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Hopf Monoids

Translation:
m Set species: “Family of combinatorial objects labelled by
finite sets”
m Product: “Merge” two objects
m Coproduct: “Split” an object into two objects
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The Hopf
Moneid of Theorem [Aguiar/Ardila 2017]

Polytopes
Generalized permutahedra form a Hopf monoid.
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Hopf Monoids Il afinition

A generalized permutahedron is a polytope such that all of its
edges have direction e; — ¢; for some i, j.

m Matroid polytopes
m Graphic zonotopes
m Permutahedra

m Associahedra

m Orbit polytopes

These are all Hopf submonoids!
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The Hopf
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(Re e m Labelling comes from the labelling of the basis vectors of
Mariel Supina the ground set

Hopf Monoids m Product: Standard product on polytopes
P-Q={(p.q):pcP,qgeQ}

m Coproduct: [We will come back to this]

Theorem [Aguiar/Ardila 2017]

The character group of permutahedra is isomorphic to power
series under multiplication. For associahedra, it is isomorphic
to power series under composition.
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An orbit polytope has the form conv{c(p) : o € Sp} =: O(p)
for some point p € R”".
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These are exactly the generalized permutahedra that are
invariant under the action of the symmetric group.
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The polytopes P and @ are normally equivalent if they have
_ the same normal fan.

Orbit

Polytopes

If P and Q are orbit polytopes in R”, let p € vert(P) and
q € vert(Q) be the representatives with coordinates in
decreasing order:

Normal equivalence asks which of the > are actually =.
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m Product: standard product of polytopes
m Coproduct (for generalized permutahedra):
The Hopf (i) Start with any S C [n]
Monoid of
o (i) Find maximal face in direction es = 3, s €
olytopes
(iii) (nontrivial!!) That face decomposes as a product of a
generalized permutahedron in RS and one in RI"—5
[

Hopf structure on orbit polytopes induces Hopf
structure on compositions
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The Hopf

Moonohi’f:ltof n= 4, S = {1, 3,4}’ es = (170, 1, 1)

Polytopes
Ve S Yy oL RAL34} Ri2
coproduct for S v
f ® .
The Hopf
o 0(2,2,1,0) 0(2,2,1) 0(0)
Polytopes
0211 031 (o))

We are “chopping” the composition (2,1,1):

(2,1:1)—(2,1)®(1)
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Coproduct for Orbit Polytopes

The Hopf
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Definition

The concatenation of compositions 8 and -y is

The Hopf ,8"}’:(B17”-7/8k7717”'77€)'
Monoid of
Orbit

Polytopes The near-concatenation of 3 and 7 is

5@7:(51,-'-,5k+’}’1a---7’Y£)-

Since we can either “chop” in between parts or in the middle of
a part, we will obtain a pair of compositions 5 and  such that
either 5-vy=aor BOv=a.
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Definition
The character group of a Hopf monoid is the collection of
multiplicative functions from the Hopf monoid to a field k,

equipped with a convolution product x:

Character (Cx)(x) = Z multy o ({ ® ) o coproducts(x)

Group of Orbit
Polytopes Sg[n]



The Character Group of Orbit Polytopes

The Hopf
Monoid of

Pabtopes Theorem [S. 2019]

Bl The character group of the Hopf monoid of orbit polytopes is
isomorphic to the collection of generating functions of the form

C
> R
B€Comp '

o under multiplication, where Rg is a collection of symbols

Group of Orbi 1 +1 1
St indexed by compositions with the product

RgRy = Rg.y + Rpoy

and cg € k with ¢z =1 and C(n) = c(”l) for all n.



Connection to NSym
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Mariel Supina m NSym: Hopf algebra of noncommutative symmetric
functions

m One basis of NSym is the ribbon basis {Rg} indexed by
compositions, with RgR, = Rg., + Rgex

Alternate formulation of the theorem [S. 2019]
Character

SECNE  The character group of the Hopf monoid of orbit polytopes is
isomorphic to a subgroup of the group of invertible elements in
the completion of NSym.

Polytopes
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M. Supina, The Hopf monoid of orbit polytopes, April 2019,
arXiv:1904.08437.
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