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Abstract

This document gives a quick overview of a �eld of mathematics which lies in the intersection
of geometry and algebra : tilings.

A few de�nitions of key notions are presented and a �rst attempt to classify tilings (ac-
cording to the structure of their symmetry group) is done. Finally, several more complicated
problems arising from tiling theory are mentioned and referenced.
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1 Preliminaries

1.1 First de�nitions

In the whole paper, we consider the plane R2 with the natural topology derived from an arbitrarily
�xed norm ‖ · ‖.

De�nition A general tiling T is a countable set {Tn | n ∈ N} whose elements are closed subsets
of R2 such that : ⋃

n∈N
Tn = R2 and ∀ i 6= j, T̊i ∩ T̊j = ∅.

For all n ∈ N, Tn is called a tile of the tiling.

This de�nition is too general for our study, so we will nextly restrict us to a smaller class of
objects, for what we �rst need more vocabulary.

De�nition A general discrete tiling is a general tiling {Tn | n ∈ N} such that for all M > 0, there
is a �nite subset I ⊂ N satisfying :

B(0,M) ⊂
⋃
i∈I

Ti.

where B(x,R) stands for the closed ball of center x and of radius R in the space (R2, ‖ · ‖).

De�nition A well-behaved general tiling is a general tiling whose tiles are all topological disks,
that is to say homeomorphic images of B(0, 1).

If all tiles of a tiling T are topological disks, one can consider subsets of R2 of the form :⋂
i∈I

Ti for any I ⊂ N �nite.

Any of these subsets can be rewrited as an (eventually empty) union of isolated points and simple
closed curves. The isolated points are called the vertices of the tiling.

Moreover, for all n ∈ N, since the border of Tn is a simple closed curve, it is divided into several
closed curves by the vertices of the tiling. The elementary closed curves arising are called the edges
of the tiling.

We can now state what we want to be a tiling.

De�nition A tiling is a well-behaved discrete general tiling in which each tile contains only a
�nite number of vertices.

Several examples of general tilings which are not tilings according to our de�nition can be found
in the very beginning of the �rst chapter of [1].

1.2 Group of the isometries of the plane

Since tilings are geometrical objects, we may consider a group which action on tillings is quite
interesting : the group of the isometries of the plane.

De�nition An isometry is generaly de�ned in Rd as a distance-preserving bijection.

Note that the identity, the composition of two isometries, and the inverse map of an isometry
are still isometries. Hence, the isometries of form a group for the composition law.

A well-known result states that an isometry can be factorized as a composition of an orthogonal
linear transformation and a translation.

Moreover, the reduction of orthogonal linear maps in R2 yields to the following result.

Theorem Any isometry of the plane can be factorised into a translation, a rotation and a re�ection.
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1.3 Equal tilings

Since we have de�ned tilings as geometrical objects, we want to provide them some algebraic
structure. In fact, we aim at �nding invariants or criteria to determine to what extent two given
tilings are �similar�.

A �rst attempt is made with the following de�nition.

De�nition Two tilings T ,T ′ are said to be equal if there is a similarity transformation of the
plane s and a permutation σ ∈ Bij(N) such that :

∀n ∈ N s(Tn) = T ′σ(n).

Unfortunately, this �rst notion of similarity is too restrictive. We have to introduce new tools
to classify tilings in a more appropriate way.

1.4 Symmetry groups

Let T = {Tn | n ∈ N} be a tiling.

De�nition The symmetry group of T is the set of all isometries of the plane s such that :

∃σ ∈ Bij(N) ∀n ∈ N s(Tn) = Tσ(n).

It is denoted by the notation S (T ).

Checking that it is indeed a group for the composition law is left to the reader.

De�nition The diagram of the symmetry group S (T ) is the representation on the plane obtained
by the following rules :

• For each re�ection in S (T ), we draw the re�ection axis ;

• For each θ ∈]0, 2π[, we choose a color and draw each center of a θ-rotation belonging to S T
in this color ;

• For each translation in S (T ), we draw the corresponding free vector ;

• For each free-vector, we choose a color and draw the axis of each glide-re�ection in S (T )
with this free-vector in this color.

De�nition Two symmetry groups are said to be isomorphic if their diagrams are the same up to
an a�ne transformation.

De�nition Two tilings T , T ′ are said to have the same symmetry type if S (T ) and S (T ′) are
isomorphic.

2 Classi�cation of tilings according to their symmetry types

The classi�cation stated here has been carefully carried out in [2]. We distinguish between three
cases :

• S (T ) contains no translation ;

• There is a vector v such that the translations of S (T ) are exactly the translations corre-
sponding to vectors of vZ ;

• There are two independent vectors u, v such that the translations of S (T ) are exactly the
translations corresponding to vectors of uZ + vZ.

In each case, a classi�cation is made so that we �nally explicit 26 symmetry types : 2 are in
the �rst case, 7 in the second case (they are the so called frieze groups) and 17 in the third case
(the so called wallpaper groups).
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2.1 The n-cyclic group and the n-dihedral group

Let S be the symmetry group of a �xed tiling, with the hypothesis that S contains no translation.

Claim If S contains two rotations ρA,φ, ρB,ψ, then they have the same center : A = B.

Proof Else ρA,φ ◦ ρB,φ ◦ ρ−1A,φ ◦ ρ
−1
B,φ would be a non-identity translation belonging to S . �

Claim If S contains a rotation ρA,φ, then φ ∈ πQ.

Proof Else, the set E = φZ + 2πZ is a non monogenous subgroup of R, so it is dense in R. So, S
contains rotations of center A and of arbitrarily small angles. Taking any tile T of the tiling, one

can apply a su�ciently small rotation ρA,ε for ˚ρA,ε(T ) to intersect T̊ . Contradiction. �
This proof strongly relies on our assumption that tiles are topological disks.

Corollary If S contains no re�ection, then it is isomorphic to a cyclic group Cn.

Claim If S contains exactly one re�ection sd of axis d, it contains either no rotation, or only a

halfturn. It is hence isomorphic to C2 or C4.

Proof For any rotation ρA,φ, ρ
−1
A,φ ◦ sd ◦ ρA,φ = sρA,−φ(d). So if this rotation belongs to S , the

condition φ ∈ πZ is required. The claim follows straight-forward. �

Claim If S contains at least two re�ections, then it is isomorphic to a dihedral group Dn.

Proof It arises easily when applying both �rst claims to well chosen composites. �

2.2 The 7 frieze groups

Let S be the symmetry group of a �xed tiling, with the hypothesis that S contains at least one
translation, but doesn't contain any two independent translations.

Claim There is a smallest translation vector v such that the translations belonging to S are

exactly the translations of vector in vZ.

Proof It is still the same density argument as for rotation angles in the previous paragraph. �
Let τ be the tranlation of vector v.

Claim Each line of direction v is sent on a line of direction v by any element of S .

Proof Else we can conjugate τ by such an element of S and we get an illegal translation in S .�

Corollary There is a line c which is �xed by any element of S . Moreover, S contains only

half-turns centered on c, re�ections of axis c or orthogonal to c and glide-re�ections of axis c and

of vector in v
2Z.

We don't give the details of the proof then, but looking carefully at each case yields to the
following classi�cation.
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• If S contains a half-turn of center A, it contains all half-turns centered
on elements of A+ v

2Z :

• If it contains the re�ection of axis c, then it also contains all re-
�ections of axis perpendicular to c and intersecting c in a point of
A+ v

2Z.
This is the symmetry type F 1

2 , e.g. 7th pattern below.

• Else :

• If it contains a re�ection, it contains all re�ection of axis per-
pendicular to c and intersecting c in a point of A+ v

4 + v
2Z.

This is the symmetry group F 2
2 , e.g. 6th pattern below.

• Else, it also contains no glide-re�ection.
This is the symmetry type F2, e.g. 5th pattern below.

• Else :

• If it contains the re�ection of axis c,

This is the symmetry type F 1
1 , e.g. 3rd pattern below.

• Else :

• If it contains re�ections, it contains exactly the re�ections of
axis perpendicular to c and intersecting c in a point of A+ v

2Z.
This is the symmetry type F 2

1 , e.g. 4th pattern below.

• Else :

• If it contains the glide re�ection of vector v
2 ,it contains ex-

actly the iterates of τ and the glide re�ections of vector in
v
4 + v

2Z.
This is the symmetry type F 3

1 , e.g. 2nd pattern below.

• Else, it only contains the iterates of τ .
This is the symmetry type F1, e.g. 1st pattern below.

Moreover, all cases are e�ective, as shows the following picture (found on Wikipedia) :
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2.3 The 17 wallpaper groups

Lattices and Point Groups If G is a subgroup of E(2), we write T for the set of translations
in G and G0 is the set {

A ∈ O2(R) | (u,A) ∈ G for some u ∈ R2
}
,

calling T the transformation subgroup of G and G0 the point group of G.

De�nition A subgroup of E(2) is called a wallpaper group if its translation subgroup is generated
by two independent translations and its point group is �nite.

In order to classify the wallpaper groups, we shall precise some properties of its transformation
subgroup and point group. From now on G will denote a wallpaper group. First, the elements of T
can be viewed as vectors in R2, hence we obtain a discret subgroup of the plane. Select a non-zero
vector a of minimum length in this lattice, then choose a second vector b from the lattice which is
skew to a and whose length is as small as possible.

Theorem The lattice is generated by vectors a and b.

We shall classify lattices into �ve di�erent types according to the shape of the basic par-
allelogram determined by the vectors a and b. Replace b by −b if necessary to ensure that
‖a− b‖ ≤ ‖a+ b‖. With this assumption the di�erent lattices are de�ned as follows.

1. Oblique ‖a‖ < ‖b‖ < ‖a− b‖ < ‖a+ b‖.

2. Rectangular ‖a‖ < ‖b‖ < ‖a− b‖ = ‖a+ b‖.

3. Centred Rectangular ‖a‖ < ‖b‖ = ‖a− b‖ < ‖a+ b‖.

4. Square ‖a‖ = ‖b‖ < ‖a− b‖ = ‖a+ b‖.

5. Hexagonal ‖a‖ = ‖b‖ = ‖a− b‖ < ‖a+ b‖.

Notice that the point group is a �nite subgroup of O2(R), thus we have the following important
fact.

Theorem The point group is isomorphic to one of the following ten groups:

{C1, C2, C3, C4, C6, D1, D2, D3, D4, D6} .

In fact, we can determine the lattice type of a wallpaper group in terms of its point group by:
Take a rotation r in G0, then the lattice is clairly generated by vectors a, r(a) where a is as above.
Since the order of r can only be 2, 3, 4, or 6, the angle between a and r(a) gives the �ve lattice
types.

Theorem If two wallpaper groups are isomorphic then their point groups are also isomorphic.

Wallpaper patterns The patterns formed by periodic tilings can be categorized into 17 wall-
paper groups. Our goal in this section is to describe the outline of the proof. Here is the list of all
wallpaper groups:

Oblique Rectangular Centred Rectangular Square Hexagonal
p1 pm cm p4 p3
p2 pg cmm p4m p3m1

pmm p31m
pmg p6
pgg p6m
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Before beginning the classi�cation we add a word or two about notation. First of all, some of
these names di�er in short and full notation, for exemple p2 is called p211 in its full name. Each
wallpaper group has a name made up of several symbols p, c, m, g and the integers 1, 2, 3, 4,
6. The letter p refers to the lattice and stands for the word primitive. When we view a lattice
as being made up of primitive cells (copies of the basic parallelogram which do not contain any
lattice points in their interiors) we call it a primitive lattice. In one case (the centred rectangular
lattice) we take a non-primitive cell together with its centre as the basic building block, and use
the letter c to denote the resulting centred lattice. The symbol for a re�ection is m (for mirror)
and g denotes a glide re�ection. Finally, 1 is used for the identity transformation and the numbers
2, 3, 4, 6 indicate rotations of the corresponding order.

We can proceed with case-by-case analysis. In the text, we will only deal with the case that
the lattice is oblique, the rest can be treated similarly.

If the lattice is oblique, then the only orthogonal transformations which preserve the lattice are
the identity and rotation through π about the origin. Therefore, the point group G0 is a subgroup
of {±I}.

• (p1) G0 = {I}.
Then G is the simplest wallpaper group, and it is generated by two independent translations.
Its elements have the form (ma+ nb, I), where (m,n) ∈ Z2.

• (p2) G0 = {±I}.
In this case G contains a half turn, and we may as well take the �xed point of this half turn
as origin, so that (0,−I) belongs to G. It is easy to verify that the elements of G are of the
form (ma+nb,±I), where (m,n) ∈ Z2. In other words, we have all the half turns about the
points 1

2ma+ 1
2nb.

In the end, we will describe each wallpaper group in terms of generators, in the following a, b
are the generators of the lattice de�ned as above. To simplify notations, we introduce the following
elements of O2(R):

A2 =

(
0 1
1 0

)
, B2 =

[
1 0
0 −1

]
, A3 =

[
0 −1
1 −1

]
, B3 =

[
1 0
1 −1

]
, A4 =

[
0 −1
1 0

]

Wallpaper group Generators Point group
p1 a, b C1

p2 a, b, (0,−I) C2

pm a, b, (0, B2) D1

pg a, b, ( 1
2a,B2) D1

pmm a, b, (0, B2), (0,−I) D2

pmg a, b, ( 1
2a,B2), (0,−I) D2

pgg a, b, ( 1
2 (a+ b), B2), (0,−I) D2

cm a, b, (0, A2) D1

cmm a, b, (0, A2), (0,−A2) D2

p4 a, b, (0, A4) C4

p4m a, b, (0, A4), (0, B3) D4

p4g a, b, (0, A4), ( 1
2 (a+ b), B3) D4

p3 a, b, (0, A3) C3

p3m1 a, b, (0, A3), (0, B3) D3

p31m a, b, (0, A3), (0,−A3B3) D3

p6 a, b, (0,−A2
3) C6

p6m a, b, (0,−A2
3), (0,−A3B3) D6
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3 Overview of other tilings-related problems

Though this classi�cation has been worked out, there are still problems left ! A main challenge is
for example to �nd other invariants than the symmetry group to classify all (or a special class of)
tilings.

An obvious instance of such invariant is the topological type : two tilings are said to have the
same topological type if there is an homeomorphism of the plane which send one of them on the
other one.

More interesting examples are to be found in chapters 5 and 6 of [1]. The chapter 5 de�nes
a pattern type for which we could also attempt to classify tilings. The chapter 6 provides a
classi�cation of the isohedral tilings, that are the tilings such that for any pair of vertices (u, v),
there is a symmetry of the tilling s satisfying s(u) = v.
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