The Shapes of Level Curves of Real Polynomials Near Strict Local Minima

Miruna-Ștefana Sorea

Summer School on Geometric and Algebraic Combinatorics, 26th of June 2019, Paris

Goals

- **objects**: polynomial functions $f: \mathbb{R}^2 \to \mathbb{R}$, f(0,0) = 0 such that O is a strict local minimum;
- goal : study the real Milnor fibres of the polynomial (i.e. the level curves $(f(x,y)=\varepsilon)$, for $0<\varepsilon\ll 1$, in a small enough neighbourhood of the origin).

$$f(x,y) = x^2 + y^2$$

Whenever the origin is a Morse strict local minimum the small enough level curves are boundaries of convex topological disks.

Question (Giroux asked Popescu-Pampu, 2004)

Are the small enough level curves of f near strict local minima always boundaries of **convex** disks?

Counterexample by M. Coste : $f(x, y) = x^2 + (y^2 - x)^2$.

- Problem: understand these phenomena of non-convexity.
- Subproblem : construct non-Morse strict local minima whose nearby small levels are far from being convex.

Question

What **combinatorial object** can encode the shape by **measuring the non-convexity** of a smooth and compact connected component of an algebraic curve in \mathbb{R}^2 ?

The Poincaré-Reeb graph

associated to a curve and to a direction x

Definition

Two points of \mathcal{D} are equivalent if they belong to the same connected component of a fibre of the projection $\Pi: \mathbb{R}^2 \to \mathbb{R}$,

$$\Pi(x,y) := x.$$

The Poincaré-Reeb tree

Theorem

The Poincaré-Reeb graph is a transversal tree: it is a plane tree whose open edges are transverse to the foliation induced by the function x; its vertices are endowed with a total preorder relation induced by the function x.

The asymptotic Poincaré-Reeb tree

- -small enough level curves;
- -near a strict local minimum.

Theorem

The asymptotic Poincaré-Reeb tree stabilises. It is a rooted tree; the total preorder relation on its vertices is strictly monotone on each geodesic starting from the root.

Impossible asymptotic configuration :

- Characterise all possible topological types of asymptotic Poincaré-Reeb trees.
- Construct a family of polynomials realising a large class of transversal trees as their
 Poincaré-Reeb trees

Main result

- introduction of new combinatorial objects;
- polar curve, discriminant curve;
- genericity hypotheses (x > 0);
- univariate case : explicit construction of separable snakes;
- a result of realisation of a large class of Poincaré-Reeb trees.

Main result

- introduction of new combinatorial objects;
- polar curve, discriminant curve;
- genericity hypotheses (x > 0);
- univariate case : explicit construction of separable snakes;
- a result of realisation of a large class of Poincaré-Reeb trees.

Theorem

Given any separable positive generic rooted transversal tree, we construct the equation of a real bivariate polynomial with isolated minimum at the origin which realises the given tree as a Poincaré-Reeb tree.

Tool 1: The polar curve

$$\Gamma(f,x) := \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{\partial f}{\partial y}(x,y) = 0 \right\}$$

It is the set of points where the tangent to a level curve is vertical.

Tool 2 : Choosing a generic projection

Avoid vertical inflections:

Avoid vertical bitangents:

The generic asymptotic Poincaré-Reeb tree

Theorem

In the asymptotic case, if the direction x is generic, then we have a **total order** relation and a **complete binary** tree.

Two inequivalent trees

Tool 3: The discriminant locus

$$\Phi: \mathbb{R}^2_{x,y} \to \mathbb{R}^2_{x,z}, \Phi(x,y) = \Big(x, f(x,y)\Big).$$

The critical locus of Φ is the polar curve $\Gamma(f,x)$.

The discriminant locus of Φ is the critical image $\Delta = \Phi(\Gamma)$.

Genericity hypotheses

The family of polynomials that we construct satisfies the following two genericity hypotheses :

• the curve Γ_+ is **reduced**;

• the map $\Phi_{|\Gamma_+}:\Gamma_+\to\Delta_+$ is a homeomorphism.

1. Positive asymptotic snake

To any positive (i.e. for x > 0) generic asymptotic Poincaré-Reeb tree we can associate a permutation σ , called the positive asymptotic snake.

2. Arnold's snake (one variable)

One can associate a permutation to a Morse polynomial, by considering two total order relations on the set of its critical points: Arnold's snake.

2. Arnold's snake (one variable)

The study of asymptotic forms of the graphs of one variate polynomials $f(x_0, y)$, for x_0 tending to zero.

Theorem

$$\sigma = \tau$$
.

Proof

The interplay between the polar curve and the discriminant curve :

$$\sigma = \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

The construction

Subquestion

Given a generic rooted transversal tree, can we construct the equation of a real bivariate polynomial with isolated minimum at the origin which realises the given tree as a Poincaré-Reeb tree?

The construction

Subquestion

Given a generic rooted transversal tree, can we construct the equation of a real bivariate polynomial with isolated minimum at the origin which realises the given tree as a Poincaré-Reeb tree?

Theorem

We give a **positive constructive answer**: we construct a family of polynomials that realise all **separable** positive generic rooted transversal trees.

$$\begin{array}{c} 4 & \cdot \\ 3 & \cdot \\ 2 & \cdot \\ 1 & \cdot \end{array}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 4 & 2 \end{pmatrix}$$

Separable permutations

$$\sigma = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 4 & 5 & 1 & 3 & 2 \end{smallmatrix}\right) = \left(\left(\boxdot \oplus \boxdot\right) \ominus \left(\boxdot \oplus \boxdot\right)\right) \ominus \left(\boxdot \oplus \left(\boxdot \ominus \boxdot\right)\right).$$

Miruna-Ştefana Sorea (Max Planck Institute MiS, Leipzig) 24 / 33

Passing to the univariate case

Question

Given a separable snake σ , is it possible to construct a Morse polynomial $Q: \mathbb{R} \to \mathbb{R}$ that realises σ ?

Example

$$= \left(\begin{array}{c} \boxdot \oplus (\boxdot \ominus \boxdot) \end{array} \right) \oplus \left(\boxdot \ominus \boxdot \right) = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{array} \right).$$

The contact tree

$$a_1(x) = 0,$$

 $a_2(x) = x^2,$
 $a_3(x) = x^2 + x^3,$
 $a_4(x) = x^1,$
 $a_5(x) = x^1 + x^2.$

Answer in the univariate case

Theorem

Consider $m \in \mathbb{N}$ and fix a separable (m+1)-snake $\sigma: \{1,2,\ldots,m+1\} \to \{1,2,\ldots,m+1\}$ such that $\sigma(m) > \sigma(m+1)$. Construct the polynomials $a_i(x) \in \mathbb{R}[x]$ such that their contact tree is one of the binary separating trees of σ . Let $Q_x(y) \in \mathbb{R}[x][y]$ be

$$Q_{x}(y):=\int_{0}^{y}\prod_{i=1}^{m+1}\left(t-a_{i}(x)\right)\mathrm{d}t.$$

Then $Q_x(y)$ is a one variable Morse polynomial and for sufficiently small x > 0, the Arnold snake associated to $Q_x(y)$ is σ .

Construction of the desired bivariate polynomial f

Theorem

Let σ be a separable (m+1)-snake, with m an even integer, $\sigma(m) > \sigma(m+1)$. Let $f \in \mathbb{R}[x,y]$ be constructed as follows : (a) construct $Q_x(y) \in \mathbb{R}[x][y]$,

$$Q_{\mathsf{x}}(y) := \int_0^y \prod_{i=1}^{m+1} \big(t - \mathsf{a}_i(\mathsf{x})\big) \mathrm{d}t,$$

by choosing the polynomials $a_i(x) \in \mathbb{R}[x]$ such that their contact tree is one of the binary separating trees of σ .

(b) take
$$f(x, y) := x^2 + Q_x(y)$$
.

Then f has a strict local minimum at the origin and the positive asymptotic snake of f is the given σ .

Positive-negative contact trees (one variable) 1

Pairwise distinct polynomials $a_i(x) \in \mathbb{R}[x]$ that pass through a common zero at the origin

Miruna-Ștefana Sorea (Max Planck Institute MiS, Leipzig) 30 / 33

^{1.} É. Ghys - A singular mathematical promenade, 2017

Algorithm flip-flop

$$f(x,y):=x^2+\textstyle\int_0^y\textstyle\prod_{i=1}^5\big(t-a_i(x)\big)\mathrm{d}t.$$

Thank you!