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A lattice A C R” is a discrete additive subgroup. ‘
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Lattices

Definition

A lattice A C R” is a discrete additive subgroup. A = Z/, for some i.

The dual lattice A*

C (R")* of A is the lattice of functionals taking

integer values on points of A.
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A convex body:




Convex bodies and lattice polytopes

A convex body: A lattice polytope:
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Convex bodies and lattice polytopes

A convex body: A lattice polytope:

A convex body or lattice polytope is hollow (or lattice-free) if there are no
lattice points in its interior.
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Given K a convex body in RY; and Z9 2 A c R? a lattice,



Given K a convex body in R?; and Z9 = A c R? a lattice,

o The width of K w.r.t. a functional f € (R)* is
maxpek f(p) — minpek F(p).




Width

Given K a convex body in R?; and Z¢ = A c R a lattice,
Definition

o The width of K w.r.t. a functional f € (R?)* is
maxpek f(p) — minyck f(p). Equivalently, it is the length of f(K).
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Width

Given K a convex body in R?; and Z¢ = A c R a lattice,
Definition
o The width of K w.r.t. a functional f € (R?)* is
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@ The (lattice) width of K is the minimum width w.r.t. functionals in
A*\ 0. We denote it widthp(K).
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Width

Given K a convex body in R and Z9 =2 A c RY a lattice,

Definition
o The width of K w.r.t. a functional f € (R?)* is
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If K € RY is a hollow convex body, then its width is bounded by a
constant we(d).




Flatness theorem

Theorem (Flatness, Kinchine 1948)

If K C RY is a hollow convex body, then its width is bounded by a
constant wc(d).

Upper bounds for wc(d) are well studied, because of applications in
integer linear programming.
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Flatness theorem

Theorem (Flatness, Kinchine 1948)

If K C RY is a hollow convex body, then its width is bounded by a
constant wc(d).

Upper bounds for wc(d) are well studied, because of applications in
integer linear programming.

Our goal: improve lower bounds on the flatness constant, that is,
construct hollow convex bodies/polytopes of large width.

Giulia Codenotti Wide hollow polytopes

5/15



Variations on flatness constants

We denote wc(d), wp(d), ws(d) the maximum width among hollow
convex bodies, lattice polytopes, and lattice simplices.
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Variations on flatness constants

We denote wc(d), wp(d), ws(d) the maximum width among hollow
convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

ws(d) < wp(d) < we(d)
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Variations on flatness constants

We denote wc(d), wp(d), ws(d) the maximum width among hollow

convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

d <ws(d) < wp(d) < we(d)

What can we say in low dimension?

d | ws(d) | w,(d) | we(d) |
1 1 1 1
2 2 2 1+ % [Hur90]
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Variations on flatness constants
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1 1 1 1
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Variations on flatness constants

We denote wc(d), wp(d), ws(d) the maximum width among hollow
convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

d <ws(d) < wp(d) < we(d)

What can we say in low dimension?
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Variations on flatness constants

We denote wc(d), wp(d), ws(d) the maximum width among hollow
convex bodies, lattice polytopes, and lattice simplices.

Some facts to start with:

d <ws(d) < wp(d) < we(d)

What can we say in low dimension?

d ws(d) wp(d) we(d)

1 1 1 1

2 2 2 1+ % [Hur90]
3 3 [AKW17] 3 [AKWI17] | > 242 [C-S18]
4 7 7 7

14 > 15 [C-S18]

404 | > 408  [C-S18]
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A triangular lattice and
a unimodular triangle
A B ABC.




wc(2): Hurkens' construction
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Lattice triangle circum-
scribed around ABC;
only lattice triangle of
width 2.

7/15



wc(2): Hurkens' construction

\ | This  triangle, also
\ / circumscribed around
- _ ABC, has lattice width
) 2
1+ 7
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wc(2): Hurkens'

A

construction

|
\\ /’/
A S
| |
/

Theorem (Hurkens 1990)

This triangle has the largest lattice width of any hollow convex body in

R2; that is, we(2) =1+ %

e

This  triangle, also
circumscribed around
ABC, has lattice width

2
1—%—%.
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wc(3): A wide tetrahedron

In the (affine) lattice {(a,b,c) :a,b,c € 1+2Z,a+ b+ c €1+ 4Z},

T = conv{(-1,1,1),(-1,-1,-1),
(1» _17 1); (17 17 _1)}

is a unimodular tetrahedron.
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wc(3): A wide tetrahedron

In the (affine) lattice {(a,b,c) :a,b,c € 1+2Z,a+ b+ c €1+ 4Z},

Yy
[757 75]
(-1,
° ° ° @[5, 5
[-3,1] x
[_37 1}
[5,5]@ ° ° °
—1,3]
° ° [757 75} °
Figure: Ag
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T = conv{(-1,1,1),(-1,-1,-1),
(1» _17 1); (17 17 _1)}

is a unimodular tetrahedron.

Ay is the lattice tetrahedron
circumscribed to T with vertices

A= (3,1,5),

B = (—1,37 —5),

C= (_37_175)7

D =(1,-3,-5)
It has width 3.
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wc(3): A wide tetrahedron

We can modify Ag to a tetrahedron
A of width 2 + /2.
Thus,

Corollary (C.-Santos, 2018+)
we(3) > 2+ V2.

Figure: A has width 2 + V2
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wc(3): A wide tetrahedron

We can modify Ag to a tetrahedron
A of width 2 + /2.
Thus,

/3 Corollary (C.-Santos, 2018+)

o’

el Cojectwre

. . [=3,— . This is the hollow 3-body of
maximum width. That is,
we(3) =2+ V2.

Figure: A has width 2 + V2 y
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Interlude: Direct sum of convex bodies

Definition

Let C; € RY be convex bodies containing the
origin. Their direct sum is the following
convex body in RA++dm.

(jl D--- P (;n —

= conv (
i

= {(A1X17~-~,/\mxm)i><i € G\ ZO,Z)\,': 1

=i,

3

1

(0><~-><0><C,-><0><-~><0)>

}
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Interlude: Direct sum of convex bodies

Definition

Let C; € RY be convex bodies containing the
origin. Their direct sum is the following
convex body in R+ +dm.

(fl D--- P (;n —

= conv (
i

= {(A1X17~-~,/\mxm)ixi € G\ ZO,Z)\,': 1

3

1

=i,
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}
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Interlude: Properties of the direct sum

It's easy to compute the width of direct sums:

width(Cy & -+ - & Cp) = minwidth(C)),
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Interlude: Properties of the direct sum

It's easy to compute the width of direct sums:
width(C @ - - - @ Cpy) = minwidth((;),

and to observe that if all summands are lattice polytopes, so is the sum.
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Interlude: Properties of the direct sum

It's easy to compute the width of direct sums:

width(Cy & -+ - & Cp) = minwidth(C)),

and to observe that if all summands are lattice polytopes, so is the sum.

Regarding hollowness:

Lemma ((special case of) Averkov-Basu 2015)

If C is hollow, then @;", mC is hollow of width m-width(C).
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w,(14): A lattice polytope of large width

/ Hurkens' triangle, cir-
/ cumscribed to the uni-
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\B modular triangle ABC
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w,(14): A lattice polytope of large width

P / NGy e N e e e

[ A el A U oo

. . - ‘\ - - - - ’ ‘.‘.. -.‘ "J‘ ‘.‘.

R \\ e . / C We refine the lattice, in
e e . \.\;77. . . . .//./ e e . b|ack we have /\/: %/\
...... A./ N o o o o o o \.B Coe e e e

............. R S B

....... \f e e NG . /

SRR N R
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wy(14): Al

attice polytope of large width

. //( \ c{ ..... \\

LTINS T Hurkens' triangle has
c \\ . / c nice rational approxima-
..... :\A/’ N o o 0 o0 o \B/: C e e e tion T Of Wldth 15/7 -
....... R Y A EE 2.1429.
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w,(14): A lattice polytope of large width

. // . c \\ .......

oKL A N Hurkens' triangle has
c \ . A ./ - / c nice rational approxima-
..... \:\A/’ N o o 0 o0 o \B/./. e e e tion T Of Wldth 15/7 -
....... 1A N S P 2.1429.

From the direct sum construction, with summands equal to 7T, follows

Corollary (C.-Santos 2018+)

There is a 14-dimensional hollow lattice polytope of width 15. It has 21
vertices and 27 + 7 facets.
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ws(404): A lattice simplex of large width

Regarding lattice simplices, we can prove the following:

Lemma

There is a rational hollow 4-simplex of width 4 (1 + 10%)

This is obtained by " pushing out” a facet of a known empty lattice
4-simplex of width 4.
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ws(404): A lattice simplex of large width

Regarding lattice simplices, we can prove the following:
Lemma J

There is a rational hollow 4-simplex of width 4 (1 + 10%)

This is obtained by " pushing out” a facet of a known empty lattice
4-simplex of width 4. From the direct sum construction, we obtain

Corollary (C.-Santos 2018+)
There is a hollow 404-simplex of width 408.
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Asymptotics of w., w, and w;

We also apply the direct sum construction to obtain asymptotics of our
constants. In particular,

Theorem ((Codenotti-S. 2018+))

. wp(d) . we(d) we(d) _ 242
e T d dose d g Ty =3 38
im =) 5 192 g9

d—co d 101

where on the right we have used w(3)/3 > 2%@ based on the

tetrahedron of width 2 + /2, and w;(404)/404 > 122 from the
404-dimensional simplex.
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Thank you for your attention!

Giulia Codenotti, Francisco Santos. Hollow polytopes of large width.
Preprint, 17 pages, December 2018.
http://arxiv.org/abs/1812.00916
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