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Lattice Polytopes

Definition (Lattice Polytope)
A lattice polytope is the convex hull of finitely many lattice points
v1, . . . , vk P Z

d .

3 3 7

equivalence: up to lattice preserving affine transformations.

In this talk: P Ă Rd always full-dimensional.
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A little bit of Ehrhart theory

Consider the integer point counting function:

k ÞÑ |kP XZd |

Theorem (Stanley ’80)

ÿ

kě0
|kP XZd |tk “

h˚Pptq
p1´ tqd`1 ,

where h˚P is a polynomial of degree ď d with coefficients in Zě0.

Definition
The degree of h˚P is called the degree of P.
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The degree of a lattice polytope

• measure for the complexity of a lattice polytope
• degpPq “ 0 ô P – ∆d “ convp0, e1, . . . , edq

• invariant under taking lattice pyramids
• monotone with respect to inclusion
• d ` 1´ degpPq “ min

 

k P Zą0 : intpkPq XZd ‰ H
(

“: codegpPq, the codegree of P:

∆2
codeg “ 3

deg “ 0

2∆2
codeg “ 2

deg “ 1

3∆2
codeg “ 1

deg “ 2
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Generalizing to tuples: Mixed Degree

Note: kP “ P ` ¨ ¨ ¨ ` P “ tp1 ` ¨ ¨ ¨ ` pk : pi P Pu

Definition
Mixed codegree: mcdpP1, . . . , Pdq “
min

 

k P Zą0 : Di1 ă ¨ ¨ ¨ ă ik with intpPi1 ` ¨ ¨ ¨ ` Pik q XZ
d ‰ H

(

(if P1 ` ¨ ¨ ¨ ` Pd XZ
d “ H, set mcd “ d ` 1)

Mixed degree: mdpP1, . . . , Pdq :“ d ` 1´mcdpP1, . . . , Pdq.

• mdpP, . . . , Pq “ degpPq
• monotone with respect to inclusion
• should measure the complexity of a tuple
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The mixed degree: Examples

∆2 ∆2 ∆2 `∆2

mcdp∆2, ∆2q “ 3 ñ mdp∆2, ∆2q “ 0

∆2 ϕp∆2q ∆2 ` ϕp∆2q

mcdp∆2, ϕp∆2qq “ 2 ñ mdp∆2, ϕp∆2qq “ 1

∆2 P
mcdp∆2, Pq “ 1 ñ mdp∆2, Pq “ 2
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Mixed Degree zero

Theorem (Cattani et al. ’11, Nill ’17)
P1, . . . , Pd Ă R

d full-dimensional:
mdpP1, . . . , Pdq “ 0 ô pP1, . . . , Pdq – p∆d , . . . , ∆dq

equivalence: common lattice preserving affine transformation + individual
translations

Note: mdpP1, . . . , Pdq “ 0 ô P1 ` ¨ ¨ ¨ ` Pd is hollow.
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Next step: Mixed Degree one

Note: mdpP1, . . . , Pdq ď 1 iff Pi1 ` ¨ ¨ ¨ ` Pid´1 is hollow for any choice
1 ď i1 ă ¨ ¨ ¨ ă id´1 ď d .

Theorem (Soprunov ’07, Nill ’17)
For P1, . . . , Pd Ă R

d full-dimensional:

MVpP1, . . . , Pdq ´ 1 ď intpP1 ` ¨ ¨ ¨ ` Pdq XZ
d ,

with equality iff mdpP1, . . . , Pdq ď 1.

Soprunov’s Question: What are the tuples of lattice polytopes for which
the upper bound is attained?
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Results for Mixed Degree one

Theorem (Batyrev-Nill ’04 (unmixed))
P Ă Rd with degpPq ď 1. Then either

• P is the pd ´ 2q-fold pyramid over 2∆2, or
• there is a lattice projection of P onto ∆d´1.

Theorem (Balletti-B ’19)
P1, . . . , Pd Ă R

d with mdpP1, . . . , Pdq ď 1 and d ě 4. Either
• P1, . . . , Pd is among finitely many exceptional families, or
• P1, . . . , Pd have common projection onto ∆d´1.

For d “ 3 there exist infinitely many exceptional families.
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Example with projection

P1 P2 P3

P1 + P2 P1 + P3 P2 + P3

P1 + P2 + P3
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Example without projection

P1 P2 P3

P1 + P2 P1 + P3 P2 + P3

P1 + P2 + P3
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A bit of proof (and what breaks for d ă 4)

mdpP1, . . . , Pdq ď 1 iff Pi1 ` ¨ ¨ ¨ ` Pid´1 is hollow for any choice
1 ď i1 ă ¨ ¨ ¨ ă id´1 ď d .

Theorem (Nill-Ziegler ’11)
Let P Ă Rd be a hollow lattice polytope. Then either

• P admits a lattice projection onto a hollow pd ´ 1q-polytope, or
• P is one of finitely many exceptions.

ñ leads to finiteness of tuples whenever any sum Pi1 ` ¨ ¨ ¨ ` Pid´1 is
exceptional! (there are some things to be shown on the way)
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A bit of proof (and what breaks for d ă 4)

What is left: Any pd ´ 1q-subtuple of P1, . . . , Pd has a common
projection onto ∆d´1.

1 (at least) two of the projections are the same ñ there exists a
common projection for the whole P1, . . . , Pd

2 all projections are different ñ any Pi has d ´ 1 different projections
onto ∆d´1.

Lemma
Let P Ă Rd be a lattice polytope that has 3 different lattice projections
onto ∆d´1. Then P – ∆d .

Lemma
For d ě 5 the only tuple P1, . . . , Pd for which all pd ´ 1q-subtuples have
different common projections onto ∆d´1 is p∆d , . . . , ∆dq.

12/15 Christopher Borger // Mixed degree one



A bit of proof (and what breaks for d ă 4)

What is left: Any pd ´ 1q-subtuple of P1, . . . , Pd has a common
projection onto ∆d´1.

1 (at least) two of the projections are the same ñ there exists a
common projection for the whole P1, . . . , Pd

2 all projections are different ñ any Pi has d ´ 1 different projections
onto ∆d´1.

Lemma
Let P Ă Rd be a lattice polytope that has 3 different lattice projections
onto ∆d´1. Then P – ∆d .

Lemma
For d ě 5 the only tuple P1, . . . , Pd for which all pd ´ 1q-subtuples have
different common projections onto ∆d´1 is p∆d , . . . , ∆dq.

12/15 Christopher Borger // Mixed degree one



A bit of proof (and what breaks for d ă 4)

What is left: Any pd ´ 1q-subtuple of P1, . . . , Pd has a common
projection onto ∆d´1.

1 (at least) two of the projections are the same ñ there exists a
common projection for the whole P1, . . . , Pd

2 all projections are different ñ any Pi has d ´ 1 different projections
onto ∆d´1.

Lemma
Let P Ă Rd be a lattice polytope that has 3 different lattice projections
onto ∆d´1. Then P – ∆d .

Lemma
For d ě 5 the only tuple P1, . . . , Pd for which all pd ´ 1q-subtuples have
different common projections onto ∆d´1 is p∆d , . . . , ∆dq.

12/15 Christopher Borger // Mixed degree one



The case d “ 3

Theorem (Balletti-B ’19)
Let P1, P2, P3 Ă R

3 be an exceptional triple with mdpP1, P2, P3q “ 1.
Then it is equivalent to a triple in a list of 279 triples or it is contained in
one of finitely many 1-parameter families of triples.

p0, k, 1q

pk, 0, 1q

Pk
1

Pk
2P3p0, 0, 1q

ϕ1,2
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Some further questions

• What are the exceptional families of mixed degree one? Can they be
described easily (for d large enough)?

• Conjecture: all contained in p2∆d , ∆d , . . . , ∆dq or
pPpd´2qp2∆2q, . . . , Ppd´2qp2∆2qq

• geometrical arguments from Batyrev-Nill can (probably) be adapted
• hard part: tuples containing empty simplices
• in course of this: study interplay between hollowness and Minkowski

sums
• Structural result for high dimension and low mixed degree?

• Haase-Nill-Payne ’08: degpPq “ k and dimpPq ě f pkq ñ P is a
Cayley polytope

• Is there an algebraic definition (as the degree of a polynomial)?

Thank you!

14/15 Christopher Borger // Mixed degree one



Some further questions

• What are the exceptional families of mixed degree one? Can they be
described easily (for d large enough)?

• Conjecture: all contained in p2∆d , ∆d , . . . , ∆dq or
pPpd´2qp2∆2q, . . . , Ppd´2qp2∆2qq

• geometrical arguments from Batyrev-Nill can (probably) be adapted
• hard part: tuples containing empty simplices
• in course of this: study interplay between hollowness and Minkowski

sums

• Structural result for high dimension and low mixed degree?
• Haase-Nill-Payne ’08: degpPq “ k and dimpPq ě f pkq ñ P is a

Cayley polytope
• Is there an algebraic definition (as the degree of a polynomial)?

Thank you!

14/15 Christopher Borger // Mixed degree one



Some further questions

• What are the exceptional families of mixed degree one? Can they be
described easily (for d large enough)?

• Conjecture: all contained in p2∆d , ∆d , . . . , ∆dq or
pPpd´2qp2∆2q, . . . , Ppd´2qp2∆2qq

• geometrical arguments from Batyrev-Nill can (probably) be adapted
• hard part: tuples containing empty simplices
• in course of this: study interplay between hollowness and Minkowski

sums
• Structural result for high dimension and low mixed degree?

• Haase-Nill-Payne ’08: degpPq “ k and dimpPq ě f pkq ñ P is a
Cayley polytope

• Is there an algebraic definition (as the degree of a polynomial)?

Thank you!

14/15 Christopher Borger // Mixed degree one



Some further questions

• What are the exceptional families of mixed degree one? Can they be
described easily (for d large enough)?

• Conjecture: all contained in p2∆d , ∆d , . . . , ∆dq or
pPpd´2qp2∆2q, . . . , Ppd´2qp2∆2qq

• geometrical arguments from Batyrev-Nill can (probably) be adapted
• hard part: tuples containing empty simplices
• in course of this: study interplay between hollowness and Minkowski

sums
• Structural result for high dimension and low mixed degree?

• Haase-Nill-Payne ’08: degpPq “ k and dimpPq ě f pkq ñ P is a
Cayley polytope

• Is there an algebraic definition (as the degree of a polynomial)?

Thank you!

14/15 Christopher Borger // Mixed degree one



Some further questions

• What are the exceptional families of mixed degree one? Can they be
described easily (for d large enough)?

• Conjecture: all contained in p2∆d , ∆d , . . . , ∆dq or
pPpd´2qp2∆2q, . . . , Ppd´2qp2∆2qq

• geometrical arguments from Batyrev-Nill can (probably) be adapted
• hard part: tuples containing empty simplices
• in course of this: study interplay between hollowness and Minkowski

sums
• Structural result for high dimension and low mixed degree?

• Haase-Nill-Payne ’08: degpPq “ k and dimpPq ě f pkq ñ P is a
Cayley polytope

• Is there an algebraic definition (as the degree of a polynomial)?

Thank you!

14/15 Christopher Borger // Mixed degree one



Some References

Gabriele Balletti and Christopher Borger, Families of lattice polytopes
of mixed degree one, arXiv e-prints (2019), arXiv:1904.01343.
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