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Abstract. We study and classify faithfully balanced modules for the algebra of triangular n by n
matrices and more generally for Nakayama algebras. The theory extends known results about tilting
modules, which are classified by binary trees, and counted with the Catalan numbers. The number of
faithfully balanced modules is a 2-factorial number. Among them are n! modules with n indecomposable
summands, which can be classified by interleaved binary trees or by increasing binary trees.

1. Introduction

We consider the category Λ-mod of finitely generated left Λ-modules, where Λ is a finite-dimensional
algebra over a field K, or more generally an artin algebra. Recall that a module M is said to be
balanced, or to have the double centralizer property if the natural map Λ → EndE(M) is surjective,
where E = EndΛ(M), and it is said to be faithfully balanced if the natural map is bijective, or
equivalently if M is faithful and balanced.

Balanced and faithfully balanced modules appear in various places in the literature on ring theory,
such as Schur-Weyl duality (see for example [12]), and Thrall’s notion of a QF-1 algebra [25]. The
main known examples of faithfully balanced modules are faithful modules for a self-injective algebra,
and more generally generators and cogenerators for any algebra, and tilting modules and cotilting
modules. For more examples see [13].

In general the behaviour of faithfully balanced modules is rather mysterious. We shall illustrate this
by studying these modules for the algebra Λn of n×n lower triangular matrices over K, or equivalently
the path algebra of the linearly oriented An quiver

1→ 2→ · · · → n.

The indecomposable modules for Λn are indexed by the set In = {(i, j) : 1 ≤ i ≤ j ≤ n}, which we
display as the blocks of a Young diagram of staircase shape

(1, n) (1, n − 1) (1, n − 2) (1, 2) (1, 1)

(2, n) (2, n − 1) (2, n − 2) (2, 2)

(3, n) (3, n − 1)

(n − 1, n) (n− 1, n− 1)

(n, n)

The element (i, j) corresponds to the module Mij with top and socle the simple modules S[i] and S[j].
The left hand column is the indecomposable projective modules, the top row is the indecomposable
injective modules and the modules Mii are the simple modules S[i]. The Auslander-Reiten quiver is
the same picture, with irreducible maps going vertically and to the right, and the Auslander-Reiten
translation τ = DTr takes each module Mij with j < n to Mi+1,j+1. By a leaf we mean an element
of the set L = {(1, 0), (2, 1), . . . , (n+ 1, n)}. We define cohooks for (i, j) ∈ In and virtual cohooks for
(i, j) ∈ L by the formula

cohook(i, j) = {Mkj : 1 ≤ k < i} ∪ {Mi` : n ≥ ` > j}.
In terms of the Young diagram, cohook(i, j) is the set consisting of the cells strictly to the left of or

strictly above (i, j).
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In section 4 we prove the following theorem, along with its generalization to Nakayama algebras and
a version for balanced modules.

Theorem 1.1. A Λn-module M is faithfully balanced if and only if it satisfies the following conditions:

(FB0) M1n is a summand of M ;
(FB1) if Mij is a summand of M , (i, j) 6= (1, n), then cohook(i, j) contains a summand of M ; and
(FB2) every virtual cohook contains a summand of M .

For example the faithfully balanced modules for Λ3 are given by taking copies of the indecomposable
modules corresponding to the the black boxes � in one of the diagrams in Figure 1, together with
an arbitrary subset of the shaded boxes �. A module is basic if its indecomposable summands occur
with multiplicity one. The diagrams show the 8 + 4 + 2 + 2 + 1 + 2 + 2 = 21 basic faithfully balanced
modules for Λ3.

Given an algebra Λ and a module M , we write add(M) for the full subcategory of Λ-mod consisting
of the direct summands of direct sums of copies of M , gen(M) for the category of modules generated by
M , so quotients of a direct sum of copies of M , and cogen(M) for the category of modules cogenerated
by M , so embeddable in a direct sum of copies of M . Recall from Pressland and Sauter [16, Definition
2.10], that if M is a Λ-module, then gen1(M) is the category of modules X such that there is an exact
sequence M ′′ →M ′ → X → 0 with M ′,M ′′ ∈ add(M) and the sequence

Hom(M,M ′′)→ Hom(M,M ′)→ Hom(M,X)→ 0

exact, and cogen1(M) is the category of modules X such that there is an exact sequence 0→ X →
M ′ →M ′′ with M ′,M ′′ ∈ add(M) and the sequence

Hom(M ′′,M)→ Hom(M ′,M)→ Hom(X,M)→ 0

exact. These are full subcategories of Λ-mod, closed under direct sums and summands. It is known
that M is faithfully balanced if and only if the projective modules are all in cogen1(M) or equivalently
the injective modules are all in gen1(M) (see Lemma 2.4). It follows that the property of M being
faithfully balanced only depends on add(M), and so one may assume that M is basic. By a (faithfully
balanced) gen1-category or cogen1-category we mean a subcategory of Λ-mod of the form gen1(M) or
cogen1(M) respectively, where M is some (faithfully balanced) module. We say that a Λ-module M is
gen1-critical if any proper summand N of M has gen1(N) 6= gen1(M); similarly for cogen1-critical. In
section 5 we prove the following.

Theorem 1.2. For the algebra Λn, or for any representation-directed algebra Λ, any gen1-category G
contains a gen1-critical module M with gen1(M) = G, which is unique up to isomorphism. For any
module L, we have gen1(L) = G if and only if add(M) ⊆ add(L) ⊆ G.
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Figure 1. The seven faithfully balanced gen1-categories for Λ3. The black boxes �
show the summands of the gen1-critical module, and together with the shaded boxes �
they show the category gen1(M).

Figure 1 shows the faithfully balanced gen1-categories for Λ3. We say that a module is minimal
faithfully balanced if it is faithfully balanced and any proper direct summand is not faithfully balanced.
Clearly any minimal faithfully balanced module is gen1- and cogen1-critical. Any (generalized) tilting
module T is faithfully balanced, see [27] and [26, Proposition 5]. In section 5 we prove the following.

Theorem 1.3. If T is a basic classical tilting module for an artin algebra Λ, i.e. T has projective
dimension ≤ 1, then T is gen1-critical. If in addition Λ is hereditary, then T is minimal faithfully
balanced.

It follows that any τ -tilting module is gen1-critical and balanced. In Figure 1, the first five gen1-
critical modules are tilting modules. These and the sixth module are minimal faithfully balanced. The
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last gen1-critical module is not minimal faithfully balanced. Note that although all minimal faithfully
balanced modules for Λ3 have 3 indecomposable summands, the module

� � � �
� � �
� �
�

is a minimal faithfully balanced module for Λ4, but it has more than 4 indecomposable summands. To
count faithfully balanced modules for Λn we prove the following in section 6.

Theorem 1.4. In the expansion of the polynomial

hn(x1, . . . , xn) =
n∏
r=1

(
r∏
s=1

(1 + xs)− 1

)
,

the coefficient of the monomial xt11 . . . xtnn is the number of basic faithfully balanced Λn-modules M with
ti indecomposable summands having top S[i] (or equivalently in row i of the Young diagram), for all i.

It follows that the number of basic faithfully balanced modules for Λn is the 2-factorial number

[n]2! :=

n∏
i=1

(2i − 1).

For example there are (2− 1)(22 − 1)(23 − 1) = 21 basic faithfully balanced Λ3-modules. Also, any
basic faithfully balanced module for Λn has at least n summands, and the number with exactly n
summands is n!. For comparison, note that the number of basic tilting modules for Λn is the nth
Catalan number, see [9, 11, 17]. In section 7 we use Theorem 1.4 to count faithfully balanced modules
over certain quadratic Nakayama algebras. One should remark that the number of summands of a
faithfully balanced module for a more general algebra may be less than the number of isomorphism
classes of simple modules. For example the direct sum of the indecomposable projective-injective
modules for an Auslander algebra is faithfully balanced. This can also happen for some non-linear
orientations of the path algebra of An for n ≥ 5.

In section 8, we investigate the combinatorics of faithfully balanced modules with exactly n inde-
composable summands. Recall that an increasing binary tree with n vertices is a binary tree with a
labelling of the vertices by the integers 1, . . . , n, such that the label of any vertex is less that that of
any of its children. See Definition 8.3 for the notion of an ‘interleaved tree’.

Theorem 1.5. Given n, there are explicit bijections between the following types of objects:

(i) faithfully balanced modules for Λn with exactly n indecomposable summands;
(ii) interleaved trees with n vertices;

(iii) increasing binary trees with n vertices;
(iv) functions f : {1, . . . , n} → {1, . . . , n} which are self-bounded, meaning that f(i) ≤ i for all i.

These restrict to bijections between basic tilting modules; binary trees; well-ordered increasing binary
trees and non-decreasing self-bounded functions1.

Writing fb(n) for the set of faithfully balanced Λn-modules with exactly n indecomposable summands,
we also prove that there is a simple bijection between fb(n) and the set of tree-like tableaux of size n
in the sense of [6].

In section 9 we study the poset structure E on fb(n) given by N EM if and only if cogen(N) ⊆
cogen(M) and gen(N) ⊇ gen(M). See Figure 2 for the cases n = 3 and 4. We prove the following.

Theorem 1.6. Let fb(n) be the set of basic faithfully balanced Λn-modules with exactly n indecomposable
summands.

(1) The poset (fb(n),E) is a lattice.
(2) The Tamari lattice is a sub-lattice of (fb(n),E).
(3) The cover relations in (fb(n),E) are given by exchanging exactly one indecomposable summand.

Experiments were carried out using the GAP-package QPA [22] and SageMath [23].

1These functions are in immediate bijection with the so-called Dyck Paths.



4 WILLIAM CRAWLEY-BOEVEY, BIAO MA, BAPTISTE ROGNERUD, AND JULIA SAUTER

� � �
� �
�

��

}}
� � �
� �
�

��
� � �
� �
�

��

� � �
� �
�

��

� � �
� �
�

!!
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

Figure 2. The Hasse diagram of (fb(3),E) and the graph of the Hasse diagram of
(fb(4),E). For more details see Figures 8 and 9.
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2. Characterizations of (faithfully) balanced modules

In this section we consider finitely generated modules for an artin algebra Λ and write Hom for HomΛ.
Recall that a morphism f : X →M ′ is called a left add(M)-approximation of X if M ′ ∈ add(M) and
any morphism g : X →M factors as g = hf for some h : M ′ →M . It is a minimal left approximation
if in addition f is a left minimal morphism, which means that for any φ ∈ End(M ′), if φf = f then
φ is an automorphism, or equivalently that imφ is not contained in a proper direct summand of
M ′, see [4, §1]. Dually there is the notion of a (minimal) right add(M)-approximation. Minimal
add(M)-approximations exist, and are unique up to isomorphism, see [4, Propositions 3.9, 4.2]. The
combination of (a) and (b) in the following lemma is the case k = 1 of [13, Lemma 2.2].

Lemma 2.1. Let X and M be Λ-modules and let E = End(M).
(a) The following are equivalent:

(i) the natural map X → HomE(Hom(X,M),M) is injective;
(ii) X ∈ cogen(M);

(iii) the minimal left add(M)-approximation θ : X →M ′ is injective.

(b) The following are equivalent:

(i) the natural map X → HomE(Hom(X,M),M) is surjective;
(ii) there is a sequence X →M ′ →M ′′, exact in the middle and with M ′,M ′′ ∈ add(M), such that

the sequence Hom(M ′′,M)→ Hom(M ′,M)→ Hom(X,M)→ 0 is exact:
(iii) the minimal left add(M)-approximation θ : X →M ′ has cokernel in cogen(M).

Proof. Part (a) is straightforward, see for example [3, Lemma VI.1.8]; we prove (b). For (i) implies

(iii), we consider the sequence X
θ−→M ′

φ−→M ′′ where φ is the composition of M ′ → coker θ and a left
add(M)-approximation of coker θ. Then the sequence

Hom(M ′′,M)→ Hom(M ′,M)→ Hom(X,M)→ 0

is exact. This gives a commutative diagram

X −−−−→ M ′ −−−−→ M ′′

f

y g

y h

y
0 −−−−→ HomE(Hom(X,M),M) −−−−→ HomE(Hom(M ′,M),M) −−−−→ HomE(Hom(M ′′,M),M)



COMBINATORICS OF FAITHFULLY BALANCED MODULES 5

in which the bottom row is exact. Since M ′ ∈ add(M) it follows that g is an isomorphism. By (i) the
map f is surjective. By diagram chasing the top row is exact, giving (iii).

(iii) implies (ii). One takes the sequence X
θ−→M ′

φ−→M ′′ as in the previous part of the proof. Then
this sequence is exact in the middle by (iii). The rest are straightforward.

(ii) implies (i). We have a commutative diagram as displayed above with exact rows. Since
M ′,M ′′ ∈ add(M) the maps g, h are isomorphisms. It follows that f is a surjection. �

Considering the duals of X and M as Λop-modules (see [5, §II.3]) gives the following.

Lemma 2.2. Let X and M be Λ-modules and let E = End(M).
(a) The following are equivalent:

(i) the natural map Hom(M,X)⊗E M → X is surjective;
(ii) X ∈ gen(M);

(iii) the minimal right add(M)-approximation θ : M ′ → X is surjective.

(b) The following are equivalent:

(i) the natural map Hom(M,X)⊗E M → X is injective;
(ii) there is a sequence M ′′ →M ′ → X, exact in the middle and with M ′,M ′′ ∈ add(M), such that

the sequence Hom(M,M ′′)→ Hom(M,M ′)→ Hom(M,X)→ 0 is exact;
(iii) the minimal right add(M)-approximation θ : M ′ → X has kernel in gen(M).

Using the additivity property of minimal approximations, one gets the following.

Lemma 2.3. For a module M the following are equivalent:

(i) M is balanced;
(ii) for every indecomposable projective module P , the minimal left add(M)-approximation θ : P →

M ′ has cokernel in cogen(M);
(iii) for every indecomposable injective module I, the minimal right add(M)-approximation θ : M ′ →

I has kernel in gen(M).

As mentioned in the introduction, following Pressland and Sauter [16], we write gen1(M) (respectively
cogen1(M)) for the full subcatetegory of Λ-mod consisting of the modules X satisfying the conditions
in parts (a) and (b) of Lemma 2.2 (respectively Lemma 2.1). These subcategories are closed under
direct sums and summands. The following consequence is already in [16].

Lemma 2.4. For a module M , the following conditions are equivalent.

(i) M is faithfully balanced;
(ii) all projective Λ-modules are in cogen1(M);

(iii) all injective Λ-modules are in gen1(M).

3. Approximations for Nakayama algebras

In this section Λ is a Nakayama algebra, meaning that all indecomposable projective and injective
modules are uniserial, see for example [5, §IV.2]. It follows that any indecomposable module X is
uniserial, determined up to isomorphism by its length `(X) and either its socle soc(X) or top top(X).

We fix an indecomposable module X.

Lemma 3.1. Let φ : X → U and φ′ : X → U ′ be non-zero homomorphisms with U,U ′ indecomposable.

(i) If θ ∈ End(U) satisfies θφ = φ, then θ is invertible.
(ii) φ′ = θφ for some morphism θ : U → U ′ ⇔ `(kerφ) ≤ `(kerφ′) and `(cokerφ) ≤ `(cokerφ′).

(iii) φ′ = θφ for some isomorphism θ : U → U ′ ⇔ `(kerφ) = `(kerφ′) and `(cokerφ) = `(cokerφ′).

Proof. (i) Since U is indecomposable and φ is non-zero, φ : X → U is left minimal.
(ii) If there is θ, then trivially `(kerφ) ≤ `(kerφ′). Moreover since φ′ 6= 0, we have imφ 6⊆ ker θ, so

since U is uniserial, ker θ ⊆ imφ. Thus θ−1(imφ′) = ker θ + imφ = imφ, so θ induces an injection
from cokerφ to cokerφ′, giving the other inequality.

Conversely if the inequalities hold, then imφ and imφ′ are both quotients of the uniserial module
X, so the inequality `(kerφ) ≤ `(kerφ′) ensures the existence of a surjective map α : imφ → imφ′

with φ′ = αφ. Taking the injective envelopes I and I ′ of imφ and imφ′, the map α extends to a map
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β : I → I ′. Now I and I ′ are indecomposable, hence uniserial, since the modules imφ and imφ′ have
simple socle. Moreover U embeds in I and U ′ in I ′. Now kerβ ∩ imφ = kerα, and imφ 6⊆ kerβ, so
since I is uniserial, kerβ ⊆ imφ, so kerβ = kerα. Then

`(β(U)) = `(U)− `(kerβ) = `(U)− `(kerα)

= `(U)− `(imφ) + `(imφ′) = `(cokerφ) + `(U ′)− `(cokerφ′) ≤ `(U ′)
by the inequality. Thus β(U) ⊆ U ′, and one can take θ to be the restriction of β to U .

(iii) Follows from (i) and (ii). �

In view of the lemma, when U is indecomposable, a non-zero morphism φ : X → U is determined
(up to an automorphism of U) by the pair of natural numbers (s, t) = (`(kerφ), `(cokerφ)). We denote
a representative of this morphism by φst : X → X(s, t). Clearly if s ≤ s′ < `(X), then there is a map

ps
′
st : X(s, t)→ X(s′, t), necessarily an epimorphism, with φs′,t = ps

′
stφst.

Now let M be an arbitrary module. We define MX to be the set of pairs (s, t) such that X(s, t) is a
direct summand of M . The set MX inherits the following partial ordering from Z2:

(s, t) ≤ (s′, t′) in Z2 ⇔ s ≤ s′ and t ≤ t′.

Lemma 3.2. The map

φ = (φi) : X →
k⊕
i=1

X(si, ti),

is a minimal left add(M)-approximation of X, where (s1, t1), . . . , (sk, tk) are the minimal elements
of MX , ordered so that s1 > · · · > sk and t1 < · · · < tk, and φi = φsi,ti. Assuming that k > 0, or
equivalently that Hom(X,M) 6= 0, we have

cokerφ ∼= C1 ⊕ · · · ⊕ Ck
where C1 is the quotient of X(s1, t1) of length t1 and Ci = X(si−1, ti) for i > 1.

Proof. The fact that φ is a left approximation follows immediately from part (ii) of Lemma 3.1.
To show that φ is a minimal approximation, it suffices to show that if θ : X → M ′ is a minimal
add(M)-approximation of X, then each X(si, ti) is a summand of M ′. Now up to isomorphism we
may write M ′ as a direct sum of modules X(s, t) for various (s, t), with the components of θ being the
maps φst. By assumption the map φi factors through θ. Consider a composition

X
φst−−→ X(s, t)

α−→ X(si, ti).

If s > si then the first map has kernel of length > si, and hence so does the composition, so `(imαφst) <
`(X)− si. If t > ti then α has kernel of length at least `(X(s, t))− `(X(si, ti)) = −s+ t+ si − ti, and
so

`(α(imφst)) ≤ max{`(X) + ti − t− si, 0} < `(X)− si.
Since the map φi factors through θ, and it has image of length `(X)−si, we deduce that some summand
X(s, t) has (s, t) ≤ (si, ti). By minimality (s, t) = (si, ti), so X(si, ti) must occur as a summand of M ′.
Since the modules X(si, ti) have distinct lengths, we deduce that they are all summands of M ′, as
required.

Now suppose k > 0. Let π1 : X(s1, t1) → C1 be the projection. For i > 1, let πi = p
si−1

si,ti
:

X(si, ti)→ X(si−1, ti). Then the composition πiφi is non-zero, it has kernel of length si−1 and cokernel
of length ti, and (si−1, ti−1) ≤ (si−1, ti), so by Lemma 3.1 (ii) there is map σi : X(si−1, ti−1) → Ci
with πiφi = σiφi−1. This gives a sequence

X
φ−→

k⊕
i=1

X(si, ti)
ψ−→

k⊕
i=1

Ci → 0

where

ψ =


π1 0
−σ2 π2

. . .

πk−1 0
0 −σk πk

 .
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Since the πi are all epimorphisms, so is ψ. Also, it’s easy to check (by computing lengths) that
imφ = kerψ and hence the sequence is exact. �

We may use Lemma 3.2 to compute cogen1(M) for a module M , written as a direct sum of
indecomposable modules, say M = M1 ⊕ · · · ⊕Mm. Let X be an indecomposable module and let
cokerφ = C1 ⊕ · · · ⊕ Ck as in Lemma 3.2.

Lemma 3.3. We have the following for an indecomposable module X.

(i) X ∈ cogen(M) ⇔ X is isomorphic to a submodule of Mj for some j.
(ii) X ∈ cogen1(M) ⇔ X,C1, . . . , Ck are in cogen(M).

4. (Faithfully) balanced modules for Nakayama algebras

In this section Λ is again a Nakayama algebra. Recall that a module X is a subquotient of Y if
X ∼= Y ′′/Y ′ for some submodules Y ′ ⊆ Y ′′ ⊆ Y ; it is a proper subquotient if Y ′ 6= 0 or Y ′′ 6= Y .

Theorem 4.1. If Λ is Nakayama, then a module M is balanced if and only if it satisfies the following
two conditions:

(B1) if X is an indecomposable summand of M and X is a proper subquotient of some indecomposable
summand of M , then X is a proper submodule or proper quotient of some indecomposable
summand of M , and

(B2) if S, T are simple modules with Ext1(T, S) 6= 0 and S or T is a composition factor of M , then
Hom(M,S) 6= 0 or Hom(T,M) 6= 0.

Proof. Assuming that M is balanced, we prove (B1). Let U be an indecomposable direct summand of
M which is a proper subquotient of some other indecomposable summand, and suppose that U is not
a proper submodule or quotient of any indecomposable summand of M . We derive a contradiction.
Let θ : P → U be the projective cover of U . Clearly P is indecomposable and we consider the minimal
left add(M)-approximation φ of P given by Lemma 3.2, involving modules of the form P (s, t). Letting
s = `(ker θ), we can identify U = P (s, 0) and θ = φs0. Then (s, 0) ∈ MP , and it is minimal since if
s′ < s then U is a proper quotient of P (s′, 0). Now U is a proper subquotient of some indecomposable
summand Y of M . Say U ∼= Y ′′/Y ′ for Y ′ ⊆ Y ′′ ⊆ Y . Then θ lifts to a map P → Y ′′, and by
inclusion this gives a map ψ : P → Y . We write it in the form φs′,t′ : P → P (s′, t′). Now (s, 0) is
incomparable with (s′, t′), so the minimal approximation of P has at least k ≥ 2 terms, and the first
term must be (s1, t1) = (s, 0). The second term (s2, t2) gives rise to a summand C2 = P (s, t2) of
cokerφ. Now U = P (s, 0) embeds in C2 properly since t2 > 0. By assumption M is balanced, so
cokerφ is cogenerated by M . Thus C2 and hence also U embeds in an indecomposable summand of
M , a contradiction. Thus there can be no such summand U , so (B1) holds.

Next, assuming still that M is balanced, we prove (B2). First assume that S is a composition factor
of M . Let φ be the minimal add(M)-approximation of the projective cover P of S given by Lemma 3.2.
Since Hom(P,M) 6= 0 we have k > 0 in the lemma. Now if Hom(M,S) = 0, then Hom(P (s1, t1), S) = 0,
so S is not the top of P (s1, t1), so φ1 is not surjective. Thus C1 = cokerφ1 is non-zero with socle T
(since Λ is Nakayama). Since M is balanced, C1 embeds in M , hence Hom(T,M) 6= 0. On the other
hand, if T is a composition factor of M , then since the dual module DM is a balanced Λop-module
and Ext1(DS,DT ) 6= 0, this argument shows that Hom(DM,DT ) 6= 0 or Hom(DS,DM) 6= 0, so
Hom(T,M) 6= 0 or Hom(M,S) 6= 0, as required.

For the converse, we now assume that (B1) and (B2) hold. Fix a simple S and consider the minimal
left add(M)-approximation φ of the projective cover P of S as in Lemma 3.2. We need to show that
the summands Ci of cokerφ are in cogen(M). If k = 0 there is nothing to check, so suppose that k > 0.
Thus S is a composition factor of M .

First we consider the term C1. If Hom(M,S) 6= 0, then M has a summand with top S. It follows
that the first of the minimal elements of MP is of the form (s, 0). But then C1 = 0, so there is nothing
to check for this term. On the other hand, if Hom(M,S) = 0, then the first of the minimal elements of
MP is of the form (s1, t1) with t1 6= 0. Then C1 is non-zero, say with socle T . Clearly Ext1(T, S) 6= 0,
so by condition (B2) there is an indecomposable summand U of M with socle T , and, say, length
h. Take h maximal with this property. If h ≥ `(C1), then C1 embeds in U , as required. Otherwise
h < `(C1). Then U embeds in C1, so it is a proper subquotient of P (s1, t1). Thus by (B1), U is a



8 WILLIAM CRAWLEY-BOEVEY, BIAO MA, BAPTISTE ROGNERUD, AND JULIA SAUTER

proper quotient or submodule of a summand U ′ of M . Both are impossible. Indeed, if there is a proper
surjection α : U ′ → U , then the top of kerα is S, so kerα is the image of a map ψ : P → U ′. But
then `(cokerψ) = `(U) = h < `(C1) = t1 ≤ tr for all r. This is impossible since U ′ ∼= P (s, h) for some
s so (s, h) ∈ MP , contradicting the fact that the (si, ti) are the minimal elements. If U is a proper
submodule of U ′ then h was not maximal.

Next we consider the term Ci for 1 < i ≤ k. It is a quotient of P (si, ti) and it has a submodule
isomorphic to P (si−1, ti−1). Thus P (si−1, ti−1) is a proper subquotient of an indecomposable summand
of M . Since (si−1, ti−1) is a minimal element of MP , it follows that P (si−1, ti−1) is not a proper
quotient of any indecomposable summand of M . Thus by (B1) it is a proper submodule of an
indecomposable summand U ′ of M . Take `(U ′) to be maximal. If `(U ′) ≥ `(Ci), then Ci embeds
in U ′, as required. Thus for a contradiction suppose that `(U ′) < `(Ci). Then U ′ properly embeds
in Ci. Thus U ′ is a subquotient of P (si, ti), so by condition (B1), U ′ is a proper submodule or
quotient of an indecomposable summand W of M . If it is a proper submodule of W , then `(U ′)
is not maximal. Thus U ′ is a proper quotient of W . Now the composition f of φi−1 with the
inclusion P (si−1, ti−1) → U ′ lifts to a map g : P → W . Then `(im g) > `(im f) = `(imφi−1) and
`(coker g) = `(coker f) > `(cokerφi−1). By assumption (`(ker g), `(coker g)) ≥ (sj , tj) for some j.
Since `(im g) > `(imφi−1) we have sj ≤ `(ker g) < `(kerφi−1) = si−1, so j ≥ i. On the other hand,
tj ≤ `(coker g) = `(coker f) < `(cokerα) = `(cokerφi) = ti, where α is the composition of f with the
inclusion U ′ → Ci, so j < i, a contradiction. �

We recall that Nakayama algebras are QF-3, so a module is faithful if and only if it has every
indecomposable projective-injective module as a summand, see [2, Theorem 32.2]. In addition, for
a Nakayama algebra, every indecomposable is a subquotient of a projective-injective. For faithfully
balanced modules, Theorem 4.1 takes the following form.

Corollary 4.2. If Λ is Nakayama, then a module M is faithfully balanced if and only if it satisfies the
following conditions:

(FB0) every indecomposable projective-injective module is a summand of M ,
(FB1) if X is an indecomposable summand of M and X is not projective-injective, then X is a proper

submodule or proper quotient of some indecomposable summand of M , and
(FB2) if S, T are simple modules with Ext1(T, S) 6= 0, then Hom(M,S) 6= 0 or Hom(T,M) 6= 0.

Specializing to the algebra Λn, which is a Nakayama algebra, this gives Theorem 1.1.

5. Critical modules and minimal faithfully balanced modules

Let Λ be an artin algebra.

Lemma 5.1. Given modules N,M , we have

(i) N ∈ gen1(M) if and only if gen1(M ⊕N) = gen1(M).
(ii) N ∈ cogen1(M) if and only if cogen1(M ⊕N) = cogen1(M).

Proof. Part (ii) is due to Ma and Sauter [13, Lemma 3.3], and part (i) is dual. �

Recall that a (faithfully balanced) gen1-category is a subcategory of Λ-mod of the form gen1(M),
where M is a (faithfully balanced) module.

Proof of Theorem 1.2. Clearly G contains at least one gen1-critical module M with gen1(M) = G. We
shall show that M is uniquely determined.

By assumption Λ is representation-directed [3, §IX.3], so we can enumerate the indecomposable
modules in G as X1, X2, . . . , Xm with Hom(Xj , Xi) = 0 for j > i and each End(Xi) a division algebra.

We show by induction on i how to determine whether or not Xi is a summand of M . Let Mi be the
direct sum of all Xj with j < i which occur as summands of M . By the inductive hypothesis this is
uniquely determined.

We show that Xi is a summand of M if and only if Xi /∈ gen1(Mi). Namely, if Xi is a summand of
M , write M = M ′⊕Xi. By the ordering of the Xj , the minimal right add(M ′)-approximation of Xi is
the same as the minimal right add(Mi)-approximation. Moreover the kernel of this approximation is in
gen(Mi) if and only if it is in gen(M ′). It follows that if Xi ∈ gen1(Mi), then Xi ∈ gen1(M ′). But then
gen1(M ′) = gen1(M ′ ⊕Xi) = gen1(M) by Lemma 5.1, contradicting the criticality of M . Conversely,
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if Xi is not a summand of M , then the minimal right add(M)-approximation of Xi is the same as the
minimal right add(Mi)-approximation. By directedness, the kernel of this approximation is in gen(M)
if and only if it is in gen(Mi). Thus if Xi /∈ gen1(Mi) then Xi /∈ gen1(M) = G, which is nonsense.

The final part of the theorem follows from Lemma 5.1. �

In our example in the introduction, we have illustrated the faithfully balanced gen1-categories for Λn
with n = 3. The next proposition shows that in order to understand arbitrary gen1-categories for Λn
it is equivalent to understand faithfully balanced gen1-categories for Λn+1. Let C be the category of
Λn+1-modules vanishing at vertex 1, and F : C → Λn-mod the equivalence of categories which forgets
vertex 1.

Proposition 5.2. The assignment G 7→ F (G∩C) gives a 1:1 correspondence between faithfully balanced
gen1-categories for Λn+1-mod and arbitrary gen1-categories for Λn. The inverse sends H to the category
of Λn+1-modules which are the direct sum of an injective module and a module in C whose image under
F is in H.

Proof. Observe that any indecomposable Λn+1-module is either injective or in C, and not both. Let
M ∈ C and let I be injective. If X ∈ C, then since Hom(I,X) = 0, the minimal right add(M ⊕ I)-
approximation of X is the same as the minimal right add(M)-approximation. Moreover the kernel
of this is in gen(M) if and only if it is in gen(M ⊕ I), again using that injective modules have no
non-zero maps to non-injective indecomposables. It follows that X ∈ gen1(M ⊕ I) if and only if
F (X) ∈ gen1(F (M)).

Now if G is a faithfully balanced gen1-category, then by Lemmas 2.4 and 5.1 it is of the form
gen1(M ⊕ I) where I is the direct sum of all indecomposable injectives and M ∈ C. The assignment
sends this to gen1(F (M)), so it is a gen1-category for Λn. The reverse mapping sends gen1(F (M)) to
gen1(I ⊕M), which is necessarily a faithfully balanced gen1-category. �

According to our computer calculations, the number of faithfully balanced gen1-categories in Λn-mod
for n = 1, . . . , 6 is 1, 2, 7, 39, 325, 3875, and the number of minimal faithfully balanced Λn-modules is
1, 2, 6, 25, 134, 881.

Lemma 5.3. A basic module T with pdT ≤ 1 and which is rigid (i.e. Ext1(T, T ) = 0), is gen1-critical.

Proof. Assume T = M ⊕N and gen1(M) = gen1(T ). Then we have N ∈ gen1(M) and so there is an
exact sequence M1 → M0 → N → 0 with M0,M1 ∈ add(M) and Hom(M,−) exact on it. Thus we
obtain two short exact sequences

0→ X1 →M1 → X0 → 0,

0→ X0 →M0 → N → 0.

Applying Hom(N,−) to the first exact sequence yields an exact sequence

0 = Ext1(N,M1)→ Ext1(N,X0)→ Ext2(N,X1) = 0

since T is rigid and pdN ≤ pdT ≤ 1. This means the second short exact sequence is split and so
N ∈ add(M). It follows that add(M) = add(T ) and therefore M = T since T is basic. �

Proof of Theorem 1.3. The first part is a special case of Lemma 5.3. Now suppose that T is a basic
tilting module and Λ is hereditary. Let M be a faithfully balanced summand of T . Recall that M
being faithfully balanced is equivalent to Λ ∈ cogen1(M) by Lemma 2.4. Thus we have two short exact
sequences

0→ Λ→M0 → X → 0,

0→ X →M1 → Y → 0

with Mi ∈ add(M) such that HomΛ(−,M) is exact on both short exact sequences. It is straightforward
to check that T ′ = M ⊕ X is a tilting module. By definition T ′ ∈ gen(T ) ∩ cogen(T ) = T⊥ ∩ ⊥T ,
so T ⊕ T ′ is rigid and since tilting modules are maximal rigid we conclude that add(T ) = add(T ′).
By applying Hom(−,M) to the second short exact sequence we obtain Ext1(Y,M) = 0. By applying
Hom(Y,−) to the first exact sequence we obtain Ext1(Y,X) = 0. Thus the second short exact sequence
splits, so X ∈ add(M). This implies add(T ) = add(M ⊕X) = add(M), and since T is basic, it follows
that M = T . �
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We refer to [1] for the notion of a support τ -tilting module.

Corollary 5.4. Every basic support τ -tilting module is gen1-critical and balanced.

Proof. Let I = ann(M) be the annihilator ideal of a support τ -tilting module M . By [1, Proposition
2.2], Λ/IM is a classical tilting module, so it is faithfully balanced and gen1-critical as a Λ/I-module
by Theorem 1.3. This implies that ΛM is balanced. Assume N ∈ add(ΛM) such that gen1(M) =
gen1(N) and consider the fully faithful and exact functor i : Λ/I-mod → Λ-mod which has a left
adjoint q = Λ/I ⊗Λ −. Now we have M ∼= iq(M), therefore N = i(N ′) ∈ add(M) ⊂ im i. We
have i(gen1(N ′)) = gen1(N) ∩ im i = gen1(M) ∩ im i = i(gen1(Λ/IM)) and since i is fully faithful,
gen1(N ′) = gen1(Λ/IM). This implies add(N ′) = add(Λ/IM) since Λ/IM is gen1-critical so apply i to
conclude add(N) = add(M). This proves M is gen1-critical. �

The following result is due to Morita [14, Theorem 1.1].

Theorem 5.5. If M is a faithfully balanced module for an algebra Λ and X is indecomposable, then
M ⊕X is faithfully balanced if and only if X ∈ gen(M) or X ∈ cogen(M).

For convenience we give the proof of this in the next two lemmas. Observe that one direction,
Lemma 5.6, holds with the weaker assumption that M is faithful.

Lemma 5.6. Let M be faithful and X be indecomposable. If M ⊕X is (faithfully) balanced, then we
have either X ∈ gen(M) or X ∈ cogen(M).

Proof. Let E = EndΛ(X), then E is a local ring and hence there is a unique simple E-module, say S.
Define X1 =

∑
f :M→X im(f) and X0 =

⋂
g:X→M ker(g). Then X1 and X0 are submodules of X. By

definition, we have X ∈ gen(M) if and only if X1 = X and X ∈ cogen(M) if and only if X0 = 0. Now
assume X1 6= X and X0 6= 0. The first assumption implies X/X1 6= 0 and hence has S as a quotient,
the second implies S is a submodule of X0. It follows that HomE(X/X1, X0) 6= 0. Thus there exists
a non-zero E-endomorphism θ : X → X such that X1 ⊆ ker(θ) and im(θ) ⊆ X0. Let Γ = EndΛ(M),
then we have

EndΛ(M ⊕X) =

(
Γ HomΛ(X,M)

HomΛ(M,X) E

)
,

and M ⊕X is a left EndΛ(M ⊕X)-module. We claim that

(
0 0
0 θ

)
is an EndΛ(M ⊕X)-endomorphism

of M ⊕X, that is, for any element

(
a b
c d

)
∈ EndΛ(M ⊕X) we have(

0 0
0 θ

)(
a b
c d

)
=

(
a b
c d

)(
0 0
0 θ

)
.

To prove the claim we need to show θc = 0, bθ = 0 and θd = dθ. Now im(c) ⊆ X1 ⊆ ker(θ) gives θc = 0,
im(θ) ⊆ X0 gives bθ = 0 and the fact that θ is an E-endomorphism gives θd = dθ. By assumption,

M ⊕X is balanced and this implies that the action of

(
0 0
0 θ

)
is given by the multiplication of some

element λ ∈ Λ. Now we must have λM = 0 which forces λ = 0 since M is faithful as a Λ-module.
Thus we have θ = 0, a contradiction. �

Lemma 5.7. Let M be faithfully balanced. If either X ∈ gen(M) or X ∈ cogen(M), then M ⊕X is
also faithfully balanced.

Proof. We will prove the case X ∈ gen(M); the case X ∈ cogen(M) is dual. Since M is faithfully
balanced, there is an exact sequence

0→ Λ
f−→M0

g−→M1

such that f and coker(f)→M1 are minimal left add(M)-approximations. We claim that the map f is
also a left add(M ⊕X)-approximation. To this end, it is enough to show that any map h : Λ → X
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factors through f . Consider the following diagram

0 // Λ

i

}}
h

��

f // M0

j
vv

MX p // X // 0

where p is the minimal right add(M)-approximation of X. Since X ∈ gen(M), p is an epimorphism
and so there is an i : Λ → MX such that h = pi. Then i factors as i = jf and we have h = pi =
(pj)f . This proves the claim. Now since coker(f) ∈ cogen(M) ⊆ cogen(M ⊕ X) we conclude that
Λ ∈ cogen1(M ⊕X). This proves M ⊕X is faithfully balanced. �

For Nakayama algebras, the conditions (FB1) and (FB2) in Corollary 4.2 allow a different approach
to minimal faithfully balanced modules. We begin with some constructions which work for a module
M for an arbitrary algebra. Recall [4] that a module X ∈ add(M) is a splitting projective if every
epimorphism M ′ → X with M ′ ∈ add(M) is a split epimorphism, and it is a splitting injective if every
monomorphism X → M ′ is a split monomorphism. We write Mg for the direct sum of one copy of
each of the splitting projective summands of M and M c for the direct sum of one copy of each of the
splitting injective summands of M . By [4, Theorem 2.3], add(Mg) is a minimal cover for add(M), so
Mg is a minimal summand of M with gen(Mg) = gen(M), and it is unique up to isomorphism with
this property. Similarly for M c with cogen(M c) = cogen(M).

For Nakayama algebras, Morita’s Theorem 5.5 can be used to construct all faithfully balanced
modules from minimal faithfully balanced modules. This follows from the following lemma:

Lemma 5.8. Let Λ be a Nakayama algebra. If M is faithfully balanced but not minimal faithfully
balanced, then there is a faithfully balanced summand N of M with |M | = |N |+ 1.

Proof. Let L be a faithfully balanced proper summand of M . Let M = L⊕U . Pick an indecomposable
summand U ′ ∈ add(U) of minimal length and let U = U ′ ⊕ V . Then N := V ⊕ L still fulfills the
conditions in Corollary 4.2 and therefore is a faithfully balanced module. Indeed, the condition (FB2)
is satisfied by the summand L and the hypothesis on the length of U ′ implies that no other summands
of U are generated or cogenerated by U ′ so condition (FB1) also holds. �

Remark 5.9. We don’t know whether this result holds without the assumption that Λ is Nakayama.

Lemma 5.10. If M is a minimal faithfully balanced module for a Nakayama algebra Λ, then any
indecomposable summand X of M is a summand of Mg or M c, and X is a summand of both if and
only if X is projective-injective. Thus

M ⊕ P ∼= Mg ⊕M c,

where P is the direct sum of the indecomposable projective-injective Λ-modules.

Proof. Since M is faithfully balanced, by condition (FB1) in Corollary 4.2, every indecomposable
summand X of M which is not projective-injective is a proper submodule or quotient of another
summand of M . Thus X cannot be a summand of both Mg and M c. On the other hand, if X is
a summand of neither, then it is both a proper submodule and quotient of other summands of M .
But then the complement of X still satisfies the conditions of Corollary 4.2, so is faithfully balanced,
contradicting minimality. �

Theorem 5.11. Let M be a minimal faithfully balanced module for a Nakayama algebra Λ. If N is
a module with gen(N) ∩ cogen(N) = gen(M) ∩ cogen(M), then N is faithfully balanced and M is a
summand of N .

Proof. Clearly gen(gen(M) ∩ cogen(M)) = gen(M) and cogen(gen(M) ∩ cogen(M)) = cogen(M), so
we have gen(N) = gen(M) and cogen(N) = cogen(M). By the uniqueness of minimal covers and
cocovers, Mg ∼= Ng and N c ∼= M c. By Lemma 5.10, we conclude that M is a summand of N . Now N
is faithfully balanced by Theorem 5.5. �
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6. Counting faithfully balanced modules

In this section we prove Theorem 1.4. Given a module M for Λn, we write tr(M) for the number
non-isomorphic indecomposable summands of M with top S[r], or equivalently in row r in the Young
diagram. We consider indeterminates x1, . . . , xn, and define

kn(x1, . . . , xn) =
∑
M

n∏
r=1

xtr(M)
r ∈ Z[x1, . . . , xn]

where the sum is over all basic faithfully balanced Λn-modules M . We define

pn(x1, . . . , xn) =
∑
M

n∏
r=1

xtr(M)
r ∈ Z[x1, . . . , xn]

where the sum is over all modules M satisfying (FB0) and (FB1) in the statement of Theorem 1.1.
Let [2, n] := {k ∈ Z : 2 ≤ k ≤ n}. In condition (FB2) in Theorem 1.1, it follows from (FB0) that M

contains summands in the virtual cohooks associated to the leaves (1, 0) and (n+ 1, n). Thus we may
replace (FB2) by the conditions (FB2)k that M has a summand in cohook(k, k − 1), for all k ∈ [2, n].

Given a subset I ⊆ [2, n], we define sIn(x1, . . . , xn) to be the sum of
∏n
r=1 x

tr(M)
r over all M which

satisfy (FB0), (FB1) and (FB2)k for all k ∈ I, and f In(x1, . . . , xn) to be the sum over all M which
satisfy (FB0), (FB1) and fail (FB2)k for all k ∈ I.

We write xn = (x1, . . . , xn) and for a subset J = {j1 < · · · < jm} of [2, n], we write

xJn = (x1, . . . , x̂j1 , . . . , x̂jm , . . . , xn)

where x̂p means that the term xp is omitted.

Lemma 6.1. We have the following.

(i) f In(xn) = pn−|I|(x
I
n).

(ii) sIn(xn) =
∑

J⊆I(−1)|J |pn−|J |(x
J
n).

(iii) kn(xn) =
∑

J⊆[2,n](−1)|J |pn−|J |(x
J
n).

(iv) pn(xn) =
∑

J⊆[2,n] kn−|J |(x
J
n).

Proof. (i) To fail the condition (FB2)k means that row k and column k− 1 of the Young diagram must
be empty. If so we can shrink the diagram to obtain a Young diagram for a smaller n.

(ii) Follows by (i) and the inclusion-exclusion principle.
(iii) This is a special case of (ii).
(iv) Using (iii), the right hand side becomes∑

J⊆[2,n]

∑
I⊆[2,n]\J

(−1)|I|pn−|I∪J |(x
I∪J
n ) =

∑
L⊆[2,n]

nLpn−|L|(x
L
n)

where L = I ∪ J and

nL =
∑
I⊆L

(−1)|I| =

{
1 (L = ∅)
0 (L 6= ∅)

.

�

Lemma 6.2. We have

pn+1(xn+1) =

(
n+1∏
i=1

(1 + xi)

) ∑
I⊆[2,n]

kn−|I|(x
I
n) ·

∏
i∈I

1

1 + xi
.

Proof. Given a subset I ⊆ [1, n+ 1] and a basic Λn-module M , we obtain a basic Λn+1-module via

M ′ =

(⊕
i∈I

Mii

)
⊕

 ⊕
Mij∈add(M)

Mi,j+1

 ,
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and every basic Λn+1-module arises in this way for a unique I and M . Moreover M ′ satisfies (FB0)
and (FB1) if and only if M satisfies (FB0), (FB1) and (FB2)k for k ∈ [2, n] ∩ I. Thus

pn+1(xn+1) = (1 + x1)(1 + xn+1) ·
∑

I⊆[2,n]

(∏
i∈I

xi

)
sIn(xn).

By Lemma 6.1(ii) this becomes

(1 + x1)(1 + xn+1) ·
∑

I⊆[2,n]

(∏
i∈I

xi

)∑
J⊆I

(−1)|J |pn−|J |(x
J
n)

 .

Letting L = I \ J we can rewrite this as

(1 + x1)(1 + xn+1) ·
∑

J⊆[2,n]

∏
j∈J

xj

 (−1)|J |pn−|J |(x
J
n)

∑
L⊆[2,n]\J

(∏
`∈L

x`

)
.

= (1 + x1)(1 + xn+1) ·
∑

J⊆[2,n]

∏
j∈J

xj

 (−1)|J |pn−|J |(x
J
n) ·

 ∏
i∈[2,n]\J

(1 + xi)

 .

=

(
n+1∏
i=1

(1 + xi)

) ∑
J⊆[2,n]

(−1)|J |

∏
j∈J

xj
1 + xj

 pn−|J |(x
J
n).

By part (iv) of Lemma 6.1 this becomes(
n+1∏
i=1

(1 + xi)

) ∑
J⊆[2,n]

(−1)|J |

∏
j∈J

xj
1 + xj

 ∑
K⊆[2,n]\J

kn−|J |−|K|(x
J∪K
n ).

Letting I = J ∪K this becomes(
n+1∏
i=1

(1 + xi)

) ∑
I⊆[2,n]

kn−|I|(x
I
n)
∑
J⊆I

(−1)|J |

∏
j∈J

xj
1 + xj


=

(
n+1∏
i=1

(1 + xi)

) ∑
I⊆[2,n]

kn−|I|(x
I
n)

(∏
i∈I

1

1 + xi

)
as claimed. �

Proof of Theorem 1.4. Define

hn(xn) =
n∏
r=1

(
r∏
s=1

(1 + xs)− 1

)
as in the statement of the theorem. Suppose by induction that km(xm) = hm(xm) for all m ≤ n. We
show that kn+1(xn+1) = hn+1(xn+1). For a subset I of [2, n] we have(

n+1∏
i=1

(1 + xi)

)
hn−|I|(x

I
n)
∏
i∈I

1

1 + xi
= hn−|I|(x

I
n)

∏
i∈[1,n+1]\I

(1 + xi)

= hn−|I|(x
I
n)

 ∏
i∈[1,n+1]\I

(1 + xi)− 1

+ hn−|I|(x
I
n)

= hn−|I|+1(xIn+1) + hn−|I|(x
I∪{n+1}
n+1 ).

By Lemma 6.2 and the inductive hypothesis this gives

pn+1(xn+1) =
∑

I⊆[2,n]

(
hn−|I|+1(xIn+1) + hn−|I|(x

I∪{n+1}
n+1 )

)
=

∑
I⊆[2,n+1]

hn+1−|I|(x
I
n+1).
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On the other hand, by Lemma 6.1(iv),

pn+1(xn+1) =
∑

I⊆[2,n+1]

kn+1−|I|(x
I
n+1).

By the inductive hypothesis, we can equate terms, giving kn+1(xn+1) = hn+1(xn+1), as required. �

Recall the notation [n]q = 1 + q + q2 + · · ·+ qn−1 and [n]q! = [1]q[2]q . . . [n]q.

Corollary 6.3. For Λn we have the following.

(i) If kn,s denotes the number of basic faithfully balanced modules with s summands, then∑
s

kn,sx
s =

n∏
i=1

((1 + x)i − 1).

(ii) kn,s =
∑

(j1,j2,...,jn) : 1≤jr≤r,
∑n

r=1 jr=s

(
1
j1

)(
2
j2

)
. . .
(
n
jn

)
.

(iii) The number of basic faithfully balanced modules is [n]2! =
∏n
i=1(2i − 1). The number of

faithfully balanced modules in which the indecomposable summands have multiplicity at most m
is
∏n
i=1((1 +m)i − 1).

(iv) Any basic faithfully balanced module for Λn has at least n indecomposable summands, and the
number of basic faithfully balanced modules with n indecomposable summands is n!.

(v) The direct sum of all indecomposable modules is the only faithfully balanced module with
N = n(n+ 1)/2 indecomposable summands; there are N − 1 basic faithfully balanced modules
with N − 1 summands.

7. Number of faithfully balanced modules for quadratic Nakayama algebras

In order to study quadratic Nakayama algebras, we begin with a lemma about faithfully balanced
modules for Λn. For n ≥ 1 and 0 ≤ k ≤ 2, we define Nk(n) ∈ N by

N0(n) = [n]2!, N1(n) = 2n−1[n− 1]2!, N2(n) =

{
1 (n ≤ 2)

2n−3(2n − 1)[n− 2]2! (n ≥ 3).

Recall that S[n] is a simple projective module for Λn, and S[1] is a simple injective.

Lemma 7.1. Fix a subset of the set {S[1], S[n]} of cardinality k. The number of basic faithfully
balanced modules for Λn having all of the modules in this subset as direct summands is Nk(n).

Proof. The case k = 0 is Corollary 6.3(iii). The two possible subsets of size k = 1 give the same
number of faithfully balanced modules by duality, so we may assume that the subset is {S[n]}. If the
Young diagram for a faithfully balanced module has a non-empty second column (starting from the
left), then the simple S[n] is irrelevant for the faithfully balanced condition in Theorem 1.1. On the
other hand, if the second column is empty then S[n] must be a direct summand of M . Let M be a
faithfully balanced module for Λn with empty second column. Removing the second column and the
simple S[n] and shrinking the diagram gives a faithfully balanced module for Λn−1. In other words,
there is a bijection between faithfully balanced modules for Λn−1 and faithfully balanced modules for
Λn with an empty second column. If we denote by tn the number of faithfully balanced modules for Λn
having non-empty second column and S[n] as a summand, we have N0(n) = N0(n− 1) + 2tn, and the
number of faithfully balanced modules with S[n] as a direct summand is N0(n− 1) + tn = N1(n).

The case k = 2 is similar, but slightly more technical so we only sketch the arguments. The case
n ≤ 2 is clear, so assume n ≥ 3. If we denote by A the set of summands of M in the second column
and by B the summands in the second row (starting from the top), we can split the set of faithfully
balanced modules into 4 subsets accordingly to the emptiness or non-emptiness of A and B.

Let r be the number of faithfully balanced modules having A 6= ∅ and B 6= ∅ and having S[1] and
S[n] as direct summands. In this case the modules S[1] and S[n] are both irrelevant for the condition
of being faithfully balanced module.

Let s be the number of faithfully balanced modules having A 6= ∅ and B = ∅ and having S[1] and
S[n] as direct summands. In this case the module S[n] is irrelevant for the condition of being faithfully
balanced module.
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Note that duality induces a bijection between the case A 6= ∅, B = ∅ and the case A = ∅, B 6= ∅.
Moreover, the shrinking argument used in the first part shows that there is a bijection between the
set of faithfully balanced modules having A = ∅, B = ∅ and the set of faithfully balanced modules for
Λn−2. In other words, we have

N0(n) = 4r + 4s+N0(n− 2).

Looking at the modules having B = ∅ and using a shrinking argument, we have

N0(n− 1) = 2s+N0(n− 2).

Now the number of faithfully balanced modules with both S[1] and S[n] as summands is

r + 2s+N0(n− 2) = N2(n),

as required. �

Now let Λ be a quadratic Nakayama algebra, say of the form KQ/I where Q is a linearly oriented

quiver of type An or Ãn (see [18, Theorem 10.3]), and I is an admissible ideal generated by paths of
length 2. Let P1, . . . , Pt be the indecomposable projective-injective Λ-modules, say of lengths n1, . . . , nt,
let G = gen(DΛ)∩cogen(Λ) and let g be the number of simple Λ-modules in G, equivalently the number
of simples which occur as the socle of some Pi and the top of some Pj . Define ki to be 2 if socPi and
topPi are both in G, 1 if only one is in G, and 0 otherwise.

Theorem 7.2. If Λ is a quadratic Nakayama algebra as above, then the number of basic faithfully
balanced Λ-modules is 2gNk1(n1) . . . Nkt(nt).

Proof. It is easy to see that the Auslander-Reiten quiver of Λ is a concatenation of the Auslander-Reiten

quivers of the algebras Λni . See Figure 3 for an example where Q is of type An. If Q is of type Ãn, the
diagram is similar, but the bottom left and top right vertices must be identified, and the corresponding
simple is in G.

Corollary 4.2 implies that adding or deleting a simple in G as a summand of a module M does not
affect whether or not M is faithfully balanced. Thus the number of basic faithfully balanced modules is
2g times the number of those which have all simples in G as a summand. Clearly the basic modules M
which have all simples in G as summands are in 1-1 correspondence with collections of basic modules
M1, . . . ,Mt for the algebras Λn1 , . . . ,Λnt , where Mi has a copy of S[ni] as a summand if socPi ∈ G
and a copy of S[1] as a summand if topPi ∈ G. Now Corollary 4.2 shows that M is faithfully balanced
if and only if the Mi are faithfully balanced. The result thus follows from Lemma 7.1. �

? // • // •

• //

OO

•
OO

? // N

OO

? // • // N

OO

• //

OO

•
OO

•
OO

Figure 3. Auslander-Reiten quiver of the algebra given by a quiver of type A6 modulo
the ideal generated by the paths from 2 to 4 and from 3 to 5. The red stars are the
indecomposable projective-injective modules and the blue triangles are the simples in G.
The number of basic faithfully balanced modules is 22N1(3)N2(2)N1(3) = 576.
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8. Tree-like combinatorics for faithfully balanced modules

The purpose of the whole section is to prove Theorem 1.5. As explained in Theorem 1.1, a basic
faithfully balanced module can be identified with a collection of vertices in a staircase Young diagram.
In order to be consistent with the literature on binary trees, we apply a rotation by an angle of −π

4 of
the grid and we adopt the usual terminology of binary trees.

Let M be a faithfully balanced module for Λn. The black box corresponding to the projective
module M1n is at the top of the grid and is called the root. The black boxes in the Young diagram are
called vertices. The first vertex in the cohook of a vertex v which is on its right side (resp. its left side)
is called, if it exists, the right parent (resp. left parent) of v. Conversely we say that v is a right child
(resp. left child) of its left parent (resp. right parent). The conditions (FB1) and (FB2) imply that
every vertex (including the leaves) has at least one parent.

We turn the collection of vertices into a graph in the Young diagram by adding a straight edge
between each vertex (including the leaves) and each one of its parents. If M is a faithfully balanced
module, we denote by TM the graph obtained as explained above and we call it the graph of M . From
now on, we reserve the name vertex of TM for the vertices that are not the leaves.

•

••

•
••

•

•
•

•
•

Figure 4. The left-most and middle trees correspond to faithfully balanced modules for
Λ3. The right-most example is a minimal faithfully balanced module with 5 summands
for Λ4.

Lemma 8.1. Let n ∈ N, let M be a minimal faithfully balanced module for Λn and let TM be its graph.
Then

(1) TM is a connected graph.
(2) The number of vertices in TM is at least n.2

(3) TM is a rooted binary tree if and only if it has n vertices.

Proof. By using (FB1) and (FB2) we see that each vertex and each leaf is connected to the root of TM .
If a vertex v has a left and a right parent we can remove it without breaking the conditions (FB0),

(FB1) and (FB2). As a consequence, in a minimal faithfully balanced module every (non-leaf) vertex
has one left parent or one right parent but not both. This implies that there is a unique path in TM
between two vertices which does not go through the leaves. Moreover, all the vertices but the root are
trivalent.

The second point is proved by induction on n. For n = 0 and n = 1 there is nothing to prove.
Assume n > 2. The root of TM has at least one child, say S. We consider the subgraph TS of TM that
consists of all the vertices connected to S in TM − {R} where R is the root of TM . Let TR be the
graph obtained by cutting between R and S and removing all the vertices of TS . We add a leaf at the
former position of S and we remove all the leaves which are no longer connected to R.

Since there is a unique path between two vertices, the number of vertices of TM is equal to the sum
of the numbers of vertices of TS and TR. However, a leaf may appear in TS and in TR (see Figure 4 for
an example).

We denote by nS and nR the number of leaves of TS and TR. The graphs TS and TR satisfy the
conditions (FB0), (FB1) and (FB2) so they can be identified with graphs of faithfully balanced modules
for ΛnS−1 and ΛnR−1 respectively. By induction, we see that the number of direct summands in M is
larger than or equal to nS + nR − 2. At least one leaf occurs in both TS and TR (the one that we add
at the former position of S in TR), so nS + nR ≥ n+ 1 + 1 and the result follows.

For the last point, we have already noticed that between any two vertices in TM there is a unique
path which does not go through the leaves. Hence TM is a tree if and only if there is no leaf with more

2This is a combinatorial proof of Corollary 6.3 (iv).
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than one parent. If we decompose TM as TS and TR as above, we have that TM is a tree if and only if
TS and TR are two trees and they have no common leaf (other than the one at S). The result follows
by induction.

�

Remark 8.2. The two trees on the left of Figure 4 give the same abstract graph but two different
faithfully balanced modules. For us it is important to keep the ‘shape’ of the tree. This can be done
by considering it in the Young diagram, or alternatively by fixing the positions of the root and the
leaves of the tree.

Recall that binary trees can be defined inductively as follows. A binary tree is either the empty set
or a tuple (r, L,R) where r is a singleton set and L and R are two binary trees. The empty set has
no vertex but has one leaf. The set of leaves of T = (r, L,R) is the disjoint union of the set of leaves
of L and R. The size of the tree is its number of vertices (equivalently the number of leaves minus
1). As can be seen in Figure 4, we draw the trees with their root on the top and the leaves on the
bottom. We will always implicitly label the leaves of a tree of size n from 1 to n+ 1 starting from the
right-most leaf. Let us give an inductive definition for the graphs TM associated to faithfully balanced
modules for Λn.

Definition 8.3. An interleaved tree with 0 vertices is the empty set. An interleaved tree with n > 0
vertices is the data of

• A singleton set r called the root.
• Two interleaved trees TR and TL with, respectively, nR and nL vertices such that n = nR+nL+1.
• A strictly increasing function leaR : {2, . . . , nR + 1} → {2, . . . , n}.

The function leaR is called the interleaving function.

Remark 8.4. Let T be an interleaved tree. If the interleaving function satisfies leaR(i) = i for all i
we say that it is a trivial interleaving function and we say that T has trivial interleaving. The classical
binary trees can be seen as interleaved trees which are inductively constructed from interleaved trees
with trivial interleaving functions.

Lemma 8.5. Let M be a faithfully balanced module for Λn with exactly n summands. The graph TM
can be naturally seen as an interleaved tree.

Proof. This graph has a root and left and right subtrees denoted by TL and TR. The two subtrees
correspond to faithfully balanced modules for ΛnL and ΛnR respectively. The function leaR is defined
by leaR(i) = k if the ith leaf of TR is the kth leaf of T for i ∈ {2, . . . , nR}. �

The interleaving function leaR determines another strictly increasing function leaL : {1, . . . , nL} →
{2, . . . , n}\Im(leaR). Note that the function leaR is not defined at 1. This is just for convenience: this
function gives the positions of the leaves of the right subtree and the first leaf of the right subtree is
always 1. Similarly, the function leaL is not defined at nL + 1 because the last leaf of the left subtree is
always n+ 1.

Proposition 8.6. Let n ∈ N.

(1) The map sending a faithfully balanced module M for Λn to the interleaved tree TM is a bijection
between the set of isomorphism classes of basic faithfully balanced modules for Λn with exactly
n summands and the set of interleaved trees with n (non-leaf) vertices.

(2) It restricts to a bijection between the set of isomorphism classes of basic tilting modules for Λn
and the set of binary trees with n (non-leaf) vertices.

Proof. By Lemma 8.5 the graph TM is an interleaved tree. Conversely, let T = (r, TR, TL, leaR) be a
interleaved tree with n vertices. We aim to show that there is a bijection between interleaved trees
and collections of n vertices in the Young diagram of triangular shape that satisfy the conditions of
Theorem 1.1. Hence, we place T in the Young diagram of staircase shape as follows:

The root is placed in the box with coordinate (1, n). The leaves of TR are placed according to the
function leaR and the leaves of TL are placed according to the function leaL. The position of each
vertex is determined by the positions of the leaves. Precisely, if v is the root of the subtree with
right-most leaf ir and left-most leaf il, then it is in the box with coordinates (ir, il − 1).
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Since the root of T is placed at (1, n), the condition (FB0) holds. The right subtree TR and T share
the same right-most leaf, hence the root of TR is in the same row, on the left of the root of T . Similarly,
the root of the left subtree TL is in the same column, below the root the T . Hence the cohooks of these
new vertices are non-empty. By induction, we see that (FB1) holds. Since each leaf has a parent, the
virtual cohooks are non-empty and (FB2) holds.

For the second point, we remark that a faithfully balanced module with n summands is a tilting
module if and only if it has no self extensions. It remains to see that there is an extension between
two indecomposable modules if and only if there is a non-trivial interleaving in the corresponding tree.
There is a non-trivial interleaving in T if and only if there are two indecomposable summands Mac and
Mbd with the property that a < b < c+ 1 ≤ d. By Lemma 8.1 of [11], Ext1(Mac,Mbd) 6= 0 if and only
if a < b ≤ c+ 1 ≤ d. The case b = c+ 1 cannot appear since TM is a tree. We can also see that the
bijection restricts to the one sketched in Section 9 of [11]. �

Using this inductive definition we can construct a simple bijection between the set of interleaved
binary trees and the set of increasing binary trees introduced by Françon in Section 2 of [8]. The
bijection uses two intermediate functions that we call untangling and reordering. At the level of abstract
trees the functions do nothing, but they will change the positions of the leaves, and so the interleaving
of the trees. These changes will be encoded in a labelling of the vertices of the tree.

We start by considering interleaved trees which are labelled by integers. Let T be an interleaved
tree with n vertices. A label of T is a sequence of pairwise distinct integers V = (v1, v2, . . . , vn). The
integer vi is the label of the i-th vertex in the pre-order traversal of T (recursively visit the root, the
right subtree and the left subtree). Concretely, we first visit the root of T , then we move to the right
subtree and recursively apply the algorithm in it. That is visit the new root and move to the new
right subtree. When all the vertices of a right subtree have been visited, we recursively perform the
algorithm in the left subtree. In the example below, the first vertex visited by the algorithm is labeled
by 1, the second by 2 and so on.

1

3

5 4

2

Then v1 is the label of the root of T and if TR has nR vertices, the sequence (v2, . . . , vnR+1) labels
the vertices of the subtree TR. The remaining are the labels of the left subtree. Note that the ordering
of the elements of the sequence is important!

Definition 8.7. An increasing interleaved tree is an interleaved tree T together with a labelling of its
vertices by pairwise distinct integers such that if v is a child of w, then the label of w is smaller than
the label of v.

1
2

3

4
5

6

7

8
9

10

Figure 5. An example of an increasing interleaved tree.

If T is an interleaved tree of size n, we can always turn it into an increasing tree by associating to it
the sequence of labels (1, 2, . . . , n). We say that the labelled interleaved tree (T, V ) is well-ordered if
the sequence V is strictly increasing for the usual ordering of the integers.
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The first step of the bijection is given by the untangling function that takes a well-ordered increasing
interleaved tree and gives an interleaved binary tree with trivial interleaving function.

Let
(
T = (r, TR, TL, leaR), V

)
be a well-ordered increasing interleaved tree. Let Unt(T ) = (r, TR, TL, triv)

where triv is the trivial interleaving function. Let Unt(V ) be the sequence consisting of the vis where i
runs first through the positions of the leaves of the right subtree and then through the positions of
the leaves of the left subtree. In other words, Unt(V ) is the sequence obtained by concatenation of
the sequences (v1), (vleaR(i))i∈{2,...,nR} and (vleaL(i))i∈{1,...,nL}. The untangling function sends (T, V ) to
(Unt(T ),Unt(V)). See Figure 6 (left) for an illustration.

Conversely we define a reordering function that takes an increasing interleaved tree with trivial
interleaving function and well-ordered subtrees and produces a well-ordered interleaved tree.

Let
(
T ′ = (r, T ′R, T

′
L, triv), V ′

)
be an increasing interleaved tree. Let Reo(V ′) be the sequence putting

the elements of V ′ in a strictly increasing order. Let Reo(T ′) = (r, T ′L, T
′
R, lea′R) be the interleaved

binary tree where lea′R(i) is defined as the position of vi in Reo(V ′).

Lemma 8.8. The function Unt and Reo are mutually inverse bijections between the set of well-ordered
interleaved binary trees and the set of increasing interleaved binary trees with trivial interleaving function
and well-ordered subtrees.

Proof. Let (T, V ) be a well-ordered increasing tree with n vertices and (T ′, V ′) be an increasing
interleaved tree with trivial interleaving function and well-ordered left and right subtrees.

By construction Unt(T, V ) is an interleaved tree with trivial function. Since the interleaving functions
are strictly increasing we see that the subtrees TR and TL of Unt(T ) are well-ordered.

Conversely, the left and right subtrees of T ′ are well-ordered, so the function lea′R in Reo(T ′, V ′) is
strictly increasing. So Reo(T ′) is an interleaved tree and it is by construction well-ordered.

For i ∈ {2, . . . , nR + 1}, the i-th element of Unt(V ) is vleaR(i). Since V is well-ordered, vleaR(i) is the
leaR(i)-th largest element of V . It follows that Reo and Unt are two mutually inverse bijections. �

We can now describe a bijection between the set of interleaved binary trees and the set of increasing
binary trees.

Starting with an interleaved tree with n vertices, we see it as an increasing interleaved tree with
label V = (1, 2, . . . , n). Applying the function Unt we obtain an increasing interleaved tree with a
trivial interleaving function and well-ordered left and right subtrees. Then, we continue the process by
inductively applying the untangling function to the left and right subtrees. Since at each step we go
down in the tree, the process ends. Since we inductively remove the non trivial interleaving, the result
is an increasing binary tree. We call this algorithm the untangling procedure.

Conversely, starting with an increasing binary tree we inductively apply the function Reo to the
subtrees of increasing size. The result is an interleaved tree labelled by (1, 2, . . . , n). We call this
algorithm the reordering procedure.

1

2
3 4

5
6

7
89 10

1

2
3

4
5

6

1098 7

Figure 6. First and last steps of the untangling procedure applied to the example of
Figure 5.

Proposition 8.9. Let n be an integer.

(1) The untangling procedure induces a bijection between the set of interleaved trees with n vertices
and the set of increasing binary trees with n-vertices with inverse bijection given by the reordering
procedure.
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(2) The map that sends an interleaved tree to the word obtained by reading in in-order (left subtree,
root, right subtree) the label of the increasing binary tree given by the untangling procedure
induces a bijection between the set of interleaved trees with n vertices and the set of permutations
on {1, 2, . . . , n}.

Proof. The first point follows from Lemma 8.8. It is classical that reading the labels of the vertices of
an increasing tree in in-order induces a bijection between the set of increasing binary trees and the set
of permutations (see Section 2 of [8] for more details). �

Remark 8.10. It is clear that the untangling procedure restricts to a bijection between binary trees
and well-ordered increasing binary trees since all the untangling functions are the identity if we start
with a binary tree.

The bijection between interleaved trees and increasing binary trees is natural, however the induced
bijection with the set of permutations does not seem to reflect the interesting combinatorial properties
that we observed in Corollary 6.3. For that, we consider another classical family counted by n!.

Definition 8.11. A function f : {1, 2, . . . , n} → {1, 2, . . . , n} is self-bounded if f(i) ≤ i for i ∈
{1, 2, . . . , n}. (These functions are called ‘décroissantes’ by Françon in [8].)

The untangling procedure is also a way of labelling the vertices of an interleaved tree: if T is an
interleaved tree, the untangling procedure gives an increasing binary tree. Reading the binary tree
using a traversal gives a sequence of labels that we use to label the vertices of T using the same
traversal.

Due to the recursive nature of the interleaved trees, this labelling has recursive description. The
description is based on the following algorithm with data a pair (T, V ) where T is an interleaved
tree with n vertices and V is a sequence of n integers. The outcome of the algorithm is the label
of the root of T by the first element of V and two pairs (TR, VR) and (TL, VL) each consisting of an
interleaved tree and a sequence of labels. The trees TR and TL are just the right and left subtrees of
T . If V = (v1, v2, · · · , vn), then VR = (vleaR(i))i∈{2,··· ,nR+1} where nR is the number of vertices of TR.
Similarly, VL = (vleaL(i))i∈{1,··· ,nL} where nL is the number of vertices of TL.

To label the tree T , we start the algorithm with (T, (1, 2, · · · , n)). It labels the root of T by 1 and
produces two sequences of labels VR and VL. The sequence VR is the sequence of the positions of the
leaves (without the right-most leaf) of TR in T . Then, we apply the algorithm to (TR, VR) and (TL, VL)
and we continue so until reaching all the vertices of T .

We illustrate the procedure by doing a few steps with the tree of Figure 5: we start with
(T, (1, 2, · · · , 10)). The root of T is labelled by 1. Since the leaves of TR have positions (2, 4, 5, 7, 10)
we have (TR, (2, 4, 5, 7, 10)) and (TL, (3, 6, 8, 9)) as output of the first algorithm. Then, we apply
the algorithm to the two pairs. The root TR is labelled by 2. Then, we see that the leaves of the
right-subtree T ′R of TR have positions (2, 3, 5). Hence the output of the algorithm is (T ′R, (4, 5, 10)) and
(T ′L, (7)) where T ′L is the left subtree of TR. For the left subtree TL, the root is labelled by 3. Since the
left subtree is empty, the only output is (T ′′R, (6, 8, 9)) where T ′′R is the right-subtree of TL. The result
of the procedure is illustrated in Figure 7.
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Figure 7. Labelling of the vertices of the interleaved tree of Figure 5.
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If T is an interleaved tree we construct a function fT as follows. First label the vertices of T by the
procedure described above. If v is a vertex labelled by i we let fT (i) = j where j is the position of the
right-most leaf of the subtree with root i in T .

In terms of faithfully balanced modules the function f is obtained by taking the index of the
simple top of each of the indecomposable summand of the module in a suitable total ordering of the
indecomposable summands.

For example, if T is the interleaved tree of Figure 5, then the function fT is:

(8.1)
i 1 2 3 4 5 6 7 8 9 10

fT (i) 1 1 3 1 1 3 5 6 3 2

Before proving that the function fT is self-bounded, we need a technical lemma comparing the labels
in a tree and the labels in the left and right subtrees. If TR is the right subtree of an interleaved tree
T and v is a vertex of TR, then v has a label in T obtained by applying the labelling procedure to
(T, (1, 2, · · · , n) and a label in TR obtained by applying the labelling procedure to (TR, (1, 2, · · · , nR)).
Similarly, if v is a vertex of TL it has a label in T and a label in TL.

Lemma 8.12. Let T = (r, TR, TL, leaR) be an interleaved tree and fT its corresponding function. We
let fTR and fTL be the functions corresponding to TR and TL.

(1) Let v ∈ TR. Then v is labelled by i in TR if and only if it is labelled by leaR(i + 1) in T .
Moreover, we have

fTR(i) = j ⇔ fT (leaR(i+ 1)) = leaR(j),

with the convention that leaR(1) = 1.
(2) Let v ∈ TL. Then v is labelled by i in TL if and only if it is labelled by leaL(i) in T . Moreover,

we have

fTL(i) = j ⇔ fT (leaL(i)) = leaL(j).

Proof. By construction, if v ∈ TR is labelled by i (in TR), then it is labelled by leaR(i + 1) in T .
Moreover, we have fTR(i) = j if and only if the right-most leaf of the subtree with root i in TR is j. In
the tree T , the corresponding vertex has right-most leaf leaR(j) with the convention that leaR(1) = 1.
The second statement is similar. �

Lemma 8.13. Let T be an interleaved tree. Then the function fT is self-bounded.

Proof. Using Lemma 8.12, we will prove the result by induction on the number of vertices of the trees.
Let v be a vertex of T . If v is the root of T , it is labeled by 1 and fT (1) = 1. If v ∈ TR. Then, let i

be its label in TR. If we set j = fTR(i), then we have by induction that j ≤ i. The function leaR is
increasing, hence leaR(j) < leaR(i+ 1) and we have leaR(j) = fT (leaR(i+ 1)) < leaR(i+ 1).

Similarly, if v ∈ TL is labeled by i in TL, then by induction j = fTL(i) ≤ i. Since the function leaL
is increasing, we get leaL(j) = fT (leaL(i)) ≤ leaL(i).

�

In order to show that the map T 7→ fT is a bijection between interleaved trees and self-bounded
function, we show that the two sets have the same grammar. For that, we will define a right and a left
sub-function as well as a partition of {2, . . . , n} into two sequences FR and FL.

The sequence FR is the (totally ordered) sequence inductively constructed as follows. Let i1 be
the smallest integer such that i1 6= 1 and f(i1) = 1. If there is no such integer then FR is the empty
sequence, otherwise FR = (i1). For i = i1 + 1, . . . , n, if f(i) = 1 or f(i) ∈ FR, then add i to FR. The
sequence FL is the sequence inductively constructed as follows. Let i be the smallest integer such that
f(i) = i and for i = 2, . . . , n if f(i) ∈ FL or f(i) = i, then add i to FL.

The sequences FR and FL are recording the positions of the leaves of the left and right subtrees of
the (yet) hypothetical interleaved tree T such that f = fT . Hence, looking at Lemma 8.12, we guess
how to define the left and right sub-functions of f . The right sub-function fR is defined by fR(i) = j
if and only if f(wi) = wj−1 where FR = (w1, . . . , wnR) with the convention that w0 = 1. The left
sub-function fL is defined by fL(i) = j if and only if f(ui) = uj where FL = (u1, . . . , unL).
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In the case of the function (8.1), we have FR = (2, 4, 5, 7, 10) and FL = (3, 6, 8, 9). The sub-functions
are

i 1 2 3 4 5
fR(i) 1 1 1 4 2

i 1 2 3 4
fL(i) 1 1 2 1

Using this decomposition of a self-bounded function we can inductively construct an interleaved tree:
the root corresponds to f(1) = 1 and the interleaving function is defined by setting leaR(i+ 1) to be
the ith element of FR. The right subtree corresponds to fR and the left subtree corresponds to fL. The
only function on the empty set corresponds to the trivial interleaved tree and the unique self-bounded
function on a set with one element corresponds to the unique interleaved tree with one vertex.

Lemma 8.14. Let T be an interleaved tree with n vertices and f its self-bounded function. Then
Im(leaR) = FR and Im(leaL) = FL.

Proof. Let us recall that the vertices of TR are labelled by the sequence (leaR(i))i∈{2,··· ,nR+1}.
Let i1 be the first element of FR. Then f(i1) = 1, so i1 is the label of the right child of the root of

TR and we have i1 = leaR(2). If x is such that f(x) = 1, then x is in TR. Hence it is labelled by an
element of Im(leaR). If x is such that f(x) = y with y ∈ FR, then by induction y is the label of a leaf of
TR. So the vertex labelled by x is a parent of a leaf of TR, so it is in TR and we have, FR ⊆ Im(leaR).

Conversely if x ∈ Im(leaR), then it labels a vertex of TR and we have f(x) = 1 or f(x) = y where y
labels a leaf of TR. Looking at the proof of Lemma 8.12, we see that y < f(x). So x ∈ FR

The proof of the other case is left to the reader. �

Theorem 8.15. The map sending an interleaved tree T to the function fT is a bijection between the
set of interleaved trees with n vertices and the set of self-bounded functions on {1, 2, . . . , n}.

Proof. Using Lemmas 8.12 and 8.14, the result follows by induction on n. �

Remark 8.16. This bijection is not the composition of the untangling procedure and the bijection
between increasing binary trees and self-bounded functions given in Section 4 of [8].

In the classical case of binary trees, the bijection restricts to a bijection between the set of binary
trees with n vertices and the set of non-decreasing self-bounded functions on {1, 2, . . . , n}. These
functions are known to be counted by the Catalan numbers (See e.g. part (s) of Exercise 6.19 of [19]).

Proposition 8.17. Let T be an interleaved tree with n vertices and fT its self-bounded function. Then
T is a binary tree if and only if fT is such that fT (1) ≤ fT (2) ≤ · · · ≤ fT (n).

Proof. If T is a binary tree, its labelling is well-ordered, so it follows that fT (i) ≤ fT (i+ 1). Conversely,
if fT (1) = 1 ≤ fT (2) ≤ · · · ≤ fT (n), then the sequence FR is of the form (2, 3, . . . , k) because if y is the
smallest integer which is not in this sequence, then fT (y) = y. Since y ≤ fT (y+1), the value of fT (y+1)
is either y or y+ 1. This implies that y+ 1 is also in FL and we see that FL = {y, y+ 1, . . . , n}. So the
interleaving function of T is trivial and the left and right sub-functions both satisfy the non-decreasing
property of the Lemma. The result follows by induction. �

Proof of Theorem 1.5. The bijection between (i) and (ii) is given by Proposition 8.6, between (ii) and
(iii) by Proposition 8.9, and between (ii) and (iv) by Theorem 8.15 and Proposition 8.17. �

For M a faithfully balanced module for Λn with n summands, we define χ(M) =
∑

i ni(i− 1) ∈ N,
where ni is the number of indecomposable summands of M in row i of the Young diagram, or
equivalently with top S[i], so topM ∼=

⊕n
i=1 S[i]ni . See [7] for the notion of a ‘mahonian statistic’.

Proposition 8.18. The mapping χ : fb(n)→ N is a mahonian statistic, that is,∑
M∈fb(n)

qχ(M) = [n]q!

Proof. By Theorem 1.5, the faithfully balanced modules M with n summands correspond to self-
bounded functions f , and by the discussion after Definition 8.11, χ(M) =

∑n
i=1(f(i)− 1). Thus∑

M∈fb(n)

qχ(M) =
∑
f

q
∑n

i=1(f(i)−1) =

n∏
i=1

( i∑
f(i)=1

qf(i)−1

)
= [n]q!. �
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Using Theorem 1.1 and Lemma 8.1, we see that a faithfully balanced module with exactly n
summands for Λn corresponds to the data of vertices in the Young diagram of staircase shape satisfying
the following two conditions

(1) There is a vertex in the top left box of the diagram.
(2) Each vertex or leaf has a vertex on its left in the same row or above it in the same column but

not both.

This is very similar to the definition of tree-like tableaux in the sense of [6]. If there is an empty row
or an empty column in the faithfully balanced module M , we can simply remove it and shrink the
diagram. We denote the result by sh(M).

Proposition 8.19. The map sending M to sh(M) is a bijection between the set of faithfully balanced
modules with exactly n summands and the tree-like tableaux with n pointed cells.

Proof. Since we will not need this bijection, we only sketch the proof. We label the leaves of the Young
diagram (n, n − 1, . . . , 1) from 1 to n + 1 starting at the top right and finishing at the bottom left.
The southeast border of a tree-like tableaux can be seen as a path formed by vertical and horizontal
steps. It has exactly n+ 1 steps that we label from 1 to n+ 1 starting at the top right and finishing at
the bottom left. In both cases, the labelling induces a labelling of the rows and the columns of the
diagram. The vertex at the intersection of the row i and the column j is said to have coordinates (i, j).

Let T be a tree-like tableau with n pointed cells. We can construct a configuration of vertices in the
Young tableau (n, n− 1, . . . , 1) by sending the pointed cell with coordinates (i, j) to the vertex with
same coordinates in the Young tableaux of staircase shape.

It is straightforward to check that the result is a faithfully balanced module and that this map is a
bijection which is inverse to M 7→ sh(M). �

Remark 8.20. Tree-like tableaux are known to be counted by n!, so this gives another easy bijective
proof for the cardinality of fb(n). However, it is not completely obvious that there are n! tree-like
tableaux with n pointed cells. Proposition 8.19 relates fb(n) with other fillings of Young tabeaux such
as permutation tableaux (see e.g. [21]) and alternating tableaux (see e.g. [15]).

Finally let us remark that there is a bijection Φ2 between tree-like tableaux and increasing binary
trees that can be found in [6]. Composing it with the bijection of Proposition 8.19, we have another
bijection between the set fb(n) and the set of increasing binary trees with n vertices. The two bijections
give the same underlying tree but the labellings are quite different.

9. On partial orders

Let Λ be a finite-dimensional Nakayama algebra. We define a relation E on minimal faithfully
balanced modules by

N EM ⇔ cogen(N) ⊆ cogen(M) and gen(N) ⊇ gen(M).

It is clearly reflexive and transitive, and by Theorem 5.11 it is also antisymmetric, so a partial order.
The relation E has a smallest element given by Λ and a largest element given by DΛ, so its (finite)
Hasse diagram is connected. As before, our main interest is in the restriction of the partial order to
fb(n) for the algebra Λn.

Remark 9.1. If Λ is hereditary and M,N are cotilting modules (implying cogen(X) = cogen1(X),
gen(X) = gen1(X) for X = M,N), then the following are equivalent: (a) N EM , (b) cogen(N) ⊆
cogen(M), (c) gen(N) ⊇ gen(M), and (d) Ext1(N,M) = 0. This suggests many possible partial orders
generalizing the usual partial order on tilting modules for hereditary algebras (cf. [10]). For example
we can consider the partial order ≤ given by

N ≤M ⇔ cogen1(N) ⊆ cogen1(M) and gen1(N) ⊇ gen1(M).

In Figure 8 we show the Hasse diagrams for fb(3). The poset induced by the relation E seems to be
the most interesting, since the other two do not give lattice structures on fb(n) when n ≥ 4.

Definition 9.2. Using the canonical isomorphism of K-algebras ϕ : Λop
n → Λn, the dual DM of any

left Λn-module M can be considered as a left Λn-module, which we denote by M◦. This defines a
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Figure 8. Hasse diagrams for fb(n) with respect to inclusion of cogen1-categories
(left), ≤ (middle) and E (right). The largest element is at the bottom.

duality on the category Λn-mod which preserves faithfully balancedness, so we have an involution
fb(n)→ fb(n) mapping M 7→M◦.

Remark 9.3. For any basic module M , the module M◦ can be found by reflecting the Auslander
Reiten quiver along the symmetry axis passing through M1,n,M2,n−1,M3,n−2, . . . and these are the
only indecomposable modules X with X◦ ∼= X. In fb(3), we find two modules with M◦ ∼= M and
looking at Figure 9, one can see M 6= M◦ for all M ∈ fb(4). We have (cogeni(M))◦ ∼= geni(M

◦) for
every i ≥ 0. It follows that M EN ⇔ N◦ EM◦ for all M,N ∈ fb(n).

Consider the poset (fb(n),E). A module L is a common lower bound of M and N in (fb(n),E) if
and only if cogen(L) ⊆ cogen(M) ∩ cogen(N) and gen(L) ⊇ gen(M) ∪ gen(N). For any two elements
M and N in (fb(n),E) the module Λn is always a common lower bound of them.

Proposition 9.4. The poset (fb(n),E) is a lattice for all n ≥ 1.

Proof. Since the poset is finite with a greatest element it is enough to show that it is a meet semi-lattice
(see e.g. [20, Proposition 3.3.1]). Thus we need to show that any two elements M,N ∈ fb(n) have a
meet.

By Lemma 3.3, an indecomposable module is in cogen(M)∩ cogen(N) if and only if it embeds in an
indecomposable summand of M and in an indecomposable summand of N . Let C be the basic module
such that add(C) is the minimal cocover of cogen(M) ∩ cogen(N), see [4, §2]. It follows that for each
simple S[i], there is at most one indecomposable summand X of C with socle S[i], and if it occurs, it
is a summand of M or N .

Let G be the basic module such that add(G) is the minimal cover of add(gen(M) ∪ gen(N)). Again,
for each simple S[i] there is at most one indecomposable summand of G with top S[i]. Clearly we
have cogen(C) = cogen(M) ∩ cogen(N) and gen(G) = gen(gen(M) ∪ gen(N)). Moreover, since the
indecomposable direct summands of C are in add(M)∪add(N), we have C ∈ gen(gen(M)∪gen(N)) =
gen(G).

We claim that |C| ≤ n and equality holds if and only if C = DΛn = M = N . To see this, note
that if |C| = n, then M and N have summands with socle S[i], for all i. But since they are in
fb(n), Theorem 1.1 implies they are isomorphic to DΛn. There is nothing to prove if M = N , so we
may assume that |C| = t < n. We write G = G1 ⊕ G2 ⊕ · · · ⊕ Gs where the tops of G1, . . . , Gs are
S[i1], . . . , S[is] with 1 ≤ i1 < i2 < · · · < is ≤ n. Since M1n is a summand of G, we have i1 = 1. For
each 2 ≤ α ≤ s, let Hα be the indecomposable module with top(Hα) = S[iα] and having the following
properties:

(P1) Hα is a proper submodule of an indecomposable summand of C,
(P2) Gα is a quotient of Hα,
(P3) Hα has minimal length with respect to (P1) and (P2).
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(Observe that the projective cover of S[iα] satisfies (P1) and (P2) since it properly embeds in M1,n,
which is a direct summand of C.) Define H =

⊕
2≤α≤sHα and L = C ⊕H. We have C ∈ gen(G) ⊆

gen(H ⊕M1n).
First we show that the module L is basic. We have add(H) ∩ add(C) = {0} since every summand

of C is splitting injective in add(C) and every indecomposable summand of H embeds properly into
one of the summands of C by (P1). Since H is basic, because the Hα have different tops, and
add(C) ∩ add(H) = {0}, we have that L is basic.

Then, we show that L is faithfully balanced. The indecomposable direct summands of H are proper
submodules of C by construction. Moreover an indecomposable direct summand X of C is a quotient
of some Gα since we have C ∈ gen(G). By construction we have Gα ∈ gen(Hα), so we see that X is
a proper quotient of a module Hα. Hence the module L satisfies (FB0) and (FB1) in Theorem 1.1.
Consider cohook(i, i−1) for 2 ≤ i ≤ n. If S[i−1] ∈ cogen(L), then we have cohook(i, i−1)∩add(L) 6= ∅.
If S[i− 1] /∈ cogen(L) = cogen(C), then it is either not in cogen(M) or not in cogen(N). Without loss
of generality we may assume S[i− 1] /∈ cogen(M), in which case we must have S[i] ∈ gen(M) since M
is faithfully balanced. Thus we have S[i] ∈ gen(H) ⊆ gen(L) and cohook(i, i− 1) ∩ add(L) 6= ∅. This
proves that L also satisfies (FB2), so it is a faithfully balanced module.

Now we show that |L| = n, so L ∈ fb(n). The virtual cohook (i, i − 1) of L is non-empty and it
has three possible shapes according to the following two conditions: S[i− 1] is or is not a submodule
of L and S[i] is or is not a quotient of L. Let us denote by u the number of virtual cohooks (i, i− 1)
for which S[i− 1] is a submodule of L and S[i] is a quotient of L. Applying the inclusion-exclusion
principle to virtual cohooks yields 0 = (n− 1)− (t− 1)− (s− 1) +u. If u 6= 0, then by the construction
of H we know that there exists some i such that cohook(i, i− 1) contains an indecomposable summand
of C and an indecomposable summand of G. But this contradicts the fact that M,N ∈ fb(n). Hence
we have u = 0 and |L| = t+ (s− 1) = n, as desired.

By construction cogen(L) = cogen(C) and gen(L) = gen(H ⊕M1n), which implies that L is a
common lower bound of M and N .

Assume L′ ∈ fb(n) is also a common lower bound of M,N . This means that cogen(L′) ⊆ cogen(M)∩
cogen(N) = cogen(L) = cogen(C) and gen(G) = gen(gen(M) ∪ gen(N)) ⊆ gen(L′). We have to show
that gen(L) ⊆ gen(L′) to prove that L′ E L. Since L′ is in cogen(L′) ⊆ cogen(C), we see that every
indecomposable direct summand of L′ is a submodule of C. On the other hand, Gα ∈ gen(G) ⊆ gen(L′).
This means that there is an indecomposable direct summand H ′α of L′ such that Gα ∈ gen(H ′α). By
minimality of Hα, we see that Hα ∈ gen(H ′α). It follows that gen(L) ⊆ gen(L′). �

Example 9.5. The following table gives two examples of the construction above for n = 4.
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Figure 9 shows the Hasse diagram of (fb(4),E). The underlying graph of the Hasse diagram can be
visualized as a truncated octahedron with two dissected hexagons, as in Figure 2.

Remark 9.6. We can consider the poset of minimal faithfully balanced modules for the algebra Λn,
which is a stricly larger poset when n ≥ 4, and we may wonder if it is also a lattice. It turns out that
the construction of the module L of Proposition 9.4 still makes sense, however it does not always give
a minimal faithfully balanced module. We cannot really improve our argument since the poset fails to
be a lattice for n = 5.

Given M = X ⊕ U ∈ fb(n) with X indecomposable, X 6= M1n, we want to describe the possible
indecomposable modules Z such that Z ⊕U ∈ fb(n). By Lemma 5.10, the module X is either splitting
projective or splitting injective in add(M) and not both.

Assume X = Mij is a splitting projective module. If gen(X) ∩ add(U) 6= {0}, we pick the unique
X0 = Mit ∈ gen(X)∩ add(U) of maximal length. If gen(X)∩ add(U) = {0}, we let t = i− 1. we define
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Figure 9. Hasse diagram of (fb(4),E). The cotilting modules are in boxes.

the internal cohook as

cohookM (X) = cohook(i, t) ∩ (gen(U) ∪ cogen(U)).

Assume X = Mij is a splitting injective module. If cogen(X) ∩ add(U) 6= {0}, we pick the unique
X0 = Mvj ∈ cogen(X) ∩ add(U) of maximal length. If cogen(X) ∩ add(U) = {0} we let v = j + 1. We
define the internal cohook as

cohookM (X) = cohook(v, j) ∩ (gen(U) ∪ cogen(U)).

Furthermore, we define a total order � on cohookM (X) generated by the following covering relations:
A � B if there is a map A → B which is irreducible in cohookM (X) (not necessarily irreducible in
Λn-mod), or if A and B are both of minimal length in cohookM (X) and Ext1(B,A) 6= 0.This restricts
to a total order on any subset. The module X0 (or the leaf) is called the corner of the internal cohook.

Proposition 9.7. Let M = X ⊕ U ∈ fb(n) where X is an indecomposable module, X 6= M1n. For
every indecomposable Z the following are equivalent:

(1) Z ⊕ U ∈ fb(n)
(2) Z ∈ cohookM (X).
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In particular, there is always an indecomposable injective I and an indecomposable projective P such
that I ⊕ U,P ⊕ U ∈ fb(n). Assume now

cohookM (X) = {P = Z1 � Z2 � · · · � Zm = I}

then we have in fb(n)

Z1 ⊕ U E Z2 ⊕ U E · · ·E Zm ⊕ U.

Proof. Denote by c the corner of the internal cohook cohookM (X). Let us recall that by the proof of
Lemma 5.10 and by Lemma 8.1 (c), the cohook of an indecomposable summand of M and the virtual
cohooks have an empty row or an empty column. Hence X is the only indecomposable summand of M
in cohook(c).

If Z /∈ cohookM (X), then we have U ⊕ Z /∈ fb(n) since in this case cohook(c) ∩ add(U ⊕ Z) = ∅. If
Z ∈ cohookM (X), then by the construction of the internal cohook we have cohook(c)∩add(U ⊕Z) 6= ∅
and cohook(Z) ∩ add(U) 6= ∅. It follows that U ⊕ Z satisfies (FB1) and (FB2) in Theorem 1.1, so it is
in fb(n).

Since M1n is a summand of U , cohookM (X) contains a unique indecomposable projective module
P and a unique indecomposable injective module I. Observe that moving to the left in the row of
cohookM (X) shrinks the gen-category and stabilizes the cogen-category; going up in the column of
cohookM (X) grows the cogen-category and stabilizes the gen-category; moving from the left of c to
the top of c grows the cogen-category and shrinks the gen-category. Now, the last statement follows.

�

Lemma 9.8. Let N,M ∈ fb(n) such that N EM and N 6= M . Then there is an N ′ ∈ fb(n) or an
M ′ ∈ fb(n) such that

(a) N EN ′ EM and |add(N) ∩ add(N ′)| = n− 1, or
(b) N EM ′ EM and |add(M) ∩ add(M ′)| = n− 1

is fulfilled.

Proof. The proof is purely combinatorial and requires a careful checking of the different possibilities.
We write M = Z ⊕ V and N = Z ⊕W where add(V ) ∩ add(N) = {0} and add(W ) ∩ add(M) = {0}.

First assume that there is an indecomposable summand X of V that is splitting projective in add(M).
Since X ∈ gen(M) ⊆ gen(N) there is an indecomposable summand Y of N such that X ∈ gen(Y ). We
choose it with minimal length with respect to this property and we let U be such that M = U ⊕X.
Since X is splitting projective, we see that Y ∈ add(W ). Moreover, Y ∈ cogen(N) ⊆ cogen(M). So
Y ∈ cogen(U) and we see that

• Y ∈ cohookM (X) and Y � X. Proposition 9.7 tells us that M ′ = U ⊕ Y ∈ fb(n).
• By Proposition 9.7 we have M ′ EM .
• cogen(M) = cogen(M ′) because X and Y are in cogen(U).
• U ∈ gen(M) ⊆ gen(N) and Y ∈ gen(N).

The third point implies that cogen(N) ⊆ cogen(M) = cogen(M ′). The fourth point implies that
gen(M ′) ⊆ gen(N). In other words, we have N EM ′ EM .

If there is an indecomposable summand Y of W that is splitting injective in add(N) we can construct
N ′ such that N EN ′ EM by dualizing the previous argument.

Now we assume that all the summands of V are splitting injective in add(M) and all the summands
of W are splitting projective in add(N). We choose the indecomposable X ∈ add(V ) maximal with
respect to the index of its socle and then with respect to its top. As before, we write M = U ⊕X.
Combinatorially, the column containing X is the first (reading from left to right) that contains an
element of add(V ) and the module is the lowest element of add(V ) in its column. In order to help
the comprehension of the proof we draw in Figure 10 the shape of the Young diagram containing M
and N in the neighborhood of X. We first explain the figure for the module M . Since X is a splitting
injective, there is z ∈ add(M) such that X ∈ gen(z) and there are no summands of M in its column
above it. We represent this by dashed horizontal lines. We denote by c the corner of cohookM (X).
The hypothesis on X implies that z ∈ add(Z) and that c ∈ add(Z) or is a leaf. Since M is a faithfully
balanced module with exactly n summands, there is no module in the same row as c on its left. We
represent this by using dashed vertical lines.
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c

• X•z

c

•z

• Y

• w

Figure 10. On the left the module M on the right the module N .

Let us move to the module N . By assumption, we have cogen(N) ⊆ cogen(M) and X is splitting
injective, so, there is no indecomposable summand I of N such that X ∈ cogen(I). Combinatorially
this means that the column of c in N is empty at X and above. If there is an indecomposable summand
I of N such that c ( I ( X, then by definition of X, this module is not a direct summand of M ,
so it is a splitting projective in add(N). But if I ∈ add(N) with c ( I ( X of maximal length it
has to be a splitting injective. Since this is not possible, there is no module above c in its column.
Since N is a faithfully balanced module, there is Y ∈ add(N) which is on the left of c. There are no
indecomposable summands of Z on the left of c, so Y ∈ add(W ) and by assumption it is a splitting
projective module in add(N). So there is w ∈ add(N) such that Y is a proper submodule of w. Since
cogen(N) ⊆ cogen(M), we have Y ∈ cogen(U). In conclusion, we have:

• Y ∈ cohookM (X), so M ′ = U ⊕ Y ∈ fb(n) and M ′ EM .
• U ∈ gen(M) ⊆ gen(N) and Y ∈ add(N), so gen(M ′) ⊆ gen(N).
• By construction if I is an indecomposable module with soc(I) 6= soc(c), then I ∈ cogen(M) if

and only if I ∈ cogen(M ′). It follows that cogen(N) ⊆ cogen(M ′).

It follows that N EM ′ EM . �

Corollary 9.9. If N,M ∈ fb(n) are neighbours in the Hasse diagram of E, then |add(N)∩add(M)| =
n− 1.

Recall, whenever N EM is a covering relation, we draw an arrow N →M in the Hasse diagram.

Corollary 9.10. Let M ∈ fb(n).

(1) Let X ∈ add(M) be an indecomposable module. Assume that X = Zi in its internal cohook
and we write M = U ⊕X. Then there is a cover relation U ⊕X E U ⊕ Y in (fb(n),E) if and
only if
• X is not injective.
• Zi+1, the successor of X in its internal cohook, is not in add(M).
• Y = Zi+1.

(2) In the Hasse diagram of E, the number of arrows starting (resp. ending) at M is smaller than
or equal to the number of non-injective (resp. non-projective) indecomposable summands of M .

Proof. If MEN is a cover relation, then the two modules differ by exactly one indecomposable summand.
Say that M = U ⊕X and N = U ⊕ Y . By Proposition 9.7, we see that Y must be in the internal
cohook of X. Say that X = Zi in this cohook. Then Y = Zj for i < j. Because it is a cover relation, j
is the smallest integer such that Zj /∈ add(U). If Zi+1 ∈ add(U), then we write M = V ⊕X ⊕ Zi+1.
Then M EN is not a cover relation because it factorizes as M EV ⊕X ⊕Zj EV ⊕Zi+1⊕Zj = N . �

Proof of Theorem 1.6. The first point is proved in Proposition 9.4. The third point is proved in
Corollary 9.10. The Tamari lattice is isomorphic to the poset of basic cotilting modules for Λn with
partial order given by T1 ≤ T2 if and only if Ext1(T1, T2) = 0. Looking at Remark 9.1 we see that it
is a subposet of (fb(n),E). Recall that in the poset of cotilting modules the meet of two cotilting
modules T1 and T2 is a cotilting module T3 such that cogen(T3) = cogen(T1) ∩ cogen(T2) (see for
example Section 11 of [24] for the dual statement on tilting modules). By construction, the meet L
of two faithfully balanced modules M and N is such that cogen(L) = cogen(M) ∩ cogen(N), so in
order to prove the second point it is enough to show that L is a cotilting module when M and N are
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cotilting modules. Since L has exactly n non-isomorphic indecomposable summands, it is enough to
show that it has no self-extensions.

Let M and N be two cotilting modules and denote by L their meet in (fb(n),E). Recall from
the proof of Proposition 9.4 that L = C ⊕H where every indecomposable summand of C is a direct
summand of M or N and every indecomposable summand of H is a submodule of an indecomposable
summand of C. Also from the proof of Proposition 9.4, we recall that we considered a basic module G
such that add(G) is the minimal cover of add(gen(M)∪ gen(N)). If X is an indecomposable summand
of G, then X is an indecomposable summand of M or of N .

Let us recall that for a cotilting module T we have cogen(T ) = {Y ∈ Λn-mod | Ext1
Λn

(Y, T ) = 0} (see
for example the dual of Theorem 2.5, in Chapter VI of [3]). Since each indecomposable summand of C
is a summand of M or of N , we have Ext1

Λn
(Y,C) = 0 for every Y ∈ cogen(C) = cogen(M)∩ cogen(N).

This applies in particular to Y = L. Hence, we have Ext1
Λn

(L,C) = 0.

To finish the proof we need to show Ext1
Λn

(L,H) = 0. We claim that it’s enough to show

Ext1
Λn

(C,H) = 0, and we postpone its proof. For if Hα is an indecomposable direct summand
of H, then by construction it is a submodule of an indecomposable summand C ′ of C. Hence, we have
a short exact sequence 0→ Hα → C ′ → C ′/Hα → 0, and we apply HomΛn(−, H) to it. This leads to
an exact sequence · · · → Ext1

Λn
(C ′, H)→ Ext1

Λn
(Hα, H)→ 0 since Λn is hereditary. Since we will see

later that Ext1
Λn

(C ′, H) = 0, we get Ext1
Λn

(Hα, H) = 0.

Now we prove by contradiction that Ext1
Λn

(C,H) = 0. Assume there is an indecomposable summand

Mac of C and an indecomposable summand Mbd of H with Ext1
Λn

(Mac,Mbd) 6= 0. By [11, Lemma
8.1] this is equivalent to a < b ≤ c + 1 ≤ d. By construction Mbd surjects onto an indecomposable
summand Mbg of G, so a summand of T = M or N . The minimality condition (P3) imposed on the

summands of H implies that c < g ≤ d. This implies that Ext1
Λn

(Mac,Mbg) 6= 0. If Mac is a direct
summand of T , then we have a contradiction because T is a cotilting module. If Mac is not a direct
summand of T (so Mac and Mbg are summands of different cotilting modules), since Mac ∈ cogen(T ),
there is an indecomposable summand Ma′c of T having Mac as a proper submodule. Hence, a′ < a and
we have Ext1

Λn
(Ma′c,Mbg) 6= 0 which again contradicts the fact that T is a cotilting module.

�
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