t \mapsto \begin{cases} c(2t) & \text{if } t \leq \frac{1}{2} \\ c'(2t-1) & \text{if } t \geq \frac{1}{2} \end{cases}$$

Definition. Two paths c, c' are said to be homotopic whenever there exists a continuous map $H[0,1]^2 \to X$ such that

$$\left\{ \begin{array}{l} H(\cdot,0)=c\\ H(\cdot,1)=c'\\ H(0,\cdot)=H(1,\cdot)=x \end{array} \right.$$

We then denote $c \sim c'$.

Lemma. \sim is an equivalence relation. We denote the class of c by [c].

Proof. Transitivity is obtained through concatenation.

Definition. The set of all homotopy classes is the fundamental group $\pi_1(X, x)$. $\forall x, x' \in X, \pi_1(X, x) \equiv$ $\pi_1(X, x')$, so we denote $\pi_1(X)$ the fundamental group.

Proof. Let $\gamma \sim c$ and $\gamma' \sim c'$ and H, H' be continuous maps as in the definition. Then $\bar{c} \sim \bar{\gamma}$ through $\bar{H}(t,s) = H(1-t,s). \ cc' \sim \gamma\gamma' \text{ through } HH'(t,s) = \begin{cases} H(2t,s) & \text{if } t \leq \frac{1}{2} \\ H'(2t-1,s) & \text{if } t \geq \frac{1}{2} \end{cases}.$ This proves that the group

law is well defined. Moreover if c_1, c_2, c_3 are loops, $(c_1c_2)(c_3) = (c_1)(c_2c_3)$ through

$$H(t,s) = \begin{cases} c_1(\frac{4t}{1+s}) \text{ if } t \leq \frac{1+s}{4} \\ c_2(4t-s-1) \text{ if } \frac{1+s}{4} \leq t \leq \frac{2+s}{4} \\ c_3(\frac{4t-s-2}{2-s}) \text{ if } \frac{2+s}{4} \leq t \end{cases}$$

 $[c_x]$ is a neutral element because $cc_x \sim c_x c \sim c$ (left to the reader). $c\overline{c} \sim c_x$ so $[\overline{c}]$ is the inverse of [c] for the law group.

Finally, let γ be a path from x to x', $[c] \mapsto [\gamma c \overline{\gamma}]$ is an isomorphism between $\pi_1(X, x)$ and $\pi_1(X, x')$. \Box

Definition. A topological connected set is said to be simply connected if its fundamental group is reduced to the neutral element.

Lemma. \mathbb{R}^n is simply connected through H(t,s) = s c(t) for all loop c.

Let f be a continuous map between two arcwise connected topological spaces X and Y then if $c \sim c'$, $f \circ c \sim f \circ c'$ and $f \circ cc' \sim (f \circ c)(f \circ c')$. Thus f induces a map $f_* : \pi_1(X, x) \to \pi_1(Y, f(x))$ such that $f_*(cc') = f_*(c)f_*(c')$. Thus, we have a morphism between $\pi_1(X, x)$ and $\pi_1(Y, f(x))$. If f is a homeomorphism, f_* is an isomorphism of inverse $(f^{-1})_*$.

2. Some fundamental groups

Lemma. Let X and Y be two arcwise connected topological spaces. Then, if p_1 and p_2 are the projection from $X \times Y$, then $(p_1)_* \times (p_2)_*$ is an isomorphism between $\pi_1(X \times Y, (x, y))$ and $\pi_1(X, x) \times \pi_1(Y, y)$.

Proof. It is a morphism as a product of two morphisms. It is injective by taking the product of two homotopies and surjective because the product of two loops of X and Y is a loop of $X \times Y$.

Example. The torus \mathbb{T}^2 is defined as $\mathbb{S}^1 \times \mathbb{S}^1$. Therefore its fundamental group is \mathbb{Z}^2

Remark. If Y is simply connected, $X \times Y$ has the same fundamental group as X, and if X and Y are both simply connected, so is $X \times Y$.

Definition. A subset Y of an arcwise connected topological space X is said to be a deformation retract if there exists continuous applications $r: X \mapsto Y$ and $H: X \times [0,1] \mapsto X$ such that:

- $\forall y \in Y, r(y) = y.$
- $\forall x \in X, H(x, 0) = x.$
- $\forall x \in X, H(x, 1) = r(x).$
- $\forall y \in Y, \forall t \in [0,1], H(y,t) = y.$

Example. \mathbb{S}^{m-1} is a deformation retract of $\mathbb{R}^m \setminus \{0\}$ through $r(x) = \frac{x}{||x||}$ and $H(x,t) = t\frac{x}{||x||} + (1-t)x$.

If Y is a deformation retract of X, i the injection of Y into X and $x \in Y$, the iduced morphism i_* : $\pi_1(Y,x) \to \pi_1(X,x)$ is an isomorphism. Indeed, surjectivity only has to be proved. If $c \in \pi_1(X,x)$ then $r \circ c \in \pi_1(Y,x)$ and $i_*(r \circ c) \sim c$ (through the H of the definition).

Theorem. Let $p : \mathbb{R} \to \mathbb{S}^1$ be the projection $t \mapsto e^{2i\pi t}$, and for all $n \in \mathbb{Z}$, γ_n the loop $t \mapsto p(nt)$. Then the application $n \mapsto [\gamma_n]$ is an isomorphism from \mathbb{Z} to $\pi_1(\mathbb{S}^1)$. Thus $\pi_1(\mathbb{S}^1) \equiv \mathbb{Z}$.

Lemma. If c is a loop of base point 1 in \mathbb{S}^1 , then there exists a path \tilde{c} of origin 0 in \mathbb{R} which is uniquely determined by $p \circ \tilde{c} = c$. A such path is called a lifting of c.

Proof. If $a \in \mathbb{R}$, p induces an isomorphism between $]a - \frac{1}{2}, a + \frac{1}{2}[$ and $\mathbb{S}^1 \setminus \{-p(a)\}$. Consequently if we denote, p_a^{-1} the inverse of this induced homeomorphism, and if \tilde{c}_1 and \tilde{c}_2 are both as in the lemma, then $\tilde{c}_1 = \tilde{c}_2 = c \circ p_a^{-1}$ on $]a - \frac{1}{2}, a + \frac{1}{2}[$ and thus $\tilde{c}_1 = \tilde{c}_2$.

Furthermore, for c is continuous on [0,1], it is uniformly continuous and there exists $n \in \mathbb{N}$ such that $\forall t, t' \in [0,1]$, if $|t-t'| \leq \frac{1}{n}$, $||c(t) - c(t')|| \leq 1$, so $c(t)\overline{c(t')} \neq -1$. Hence, if $|t-t'| \leq \frac{1}{n}$, $p_0^{-1}(c(t)\overline{c(t')})$ is well defined. Thus, we can define

$$\tilde{c}(t) = p_0^{-1}\left(c(t)\overline{c\left(\frac{j}{n}\right)}\right) + \sum_{i=1}^j p_0^{-1}\left(c\left(\frac{i}{n}\right)\overline{c\left(\frac{i-1}{n}\right)}\right)$$

for $\frac{j}{n} \leqslant t \leqslant \frac{j+1}{n}$, which works.

Lemma. If H is a continuous map from $[0,1]^2$ to \mathbb{S}^1 such that H(0,0) = 1, then there exists a continuous map \tilde{H} which is uniquely determined by $p \circ \tilde{H} = H$ and $\tilde{H}(0,0) = 0$.

Lemma. Two loops c and γ are homotopic iff $\tilde{c}(1) = \tilde{\gamma}(1)$ whenever \tilde{c} and $\tilde{\gamma}$ are liftings.

Proof. c and γ are homotopic through $H(t,s) = p((1-s)\tilde{c}(t) + s\tilde{\gamma}(t))$. Conversely if c and γ are homotopic, let \tilde{H} be a lifting of H, then $\tilde{c} = \tilde{H}(\cdot, 0)$ and $\tilde{\gamma} = \tilde{H}(\cdot, 1)$ are liftings of c and γ . But, then, since $\tilde{H}(1, \cdot)$ is continuous and maps into \mathbb{Z} , it is constant and $\tilde{c}(1) = \tilde{H}(1,0) = \tilde{H}(1,1) = \tilde{\gamma}(1)$.

Proof. (of the theorem) We conclude by letting $\phi([c]) = \tilde{c}(1)$, which is well defined. Moreover if c and γ are loops, and \tilde{c} and $\tilde{\gamma}$ are liftings, then $a(t) = \tilde{c}(2t)$ if $t \leq \frac{1}{2}$, and $\tilde{\gamma}(2t-1) + \tilde{c}(1)$ otherwise, is a lifting of $c\gamma$. Thus ϕ is an isomorphism which inverse is $n \mapsto [\gamma_n]$.

Remark. The fundamental group of $\mathbb{R}^2 \setminus \{0\}$ is \mathbb{Z} , because it is a deformation retract of \mathbb{S}^1 .

3. VAN KAMPEN'S THEOREM

Let X be an arcwise connected space, X_1 and X_2 two arcwise connected open subspaces of X such that $X = X_1 \cup X_2$ and $X_0 = X_1 \cap X_2$ is a non empty arwise connected subspace of X.

Let $x \in X_0$. We denote $\pi_1(X_i) = \pi_1(X_i, x)$ for i = 0, 1, 2, and $\pi_1(X) = \pi_1(X, x)$. Let j_i be the morphism from $\pi_1(X_0)$ to $\pi_1(X_i)$ induced by the injection from X_0 into X_i for i = 1, 2, and k_i the morphism from $\pi_1(X_i)$ to $\pi_1(X)$ induced by the injection from X_i into X.

Lemma. $\pi_1(X)$ is generated by k_1 's and k_2 's ranges.

Proof. Let γ be a loop in X. $[0,1] = \gamma^{-1}(X_1) \cup \gamma^{-1}(X_2)$ is an open covering. Thus, using LEBESGUE's lemma, we get an integer n such that, $\forall k \in [\![0, n-1]\!], [\frac{k}{n}, \frac{k+1}{n}] \subset X_i$ for a given i.

If $\gamma\left(\frac{k}{n}\right) \in X_0$ (respectively $X_i \setminus X_0$), let α_k be a path from $\gamma\left(\frac{k}{n}\right)$ to the base point in $X_0(X_i)$. Let $\gamma_k(t) = \gamma(\frac{k+t}{n}).$

Then, $\gamma \sim (\gamma_0 \alpha_0)(\overline{\alpha_0} \gamma_1 \alpha_1) \dots (\overline{\alpha_{n-2}} \gamma_{n-1})$, which ends the proof since each $\overline{\alpha_{i-1}} \gamma_i \alpha_i$ is a loop in X_1 or X_2 .

Corollary. If X_1 and X_2 are simply connected, X is simply connected.

Corollary. If $m \ge 2$, \mathbb{S}^m is simply connected.

is an homeomorphism of inverse

Proof. Let a be the point $(0, \ldots, 0, 1)$ of $X = \mathbb{S}^m$, and $X_1 = X \setminus \{a\}, X_2 = X \setminus \{-a\}$. X_i is homeomorphic to \mathbb{R}^{m-1} and thus simply connected. Indeed, the map

$$S^{m} \setminus \{a\} \to \mathbb{R}^{m-1}$$

$$(x_{1}, \dots, x_{m}) \mapsto \left(\frac{x_{1}}{1 - x_{m}}, \dots, \frac{x_{m-1}}{1 - x_{m}}\right)$$

$$: (y_{1}, \dots, y_{m-1}) \mapsto \left(\frac{2y_{1}}{1 + \sum\limits_{i=1}^{m-1} y_{i}^{2}}, \dots, \frac{2y_{m-1}}{1 + \sum\limits_{i=1}^{m-1} y_{i}^{2}}, 1 - \frac{2}{1 + \sum\limits_{i=1}^{m-1} y_{i}^{2}}\right)$$

Moreover, $X_0 = X_1 \cap X_2$ is arcwise connected : if $x_0, x_1 \in X_0$, there is a circle containing those two points which doesn't touch a and -a. Using the lemma \mathbb{S}^m is simply connected.

Theorem. (VAN KAMPEN) If h_i is a morphism from $\pi_1(X_i)$ to a group G for i = 1, 2 and if $h_1 \circ j_1 = h_2 \circ j_2$, then there is a morphism h from $\pi_1(X)$ to G which is uniquely determined by $h \circ k_i = h_i$ for i = 1, 2. In other words the following diagram is commutative:

Proof. Firstly, h is uniquely determined : if h is as in the theorem, and $[x] \in \pi_1(X)$, using the lemma, [x] = $[x_1]\cdots [x_r]$ where $[x_i] = k_{j(i)}([t_{j(i)}])$ and $[t_{j(i)}] \in \pi_1(X_{j(i)}), h([x]) = h_{j(1)}([t_{j(1)})])\cdots h_{j(r)}([t_{j(r)}])$ and therefore, h is uniquely determined. Our goal is then to prove that if we assert $h([x]) = h_{j(1)}([t_{j(i)})]) \cdots h_{j(r)}([t_{j(r)}])$, it defines correctly an element of G.

If $[x_1] \dots [x_r] = [y_1] \dots [y_s]$, where $[x_k], [y_j] \in k_i(\pi_1(X_i))$, let H be an homotopy between $x_1 \cdots x_r$ and $y_1 \cdots y_r$. As $[0,1]^2 = H^{-1}(X_1) \cup H^{-1}(X_2)$, using LEBESGUE's lemma, we get $n \in \mathbb{N}^*$ such that

$$\forall k, l, \left[\frac{k}{n}, \frac{k+1}{n}\right] \times \left[\frac{l}{n}, \frac{l+1}{n}\right] \subset H^{-1}(X_i)$$

for a given *i*.

For $0 \leq k \leq n, 1 \leq l \leq n-1$, let $p_{k,l}$ be a path from the base point to $H(\frac{k}{n}, \frac{l}{n})$ in the same X_i than $\begin{pmatrix} 2x + \frac{1}{2} & \text{if } x \leq -\frac{1}{4} \end{pmatrix}$

$$H(\frac{k}{n}, \frac{l}{n}), \text{ and let } f(x) = \begin{cases} 0 & \text{ if } -\frac{1}{4} \leqslant x \leqslant \frac{1}{4} \\ 2x - \frac{1}{2} & \text{ if } \frac{1}{4} \leqslant x \end{cases}$$

Then

$$H'\left(\frac{k+u}{n},\frac{l+v}{n}\right) = \begin{cases} H\left(\frac{k+u}{n},\frac{l+v}{n}\right) & \text{if } l = 0 \text{ or } l = n\\ p_{k,l}\left(4\max\left(|u|,|v|\right)\right) & \text{if } \max\left(|u|,|v|\right) \leqslant \frac{1}{4}\\ H\left(\frac{k+f(u)}{n},\frac{l+f(v)}{n}\right) & \text{else} \end{cases}$$

with $u, v \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ and $0 \leq k, l \leq n$, is a homotopy between the two loops and $H'\left(\frac{k}{n}, \frac{l}{n}\right)$ is the base point if $l \neq 0, n.$

 $\begin{array}{l} l \neq 0, n. \\ \text{Let } \alpha_{k,l}(t) = H\left(\frac{k+t}{n}, \frac{l}{n}\right), \ \beta_{k,l}(t) = H\left(\frac{k+1}{n}, \frac{l+t}{n}\right), \ \gamma_{k,l}(t) = H\left(\frac{k+1-t}{n}, \frac{l+1}{n}\right) \ \text{and} \ \delta_{k,l}(t) = H\left(\frac{k}{n}, \frac{l+1-t}{n}\right) \ \text{the paths around the square} \left[\frac{k}{n}, \frac{k+1}{n}\right] \times \left[\frac{l}{n}, \frac{l+1}{n}\right] \ \text{induced by } H. \\ \text{Let } a_{k,l} = h_i([\alpha_{k,l}]), \ \text{with } i \ \text{such that} \ [\alpha_{k,l}] \in \pi_1(X_i). \ \text{We define } b_{k,l}, \ c_{k,l} \ \text{and} \ d_{k,l} \ \text{similarly.} \\ \text{Then } a_{k,l+1} = c_{k,l}^{-1} \ \text{and} \ b_{k,l} = d_{k+1,l}^{-1} \ \text{wherever it is defined.} \\ \text{Let's finish the proof by induction on } l: \ \text{as } h_i(x_1) \dots h_j(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and} \ h_p(x_1) \dots h_q(x_r) = a_{0,0} \dots a_{n-1,0} \ \text{and}$

 $a_{0,n-1} \dots a_{n-1,n-1}$, we just need to prove that $\forall l \ge 0, a_{0,l} \dots a_{n-1,l} = a_{0,l+1} \dots a_{n-1,l+1}$. If l = 0,

$$x_1 = \alpha_{0,0} \dots \alpha_{k_1,0} \sim \delta_{0,0}^{-1} \gamma_{0,0}^{-1} \dots \gamma_{k_1,0}^{-1} \beta_{k_1,0}^{-1},$$

$$x_r = \alpha_{k_{r-1}+1,0} \dots \alpha_{n-1,0} \sim \delta_{k_{r-1}+1,0}^{-1} \gamma_{k_{r-1}+1,0}^{-1} \dots \gamma_{n-1,0}^{-1} \beta_{n-1,0}^{-1},$$

and all these homotopies live either in X_1 or in X_2 . Thus $a_{0,0} \dots a_{n-1,0} = d_{0,0}^{-1} c_{0,0}^{-1} \dots c_{k_1,0}^{-1} b_{k_1,0}^{-1} \dots d_{k_{r-1}+1,0}^{-1} c_{k_{r-1}+1,0}^{-1} \dots c_{n-1,0}^{-1} b_{n_1,0}^{-1} = a_{0,1} \dots a_{n-1,1}$.

If
$$0 < l < n-1$$
, $a_{0,l} \dots a_{n-1,l} = d_{0,l}^{-1} c_{0,l}^{-1} b_{0,l}^{-1} \dots d_{n-1,l}^{-1} c_{n-1,l}^{-1} b_{n-1,l}^{-1} = a_{0,l+1} \dots a_{n-1,l+1}$

If l = n - 1, we use the same method than for l = 0.

Definition. Let K_1 and K_2 be groups. The free product $\Gamma = K_1 \star K_2$ of K_1 and K_2 is the group of words on the alphabet $K_1 \cup K_2$.

Lemma. There are morphisms $\phi_1 : K_1 \to \Gamma$ and $\phi_2 : K_2 \to \Gamma$ such that

- (i) $Im(\phi_1) \cup Im(\phi_2)$ generates Γ .
- (ii) If K is a group and $k_i: K_i \to K$ are morphisms, then there is a morphism $k: \Gamma \to K$ which is uniquely determined by $k_i = k \circ \phi_i$

In other words the following diagramm is commutative :

$$\begin{array}{c} K_1 \xrightarrow{\phi_1} & \Gamma \\ \downarrow k_1 & \uparrow \phi_2 \\ K \xleftarrow{k_2} & K_2 \end{array}$$

Proof. Since K is a group of words without any relation we can define unambigously the image of any word as the product of the images of its letters. \square

We let $K_1 = \pi_1(X_1)$ and $K_2 = \pi_1(X_2)$ in the following propositions.

 \square

Definition. Let $G = \pi_1(X_1) \star_{\pi_1(X_0)} \pi_1(X_2) := \Gamma / \langle \phi_1(j_1(g))\phi_2(j_2(g^{-1})), g \in \pi_1(X_0) \rangle$. G is called the amalgamated product.

Lemma. We have $\pi_1(X) \cong G$.

Proof. Let ϕ_i be the injection $\pi_1(X_i) \to \Gamma$, and θ the projection $\Gamma \to G$. The following diagrams are all commutative :

(Using VAN KAMPEN's theorem).

(By definition of Γ).

(By definition of G. Indeed, $\forall g \in \pi_1(X_0), \ k(\phi_1(j_1(g))\phi_2(j_2(g^{-1}))) = k_1(j_1(g))k_2(j_2(g^{-1})) = c_x.$)

Therefore $\tilde{k} \circ h \circ k_i = k_i$ so (as $\pi_1(X)$ is generated by the images of k_i) $\tilde{k} \circ h = Id$. Moreover, $h \circ \tilde{k} \circ \theta \circ \phi_i = \theta \circ \phi_i$ so $h \circ \tilde{k} = Id$. Therefore $\pi_1(X) \cong G$.

4. Examples

- The fundamental group of $\mathbb{C} \setminus \{a_1, \ldots, a_n\}$ is the free group generated by n elements $\mathcal{L}(a_1, \ldots, a_n)$. We prove it for two elements. The result follows by induction on n. We may very well suppose that $a_1 = 0$ and $a_2 = 1$. Let $X_0 = \{\Re z < \frac{3}{4}\}$ and $X_1 = \{\Re z > \frac{1}{4}\}$ Then $X_0 = \{\frac{1}{4} < \Re z < \frac{3}{4}\}$ is homeomorphic to \mathbb{C} and hence simply connected. $\pi_1(X_i) \cong \mathbb{Z}$. Thus $\pi_1(X) \cong \mathbb{Z} \star \mathbb{Z}$ which is exactly the free group generated by two elements.
- The fundamental group of the torus \mathbb{T}^2 deprived of one dot x is $\mathcal{L}(a, b)$. Indeed, if the loops a and b generate $\pi_1(\mathbb{T}^2)$, consider two strips S_1 , S_2 containing a and b. You can transform the dot into $S_1 \cap S_2$ through a continuous deformation. Call $X_1 = \mathbb{T}^2 \setminus S_1$ and $X_2 = \mathbb{T}^2 \setminus S_2$. Using VAN KAMPEN's theorem, we get $\pi_1(\mathbb{T}^2 \setminus \{x\}) = \mathcal{L}(a) \star_{\{1\}} \mathcal{L}(b) = \mathcal{L}(a, b)$.

- The fundamental group of the torus \mathbb{T}^2 deprived of n dots x_1, \ldots, x_n is $\mathcal{L}(a_1, \ldots, a_{n+1})$. Surround every dot x_i by a loop c_i . The loop $c = c_1 \ldots c_n$ surrounds all the dots. Consider a strip S containing c and no dot. Call I the interior of c, $X_1 = S \cup I$ and $X_2 = S \cup I^c$. As c = [a, b], we get $\pi_1(\mathbb{T}^2 \setminus \{x_1, \ldots, x_n\}) = \mathcal{L}(a, b) \star_{\mathcal{L}(c)} \mathcal{L}(c_1, \ldots, c_n) = \mathcal{L}(a, b, c_1, \ldots, c_{n-1})$.
- The fundamental group of the torus $T_{k,n}$ with k holes deprived of n dots x_1, \ldots, x_k is $\mathcal{L}(d_1, \ldots, d_{2k+n-1})$. Group all the dots on the first torus through deformation retracts and proceed as previously. By induction on k, we get $\pi_1(T_{k,n}) = \mathcal{L}(a_1, \ldots, a_k, b_1, \ldots, b_k, c_1, \ldots, c_n)/\{[a_1, b_1] \ldots [a_k, b_k]c_1 \ldots c_n\} = \mathcal{L}(d_1, \ldots, d_{2k+n-1}).$