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Abstract. We consider Schrödinger operators with a one-frequency analytic
potential. Energies in the spectrum can be classified as subcritical, critical or

supercritical, by analogy with the almost Mathieu operator. Here we show that

the critical set is empty for an arbitrary frequency and almost every potential.
Such acritical potentials also form an open set, and have several interesting

properties: only finitely many “phase transitions” may happen, however never

at any specific point in the spectrum, and the Lyapunov exponent is minorated
in the region of the spectrum where it is positive. In the appendix, we give

examples of potentials displaying (arbitrarily) many phase transitions.

1. Introduction

This work continues the global analysis of one-dimensional Schrödinger operators
with an analytic one-frequency potential started in [A1], to which we refer the reader
for further motivation.

For α ∈ RrQ and v ∈ Cω(R/Z,R), let H = Hα,v be the Schrödinger operator

(1) (Hu)n = un+1 + un−1 + v(nα)un

on `2(Z) and let Σ = Σα,v ⊂ R be its spectrum.
For any energy E ∈ R, let

(2) A(x) = A(E−v)(x) =

(
E − v(x) −1

1 0

)
,

(3) An(x) = A(x+ (n− 1)α) · · ·A(x),

which are analytic functions with values in SL(2,R). They are relevant to the

analysis of H because a formal solution of Hu = Eu satisfies

(
un
un−1

)
= An(0) ·(

u0

u−1

)
. The Lyapunov exponent L(E) is given by

(4) lim
n→∞

1

n

∫
ln ‖An(x)‖dx.

Energies E ∈ Σ can be:

1. supercritical, if L(E) > 0,
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2. subcritical, if there is a uniform subexponential bound on the growth of
‖An(z)‖ through some band |=z| < ε,

3. critical otherwise.

Supercritical energies are usually called nonuniformly hyperbolic. The nonuniformly
hyperbolic regime is stable by [BJ1]: if we perturb α in R r Q, v in Cω(R/Z,R)
and E in R (but still belonging to the perturbed spectrum), we stay in the same
regime. In [A1] it is shown that the subcritical regime is also stable. As we will see
(Theorem 9), the critical regime in fact equals the boundary of the nonuniformly
hyperbolic regime: if E is critical, we can perturb v so that E still belongs to
the perturbed spectrum (with the same α) and becomes nonuniformly hyperbolic.
Thus subcritical energies are also said to be away from nonuniform hyperbolicity.

In the most studied case of the almost Mathieu operator, v(x) = 2λ cos 2π(x+θ),
all energies are subcritical when |λ| < 1, supercritical when |λ| > 1 and critical
when |λ| = 1. In general, the subcritical and supercritical regime can coexist in the
spectrum of the same operator [Bj]. However, to go from one regime to the other it
may not be necessary to pass through the critical regime, since one usually expects
the spectrum to be a Cantor set. In this paper we show that this is the prevalent
behavior. Let us say that H is acritical if no energy E ∈ Σ is critical.

Main Theorem. Let α ∈ R r Q. Then for a (measure theoretically) typical v ∈
Cω(R/Z,R), the operator Hα,v is acritical.

The Main Theorem yields a precise description of the basic structure of the spec-
trum of typical operators with respect to the behavior of the Lyapunov exponent.
Indeed the stability of the non-critical regimes [A1] yields immediately:

1. Acriticality is stable with respect to perturbations of both α and v, and the
supercritical and subcritical parts of the spectrum define compact sets that
depend continuously (in the Hausdorff topology) on the perturbation.

2. As a consequence, acritical operators have the nicest behavior from the point
of view of bifurcations: There is at most a finite number of “alternances of
regime”, as one moves through the spectrum Σ in the following sense: there
is k ≥ 1 and points a1 < b1 < ... < ak < bk in the spectrum such that

Σ ⊂
⋃k
i=1[ai, bi] and energies alternate between supercritical and subcritical

along the sequence {Σ ∩ [ai, bi]}ki=1.
3. Another consequence is spectral uniformity through both subcritical and su-

percritical regimes: There exists ε > 0 such that whenever E is supercritical
we have L(E) ≥ ε (by continuity of the Lyapunov exponent [BJ1]), and when
E is subcritical we have uniform subexponential growth of ‖An(z)‖ through
the band |=z| < ε (again by continuity of the Lyapunov exponent, together
with quantization of the acceleration [A1]).

As we will show in the appendix, the number of phase transitions can be arbi-
trarily large.

1.1. The Spectral Dichotomy program. The Main Theorem reduces the spec-
tral theory of a typical one-frequency Schrödinger operator H to the separate “local
theories” of (uniform) supercriticality and subcriticality. It is thus a key step in
our program to establish the Spectral Dichotomy, the decomposition of a typical
operator as a direct sum of operators with the spectral type of “large-like” and
“small-like” operators. Below we comment briefly at the current state of the local
theories.
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The supercritical theory has been intensively developed in [BG], [GS1], [GS2],
[GS3]. As far as the spectral type is concerned, perhaps the key result is that, up
to a typical perturbation of the frequency, Anderson localization (pure point spec-
trum with exponentially decaying eigenfunctions) holds through the supercritical
regime. It is important to emphasize that these developments superseded several
early results depending on suitable largeness conditions on the potentials, and that
the change of focus towards the Lyapunov exponent can be in large part attributed
to [J].

The concept of subcriticality has evolved more recently, and the development
of the corresponding local theory originally centered on the concept of almost re-
ducibility, which by definition generalizes the scope of applicability of the theory of
small potentials (which is well understood by KAM and localization-duality meth-
ods). In particular, it was shown ([AJ], [A2], [A3]) that almost reducibility implies
absolute continuity of spectral measures. In [AJ] the vanishing in a band of the Lya-
punov exponent was suggested to be the sought after mirror condition to positivity
of the Lyapunov exponent: more specifically, it was conjectured to be equivalent
to almost reducibility (in the spectrum). Proving this Almost Reducibility Conjec-
ture would at once provide an almost complete understanding of subcriticality, and
partial results were obtained in [A2] and [A3].

We have recently proved the Almost Reduciblity Conjecture (for all frequencies),
and we refer the reader to [A4] for a detailed account of spectral consequences.

1.2. Prevalence. Let us explain in more detail the notion of typical we use in
this paper. Since in infinite-dimensional settings one lacks a translation invariant
measure, it is common to replace the notion of “almost every” by “prevalence”:
one fixes some probability measure µ of compact support (a set of admissible per-
turbations w), and declare a property to be typical if it is satisfied for almost every
perturbation v+w of every starting condition v. In finite dimensional vector spaces,
prevalence implies full Lebesgue measure.

In our case, we have quite a bit of flexibility for the choice of µ. For instance,
though we do want to be able to perturb of all Fourier coefficients, we may impose
arbitrarily strong restrictions on high Fourier mode perturbations. For definite-
ness, we will set ∆ = DN endowed with the probability measure µ given by the
product of normalized Lebesgue measure. Given an arbitrary function ε : N→ R+

which decays exponentially fast (the particular choice is quite irrelevant for us), we
associate a probability measure µε with compact support on Cω(R/Z,R) by push
forward of µ under the map (tm)m∈N 7→

∑
m≥1 ε(m)2<[tme

2πimx].

Our goal will be to show that for every α ∈ R r Q and v ∈ Cω(R/Z,R), for
µε-almost every w, Hα,v+w is acritical.

Remark 1.1. 1. The notion of prevalence is usually formulated for separable
Banach spaces (see [HSY]). Our result does imply prevalence of acriticality
in any Banach space of analytic potentials which is continuously and densely
embedded in Cω.

2. The notion of prevalence (or rather, the corresponding smallness notion
called shyness in [HSY]) was first introduced in [C], i.e., the complement
of a prevalent set in a Banach space is what is called a Haar-null set. There
is a stronger notion of smallness (and thus a corresponding stronger notion
of typical) which is induced by the family of non-degenerate Gauss measures
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in a Banach space: Gauss-null sets.1 In a Banach space, a Borel set which
has zero probability with respect to any affine embedding of the Hilbert cube
(endowed with the natural product measure) which is non-degenerate (i.e.,
not contained in a proper closed affine subspace) is Gauss-null, see [BL],
Section 6.2. While we have considered in the description above a partic-
ular family of embeddings of DN, it is transparent from the proof that an
arbitrary non-degenerate embedding of the Hilbert cube would work equally
well, so acritical potentials are also typical in this stronger sense.

2. Cocycles

In what follows, Banach spaces of analytic functions on R/Z with bounded holo-
morphic extensions to |=z| < δ, continuous up to the boundary, will be denoted
Cωδ (R/Z, ∗), ∗ = R,SL(2,R), ..., with norms denoted ‖ · ‖δ. Banach spaces of con-
tinuous functions will be denoted C0(R/Z, ∗) with norms denoted ‖ · ‖0.

Our analysis of the operator Hα,v will be based on the dynamics of the associated
family of Schrödinger cocycles.

Let us first introduce slightly more general SL(2,C) cocycle dynamics, and some
key results of [A1], to which we refer for a thorough discussion. Let α ∈ R r Q.
For A ∈ Cω(R/Z,SL(2,C)), define An by (3). We interpret the pair (α,A) as a
skew-product dynamical system (x, y) 7→ (x + α,A(x) · y), and the n-th iterate of
(α,A) is given by (nα,An). The Lyapunov exponent L(α,A) is given by (4). Since
A is analytic, we can define an analytic family of deformations of A, denoted by Aε,
ε ∈ R small, given by Aε(x) = A(x+ εi). The function ε 7→ L(α,Aε) is easily seen
to be convex. In [A1], we have shown that there exists an integer ω(α,A), called
the acceleration of (α,A) such that

(5) L(α,Aε)− L(α,A) = 2πεω(α,A)

for every ε > 0 small. If A takes values in SL(2,R), the acceleration is non-negative
by convexity. The Lyapunov exponent is continuous on (α,A) throughout (RrQ)×
Cω(R/Z,SL(2,C)) ([BJ1], [JKS]) while the acceleration is upper semicontinuous.
We say that (α,A) is regular if (5) holds for all ε small, and not only for the positive
ones. Regularity is equivalent to the acceleration being locally constant near (α,A).

Given Hα,v, we define the acceleration ω at energy E ∈ R by ω(E) = ω(α,A),

where A = A(E−v) is given by (2). Then E is critical if and only if L(E) = 0 and
ω(E) > 0. If E is critical with acceleration k, we will call it also a critical point of
degree k.

Our basic plan is to show that critical points of maximal degree k ≥ 1 can be
destroyed by a small typical perturbation by trigonometric polynomials of some
large degree. This may give rise to many critical points of degree ≤ k − 1, but by
iterating this process we will eventually get rid of all of them.

More formally, let Ak ⊂ (R r Q) × Cω(R/Z,R), k ≥ 0, be the set of all (α, v)
such that Hα,v has only critical points of degree at most k. Hence Ak forms an
increasing sequence of open sets with

⋃
k≥0Ak = (RrQ)×Cω(R/Z,R) and A0 is

the set of all (α, v) such that Hα,v is acritical. Let Pn ⊂ Cω(R/Z,R) be the space
of trigonometric polynomials with degree at most n, let Pn0 ⊂ Pn be the subspace
of zero average functions, and for ε > 0 let Pn(ε) ⊂ Pn and Pn0 (ε) ⊂ Pn0 be the
corresponding ε-balls with respect to the C0 norm.

1The author learned this notion from Assaf Naor.
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Our main estimate is the following:

Theorem 1. For every (α, v) ⊂ Ak there exists ε > 0 and n ≥ 1 such that for
almost every w ∈ Pn0 (ε) we have (α, v + w) ∈ Amax{0,k−1}.

2

The Main Theorem follows immediately from this estimate.

3. Parameter exclusion argument

From now on, α ∈ RrQ is fixed.
In [A1], we proved that critical cocycles have “codimension one” among all co-

cycles. Earlier, in [AK1] and [AK2], we had shown that almost every cocycle in
certain one-parameter families has either a positive Lyapunov exponent or admits a
sequence of renormalizations converging to a good normal form. The techniques in
those works are quite distinct, and our aim is to combine them to show that critical
cocycles in fact have zero measure inside a codimension one subspace. The key dif-
ficulty we will face is in establishing an indefiniteness result for the derivative of the
Lyapunov exponent, which will enable us to construct appropriate one-parameter
families inside the locus where criticality might appear.

In this strategy, Theorem 1 is obtained as a consequence of the following. Let

(6) A(v)(x) =

(
v(x) −1

1 0

)
,

and for every k ≥ 1 let Ck be the set of all v ∈ Cω(R/Z,R) such that L(α,A(v)) = 0
and ω(α,A(v)) = k.

Theorem 2. For every v0 ⊂ Ck, there exists ε > 0 and n ≥ 1 such that {w ∈
Pn(ε), v0 + w ∈ Ck} has 2n− 1-dimensional Hausdorff measure zero.

Theorem 2 implies Theorem 1 by projecting in the direction of the energy, using
that the set of critical points of maximal degree for Hα,v is compact.

Through the remaining of the paper, v0 ∈ Ck is also fixed. Fix ξ′ > ξ > 0 such
that v0 ∈ Cωξ′(R/Z,R).

Recall the usual identification PC2 with C, corresponding the direction through(
z
w

)
with z

w . With this identification, SL(2,C) acts on C through Möbius trans-

formations in the usual way:

(
a b
c d

)
· z = az+b

cz+d .

If A ∈ Cω(R/Z,SL(2,C)), we say that (α,A) is uniformly hyperbolic if L(α,A) >
0 and there exists a pair of distinct analytic invariant sections, called the unstable
and stable directions, u, s : R/Z → C, such that An(x) contracts exponentially
along the s(x) (respectively u(x)) direction as n → ∞ (respectively n → −∞). It
is easy to see that u(x) 6= s(x) for every x ∈ R/Z and A(x) · u(x) = u(x + α),
A(x) · s(x) = s(x + α). Let UH ⊂ Cω(R/Z,SL(2,C)) be the set of A such that
(α,A) is uniformly hyperbolic. Then UH is open and A 7→ L(α,A) is analytic over
UH.

2A slightly stronger statement follows from our proof: if (α, v) also belongs to (R r Q) ×
Cωδ (R/Z,R) then n = n(α, v) and ε = ε(α, v, δ) may be chosen so that for every (α′, v′) ∈
(R r Q) × Cωδ (R/Z,R) such that |α − α′| < ε and ‖v − v′‖δ < ε and for almost every w ∈ Pn0 (ε)

we have (α′, v′ + w) ∈ Amax{0,k−1}.
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We have shown in [A1], Corollary 7, that if either L(α,A(v)) > 0 or ω(α,A(v)) >

0 then for every ε > 0 small, ω(α,A
(v)
ε ) = ω(α,A(v)) and A

(v)
ε ∈ UH. Thus there

exist an open neighborhood V of v0 in Cωξ (R/Z,R), and 0 < ξ0 < ξ such that

A
(v)
ξ0
∈ UH and ω(α,A

(v)
ξ0

) = k for every v ∈ V. We fix such ξ0 and let Lξ,k : V → R
be given by Lξ,k(v) = L(α,A

(v)
ξ0

)− 2πkξ0, which is analytic. Then for every v ∈ V
such that ω(α,A(v)) = k, Lξ,k(v) = L(α,A(v)). Thus Ck ∩ V ⊂ L−1

ξ,k(0).
Let U ⊂ Rn be an open neighborhood of 0 and let vλ ∈ V, λ ∈ U , be an

analytic deformation of v0. For any λ0 ∈ U , let Dλ0vλ : Rn → Cωξ (R/Z,R) be the

derivative Dλ0
vλ · w = d

dtvλ0+tw

∣∣
t=0

. The reader should keep in mind the family

vλ = v0 + Pnλ, λ ∈ R2n+1, where Pn : R2n+1 → Pn is some fixed isomorphism (in
this case ImD0vλ = Pn).

We say that a ∈ Cω(R/Z, sl(2,R)) is signed if det a(x) > 0 for every x ∈ R/Z.
Given A ∈ Cω(R/Z,SL(2,R)), we say that a ∈ Cω(R/Z,SL(2,R)) is A-signed if
there exists b ∈ Cω(R/Z, sl(2,R)) such that

(7) x 7→ A(x)−1b(x+ α)A(x)− b(x) + a(x)

is signed.

Given v0, w ∈ Cω(R/Z,R), we say that w is v0-signed if

(
0 0
−w 0

)
is A(v0)-

signed.

Remark 3.1. It is easy to see that if ±w(x) > 0 for every x ∈ R/Z then w is v-signed

(indepently of v), just choose b =

(
0 0
∓ε 0

)
with sufficiently small ε > 0 in (7).

Remark 3.2 (Interpretation of signedness). Recall that an analytic one-parameter
family Aλ ∈ Cω(R/Z,SL(2,R)), is said to be monotonic (in the sense of [AK2])
if for each x ∈ R and each unit vector m in R2, the derivative, with respect to
λ, of the argument of Aλ(x) ·m is non-zero. It is easy to see that this condition
is equivalent to positivity of det aλ, where aλ = (Aλ)−1 d

dλA
λ. Monotonicity is a

powerful concept that allows one to efficiently use complexification techniques in
the analysis of the parameter space (generalizing Kotani Theory).

It turns out that monotonicity is not invariant under coordinate changes. In-
deed, let us consider a one-parameter analytic family of coordinate changes Bλ ∈
Cω(R/Z,SL(2,R)), giving rise to the family Ãλ(x) = Bλ(x+α)Aλ(x)Bλ(x)−1, and
define bλ and ãλ analogously to aλ. Then

(8) ãλ(x) = Bλ(x)(Aλ(x)−1bλ(x+ α)Aλ(x)− bλ(x) + aλ(x))Bλ(x)−1,

so that the determinant of ãλ(x) is the same as that of Aλ(x)−1bλ(x+ α)Aλ(x)−
bλ(x) + aλ(x).

Thus a family Aλ can be made monotonic by coordinate change near some pa-
rameter λ0 if and only if aλ0 is Aλ0 -signed.

Theorem 3. Let vλ, λ ∈ U be an analytic family as above such that there exists
a v0-signed vector w in the image of D0vλ with DLξ,k(v0) · w = 0, but DLξ,k(vλ0)
does not vanish over D0vλ. Then there exists ε > 0 such that the set of all λ which
are ε-close to 0 and such that vλ ∈ Ck has n − 1-dimensional Hausdorff measure
zero.
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In [A1], Theorem 8, it is shown that the linear functional DLξ,k(v0) has rank 1
(because v0 ∈ Ck), so Theorem 3 reduces the proof of Theorem 2 (and hence the
Main Theorem as well) to the following indefiniteness estimate for the derivative of
the Lyapunov exponent.

Theorem 4 (Indefiniteness of the derivative). There exists a v0-signed trigono-
metrical polynomial w such that DLξ,k(v0) · w = 0.

This is our main estimate and will be proved in section 5. For the moment, let
us give the proof of Theorem 3.

Proof of Theorem 3. Let us say that (α,A) is L2-conjugate to rotations if there
exists B : R/Z→ SL(2,R) measurable such that B(x+ α)A(x)B(x)−1 ∈ SO(2,R)
for almost every x and

∫
‖B(x)‖2dx <∞. It is clear that if (α,A) is L2-conjugate

to rotations then L(α,A) = 0.
The following is a convenient restatement of a result of [AK2].

Theorem 5. Let vλ ∈ Cω(R/Z,R) be an analytic family defined for λ ∈ R near 0
such that w = d

dλvλ
∣∣
λ=0

is v0-signed. Then for almost every λ near 0, (α,A(vλ)) is

L2-conjugate to rotations.

Proof. Let b be such that (7) is signed, and let Aλ(x) = eλb(x+α)A(vλ)(x)e−λb(x).
Then λ 7→ Aλ is a monotonic family (in the sense of [AK2]), for λ near 0. By the
generalized Kotani Theory of [AK2] (see Theorem 1.7 therein), for almost every λ
near 0, (α,Aλ), and hence (α,A(vλ)), is L2-conjugate to rotations. �

Corollary 6. If 0 is v0-signed then A(v0) is L2-conjugate to rotations.

Proof. Apply the previous theorem to the constant family vλ = v0. �

Let pn/qn be the sequence of continued fraction approximations of α. Let βn =
(−1)n(qnα − pn) > 0 and αn = βn/βn−1. If A ∈ Cω(R/Z,SL(2,R)), we say that
(α′, A′) is a n-th renormalization of (α,A) if α′ = αn, A′ ∈ Cω(R/Z,SL(2,R)), and
there exist x0 ∈ R/Z and N : R→ SL(2,R) analytic such that

(9) N(x+ 1)A(−1)n−1qn−1
(x0 + βn−1x)N(x)−1 = id ,

(10) N(x+ αn)A(−1)nqn(x0 + βn−1x)N(x)−1 = A′(x).

Here A−k(x) = Ak(x− kα)−1 for k ≥ 1.3

Theorem 7 ([AK2], Theorem 4.3). Let A ∈ Cω(R/Z,SL(2,R)) be homotopic to a
constant. If (α,A) is L2-conjugate to rotations then for every ε > 0 there exists n
and θ ∈ R such that (α,A) has an n-th renormalization (α′, A′) with ‖A′−Rθ‖ε−1 <
ε.

Corollary 8. If (α,A) is homotopic to a constant and L2-conjugate to rotations
then ω(α,A) = 0.

3Heuristically, the n-th renormalization is obtained by inducing the cocycle dynamics to [x, x+

βn−1] and then rescaling the interval to unit length. However, this does not output a one-frequency
cocycle, since an appropriate gluing must be made (9). This gluing is not canonical, so the n-th

renormalization (10) is only defined up to conjugation. See [AK1], [AK2].
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Proof. Recall that βn−1 = 1
qn+αnqn−1

.

Let (α′, A′) be an n-th renormalization of (α,A), and let N : R → SL(2,R) be
analytic satisfying (9) and (10). It follows that

(11) Ak(−1)nqn+l(−1)n−1qn−1
(x0 + βn−1x) = N(x+ kα′ + l)−1A′k(x)N(x)

for k, l ∈ Z (naturally we define A′k(x) = A′(x+(k−1)α′) · · ·A′(x) using translations
by α′ and not by α).

Let ε0 > 0 be such that A′ ∈ Cωε0(R/Z,SL(2,R)) and N admits an analytic
extension to an open neighborhood of R containing Q = [0, 2] × [−ε0, ε0]. Let
C0 = supz∈Q ‖N(z)‖2. If k is an arbitrary integer, l = l(k) is the unique integer

such that 0 ≤ kα′ + l < 1 and t = t(k) = k(−1)nqn + l(−1)n−1qn−1 then we have

(12) C−1
0 ≤ ‖At(y + βn−1εi)‖

‖A′k(x+ εi)‖
≤ C0,

where x, y ∈ C/Z are related by y = x0+βn−1x and we assume that |=(x+εi)| < ε0.
It follows that∣∣∣∣∣

∫
R/Z

ln ‖A′k(x+ εi)‖dx−
∫
R/Z

ln ‖A(−1)nt(x+ βn−1εi)‖dx

∣∣∣∣∣(13)

=

∣∣∣∣∣
∫
R/Z

ln ‖A′k(x+ εi)‖dx−
∫
R/Z

ln ‖At(x+ βn−1εi)‖dx

∣∣∣∣∣ ≤ lnC0.

Notice that when k is large, t satisfies (−1)n tk = qn− l
k qn−1 = qn+αnqn−1 +o(1) =

1
βn−1

+ o(1). It follows that for large k,

(14)
1

k

∫
R/Z

ln ‖A′k(x+ εi)dx =
1 + o(1)

βn−1

1

(−1)nt

∫
R/Z

ln ‖A(−1)nt(x+ βn−1εi)‖dx,

and taking the limit we get

(15) L(α′, A′ε) =
1

βn−1
L(α,Aβn−1ε),

from which follows ω(α,A) = ω(α′, A′).
If (α,A) is L2-conjugate to rotations, then by the previous theorem we can take

‖A′ − Rθ‖1 < 1. This easily implies that L(α′, A′ε) < ln 2 for 0 < ε < 1, so
ω(α′, A′) ≤ ln 2

2π < 1 by convexity, hence ω(α′, A′) = 0 by quantization. �

Now, since DLξ,k · D0vλ is non-trivial, the implicit function theorem allows us
to shrink U and change coordinates near 0 so that Lξ,k becomes a linear function

L̃(λ1, ..., λn) = λn.
The hypothesis implies that there exists t0 ∈ Rn and such that w = D0vλ · t0 is

v0-signed and DLξ,k(v0) ·w = 0. By Corollaries 6 and 8, t0 6= 0, so we may assume
that t0 = (1, 0, ..., 0).

Shrinking further U , we may assume that Dλ0vλ · t0 is vλ0 -signed at every
λ0 near 0. By Theorem 5, for every (λ2, ..., λn−1) and for almost every λ1, if

(α,A(v(λ1,...,λn−1,0)
)) has zero Lyapunov exponent then it is L2-conjugate to rota-

tions, hence by Corollary 8, its acceleration is zero, and thus v(λ1,...,λn−1,0) /∈ Ck.
This concludes the proof of Theorem 3. �
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4. The critical regime as the boundary of nonuniform hyperbolicity

The indefiniteness estimate (Theorem 4) also has the following consequence.

Theorem 9. Let α ∈ RrQ and let v ∈ Cω(R/Z,R). If E ∈ Σα,v is critical, then
there exists a trigonometric polynomial w, and arbitrarily small t > 0, such that E
(belongs to the spectrum and) is supercritical for Hα,v+tw.

Proof. Let ω(α,A(E−v)) = k > 0. Fix ξ > 0 such that v ∈ Cωξ (R/Z,R), and

define a function Lξ,k : V → R on a neighborhood v ∈ V ⊂ Cωξ (R/Z,R) as before.
Choose w a E − v-signed trigonometric polynomial such that the derivative of
v′ 7→ Lξ,k(E − v′) at v′ = v and in the direction of w is zero. Let vλ be an analytic
family of trigonometric polynomials with v0 = v, tangent to w at 0 and satisfying
Lξ,k(E − vλ) = 0. Let Nα,v′ : R → R denote the integrated density of states of
Hα,v′ .

By the usual monotonicity argument (see, e.g., [AK2] Lemma 2.4), since w is
E − v-signed, λ 7→ Nα,vλ(E) is either non-increasing or non-decreasing on λ small.

Moreover, since (α,A(E−v)) is not uniformly hyperbolic, it can not be constant near
0.4

It follows that there exists a sequence λn → 0 such that Nα,vλ(E) /∈ Z⊕αZ. By
the Gap Labelling Theorem, this implies that E ∈ Σα,vλn and it is accumulated
from both sides by points in Σα,vλn .

Let w′ be a trigonometric polynomial such that the derivative of v′ 7→ Lξ,k(E−v′)
at v′ = v and in the direction of w′ is positive. For every n, there exists a sequence
0 < λ′j,n < 1/j such that Nα,vj,n(E) /∈ Z⊕ αZ, where vj,n = vλn + λ′j,nw

′. Taking
n and j large then E is supercritical for Hα,vj,n : on one hand, E belongs to the
spectrum (by the Gap Labelling Theorem), and on the other, Lξ,k(E − vj,n) > 0

by the choice of w′, so by convexity we have L(α,A(E−vj,n)) ≥ Lξ,k(E − vj,n).
Note that in the “generic case” Nα,v(E) /∈ Z⊕αZ, the result can be obtained in

a much simpler way from [A1], since one can find directly a sequence 0 < λ′j < 1/j
such that Nα,v+λ′j

(E) /∈ Z⊕ αZ. �

5. Indefiniteness

Recall the setting of Theorem 3. We will need the expression for the derivative
of Lξ,k : V → R at v ∈ V that was derived in [A1]. For each such v, there exists

a maximal interval ξ0 ∈ (ξ−(v), ξ+(v)) ⊂ (0, ξ) such that the cocycle (α,A(v))
is uniformly hyperbolic through {ξ−(v) < =z < ξ+(v)} (note in particular that
ξ−(v0) = 0). Then the unstable and stable directions provide holomorphic functions
u and s with values in C, such that A(v)(z) · u(z) = u(z + α) and A(v)(z) · s(z) =

s(z + α), moreover u(z) 6= s(z) for every z. If B =

(
a b
c d

)
∈ SL(2,C) satisfies

4Indeed, there exists ε ∈ {−1, 1} and C > 1 such that for all small λ Nα,vλ (E) belongs to the

closed interval bounded by Nα,v(E+εC−1λ) and Nα,v(E+εCλ). This, or rather the correspondig

estimate for the fibered rotation number ρ = 1−N
2

, comes from a comparison of the ρ-dependence

in two monotonic families of cocycles (constructed by suitable coordinate change, see Remark

3.2). (A related argument appears in the proof of Lemma 3.6 of [AK2].) So λ 7→ Nα,vλ (E) is
non-constant (near λ = 0) if and only if λ 7→ Nα,v(E + λ) is, which happens if and only if E is in

the spectrum of Hα,v , that is, (α,A(E−v)) is not uniformly hyperbolic.
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u = a
c and s = b

d and depends, say, continuously on z, then

(16) B(z + α)−1A(v)(z)B(z) =

(
λ(z) 0

0 λ(z)−1

)
,

so L(α,A
(v)
ε ) =

∫
ln |λ(x + εi)|dx for ξ−(v) < ε < ξ+(v).5 Though a, b, c, d are

not well defined, ab, cd, ad + bc are and depend holomorphically on z. We let
q(z) = a(z)b(z). Notice that q(z − α) = c(z)d(z).

The expression for DLξ,k(v) in a direction w ∈ Cωξ (R/Z,R) is

(17) DLξ,k(v) · w = <
∫
q(x+ εi)w(x+ εi)dx, ξ−(v) < ε < ξ+(v).

We say that v is directed if DLξ,k(v) · w 6= 0 for every real-symmetric trigono-
metric polynomial w with w(x) > 0 for every x ∈ R/Z.

The main step in the proof of Theorem 3 is the following:

Theorem 10. Assume that v0 is directed. Then

1. The non-tangential limits of u and s exist almost everywhere,
2. =u(x) and =s(x) are non-zero and have the same constant sign almost ev-

erywhere,
3. <[u(x)− s(x)] > 0 almost everywhere,
4. Let D(x) be the open real-symmetric disk with u(x), s(x) ∈ ∂D. Then 0 /∈
D(x) ∩ R, but for every ε > 0, there exists a positive measure set of x with
D(x) ∩ (−ε, ε) > 0.

We delay the proof to the next section. We will also need the following result,
proved in section 7.

Theorem 11. Let v ∈ Cωδ (R/Z,R) be non-identically zero. Then there exist a

neighborhood U of A(v) in Cωδ (R/Z,R) and analytic functions Φ : U → Cωδ (R/Z,R)
and Ψ : U → Cωδ (R/Z,R) such that

1. Ψ(Ã)(x+ α)Ã(x)Ψ(Ã)(x)−1 = A(Φ(Ã))(x),

2. If Ã = A(ṽ) for some ṽ then Φ(Ã) = ṽ and Ψ(Ã) = id.

Proof of Theorem 4.
We start with the following simple consequence of Theorem 11.

Lemma 5.1. There exist analytic families vt ∈ V and Bt ∈ Cω(R/Z,SL(2,R)), t
near 0, such that B0 = id, and for every x ∈ R/Z, Bt(x + α)A(v)(x)Bt(x)−1 =
A(vt)(x) and d

dt [Bt(x) · 0] > 0 at t = 0 for every x ∈ R/Z.

Proof. Recall that v0 ∈ Cωξ′(R/Z,R) for some ξ′ > ξ. Let b ∈ Cωξ (R/Z,R) be a
positive analytic funtion such that bv0 is a trigonometric polynomial. Then there
exists a unique trigonometric polynomial a such that a(x)+a(x+α) = −b(x)v0(x).

Set c(x) = −b(x− α), and let η =

(
a b
c −a

)
. Then for small s,

(18) esη(x+ α)A(v0)(x)e−sη(x) = A(v0+sγ)(x) +O(s2),

5From (16) it follows only that L(α,A
(v)
ε ) = |

∫
ln |λ(x + εi)|dx|, but since u is taken as the

unstable direction we must have
∫

ln |λ(x+ εi)|dx > 0.
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with γ(x) = (a(x+ α)− a(x))v0(x) + b(x+ α)− b(x− α). By Theorem 11 (notice
that v0 is not identically zero since ω(α,A(v0)) 6= 0), there exists ηs and γs with
‖ηs‖ξ = O(s2) and ‖γs‖ξ = O(s2) such that

(19) eηs(x+ α)esη(x+ α)A(v0)(x)e−sη(x)e−ηs(x) = A(v0+sγ+γs)(x),

Set Bt = eηtetη. Then

(20)
d

dt
[Bt(x) · 0] = b(x)

at t = 0. �

Lemma 5.2. Let vt be as in Lemma 5.1. There exists arbitrarily small t ∈ R such
that vt is not directed.

Proof. We may assume that v0 is directed, so there are disks D(x) defined for
almost every x ∈ R/Z as in Theorem 10. Let Bt be as in Lemma 5.1, and let ut,
vt be the unstable and stable directions for vt. Notice that Bt(z)u(z) = ut(z) and
Bt(z) · s(z) = us(z). By Theorem 10, if vt is directed for every |t| < ε, then for
every measurable continuity point x0 of x 7→ D(x), Bt(x0) ·D(x0) must be a disk
not containing 0. In particular, we must have D(x0) ∩M(x0) = ∅, where M(x) is
the set of all Bt(x)−1 · 0, |t| < ε.

Since there exists δ > 0 such that (−δ, δ) ⊂ M(x) for every x, this contradicts
Theorem 10. �

Let vt be as in the conclusion of Lemma 5.2. Since vt is not directed, there
exists a trigonometric polynomial w with DLξ,k(vt) ·w = 0 and infx∈R/Z w(x) > 0.

Define an analytic family Aλ ∈ Cωξ (R/Z,SL(2,R)), λ ∈ R, by Aλ(x) = Bt(x +

α)−1A(vt+λw)(x)Bt(x), so that A0 = A(v0). Let Φ, Ψ be as in Theorem 11 with

v = v0 and δ = ξ, and let ṽλ = Φ(Aλ) and B̃λ = Ψ(Aλ)B−1
t for λ ∈ R small, so

that ṽ0 = v0. Let w̃ = d
dλ ṽλ

∣∣
λ=0

. andd = d
dλ B̃λ

∣∣∣
λ=0

B̃−1
0 . By construction, we

have

(21) A(ṽλ)(x) = B̃λ(x+ α)A(vt+λw)(x)B̃λ(x)−1, |=x| < ξ.

Differentiating (21) and then multiplying on the left by (A(v0)(x))−1, we get

(22)

(
0 0

−w̃(x) 0

)
= A(v0)(x)−1d(x+α)A(v0)(x)−d(x)+B−1

t (x)

(
0 0
−w 0

)
Bt(x),

where d = d
dλ B̃λ

∣∣∣
λ=0

B̃−1
0 .

From the definition of Lξ,k, (21) implies Lξ,k(ṽλ) = L(vt+λw), so thatDLξ,k(v0)·
w̃ = 0.

Let us now show that

(
0 0
−w̃ 0

)
is v0-signed. Since infx∈R/Z w(x) > 0,

(
0 0
−w 0

)
is vt-signed (see Remark 3.1), so there exists b ∈ Cω(R/Z, sl(2,R)) such that

(23) a(x) = A(vt)(x)−1b(x+ α)A(vt)(x)− b(x) +

(
0 0
−w 0

)
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is signed, i.e., det a(x) > 0. Notice that (23) gives

Bt(x)−1a(x)Bt(x) =A(v0)(x)−1Bt(x+ α)−1b(x+ α)Bt(x+ α)A(v0)(x)(24)

−Bt(x)−1b(x)Bt(x) +Bt(x)−1

(
0 0

−w(x) 0

)
Bt(x).

Let

(25) b̃ = B−1
t bBt − d

and let

(26) ã(x) = A(v0)(x)−1b̃(x+ α)A(v0)(x)− b̃(x) +

(
0 0
−w̃ 0

)
.

Putting together (22), (24), (25) and (26), we get that ã = B−1
t aBt, so that det ã =

det a. In particular, ã is signed, so by (26), w̃ is v0-signed, as desired.
While w̃ is not necessarily a trigonometric polynomial, it can be approximated

by a trigonometric polynomial in the kernel of DLξ,k(v0), which will be v0-signed
as well (since v0-signedness is obviously an open condition). �

6. When the derivative of the Lyapunov exponent is a measure

In this section we prove Theorem 10. We let v = v0 and A = A(v) for simplicity
of notation.

The starting observation is that if v is directed then DLξ,k(v) extends to a
functional on C0(R/Z,R) with norm |DLξ,k(v) · 1|, which is either non-negative
or non-positive on positive functions. By the Riesz representation Theorem, it is
given by a measure with finite mass µ on R/Z. By (17), this means that for any
w ∈ Cωξ (R/Z,R) we have

(27) <
∫
q(x+ εi)w(x+ εi)dx =

∫
w(x)dµ(x), 0 < ε < ξ0.

We will assume from now on that µ is non-negative, the other case being analogous.
Our plan is to show that the non-negativity of µ leads to good estimates for q

which imply one of two conclusions:

(C1) Either u or s extend analytically through R/Z.
(C2) The conclusion of Theorem 10 holds.

Let us first show that (C1) implies ω(α,A) = 0, which contradicts the standing
hypothesis that v ∈ Ck.

Assume for simplicity that u extends analytically, then either u(x) ∈ R for every
x ∈ R/Z or u(x) /∈ R for every x ∈ R/Z (since the SL(2,R) action preserves R and
x 7→ x+ α is minimal).

If u(x) /∈ R for x ∈ R/Z, this holds still for =z > 0 small. In this case we can
select a = u, c = 1 when defining B(z), and it follows that λ = u, so L(α,Aε) =∫

ln |u(x + εi)|dx is independent of ε small (argument of u being always different
from kπ, k ∈ Z), thus ω(α,A) = 0.

If u(x) ∈ R, we can use u to define analytic functions A′ : R/Z → SL(2,R)
and B′ : R/Z → PSL(2,R) such that A′(x) is upper triangular and B′(x +

α)−1A(x)B′(x) = A′(x): take the first column of B′ parallel to

(
u
1

)
. We have

ω(α,A′) = ω(α,A), and we just need to show that the ω(α,A′) = 0. But if
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A′ =

(
a′ b′

0 d′

)
then L(α,A′ε) =

∫
ln |a′(x+ εi)|dx for ε > 0 small. This is indepen-

dent of ε since for z near R/Z the argument of a′(z) is always different from 2k+1
2 π,

k ∈ Z. We conclude that ω(α,A′) = 0.
The remaining of this section is dedicated to showing that one of (C1) or (C2)

always holds.

6.1. Non-tangential limits and analytic continuation. Recall that for any
bounded holomorphic function f : D → C, the non-tangential limits f(z) =
limr→1− f(rz) exist for almost every z ∈ ∂D (see, e.g., [G]), and the Poisson formula

holds: f(0) =
∫ 1

0
f(e2πiθ)dθ. Applying appropriate conformal maps, we see that if

U ⊂ C is any real-symmetric domain, and f : U ∩H→ C is a holomorphic function
which is either bounded, or takes values on H, or takes values on Cr (−∞, 0], the
non-tangential limits f(x) = limε→0+ f(x+εi) also exist for almost every x ∈ U∩R.

We will use the following simple version of the Schwarz Reflection Principle.

Proposition 6.1. Let U be a real-symmetric domain and let f : U ∩ H → C be
holomorphic. Then

1. If f takes values in H and the non-tangential limits at U∩R are almost surely
imaginary then f extends analytically to a function on U , and f(z) = −f(z),

2. If f : U ∩H→ Cr (−∞, 0] is a holomorphic function whose non-tangential
limits at U∩R are almost surely real then f extends analytically to a function
on U , and f(z) = f(z).

Proof. Assume that <f(x) = 0 (respectively, =f(x) = 0 and <f(x) > 0) for almost
every x ∈ U ∩R. Let φ : H→ D (respectively, φ : Cr (−∞, 0]→ D) be a conformal
map commuting with the symmetry about the imaginary axis (respectively, real
axis). Then φ ◦ f is bounded and its non-tangential limits are imaginary (real).
Thus the usual Schwarz Reflection Principle applies.6 Since φ◦f extends, the same
holds for f . �

6.2. Initial estimates on q. Let us write q(z) = if(z) + g(z) with f analytic and
real-symmetric for x ∈ R/Z and a holomorphic function g with ĝk = 0 for k ≤ −1.
Thus g is defined on =z > 0 and is bounded at ∞.

Lemma 6.2. We have <g(z) ≥ 0 for every z such that =z > 0.

Proof. Let φ : R/Z → R be a positive C∞ function with φ̂0 = 1. Let gφ(z) =∫
g(z + x)φ(x)dx. It suffices to show that <gφ(z) ≥ 0 for every such φ. Let

hφ(x) =
∫
φ(y − x)dµ(y), which is a non-negative C∞ function. For any real

6The Schwarz Reflection Principle is usually stated assuming continuity at the boundary, the
version for bounded holomorphic functions following immediately (as we can consider convolution

approximations satisfying the continuity requirement). See also [G], Exercise 12, page 95.



14 A. AVILA

symmetric trigonometric polynomial w and any ε > 0, we have∫
<[gφ(x+ εi)w(x+ εi)]dx =

∫ ∫
<[g(x+ y + εi)φ(y)w(x+ εi)]dydx(28)

=

∫
φ(y)

∫
<[g(x+ y + εi)w(x+ εi)]dxdy

=

∫
φ(y)

∫
<[g(x′ + εi)w(x′ − y + εi)]dx′dy

=

∫
φ(y)

∫
w(x′ − y)dµ(x′)dy

=

∫ ∫
φ(y)w(x′ − y)dydµ(x′)

=

∫ ∫
φ(x′ − y)w(y)dydµ(x′)

=

∫ ∫
φ(x′ − y)dµ(x′)w(y)dy

=

∫
hφ(y)w(y)dy,

where the first identity uses the definition of gφ, the fourth is (27), and the last is
the definition of hφ. There exists a bounded holomorphic function Hφ on =z > 0
which extends smoothly to =z ≥ 0 and satisfies <Hφ(x) = hφ(x) (constructed with
the help of the Hilbert Transform). Obviously Hφ(z) > 0 on =z > 0 by the Poisson
formula. If w is a real symmetric trigonometric polynomial, we have

(29)

∫
<[Hφ(x+ εi)w(x+ εi)]dx =

∫
hφ(x)w(x)dx

for every ε > 0. Since both Ĥφ
k = ĝφk = 0 for every k ≤ −1, this implies that

Ĥφ
k = ĝφk for every k ≥ 1 and <Ĥφ

0 = <ĝφ0 . Thus gφ − Hφ is a purely imaginary

constant and <gφ(z) = <Hφ(z) > 0 for =z > 0. �

Since g takes values in a half plane, it admits non-tangential limits. This allows
us to make conclusions for q as well, so that for almost every x ∈ R/Z the non-
tangential limits q(x) = limε→0 q(x + εi) exist and satisfy <q(x) ≥ 0. Notice that
<g(x) ∈ L1 (since <g(z) > 0),7 and hence <q(x) ∈ L1.

6.3. The general case. By quick computation, we conclude that limits also exist,
almost everywhere, for the unstable and the stable directions. Indeed, from q(x) =
a(x)b(x), q(x− α) = a(x− α)b(x− α) = c(x)d(x), we get

(30) q(x) =
u(x)s(x)

u(x)− s(x)
and q(x− α) =

1

u(x)− s(x)
,

from which we conclude that

(31) 1 + 4q(x)q(x− α) =

(
u(x) + s(x)

u(x)− s(x)

)2

.

Assume the non-tangential limits of q exist at x and x − α and are finite. If

q(x − α) 6= 0 then u(x) − s(x) = 1
q(x−α) and u(x)s(x) = q(x)

q(x−α) define u and s

7Indeed, by pointwise convergence,
∫
|<g(x)|dx is at most limε→0 |<g(x + εi)|dx, and since

<g(z) > 0 we have
∫
|<g(x+ εi)|dx constant equal to <ĝ0.
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uniquely up to a choice of sign for the
√

1 + 4q(x)q(x− α). So the set of non-
tangential accumulation values for each of u and s has one or two points, and since
it must be connected the non-tangential limit must be well defined. If q(x−α) = 0,
then as z approaches x non-tangentially, either u(z) is close to ∞ and s(z) is close
to q(x), or s(z) is close to ∞ and u(z) is close to −q(x). By the same argument as
before, the non-tangential limits of u and s also exist in this case. In either case, we
also conclude that the existence and finiteness of the nontangential limits of q(x)
at x and x − α imply that s(x) 6= u(x). Moreover, u and s must be finite almost
everywhere by the following:

Lemma 6.3. Let w : R/Z→ C be measurable and satisfy A(x) ·w(x) = w(x+ α).
Then w(x) 6=∞ almost everywhere.

Proof. Otherwise, there would exist k, l > 0 and a positive measure set X ⊂ R/Z
such that w(x) and w(x + kα) = ∞, w(x + (kl + 1)α) = ∞ for every x ∈ X. It
follows from analyticity that Ak(x) · ∞ = ∞ and Akl+1(x) · ∞ = ∞ for every x.
Thus A(x) · ∞ =∞ for every x, which is impossible since A(x) · ∞ = v(x). �

Consider now the following possibilities:

1. s(x) = u(x) /∈ R for almost every x ∈ R/Z,
2. s(x), u(x) ∈ R for almost every x ∈ R/Z,
3. s(x) 6= u(x) and m(x) ∈ H for almost every x ∈ R/Z, for some choice of
m = u, s, u, s (independent of x).

Those possibilities exhaust all cases since x 7→ x+ α is ergodic and A(x) preserves
H, x ∈ R/Z. We will deal now with the first two cases, and leave the third case for
the next section.

In the first case, assuming, say, that s(x) ∈ H, we have <q(x) = 0 and =q(x) > 0
for almost every x ∈ R/Z. Consider a decomposition q = if + g with f real-
symmetric and g holomorphic on H and bounded at ∞. We may also assume that
f(x) < 0 for x ∈ R/Z. As we saw, <g ≥ 0 on =z > 0 and now we also get that
the non-tangential limits satisfy <g(x) = 0 and =g(x) > 0 for almost every x. By
Proposition 6.1, −ig admits an analytic continuation. This implies successively
that q, u and s also admit analytic continuations, so we have reached conclusion
(C1).

In the second case, =q(x) = 0 for x ∈ R/Z. Consider a decomposition q = f + g
with f analytic real symmetric, f(x) < 0 for x ∈ R/Z, and g holomorphic on
=z > 0 and bounded at ∞. By comparison with the decomposition considered
before, <g > 0 on 0 < =z < ε. Since =q(x) = 0, =g(x) = 0 for almost every
x ∈ R/Z, and by Corollary 6.1 ig admits an analytic continuation. Hence q, u and
s also admit analytic continuations, so we have reached conclusion (C1).

6.4. Many sections. We consider now the third case. We will assume that we
can take m = u, the other possibilities being analogous. Notice that (α,A) admits
at least three invariant sections u, s, u.8

Lemma 6.4. <q(x) > 0 for almost every x.

8This implies that there exists a measurable function B : R/Z → SL(2,R) such that B(x +
α)A(x)B(x)−1 = ±id .
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Proof. Notice that <q(x) = 0 implies that either s(x+α) =∞ or u(x+α)−s(x+α)
is purely imaginary and hence =u 6= |=s|. Let us show that the sets X± of x ∈ R/Z
with <q(x) = 0 and ±=u(x) > ±|=s(x)| have zero Lebesgue measure.

If X± has positive measure then there exist k, l > 0 and a positive measure set of
x ∈ R/Z such that x, x+kα, x+(kl+1)α ∈ X±. It follows that Ak(x+α) ·∞ =∞
and Akl+1(x+α) ·∞ =∞.9 Since this happens for a positive measure set of x, this
implies that Ak(x) · ∞ =∞, Akl+1(x) · ∞ =∞, and hence A(x) · ∞ =∞, hold for
every x ∈ R/Z. But A(x) · ∞ = v(x) 6=∞, contradiction. �

For real x, consider the real-symmetric open disk D(x) containing u and s at the
boundary. If 0 ∈ D, then <[u(x) − s(x)] > 0 implies <[u(x + α) − s(x + α)] < 0,
contradiction. So 0 /∈ D for almost every x.

In order to show that (C2) holds, it remains to check that for every ε > 0, there
exists a positive measure set of x ∈ R/Z such that D(x) intersects (−ε, ε).

Assume that this is not the case. Then D(x)∩R ⊂ [−C,C], where C = 1
ε +‖v‖0.

We claim that there exists ε′ > 0 such that <q(x−α) > ε′ for almost every x ∈ R/Z.
There are three cases to consider:

1. =s(x) = 0. Then <q(x−α) is the inverse of the diameter of D, so <q(x−α) =
1/(2C),

2. =s(x) > 0. Then <q(x − α) is the inverse of the diameter of the real-
symmetric disk through u(x)−=s(x) and s(x)−=s(x), which is bigger than
the diameter of of D, so we get <q(x− α) > 1/(2C),

3. =s(x) < 0. Then <q(x−α) = 1

u(x)−s(x)

|u(x)−s(x)|2
|u(x)−s(x)|2 . We have 1

u(x)−s(x)
> 1

2C

as in the previous case, so we just have to show that |u(x)−s(x)|
|u(x)−s(x)| is bounded

from below. This is equivalent to showing that |u(x)−s(x)|
2=u(x) is bounded from

below, which is equivalent to showing that the hyperbolic distance in H be-
tween u(x) and s(x), d(x) > 0, is bounded from below. Since the hyperbolic
metric is invariant by the SL(2,R) action, d(x) = d(x+ α) for almost every
x ∈ R/Z, so by ergodicity d(x) is constant.

It follows that <q(z) is bounded away from 0 for every z with 0 < =z < δ (δ

small). Thus we can define t(z) =
√

1 + 4q(z)q(z − α), <t(z) > 0 for every z with
0 < =z < δ.10 Thus

(32) u(x) =
±t(x) + 1

2q(x− α)
,

(33) s(x) =
±t(x)− 1

2q(x− α)
.

We have t(x) = ±u(x)+s(x)
u(x)−s(x) . Notice that <t = ± |u|

2−|s|2
|u−s|2 , so <t > 0 (by the choice

of t) implies ±|u| > ±|s|. Notice that <[u(x) − s(x)] > 0 implies, together with
±|u| > ±|s|, that ±<u(x),±<s(x) > 0.11

Thus for almost every x ∈ R/Z, ±D(x) is contained in the right half plane.

9If z1, z2 ∈ C and B ∈ SL(2,R) are such that <z1 = <z2, <[B · z1] = <[B · z2], ±|=z2| < ±=z1
and ±|=B · z2| < ±=B · z1, then B · ∞ =∞.

10Notice that the arguments of q(z) and q(z − α) can be taken in (−π/2, π/2), hence the
argument of q(z)q(z − α) can be taken in (−π, π), so that 1 + 4q(z)q(z − α) /∈ (−∞, 1].

11If ±D(x) ⊂ {<z > 0}, we have s(x) ∈ ∂D(x) ∩ {<z < u(x)} ⊂ ∂D(x) ∩ {±|z| < ±u(x)}, so
±|u(x)| > ±|s(x)|.
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Let us assume that D(x) is contained in the right half plane, so that D(x)∩R ⊂
(ε′, C).

Let ε′ ≤ z−(x) < z+(x) ≤ C be the extremes of D(x) ∩ R. Notice that

(34) ln ‖An(x) ·
(
z±(x)

1

)
‖ ≥ c

n−1∑
k=0

ln z±(x+ kα),

where c > 0 depends only on ε′ and c. Since the Lyapunov exponent is 0, we must
have

(35) lim
k→∞

1

k

k−1∑
n=0

ln z±(x+ nα)| = 0,

so that

(36)

∫
R/Z

ln z±(x)dx = 0

which is impossible since z+(x) > z−(x) almost everywhere.
The case where −D(x) is contained in the right half plane is analogous.
The proof of Theorem 10 is complete. �

7. Conjugating SL(2,R) perturbations to Schrödinger form

Let d ≥ 1 be an integer and let δ ∈ Rd+. We let Ωδ = {z ∈ Cd/Zd, |=zk| <
δk}, and let Cωδ (Rd/Zd, ∗) stand for spaces of analytic functions on Rd/Zd with

continuous extensions to Ωδ which are holomorphic on Ωδ.
We will prove the following generalization of Theorem 11 to arbitrary dimensions.

Theorem 12. Let v ∈ Cωδ (Rd/Zd,R) be non-identically zero. There exists ε > 0

such that if A′ ∈ Cωδ (Rd/Zd,SL(2,R)) satisfies ‖A′−A(v)‖Cωδ < ε, then there exists

v′ ∈ Cωδ (Rd/Zd,R) and B′ ∈ Cωδ (Rd/Zd,SL(2,R)), depending analytically on A′

and such that B′(x+ α)A′(x)B′(x)−1 = A(v′)(x). Moreover, if A′ is already of the
form A(ṽ), then v′ = ṽ and B = id.

A version of this result, for smooth cocycles over more general dynamical systems,
was obtained in [ABD]. The proof of [ABD] makes use of partitions of unity to
localize perturbations to some small region with disjoint first few iterates, one then
tries to define functions in disjoint closed regions of space without worrying about
interaction. The only additional care is to select the localizing region away from the
critical locus v(x+α) = 0, where the relevant equations develop singularities. Our
approach is different: we take a disconnected finite cover of the dynamical system
to realize the non-interacting condition, and concentrate on the linearized version
of the problem, which can be broken up into several subproblems each of which
involves a perturbation “dominated” by v(x+ α) in such a way to compensate the
singularity.

Proof. Let A = A(v). Writing A′ = Aes
′
, B = ew and v′ = v + t′, we see that the

linearized form of the problem is: For s′ ∈ Cωδ (Rd/Zd, sl(2,R)), solve the equation

(37) A(x)−1w(x+ α)A(x) + s′(x)− w(x) = t′(x)L,

where L stands for

(
0 0
−1 0

)
. We will show below how to obtain a solution (w, t′)

of (37), linear in s′, and satisfying ‖w‖Cωδ ≤ C‖s′‖Cωδ for some C = C(v) > 0.
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Moreover, C(v′) will be uniformly bounded in a neighborhood of v. This allows
one to construct the solution of the nonlinear problem by, say, Newton’s method.

Let s′ =

(
s′1 s′2
s′3 −s′1

)
, and s = s′ + s′3L, t = t′ + s′3. Then (37) is equivalent to

(38) A(x)−1w(x+ α)A(x) + s(x)− w(x) = t(x)L.

We will in fact construct a solution (w, t) to (38) which is linear in s and satisfies
the required bounds. Notice that when A′ is already of the form A(ṽ), then s = 0,
so w = 0, and the iterative procedure yields v′ = ṽ, B = id .

Choose N ≥ 4 such that |
∑N−2
k=2 v(x+ kα)2| > 1 for every x ∈ Ωδ.

12

Notice that N is constant in a neighborhood of v. Write

(39) sk(x) =
v(x+ kα)2∑N−2
j=2 v(x+ jα)2

s(x), 2 ≤ k ≤ N − 2.

Let us show that there are functions wk,l, 2 ≤ k ≤ N − 2, l ∈ ZN and tk,l(x),
l = k − 1, k, k + 1, such that

1. wk,0 = 0,
2. A(x)−1wk,1(x+ α)A(x) + sk(x)− wk,0(x) = 0,
3. A(x)−1wk,l+1(x+ α)A(x)− wk,l(x) = tk,l(x)L, l = k − 1, k, k + 1,
4. A(x)−1wk,l+1(x+ α)A(x)− wk,l(x) = 0, l 6= 0, k − 1, k, k + 1.

If we then set w(x) =
∑
k,l wk,l(x) and t(x) =

∑
2≤k≤N−2

∑k+1
l=k−1 tk,l(x), we will

have A(x)−1w(x+ α)A(x) + s(x)− w(x) = t(x)L.
Conditions (1,2,4) clearly define all wk,l except wk,k and wk,k+1, in particular

(40) wk,k−1(x) = −Ak−1(x− (k − 1)α)sk(x− (k − 1)α)Ak−1(x− (k − 1)α)−1.

Using (39) we see that

(41) ‖wk,k−1(x)‖ ≤ C|v(x+ α)|2‖s(x− (k − 1)α)‖.
The key equations are thus

(42) A(x)−1wk,k(x+ α)A(x)− wk,k−1(x) = tk,k−1(x)L,

(43) A(x)−1wk,k+1(x+ α)A(x)− wk,k(x) = tk,k(x)L,

(44) −wk,k+1(x) = tk,k+1(x)L.

From this we get an equation only involving unknown t’s,

−wk,k−1(x) =tk,k−1(x)L+A(x)−1tk,k(x+ α)LA(x)(45)

+A(x)−1A(x+ α)−1tk,k+1(x)LA(x+ α)A(x).

Once t’s are known satisfying (45), getting the w’s is immediate, so from now on
we try to solve (45). Rewriting this equation we get

(46) −wk,k−1(x) = tk,k−1(x)L+ tk,kL1(x) + tk,k+1L2(x)

where

(47) L1(x) =

(
−v(x) 1
−v(x)2 v(x)

)
12By unique ergodicity of x 7→ x + α on Rd/Zd, the Birkhoff averages of v(z)2 converge

uniformly to
∫
Rd/Zd v(z + x)2dx, which equals

∫
Rd/Zd v(x)2dx > 0 by holomorphicity.
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and

(48) L2(x) =

(
v(x+ α)− v(x)v(x+ α)2 v(x+ α)2

−(1− v(x)v(x+ α))2 −v(x+ α) + v(x)v(x+ α)2

)
.

Thus

(49) L1(x)− v(x)2L =

(
−v(x) 1

0 v(x)

)
and

(50) L2(x)− v(x+ α)2L1(x) + (2v(x)v(x+ α)− 1)L =

(
v(x+ α) 0

0 −v(x+ α)

)
.

We conclude that if v(x+ α) 6= 0 then L, L1(x) and L2(x) span sl(2,C), and there

exists a unique solution (tk,k−1, tk,k, tk,k+1) of (45), in fact bounded by C
‖wk,k−1(x)‖
|v(x+α)| .

As mentioned before, the singularity that seems to arise when v(x + α) = 0 was
well understood to be one source of difficulties in this problem, but here it emerges
from (41) that whenever v(x + α) 6= 0, the solutions are bounded by a constant
times |v(x+α)|. Hence they extend continuously as zero to {v(x+α) = 0}, and by
holomorphic removability we conclude holomorphicity in Ωδ. The result follows. �

Appendix A. Coexistence near critical coupling

Here we show that perturbations of the critical almost Mathieu operator (with
potential v(x) = 2 cos 2πx) may exhibit coexistence of subcritical and supercriti-
cal energies, and in fact that one may have arbitrarily many alternances between
subcritical and supercritical regimes. As far as we know, all previous examples of
coexistence present only a small number of alternances.

Theorem 13. Let α ∈ R r Q. Let n ≥ 1, and let {Ej}nj=1 be n distinct points in
Σα,v. Then for any δ > 0, there exists a trigonometric polynomial w ∈ Cω(R/Z,R)
such that for every κ 6= 0 sufficiently small, and for every 1 ≤ j ≤ n, there exists
Eκj ∈ Σα,v+κw ∩ (Ej − δ, Ej + δ) such that Eκj is subcritical if (−1)jκ > 0 and Eκj
is supercritical if (−1)jκ < 0.

Proof. For Hα,v, all energies in the spectrum are critical, with zero Lyapunov expo-

nent and acceleration 1 (see the appendix of [A1]). For E ∈ Cr Σα,v, (α,A(E−v))
is uniformly hyperbolic (this is general) with zero acceleration (this is obvious for
real energies and can be analytically continued to complex energies).

As for (α,A
(E−v)
ε ), it is uniformly hyperbolic with zero acceleration for 0 <

ε < L(E)
2π and uniformly hyperbolic with acceleration 1 for ε > L(E)

2π (here L(E) =

L(α,A(E−v))). This follows from the asymptotic estimate L(α,A
(E−v)
ε ) = 2πε for

ε >> 1 (see the proof of Theorem 10 of [A1]). Particularly, for E ∈ C r Σα,v,

(α,A
(E−v)
ε ) is not uniformly hyperbolic for ε = L(E)

2π .

Let U be the set of all E such that L(α,A(E−v)) < 1. It is an open neighborhood
of Σα,v.

Following section 5, for E ∈ U , define a holomorphic function qE , on =x > 1
2π

by qE(x) = aE(x)bE(x) where BE =

(
aE bE

cE dE

)
∈ SL(2,C) has columns parallel to

the unstable and the stable directions of (α,A(E−v)). Notice that qE is holomorphic
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with respect to (E, x), and for each E ∈ U , qE admits holomorphic extensions up

to =x > L(E)
2π , so when E ∈ Σα,v, q

E is defined in the entire upper half plane H.
Fix some 1 ≤ ξ0 < 2 and let V ⊂ Cω2 (R/Z,R) be an open neighborhood of all

E−v, E ∈ U such that for every v′ ∈ V the cocycle (α,A
(v′)
ξ0

) is uniformly hyperbolic

with acceleration 1. Define L2,1 : V → R by L2,1(v′) = L(α,A
(v′)
ξ0

)− 2πξ0.

For E ∈ U and w ∈ Cω2 (R/Z,R), the derivative of t 7→ L2,1(E − v− tw) at t = 0
is given by

(51) −
∫
R/Z
<qE(x+ εi)w(x+ εi)dx,

where ε can be chosen arbitrary with L(E)
2π < ε < 2 (see section 5). Denote by ΦE

the (bounded) linear functional on Cω2 (R/Z,R) taking w to (51).
We claim that for every finite subset E ⊂ Σα,v, and any E∗ ∈ Σα,v, there exists

E′ ∈ Σα,v arbitrarily close to E∗ such that ΦE
′

is not a linear combination of
the {ΦE}E∈E . Once this has been done, one can obtain inductively points E′j ∈
Σα,v ∩ (Ej − δ

2 , Ej + δ
2 ) and a trigonometric polynomial w ∈ Cω(R/Z,R) such that

(−1)jΦE
′
j · w < 0. Choose 0 < r < δ

2 such that E′ ∈ U for every E′ ∈ Kj =

[E′j − r, E′j + r] and moreover (−1)jΦE
′ · w < 0. Then for κ 6= 0 small, and every

E′ ∈ Kj we have κ(−1)jL2,1(E′ − v − κw) < 0. Notice that if κ 6= 0 is small then
for every E′ ∈ Σα,v+κw we have:

1. If L2,1(E′ − v − κw) > 0 then E′ is supercritical for Hα,v+κw,
2. If L2,1(E′ − v − κw) < 0 then E′ is subcritical for Hα,v+κw.

Indeed, in the first case, we just use that L ≥ L2,1 (by convexity), and in the

second case we notice that we must have L ≥ 0 > L2,1, so ω(α,A(E′−v−κw)) < 1

hence by quantization ω(α,A(E′−v−κw)) = 0 and (α,A(E′−v−κw)) is regular. The
result then follows since for every κ small, Σα,v+κw intersects each of the intKj (as
κ 7→ Σα,v+κw is continuous in the Hausdorff topology).

To conclude, let us prove the claim. Note that by Theorem 8 of [A1], ΦE∗ 6= 0,
which in particular implies the claim when E is empty. We may assume that the
ΦE , E ∈ E , are linearly independent. If the claim does not hold, then for every
E′ ∈ Σα,v close to E∗, ΦE

′
is a linear combination of ΦE , E ∈ E , so that we can

write (in a unique way), ΦE
′

=
∑
E∈E cE(E′)ΦE . Note that the coefficients cE(E′),

originally defined for E′ near E∗ in Σα,v, coincide with restrictions of real analytic
functions defined in a small open interval I∗ around E∗, which we still denote by
cE(E′).13 Let D ⊂ U be a small disk around E∗ with D ∩ R ⊂ I∗ and such that
the E′ 7→ cE(E′) extends holomorphically to D.

For E′ ∈ D, define γE
′

= qE
′ −
∑
E∈E cE(E′)qE . Then for E′ ∈ Σα,v ∩D, γE

′

is a holomorphic function defined on the upper half plane H such that
∫
<γ(x +

εi)w(x + εi) = 0 for every w ∈ Cω2 (R/Z,R) and any 0 < ε < 2. This implies that

for E′ ∈ Σα,v ∩ D, γE
′

extends to an entire function, which is purely imaginary

on R (see section 4 of [A1]). But for every E′ ∈ D, γE
′

defines a holomorphic
function on {=z > 1

2π} which depends holomorphically on E′. Since Σα,v ∩ D
has positive logarithmic capacity (see Theorem 7.2 in [S]), γE

′
must define an

13Fix a #E-dimensional subspace F ⊂ Cω2 (R/Z,R) such that the ΦE |F , E ∈ E, are linearly

independent, and define cE(E′) in a neighborhood of E∗ so to have ΦE
′ |F =

∑
E∈E cE(E′)ΦE |F .



FINITENESS OF PHASE TRANSITIONS 21

entire function for every E′ ∈ D (just use Hartogs Theorem). It follows that

qE
′

= γE
′

+
∑
E∈E cE(E′)qE defines a holomorphic function on H for every E′ ∈

D. By a similar argument to section 6.3, for every E′ ∈ D we can analytically

continuate the unstable and stable directions of (α,A(E′−v)) defined on =x > L(E′)
2π

to holomorphic functions uE , sE : H → PC2 which satisfy A(E′−v)(x) · uE′(x) =

uE
′
(x+α), A(E′−v)(x) · sE′(x) = sE

′
(x+α), and uE

′
(x) 6= sE

′
(x) for every x ∈ H.

Since L(α,A
(E′−v)
ε ) > 0 for every E′ and every ε > 0, this implies that (α,A

(E′−v)
ε )

is uniformly hyperbolic for every ε > 0 and for every E′ ∈ D. But this can not

happen when E′ ∈ D r Σα,v, since (α,A
(E′−v)
ε ) is not uniformly hyperbolic when

2πε = L(E′). This gives a contradiction and proves the claim. �

Remark A.1. For perturbations of the almost Mathieu operator, the acceleration is
bounded by 1, which implies that the number of alternances between the subcritical,
critical and supercritical regimes is always finite. Indeed, for any v′ ∈ Cωξ (R/Z,R),
and near any critical energy E0 ∈ Σα,v′ with acceleration 1, we can define an
analytic function Lξ,1 as before which has the property that energies E ∈ Σα,v′

near E0 are supercritical, critical, or subcritical according to whether Lξ,1 > 0,
Lξ,1 = 0, or Lξ,1 < 0.

Remark A.2. For α ∈ RrQ, w ∈ Cωξ (R/Z,R) and κ small, one may investigate the
transition from subcriticality to supercriticality within the one-parameter family
of operators Hα,λ(v+κw), λ > 0. It is convenient to look simultaneously at all
Σα,λ(v+κw) in the (E, λ)-plane. The results of [A1] imply that there is a (possibly

disconnected) nearly horizontal analytic curve L−1
ξ,1(0),14 close to Σα,v ×{1}, which

separates the subcritical energies (below it) and the supercritical energies (above
it). From the point of view of this paper, the study of this family is straightforward,
since transversality can be checked by the direct computation of Lξ,1 in the almost
Mathieu case. In particular, since the “critical curve” is nearly horizontal it defines
a premonotonic families of cocycles, so the arguments in section 3 show that the
intersection of this curve with the spectra has zero linear measure.
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