
ar
X

iv
:1

40
6.

62
41

v1
  [

m
at

h.
R

T
] 

 2
4 

Ju
n 

20
14

Equivalences between blocks of cohomological Mackey

algebras.

Baptiste Rognerud

October 28, 2018

Abstract

Let G be a finite group and (K,O, k) be a p-modular system “large enough”. Let
R = O or k. There is a bijection between the blocks of the group algebra RG and
the central primitive idempotents (the blocks) of the so-called cohomological Mackey
algebra coµR(G). Here, we prove that a so-called permeable derived equivalence
between two blocks of group algebras implies the existence of a derived equivalence
between the corresponding blocks of cohomological Mackey algebras. In particular,
in the context of Broué’s abelian defect group conjecture, if two blocks are splendidly
derived equivalent, then the corresponding blocks of cohomological Mackey algebras
are derived equivalent.
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1 Introduction.

The notion of Mackey functor, introduced by Green in [7], is a generalization of linear
representations of a finite group G. A Mackey functor, for Green, is the data of a
representation of NG(H) for every subgroup H of G, together with relations between
these representations. A couple of years later, Dress gave a completely different, but
equivalent, definition using the formalism of categories. Twenty years later, Thévenaz
and Webb introduced the Mackey algebra and proved that a Mackey functor is nothing
but a module over this algebra.
A Mackey functor is cohomological if its restriction and induction maps behave like those
of the cohomology of groups. The category consisting of cohomological Mackey functors
is a full subcategory of the category of Mackey functors. This category is equivalent to
the category of modules over the so-called cohomological Mackey algebra. Let R be a
commutative ring. The cohomological Mackey algebras share a lot of properties of group
algebras, for example coµR(G) is R-free of finite rank and this rank is independent of
the ring R. Moreover if R is a field of characteristic which does not divide the order of
G, then coµR(G) is semi-simple. When (K,O, k) is a p-modular system, it is possible
to define a decomposition theory for coµO(G), in particular the Cartan matrix of the
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cohomological Mackey algebra is symmetric. However there are some differences with
group algebras: most of the time the determinant of the Cartan Matrix of coµk(G) is
zero. Moreover the cohomological Mackey algebra is not a symmetric algebra.
It has been noticed for a long time that there are deep links between the representation’s
theory of finite groups and the theory of Mackey functors. Some objects of the first
theory are much more natural when you see them via the Mackey functors’ theory (e.g.
p-permutation modules, Brauer quotient, · · · ). It is quite natural to think that this
theory may be used in order to understand some open questions of the representation’s
theory of finite group. The first attempts was about Alperin weight’s conjecture. Jacques
Thévenaz and Peter Webb proved that this conjecture is equivalent to a conjecture on
Mackey functors. Here the arithmetic of the first conjecture is encoded in two Mackey
functors.
In this paper, we propose to look at Broué’s abelian defect group conjecture and try to
see if the effect of the equivalence conjectured by Broué on the Mackey algebras.
Let R = O or k. In their paper, Thévenaz and Webb proved that there is a bijection
between the blocks of RG and the primitive central idempotents of the so-called p-local
Mackey algebra µ1R(G). In the proof, they remark that there is also a bijection between
the blocks of RG and the blocks of the cohomological Mackey algebra coµR(G). Let us
denote by b 7→ ι(b) this bijection.
Using the Brauer correspondence, we have the following diagram: Let b be a block of
RG with defect group D and b′ be its Brauer correspondent in RNG(D).

b ∈ Z(RG) //

��

ι(b) ∈ Z(coµR(G))

��
b′ ∈ Z(RNG(D)) // ι(b′) ∈ Z(coµR(NG(D))).

If D is abelian, it is conjectured by Broué that the block algebras RGb and RNG(D)b′

are deeply connected. It is a very natural question to ask if the same can happen for the
corresponding Mackey algebras. However, we should notice that, since the cohomological
Mackey algebra is not symmetric, the usual stable category is not triangulated, so we
decided not to look at stable equivalences.
In this article we will focus on Morita equivalences and derived equivalences.

Question 1.1 (Bouc). Let G be a finite group and b be a block of OG with abelian
defect group D. Let b′ be the Brauer correspondant of b in ONG(D). Is there a derived
equivalence Db(coµO(G)ι(b)) ∼= Db(coµO(NG(D))ι(b′)) ?

The main result of this paper is the following theorem which settles the question for
the cohomological Mackey algebra in the case of a splendid equivalence (see [14]):

Theorem 1.2. Let G and H be two finite groups, let b be a block of RG and c be a block
of RH. If RGb and RHc are splendidly derived equivalent, then

Db(coµR(G)ι(b)) ∼= Db(coµR(H)ι(c)).
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In the fist part, we recall Yoshida’s point of view on cohomological Mackey functors.
There are several points of view on the notion of Mackey functors, so there are several
points of view on the notion of cohomological Mackey functors. There are technical
issues about the different versions of Yoshida’s equivalence. A systematic use of the
Burnside functor will clarify the situation. In the second part, we give an explicit iso-
morphism between the center of the group algebra and the center of the cohomological
algebra. With this isomorphism we have a description of the blocks of the cohomological
Mackey algebras. This decomposition is compatible with the block decomposition of the
category of cohomological Mackey functors introduced by Thévenaz and Webb. With
this description, we prove a block version of Yoshida’s theorem.

Using this block version of the Yoshida equivalence, we see that a so-called perme-
able Morita (resp. derived) equivalence between blocks of group algebras can be lifted
to a Morita (resp. derived) equivalence between the corresponding blocks of cohomolog-
ical Mackey algebras. For example splendid Morita equivalences, and splendid derived
equivalences can be lifted. Even if the notion of permeable equivalence is very natural
it seems to the author that it has not been considered yet. We investigate on the very
basic properties of these equivalences. In particular, we show that in general, Morita
equivalences are not permeable and we give an example of permeable Morita equivalence
which is not splendid.

We give two applications of Theorem 1.2. The first one is a new point of view on
Bouc’s Theorem about the determinant of the Cartan matrices of the blocks of the co-
homological Mackey algebras. He proved that this determinant is non zero if and only if
the block is nilpotent with a cyclic defect group. The proof is based on a combinatorial
approach and it may be surprising that the nilpotent blocks appear here. We show that
it is in fact very natural and comes from a structural reason. Finally we give an ex-
tremely naive application of Theorem 1.2 to representation of finite groups. If the Cartan
matrices of two blocks coµR(G)ι(b) and coµR(H)ι(c) are not the same, then RGb and
RHc are not splendidly (or permeable) Morita equivalent. This is a sufficient criterion
for two blocks to not be splendidly Morita equivalent. This is particularly useful since
it is possible to compute these matrices via an algorithm (in GAP4 e.g.). We give a
particularly surprising example of nilpotent blocks with quaternion defect group, which
was discover by using this method.

Remark 1.3. The purpose of two first parts of this paper is to investigate on the blocks of
the cohomological Mackey algebra and to prove a block version of Yoshida’s equivalence.
If this proof involves rather technical discussion about Mackey functors, the result is not
technical at all. Here, we do not assume the reader familiar with any deep result on
Mackey functors. Still, if the reader is more interest by the link between splendid equiv-
alences and equivalences between blocks of cohomological Mackey algebras, he might
take Corollary 3.11 as a definition.

Notations: Let R be a commutative ring with unit. We denote by R-Mod the category
of (all) R-modules and by R-mod the category consisting of the finitely generated R-
modules. We denote by proj(R) the category of finitely generated projective R-modules.
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Let G be a finite group then a permutation projective RG-module is a direct summand of
a permutation module. Let p be a prime number. We denote by (K,O, k) a p-modular
system, i-e O is a complete discrete valuation ring with maximal ideal p, such that
O/p = k is a field of characteristic p and Frac(O) = K is a field of characteristic zero.
If R = O or k, then the permutation projective RG-modules are called p-permutation
modules. We denote by G-set the category of finite G-sets. If H is a subgroup of G then,
we denote by NG(H) its normalizer in G. The quotient NG(H)/H will be, sometimes,
denoted by NG(H). If G is a finite group, the union of all transitive G-sets is denoted
by ΩG.
If A is an abelian category, we denote by C−(A) the category of right bounded complexes
of A, and by Cb(A) the category of right and left bounded complexes of A. We denote
by K−(A) and Kb(A) the corresponding homotopy categories, and finally by D−(A)
and Db(A) the corresponding derived categories. Moreover, if A is an R-algebra, we
denote by Ds(A) the derived category Ds(A-Mod) for s = b or s = −. Finally, if X is
an A-module (resp. a bounded complex of A-modules), we denote by X∗ the R-linear
dual of X.
If F : A → B and G : B → A are two functors, we denote by F ⊣ G the fact that F is a
left adjoint of G.
N.B. We will denote by the same letter the block idempotents for the ring O and the
field k.

2 Yoshida’s point of view on cohomological Mackey func-

tors.

2.1 Basic definitions.

For basic definitions of Mackey functors, we refer the reader to Section 2 of [16]. In this
paper we will use Dress’ point of view and Thévenaz-Webb’s point of view. We will use
Green’s point of view only for the definition of cohomological Mackey functors since it
is much more natural. Here, we just recall the definition of the Mackey algebra. Let R
be a commutative ring with unit.

Definition 2.1. The Mackey algebra µR(G) for G over R is the unital associative algebra
with generators tKH , rKH and cg,H for H 6 K 6 G and g ∈ G, with the following relations:

•
∑

H6G t
H
H = 1µR(G).

• tHH = rHH = ch,H for H 6 G and h ∈ H.

• tLKt
K
H = tLH , rKHr

L
K = rLH for H ⊆ K ⊆ L.

• cg′,gHcg,H = cg′g,H , for H 6 G and g, g′ ∈ G.

• t
gK
gHcg,H = cg,Kt

K
H and r

gK
gH cg,K = cg,Hr

K
H , H 6 K, g ∈ G.

• rHL t
H
K =

∑
h∈[L\H/K] t

L
L∩hK

ch,Lh∩Kr
K
Lh∩K

for L 6 H > K.
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• All the other products of generators are zero.

Definition 2.2. A Mackey functor for G over R is a left µR(G)-module.

Proposition 2.3. The Mackey algebra is a free R-module, of finite rank independent of
R. The set of elements tHKxr

L
Kx, where H and L are subgroups of G, where x ∈ [H\G/L],

and K is a subgroup of H∩ xL up to (H ∩ xL)-conjugacy, is an R-basis of µR(G).

Proof. Section 3 of [16].

Now, let us recall the definition of the Burnside group of a finite G-set.

Definition 2.4 (2.4.1 [3]). If X is a finite G-set, the category of G-sets over X is the
category with objects (Y, φ) where Y is a finite G-set and φ is a morphism from Y to
X. A morphism f from (Y, φ) to (Z,ψ) is a morphism of G-sets f : Y → Z such that
ψ ◦ f = φ.

The Burnside group of X, denoted by B(X), is the Grothendieck group of the cat-
egory of G-sets over X, for relations given by disjoint union. Moreover, we denote by
RB(X) the Burnside group after scalars extension. That is RB(X) = R⊗Z B(X).

Remark 2.5. If X is a G-set, the Burnside group RB(X2) has a ring structure. A G-set
Z over X ×X is the data of a G-set Z and a map (b × a) from Z to X ×X, denoted

by (X
b
← Y

a
→ X). The product of (the isomorphism class of ) (X

α
← Y

β
→ X) and (the

isomorphism class of )(X
γ
← Z

δ
→ X) is given by (the isomorphism class of) the pullback

along β and γ.
P

  ~~
Y

α

~~⑥⑥
⑥⑥
⑥⑥
⑥

β

  ❆
❆❆

❆❆
❆❆

Z
γ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ δ

  ❅
❅❅

❅❅
❅❅

❅

X X X

The identity of this ring is (the isomorphism class) X

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

⑥⑥
⑥⑥
⑥⑥
⑥⑥

⑥⑥
⑥⑥
⑥⑥
⑥⑥

X X
In the rest of the paper, we will denote by the same symbol a G-set over X ×X and its
isomorphism class in RB(X ×X).

Let us recall that the Mackey algebra is isomorphic to a Burnside algebra:

Proposition 2.6 (Proposition 4.5.1 [3]). The Mackey algebra µR(G) is isomorphic to
RB(Ω2

G), where ΩG = ⊔L6GG/L.

Proof. Let H 6 K be two subgroups of G, then we denote by πKH the natural surjection
from G/H to G/K. If g ∈ G, then we denote by γH,g the map from G/ gH to G/H
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defined by γH,g(xgHg
−1) = xgH. The isomorphism β is defined on the generators of

µR(G) by:

β(tKH ) = G/H
πK
H

yyrrr
rr
rr
rr
r

▲▲
▲▲

▲▲
▲▲

▲▲

▲▲
▲▲

▲▲
▲▲

▲▲

ΩG ⊃ G/K G/H ⊂ ΩG

β(rKH ) = G/H
πK
H

&&▲▲
▲▲

▲▲
▲▲

▲▲

rr
rr
rr
rr
rr

rr
rr
rr
rr
rr

ΩG ⊃ G/H G/K ⊂ ΩG

β(cg,H) = G/ gH
γH,g

&&▼▼
▼▼

▼▼
▼▼

▼▼

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣

ΩG ⊃ G/
gH G/H ⊂ ΩG

For basic results about cohomological Mackey functors see Section 16 of [16].
A Mackey functor, in the sense of Green, is cohomological if whenever K 6 H 6 G,
one has tHKr

H
K = |H : K|IdM(H). Let us denote by ComackR(G) the full subcategory

consisting of cohomological Mackey functors. The category ComackR(G) is equivalent
to the category of modules over the so-called cohomological Mackey algebra, denoted
by coµR(G). The cohomological Mackey algebra is the quotient of the Mackey algebra
µR(G) by the ideal generated by the tHKr

H
K − |H : K|tHH for K 6 H 6 G. If x ∈ µR(G),

we denote by x its image in the quotient coµR(G).

2.2 Yoshida’s equivalence.

In this section we recall Yoshida’s theorem for cohomological Mackey functors. This
theorem says that the category of cohomological Mackey functors for a group G over
a ring R, in the sense of Dress, is equivalent to the category of R-linear contravariant
functors from the category of permutation projective modules to the category of R-
modules. There are several points of view on the notion of Mackey functors, so for each
of these points of view, we have a version of the Yoshida’s theorem. In general it is
not easy to move between these several versions. Since we will use in the next section
an explicit version of Yoshida’s theorem for the modules over the cohomological algebra
and for Dress’ point of view, we recall here how the Yoshida’s equivalence is defined. We
believe that a systematic use of the Burnside functor will clarify the link between these
different versions of Yoshida’s Theorem.
The main tool is the so-called linearization Mackey functor:

Lemma 2.7. Let X be a finite G-set. We set Π(X) = RX, that is the permutation
RG-module with basis X. Let f : X → Y be a morphism of G-sets. Then we have a
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morphism of RG-modules Π∗(f) : RY → RX defined as follows:

Π∗(f)
(∑

y∈Y

ryy
)
=

∑

x∈X

rf(x)x.

On the other direction, we have a morphism Π∗(f) : RX → RY defined as follows:

Π∗(f)(
∑

x∈X

rxx) =
∑

x∈X

rxf(x).

The bivariant functor Π is a (non commutative) Mackey functors with values in the
category RG-Mod, i-e we have:

• The bivariant functor Π is additive.

• If

X
a //

b
��

Y

c
��

Z
d // T

is a pullback diagram of G-sets, then

RX

Π∗(b)
��

RY

Π∗(c)
��

Π∗(a)oo

RZ RT
Π∗(d)
oo

is a commutative diagram.

Proof. Clear.

If the context is clear, we will simply denote by f∗ the morphism Π∗(f) and by f∗
the morphism Π∗(f).

Definition 2.8. Let G be a finite group and R be a commutative ring with unit. Then
EndRG(RΩG) is the Yoshida algebra for the group G over the ring R. The product is
defined by f × g = g ◦ f , for f, g ∈ EndRG(RΩG).

Lemma 2.9. Let X and Y be to finite G-sets. Then there is a surjective map pL, called
the linear projection from RB(X × Y ) to HomRG(RX,RY ), defined on a G-set over
X × Y by:

pL(X
b
← Z

a
→ Y ) = a∗ ◦ b

∗ : RX → RZ → RY.

7



Proof. By additivity, it is enough to check the result for two transitive G-sets. Let H
and K be two subgroups of G. Let us suppose that X = G/H and Y = G/K. Let
ZH,K,x be the following G-set over G/H ×G/K:

G/H ∩ xK
πH
H∩ xK

xxrrr
rr
rr
rr
r πK

K∩Hx◦γHx∩K,x

&&▲▲
▲▲

▲▲
▲▲

▲▲

G/H G/K

(1)

where the maps denoted by π are the natural projections and the map denoted by
γHx∩K,x is defined by

γHx∩K,x(gH ∩
xK) = gxHx ∩K.

Then one can check that:

pL(ZH,K,x)(gH) =
∑

h∈[H/H∩Kx]

ghxK.

Moreover, the isomorphism class of this G-set over G/H × G/K depends only on the
double coset HxK. We will still denote by ZH,K,x the image of this G-set in the Burnside
group RB(G/H ×G/K).
The result now follows from Lemma 3.1 of [18], which says that the set of morphisms
pL(ZH,K,x) when x runs through a set of representatives of the double cosets H\G/K is
a R-basis of HomRG(RG/H,RG/K).

This linear projection is compatible with the composition of the morphisms in the
following sense:

Lemma 2.10. Let Ua,b = (X
b
← U

a
→ Y ) be a G-set over X ×Y . Let Vc,d = (Y

d
← V

c
→

Z) be a G-set over Y × Z. Then

pL(X
b
← U

a
→ Y )× pL(Y

d
← V

c
→ Z) = pL(Ua,b × Vc,d),

where the product Ua,b × Vc,d is as in Definition 2.4, that is the pullback along the mor-
phisms a and d.

Proof. This follows from the pullback property of the bivariant functor Π = (Π∗,Π∗).

Theorem 2.11 (Yoshida’s Theorem for cohomological Mackey algebra). Let G be a
finite group and R be a commutative ring with unit. Then, there is an isomorphism of
algebras φ : coµR(G)→ EndRG(RΩG), which makes the following diagram commutative:

µR(G)

p

��

β // RB(ΩG × ΩG)

pL
��

coµR(G)
φ // EndRG(RΩG).

(2)
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Here, the map p : µR(G)→ coµR(G) is the natural projection. The map

β : µR(G)→ RB(ΩG × ΩG),

is the isomorphism of Proposition 2.6, and pL is the map of Lemma 2.9.

Proof. The isomorphism φ : coµR(G)→ EndRG(RΩG) is defined as follows:
let x ∈ µR(G). Then

φ(p(x)) := pL(β(x)).

• The morphism φ is well defined since pL
(
β(tKHr

K
H )

)
= |K : H|pL

(
β(tKK)

)
.

• Since pL and β are two morphisms of algebras, the map φ is a morphism of algebras.

On the other hand, the map ψ : EndRG(RΩG) → coµR(G) is defined as follows. Let
f ∈ EndRG(RΩG), then by Lemma 2.9, there exist a G-set Z(f) over ΩG × ΩG such
that f = pL(Z(f)). Then ψ is defined by:

ψ(f) = p ◦ β−1(Z(f)).

• The map ψ is well defined: if Z is a G-set over ΩG×ΩG such that pL(Z) = 0, then
we can express Z in the usual basis of RB(Ω2

G), that is the basis induced by the
isomorphism β and the usual basis of the Mackey algebra (see Proposition 2.3).
This basis is indexed by H and K two subgroups of G, an element x of the set of
representatives of the double cosets H\G/K and a subgroup L of K ∩ xH (up to
conjugacy class). We denote by I the set indexing this basis, and we denote by
ZH,K,L,x the corresponding basis element. There are elements λH,K,L,x of R such
that Z =

∑
I λH,K,L,xZH,K,L,x. Then pL(Z) = 0 if and only if for every H, K, we

have: ∑

L,x

λH,K,L,xpL(ZH,K,L,x) = 0.

Let us recall the definition of ZH,K,L,x:

G/L
πH
L

{{①①
①①
①①
①① πK

LxγLx,x

##❋
❋❋

❋❋
❋❋

❋

G/H G/K

But,

pL(ZH,K,L,x) =
∑

h∈[H/L]

ghxK

= |H ∩ xK : L|
∑

h∈[H/H∩ xK]

ghxK

= |H ∩ xK : L|pL(ZH,K,H∩ xK,x).

9



Moreover, the set of maps pL(ZH,K,H∩ xK,x) is, by Lemma 2.9, a basis set of
HomRG(RG/H,RG/K), so if pL(Z) = 0, we have, for H and K subgroups of G
and x ∈ [H\G/K]: ∑

L

|K ∩ xH : L|λH,K,L,x = 0.

Since in the cohomological Mackey algebra we have:

p(tHxLxr
K
L ) = |K ∩ xH : L|p(tHH∩ xKxr

K
K∩Hx),

then, if pL(Z) = 0, we have pβ−1(Z) = 0.

• Since β−1 and p are two morphisms of algebras, the map ψ is a morphism of
algebras.

The fact that φ and ψ are two inverse isomorphisms follows from the fact that β is an
isomorphism.

As immediate corollary, we have:

Corollary 2.12. Let G be a finite group and R be a commutative ring with unit. Then,
the set of tHH∩ xKcK∩Hx,xrKK∩Hx, when H and K run through the subgroups of G and x
runs through a set of representatives of double cosets H\G/K is an R-basis of coµR(G).

Proof. This follows from the fact that this set is the image of the R-basis of EndRG(RΩG)
of Lemma 2.9 introduced by Yoshida.

Now, using Dress’ point of view, we have:

Theorem 2.13 (Yoshida’s Theorem for cohomological Mackey functors). Let G be a
finite group and R be a commutative ring with unit. We denote by FunR(G) the category
of R-linear contravariant functors from the category of finitely generated permutation
RG-modules to the category of R-modules. Then

ComackR(G) ∼= FunR(G).

Sketch of proof. This equivalence of categories can be constructed as follows: There is
a Yoneda functor Y from ComackR(G) to FunR(G). More precisely, if M is a cohomo-
logical Mackey functor, then Y (M) is defined by:

Y (M) = HomComackR(G)(−,M) ◦ FP−,

where FP− is the functor from the category of permutation RG-modules to the category
of cohomological Mackey functors sending the RG-module V to the fixed point functor
FPV . Here FPV is the Mackey functor defined by

HomRG(−, V ) ◦ Π.

That is FPV (X) = HomRG(Π(X), V ) for a finite G-set X.
On the other hand, if F ∈ FunR(G), then Γ is defined by: Γ(F ) = F ◦ Π.
Let us recall the units and co-units of the two pairs of adjoint functors Γ ⊣ Y and Y ⊣ Γ.
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• For the adjunction Γ ⊣ Y we have: let F be a functor of FunR(G). The unit
δ of this adjunction is the natural transformation defined by: let V = RX be a
permutation RG-module and u ∈ F (RX). Let Z be a finite G-set. Then,

δF (V )(u)Z : HomRG(RZ,RX)→ F (RZ)

α 7→ F (α)(u).

Let M be a cohomological Mackey functor. The co-unit of this adjunction is the
map ǫM : Γ ◦ Y (M)→M defined by: let X be a finite G-set. Then,

ǫM (X) : HomComackR(G)(FPRX ,M)→M(X)

α 7→ αX(IdRX ).

• For the second adjunction Y ⊣ Γ, we have: let F be a functor of Fun+R(G) and let
M be a cohomological Mackey functor. Then the co-unit ǫ′ of this adjunction is
defined as follows. Let X be a finite G-set. Then:

ǫ′F (X) : HomComackR(G)(FPRX ,Γ(F ))→ F (RX)

φ 7→ φX(IdRX ).

For the unit it is a bit more complicate. Let X and Y be two finite G-sets. Let
m ∈M(X).
Let fY ∈ HomRG(Y,X). Then by Lemma 2.9, there exist a G-set

(Y
b
← U

a
→ X)

over Y ×X, denoted by ZU,a,b, such that

fY = pL(ZU,a,b).

The unit of this adjunction is:

δ′M (X) :M(X)→ HomComackR(G)(FPX ,M)

m 7→
(
fY 7→M∗(b) ◦M

∗(a)(m)
)
.

Since M is a cohomological Mackey functor, if ZV,c,d is another G-set over Y ×X
such that fY = pL(ZV,c,d), then M∗(d)M

∗(c) = M∗(b)M
∗(a) (by the proof of

Theorem 2.11), so the co-unit is well defined.

Let us denote by permR(G) the full subcategory of RG-Mod consisting of the finitely
generated permutation RG-modules.

Lemma 2.14. The idempotent completion of permR(G) is equivalent to the category of
finitely generated permutation projective RG-modules.
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Proof. Let us denote temporarily by A the category of permutation projective RG-
modules. Let perm+

R(G) be the idempotent completion of permR(G).
The objects of this category are the pairs (V, π) where V is a permutation module and
π ∈ HompermR(G)(V, V ) an idempotent. There is a natural functor F from perm+

R(G)
to A defined by F (V, π) = π(V ). This functor is dense and fully faithful.

We denote by perm+
R(G) the category of finitely generated permutation projective

RG-modules and by Fun+R(G) the category consisting of contravariant functors from
perm+

R(G) to R-Mod. By general properties of the idempotent completion ([1] Exemple
8.7.8 page 97.), the categories Fun+R(G) and FunR(G) are equivalent. So we have:

ComackR(G) ∼= Fun+R(G).

We still denote by Y ⊣ Γ the equivalence after idempotent completion.

3 The center of the cohomological Mackey algebra.

Definition 3.1. Let C be a (small) additive category. The center of C, denoted by Z(C),
is the endomorphism ring of the identity functor IdC of the category C.

It is well known that the definition of the center of a category is functorial in respect
with the equivalences of categories. Since we were not able to find a reference for this
fact, we sketch the proof.

Lemma 3.2. Let C and D be two additive categories. Let F ⊣ G be an equivalence
between C and D. Then:

1. The functor F induces a ring homomorphism from Z(C) to Z(D), denoted by f .

2. The functor G induces a ring homomorphism from Z(D) to Z(C), denoted by g.

3. The two homomorphisms f and g are inverse isomorphisms.

Proof. We denote by δ (resp. δ′) the unit of the adjunction G ⊣ F (resp. F ⊣ G) and
by ǫ (resp. ǫ′) the co-unit of the adjunction G ⊣ F (resp. F ⊣ G), that is the following
natural transformations:

δ : Id→ FG

ǫ : GF → Id

δ′ : Id→ GF

ǫ′ : FG→ Id.

Let η be an endomorphism of IdC . Then, f(η) is the natural transformation from the
functor IdD to himself defined as follows: if D is an object of D, then:

f(η)D = ǫ′D ◦ F (ηG(D)) ◦ δD : D → FG(D)→ FG(D)→ D.

12



Let γ be an endomorphism of IdD. Then g(γ) is the natural transformation defined as
follows: if C is an object of C, then:

g(γ)C = ǫC ◦G(γG(C)) ◦ δ
′
C : C → GF (C)→ GF (C)→ C.

Remark 3.3. The definition of the center of an additive category generalized the usual
definition of the center of a ring. More precisely, if R is a ring, then the center of the
category R-Mod is isomorphic to the center of the ring R (see the proof of Proposition
2.2.7 [2]).

Proposition 3.4. Let G be a finite group and R be a commutative ring with unit. Then,
there is a ring isomorphism:

ι : Z(RG)→ Z(coµR(G)).

If z =
∑

x∈G λxx ∈ Z(RG), then

ι(z) =
∑

H6G

1

|H|

∑

x∈G

λxtH1 c1,xr
H
1 .

Here, we denote by x the image of x ∈ µR(G) in the cohomological Mackey algebra.

Proof. The existence of an isomorphism between Z(RG) and Z(coµR(G)) is due to Bouc
(Proposition 12.3.2 of [3]). It uses the point of view of Green Mackey functors. More
precisely it is based on the fact that cohomological Mackey functors are modules over the
Green functor FPR and the fact that the Yoshida algebra is isomorphic to FPR(ΩG×ΩG).

Here, we give an elementary proof of this result, which allows us to specify an iso-
morphism. First we prove that

Z(RG) ∼= Z(EndRG(RΩG)).

Let z ∈ Z(RG). Then the multiplication by z on the RG-module RΩG, denoted by
mz(RΩG) is an element of the center of EndRG(RΩG).
On the other hand, if f ∈ EndRG(RΩG) is a central element, for g ∈ EndRG(RΩG), the
following diagram must commutes:

RΩG
f //

g

��

RΩG

g

��
RΩG

f // RΩG

By taking g = RΩG ։ RG/H → RG/H →֒ RΩG, we see that f =
∑

H6G f̂H,H , where

fH,H ∈ Z(EndRG(RG/H)), and f̂H,H is the composite map:

RΩG ։ RG/H
fH,H
→ RG/H →֒ RΩG.

13



By taking g = (̂πH1 )∗, where π
H
1 is the natural projection G/1 → G/H, for x ∈ RG/1

we have fH,H((πH1 )∗(x)) = (πH1 )∗
(
f1,1(x)

)
. That is, if x =

∑
g∈[G/H] λggH ∈ RG/H,

fH,H(x) =
∑

g∈[G/H]

λgfH,H(gH)

=
∑

g∈[G/H]

λg(π
H
1 )∗(gf1,1(1)).

But f1,1 is a central element of EndRG(RG). So we have gf1,1(1) = f1,1(1)g. And for
x ∈ RG/H we have:

fH,H(x) =
∑

g∈[G/H]

λgf1,1(1)gH = f1,1(1) · x. (3)

If f ∈ Z(EndRG(RΩG)), then z = f1,1(1) ∈ Z(RG). By Formula (3), we have

mf1,1(RΩG) = f,

and it is clear that mz(RΩG)1,1(1) = z.
Since coµR(G) ∼= EndRG(RΩG) the result of the lemma follows. Moreover, if z ∈ Z(RG),
then z is a linear combination of elements of G, that is:

z =
∑

x∈G

λxx,

where λx ∈ R for x ∈ G.
Now, let ZH,H,x be the following G-set over G/H ×G/H

G/1
πH
1
γ1,x

##❋
❋❋

❋❋
❋❋

❋
π1
H

||①①
①①
①①
①①

G/H G/H.

Then, for gH ∈ G/H, we have:

∑

x∈G

λxpL(ZH,H,x)(gH) =
∑

x∈G

λx
∑

h∈H

ghxH

=
∑

h∈H

gh(
∑

x∈G

λxx)H

=
∑

h∈H

g(
∑

x∈G

λxx)hH

= |H|(
∑

x∈G

λxx)g.
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So, we have:

mz(RΩG) =
∑

H6G

1

|H|

∑

x∈G

λxpL(ZH,H,x),

By the isomorphism of Theorem 2.11, this endomorphism of RΩG is sent to:

∑

H6G

1

|H|

∑

x∈G

λxtH1 c1,xr
H
1 .

Remark 3.5. Since there are some denominators, it may not be clear that the formula
of Proposition 3.4 is defined for every ring. However if z =

∑
x∈G λxx, for H 6 G, we

have:

∑

x∈G

λxt
H
1 c1,xr

H
1 =

∑

x∈G

λx|H ∩
xH|tHH∩ xHcH∩Hx,xR

H
H∩Hx .

Here, in order to simplify the notations, for x ∈ µR(G), we still write x the image of x
in coµR(G). Moreover we will denote by x the map cH∩Hx,x. Since the basis element
tHH∩ xHxR

H
H∩Hx depends only on the double coset HxH, we have:

∑

x∈G

λxt
H
1 c1,xr

H
1 =

∑

g∈[H\G/H]

tHH∩ gHgR
H
H∩Hg

( ∑

x∈O(g)

λx|H ∩
xH|

)
,

where O(g) is the orbit of the element g under the action (h, h′).g = hgh′ for h and
h′ ∈ H. So, we have:

∑

x∈G

λxt
H
1 c1,xr

H
1 =

∑

g∈[H\G/H]

tHH∩ gHgR
H
H∩Hg |H ∩Hg|

( ∑

(h,k)∈H×H/H∩ gH

λhgk

)

Now since z is an element of the center, for every h ∈ H, we have hz = zh, so

∑

x∈G

λh−1xx =
∑

x∈G

λxh−1x,

so for every h ∈ H, we have λxh = λhx. Then, we have:

∑

x∈G

λxt
H
1 c1,xr

H
1 =

∑

g∈[H\G/H]

tHH∩ gHgR
H
H∩Hg |H ∩Hg|

|H|

|H ∩Hg|

( ∑

h∈H/H∩ gH

λgh

)

And finally,

∑

H6G

1

|H|

∑

x∈G

λxt
H
1 c1,xr

H
1 =

∑

H6G

∑

g∈[H\G/H]

tHH∩ gHgR
H
H∩Hg

( ∑

h∈H/H∩ gH

λgh

)
.

The formula of Propostion 3.4 suggest the following definition.
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Lemma 3.6. Let G be a finite group. Let ρ : Z(RG) → Z(ComackR(G)) be the map
defined as follows. let M be a cohomological Mackey functor. Let X be a finite G-set and
let z be an element of Z(RG). Let mz(RX) be the multiplication by z on RX. There

is a G-set
(
X

b
← U

a
→ X

)
over X × X denoted by ZU,a,b for some G-set U such that

mz(RX) = pL(ZU,a,b). Then:

ρ(z)M (X) =M∗(b)M
∗(a) :M(X)→M(X).

Proof. Since M is a cohomological Mackey functor this map does not depend on the
choice of ZU,a,b. Now, using the pullback property of M , it is easy to check that ρ is a
ring homomorphism.

Remark 3.7. Since the categories ComackR(G) and coµR(G)-Mod are equivalent, their
center are isomorphic. The reader familiar with the equivalence of categories between
Dress’ definition and Green’s definition (or Thévenaz-Webb’s definition) can see that the
morphism ρ is just the morphism induced by ι and the equivalence of categories between
ComackR(G) and coµR(G)-Mod.

Lemma 3.8. Let G be a finite group. Let η : Z(RG)→ Z(Fun+R(G)) be the map defined
as follows. Let z ∈ Z(RG) and let F ∈ Fun+R(G). Let V be a permutation projective
module. Let us denote by mz the endomorphism of the identity functor of RG-Mod
corresponding to z. Then ηz is the endomorphism of the identity functor of Fun+R(G)
defined by:

ηz(F )V = F (mz(V )) : F (V )→ F (V ).

The map η is an ring homomorphism.

Proof. This is straightforward.

The Yoshida equivalence is compatible with the action of central idempotents:

Theorem 3.9 (Yoshida Equivalence, block version). There is a commutative diagram:

Z(Fun+R(G))

∼=γ

��

Z(coµR(G))
ι // Z(RG)

η

∼=
55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

ρ

∼=

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

Z(ComackR(G)).
⋆

dd

(4)

Here, the map γ is the ring homomorphism induced by the functor Γ as in Lemma 3.2.
The arrow ⋆ is the map induced by the equivalence ComackR(G) and coµR(G)-Mod (see
Remark 3.7).
Let 1 = e+ f ∈ Z(RG) be a decomposition of 1 as a sum of two orthogonal idempotents.
Then

ComackR(G) ∼= ρ(e)
(
ComackR(G)

)
⊕ ρ(f)

(
ComackR(G)

)
.
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and
Fun+R(G) = η(e)

(
Fun+R(G)

)
⊕ η(f)

(
Fun+R(G)

)
.

If b = e or f , then ρ(b)
(
ComackR(G)

)
∼= η(b)

(
Fun+R(G)

)
.

Sketch of proof. Let σ be a natural transformation of the identity functor of Fun+R(G),

let YRG be the Yoneda functor HomRG(−, RG), then zσ :=

(
σYRG

(RG)(IdRG)

)
(1) is

an element of Z(RG). One can check that the map which sent σ to zσ is the inverse
isomorphism of η.
Let M be a cohomological Mackey functor in the sense of Dress. Let z ∈ Z(RG), we
denote by mz the corresponding natural transformation in Z(RG-Mod).
If f ∈ Z(Fun+R(G)), then with the notations of Theorem 3.9, we have:

γ(f)M = ǫM ◦ Γ(fY (M)) ◦ δ
′
M :M → Γ(Y (M))→ Γ(Y (M))→M.

So, if X is a finite G-set, and if m ∈M(X), we have:

γM (ηz)(m) = δ′M (X) ◦ (mz(X)) ◦ IdRX

= δ′M (X)(mz(X))

Now, if mz(X) = pL(ZU,a,b), we have:

γM (ηz)(m) =M∗(b)M
∗(a)(m).

This is equal to ρ(z)M (X).

Let R be O or k, where O is a complete discrete valuation ring and k is the
residue field. Let 1 = b1 + b2 + · · · + bs be a decomposition of 1 in orthogonal sum
of central primitive idempotent of RG. This decomposition induces a decomposition
of ComackR(G) =

⊕s
i=1 ρ(bi)ComackR(G) and Fun+R(G) =

⊕s
i=1 η(bi)Fun

+
R(G). We

have the following straightforward lemma:

Lemma 3.10. Let b be a block idempotent of RG. The category η(b)(Fun+R(b)) is equiv-
alent to the category denoted by Fun+R(b), consisting of contravariant functors from
perm+

R(b) to R-Mod, where perm+
R(b) is the category consisting of the finitely generated

p-permutation RG-modules which are in the block RGb.

For a block b of RG, we denote by ComackR(b) the category ρ(b)ComackR(G).

Corollary 3.11. Let b be a block of RG. The we have:

coµR(G)ι(b)-Mod ∼= ComackR(b) ∼= Fun+R(b).

Corollary 3.12. Let P be a projective indecomposable cohomological Mackey functor.
Then P belongs to the block ComackR(b) if and only if P (G/1) is an indecomposable
p-permutation module in the block RGb.
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Proof. Let P be a cohomological Mackey functor. Let us recall that, with Dress’ notation
P (G/1) is an RG-module for the following action. Let m ∈ P (G/1) and x ∈ G. Then
x.m = M∗(γ1,x)(m). The result follows from the fact that (ρ(b) · P )(G/1) = b · P (G/1)
and from Theorem 16.5 [16] which says that P (G/1) is a p-permutation module. In the
other way, if V is a p-permutation RGb-module, then FPV is a projective cohomological
Mackey functor in ComackR(b).

In the proof of Theorem 17.1 of [16], Thévenaz and Webb proved that the block of
the category of the cohomological Mackey functors are in bijection with the block of
RG. They defined the blocks of the category ComackR(G) using non-split short exact
sequences between simple cohomological Mackey functors. Thanks to Corollary 3.12
and Proposition 16.10 of [16]

(
in order to understand the projective cover of the simple

cohomological Mackey functors
)
, their block decomposition coincide with ours.

4 Permeable Morita equivalences.

Let R = O or k as above. With the version of Yoshida’s equivalence of Corollary 3.11 it
is not difficult to lift an equivalence between blocks of group algebras to an equivalence
of the corresponding blocks of the cohomological Mackey algebras.

Definition 4.1. Let G and H be two finite groups, let b be a block of RG, let c be a
block of RH. A permable RHc-RGb-bimodule is a bimodule X such that:

P : X ⊗RGb − is a functor from perm+
R(b) to perm

+
R(c).

Lemma 4.2. Let G and H be two finite groups, let b be a block of RG, let c be a block
of RH. Let X be a permeable RHc-RGb-bimodule. Then X induces a functor, denoted
by ΦX : ComackR(c) → ComackR(b) and defined in the proof. Moreover this functor
sends an arbitrary fixed point functor to a fixed point functor.

Proof. We use the equivalence ComackR(b) ∼= Fun+R(b) of Corollary 3.11. One can
define a functor LX from Fun+R(c) to Fun+R(b) by LX(F )(V ) := F (X ⊗RGb V ), for
F ∈ Fun+R(c) and V ∈ perm

+
R(b). We denote by ΦX the composite functor:

Fun+R(c)
LX // Fun+R(b)

Γ
��

ComackR(c)

Y

OO

ΦX // ComackR(b)
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so if V is a RHc-module, and Z is a finite G-set, then

ΦX(FPV )(Z) = Γ(LX(Y (FPV )))(Z)

= Y (FPV )(X ⊗RGb RZ)
∼= HomComackR(H)(FPX⊗RGbRZ , FPV )

∼= HomRHc(X ⊗RGb RZ, V )
∼= HomRGb(RZ,HomRHc(X,V ))
∼= FPHomRHc(X,V )(Z).

This isomorphism is functorial in Z, so ΦX(FPV ) = FPHomRHc(X,V ).

Remark 4.3. This Lemma generalizes the construction defined by Bouc for permutation
bimodules (see Section 3.12 [5]).

Definition 4.4. Let G and H be two finite groups, let b be a block of RG and c be a
block of RH. A permeable (Morita) equivalence is an RHc-RGb-bimodule X such that:

1. X ⊗RGb − : RGb-Mod→ RHc-Mod is an equivalence of categories.

2. X and X∗ := HomR(X,R) are two permeable bimodules.

Proposition 4.5. Let G and H be two finite groups, let b be a block of RG and c
be a block of RH. Let X be a permeable equivalence between RGb and RHc. Then
ComackR(b) ∼= ComackR(c).

Proof. By Lemma 4.2, we have a functor LX : Fun+R(c)→ Fun+R(b), and a functor
LX∗ : Fun+R(b) → Fun+R(c). It is clear that these two functors are two quasi-inverse
equivalences between Fun+R(c) and Fun

+
R(b).

Remark 4.6. One may ask if there exist permeable Morita equivalences. Let G be a
finite group, and P be a Sylow p-subgroup of G and H be its normalizer. Let b be
a block of kG and with defect group P and let c be the Brauer correspondent of this
block in NG(P ). If kGb-Mod is Morita equivalent to kNG(P )c-Mod by a p-permutation
bimodule (that is a ‘splendid’ Morita equivalence) then the two conditions are satisfied.

Remark 4.7. There exist RG-RH-bimodules which are not p-permutation bimodules but
which are permeable. The most radical example is for G = H = C2 and R = F2. Then,
all the RG-modules are permutation modules. So every R[C2 × C2]-module induces a
functor between permR(H) and permR(G), and there are infinitely many isomorphism
classes of R[C2×C2]-modules and only 5 isomorphism classes of permutation R[C2×C2]-
modules. Moreover, there are examples of Morita equivalences between blocks of group
algebras which are not ‘splendid’ but which are permeable. The easiest example is
probably for the self equivalences of kC3 when k = F3. Indeed there are two permutations
bimodules inducing a self-Morita equivalence of kC3 and 6 isomorphism classes of self-
Morita equivalence of kC3. This follows from elementary results on the Picard group of
a basic k-algebra and easy computations. Now all of these 6 equivalences are permeable.
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5 Derived equivalences between blocks of cohomological

Mackey algebras.

Let G and H be two finite groups. Let R = O or k. Let b be a block of RG and c be a
block of RH. In this section, we prove that one can lift a derived equivalence between
blocks of group algebras into a derived equivalence between the corresponding blocks
of cohomological algebras as soon as this derived equivalence respects p-permutation
modules. Since this part is rather technical, we fix the notations.

Notations 5.1. • Let X be an RHc-RGb-bimodule, then we denote by tX the func-
tor from RGb-Mod to RHc-Mod induced by the tensor product with X.
If f : X → Y is a morphism of RGb-RHc-bimodules, we denote by f̂ the natural
transformation between the functors tX and tY .

• Let X be an RHc-RGb-bimodule such that tX induces a functor from perm+
R(b)

to perm+
R(c). Let F be a functor of Fun+R(c), we can precompose the functor F

by the functor tX , this gives a functor F ◦ tX of the category Fun+R(b). We will

denote by FX̃ this functor.

• Let (F•, η•) be a complex of functors of Fun+R(c). We choose to label the complex
by decreasing order, that is ηi is a natural transformation from the functor Fi to
the functor Fi−1.

• If (X•, d•) is a complex (written in decreasing order) of permeable RHc-RGb-
bimodules, then ((tX)•, d̂•) is a complex of functors from RGb-Mod to RHc-Mod.

Let (F•, η•) be such a complex of functors and let (X•, d•) be a complex of permeable
RHc-RGb-bimodules. Then we can precompose the complex F• by the complex of
functors (tX)•. This gives a double complex:

...
...

· · · // FiX̃j
ηiX̃j //

OO

Fi−1X̃j
//

OO

· · ·

· · · // FiX̃j−1
ηiX̃j−1 //

(−1)iFid̃j

OO

Fi−1X̃j−1

(−1)i−1Fi−1d̃j

OO

// · · ·

...

OO

...

OO

(5)

Here, we use the following notations:

1. Let d : X → Y be a map between two RHc-RGb-bimodules and let F be a functor
of the category Fun+R(c).Then F d̃ is the natural transformation from FỸ to FX̃
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defined by: if M is a p-permutation RGb-module, then

F d̃(M) = F (d⊗ IdM ) : F (Y ⊗RGb M)→ F (X ⊗RGb M).

2. Let η be a natural transformation from F to C, where F and C belong to Fun+R(c).
Let X be a permeable RGb-RHc-bimodule. Then ηX̃ is the natural transformation
from FX̃ to CX̃ defined by: let M be a p-permutation RGb-module. Then

ηX̃(M) = η(X ⊗RGb M) : F (X ⊗RGb M)→ C(X ⊗RGb M).

Let (F•, η•) be a complex of functors which belong to Fun+R(c). Let (X•, d•) be a complex
of permeable RHc-RGb-bimodules. Then we denote by (LX•

(F•), δ•) the total complex
of the double complex (5), that is:

(
LX•

(F•)
)
k
=

⊕

i−j=k

FiX̃j ,

and the differential is given by the family of natural transformations δk defined by

δk =
⊕

i−j=k

(−1)iFid̃j+1 + ηiX̃j .

More explicitly, let M be a p-permutation RGb-module.
Let w = (wi,j)i−j=k ∈

⊕
i−j=k Fi(Xj ⊗RGb M). Then δk(M) =

⊕
i−j=k δi,j(M), where:

δi,j(M)(wi,j) = (−1)iFi(dj+1 ⊗ IdM )(wi,j) + ηi(Xj ⊗RGb M)(wi,j).

Here, we use the notation wi,j which is the projection of w on the composant Fi(Xj⊗RGb

M).

Lemma 5.2. With the previous notations,

1. (LX•
(F•), δ•) is a complex.

2. F• 7→ LX•(F•) is an additive functor from the category Ch−(Fun+R(c)) to the
category Ch−(Fun+R(b)).

3. The functor F• 7→ LX•(F•) induces a triangulated functor between the correspond-
ing homotopy categories.

Proof. 1. Let k be an integer. We have to check that δk−1 ◦ δk = 0. Let M be a
p-permutation RGb-module and let w = (wi,j)i−j=k ∈

(
LX•

(F•)
)
k
. It is enough to

see that the
(
δk−1(M) ◦ δk(M)

)
s,t

= 0, where this is the projection of δk−1(M) ◦

δk(M) on the composant Fs(Xt ⊗M) for s− t = k − 2.
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Then, we have for s− t = k − 2:

(δk−1(M) ◦ δk(M)(w))s,t = ηs+1(Xt ⊗RGb M)
(
(δk(w))s+1,t

)

+ (−1)sFs(dt ⊗ IdM )
(
(δk(w))s,t−1

)

= ηs+1(Xt ⊗RGb M)
(
ηs+2(Xt ⊗RGb M)(ws+2,t)

)

+ (−1)s+1ηs+1(Xt ⊗RGb M)
(
Fs+1(dt ⊗ IdM )(ws+1,t−1)

)

+ (−1)sFs(dt ⊗ IdM )
(
ηs+1(Xt−1 ⊗RGb M)(ws+1,t−1)

)

+ Fs(dt ⊗ IdM )
(
Fs(dt−1 ⊗ IdM )(ws,t−2)

)
,

but η is a differential for the complex F• and d• is a differential for the complex
X•. So, we have:

(δk−1(M) ◦ δk(M)(w))s,t = (−1)sFs(dt ⊗ IdM )
(
ηs+1(Xt−1 ⊗RGb M)(ws+1,t−1)

)

+ (−1)s+1ηs+1(Xt ⊗RGb M)
(
Fs+1(dt ⊗ IdM )(ws+1,t−1)

)
.

Since ηs+1 is a natural transformation from Fs+1 to Fs, the following diagram is
commutative:

Fs+1(Xt ⊗RGb M)
ηs+1(Xt⊗RGbM) // Fs(Xt ⊗RGb M)

Fs+1(Xt−1 ⊗RGb M)

Fs+1(dt⊗IdM )

OO

ηs+1(Xt−1⊗RGbM) // Fs(Xt−1 ⊗RGb M)

Fs(dt⊗IdM )

OO

This proves that δ• is actually a differential.

2. Let (F•, η•) and (C•, γ•) be two complexes of functors which belong to Fun+R(c).
Let φ = (φ•) be a morphism from (F•, η•) to (C•, γ•). One may define a natural

transformation Φk from
(
LX•

(F•)
)
k
to

(
LX•

(C•)
)
by: Φk :=

⊕
i−j φiX̃j , where

φiX̃j is the natural transformation from FiX̃j to CiX̃j defined as follows: if M is
a p-permutation RGb-module, then

φiX̃j(M) = φ(Xj ⊗RGb M) : Fi(Xj ⊗RGb M)→ Ci(Xj ⊗RGb M).

We have to check that (Φk)k∈Z is a morphism of complexes, i-e, we have to check
that Φ commutes with the differentials.
We denote, here, by δ• the differential of LX•

(F•) and ∆• the differential of
LX•

(C•). Let w ∈
⊕

i−j=k Fi(Xj ⊗RGb M). Then for s− t = k − 1, we have:

(
(Φk−1(M) ◦ δk(M))(w)

)
s,t

= φs(Xt ⊗RGb M)
(
δk(w)s,t

)

= φs(Xt ⊗RGb M)
(
ηs+1(Xt ⊗M)(ws+1,t)

)

+ (−1)sφs(Xt ⊗RGb M)
(
Fs(dt ⊗ IdM )(ws,t−1)

)
.

On the other hand, we have:
(
∆k(M) ◦Φk(M)(w)

)
s,t

= γs+1(Xt ⊗M)
(
φs+1(Xt ⊗RGb M)(ws+1,t)

)

+ (−1)sCs(ds ⊗ IdM )
(
φs(Xt−1 ⊗RGb M)(ws,t−1)

)
.
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So, the fact that Φ• is a morphism of complexes follows from the commutativity
of these two diagrams:

Fs+1(Xt ⊗RGb M)
ηs+1(Xt⊗RGbM) //

φs+1(Xt⊗RGbM)
��

Fs(Xt ⊗RGb M)

φs(Xt⊗RGbM)
��

Cs+1(Xt ⊗RGb M)
γs+1(Xt⊗RGbM) // Cs(Xt ⊗RGb M)

Here, the commutativity follows from the fact that φ• is a morphism of complexes.

Fs(Xt−1 ⊗RGb M)
Fs(dt⊗IdM ) //

φs(Xt−1⊗RGbM)
��

Fs(Xt ⊗RGb M)

φs(Xt⊗RGbM)
��

Cs(Xt−1 ⊗RGb M)
Cs(dt⊗IdM ) // Cs(Xt ⊗RGb M)

Here, the commutativity comes from the fact that φs is a natural transformation
from Fs to Cs. It is now clear that LX•

is an additive functor, and we denote by
LX•

(φ) the family of natural transformations Φ•.

3. Since the functor LX is additive, it induces a functor between the correspond-
ing homotopy categories. It remains to see that the functor LX is triangulated.
Let (F•, η•) and (C•, γ•) be two complexes of functors which belong to Fun+R(c).
Let f be a morphism between these two complexes. We need to check that
LX(cone(f)) ∼= cone(LX(f)). We use the following notations:

• The differential of cone(f) is denoted by β.

• The differential of LX•
(F•) is denoted by δ.

• The differential of LX•
(C•) is denoted by ∆.

• The differential of LX•
(cone(f)) is denoted by ∂.

• The differential of cone(LX(f)) is denoted by D.

Recall that ([17] Section 1.5) the mapping cone of f is defined as follow:

cone(f)k = Fk−1 ⊕ Ck,

and the differential is the natural transformation from cone(f)k to cone(f)k−1

defined by the following diagram:

Fk−1
−ηk−1 //

⊕
−fk−1

''PP
PP

PP
PP

PP
PP

Fk−2

⊕

Ck
γk // Ck−1
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So, the differential ∂k from cone(LX•
(f))k to cone(LX•

(f))k−1 is the natural trans-
formation defined by −δk−1 − LX•

(f)k−1 +∆k. On the other hand,

LX•
(cone(f))k =

⊕

i−j=k

cone(f)iX̃j

=
⊕

i−j=k

Fi−1X̃j

⊕

i−j=k

CiX̃j

= LX•
(F )k−1 ⊕ LX•

(C)k.

Let M be a p-permutation RGb-module. Let w ∈ cone
(
LX•

(f)(M)
)
k
, in or-

der to compute the differential of this complex, we denote by wF the projec-
tion of the element w on

⊕
i−j=k−1 Fi(Xj ⊗RGb M), and wC the projection on⊕

i−j=k Ci(Xj ⊗RGbM). Let s and t be integers such that s− t = k− 1. Then the
projection of Dk(w) on cone(f)s,t is:

(
Dk(w)

)
s,t

= βs+1X̃t(ws+1,t) + (−1)scone(f)sd̃t(ws,t−1)

= (−1)sFs−1d̃t((w
F )s−1,t−1)− ηsX̃t((w

F )s,t)

+ γs+1X̃t((w
C)s+1,t) + (−1)sCs(w

C
s,t−1)− fsX̃t((w

F )s,t)

=
(
− δk−1(w

F )
)
s−1,t

+
(
∆k(w

C)
)
s,t
−

(
LX•

(f)(wF )
)
s,t

= ∂k(w)s,t.

Recall, that the exact triangles in the homotopy category are given by the triangles
which are isomorphic to:

F
f
→ C → cone(f)→ F [1].

Here the map from C to cone(f) (denoted by i) is the injection of C in cone(f)
and the map (denoted by p) from cone(f) to F [1] is given by the projection of
Fi−1 ⊂ cone(f)i on F [1]i (see [17] 1.52).
It is clear that LX•

(F [1]) = (LX•
(F ))[1], moreover it is clear that LX(i) is the

injection of LX•
(C) in cone(LX•

(f)) = LX•
(cone(f)) and LX•

(p) is the projection
of cone(LX•

(f)) = LX•
(cone(f)) on LX•

(F )[1]. So

LX•
(F )

LX•
(f)
→ LX•

(C)→ LX•
(cone(f))→ (LX•

(F ))[1],

is an exact triangle.

Lemma 5.3. Let X• and Y• be two bounded complexes of permeable RHc-RGb-bimodules.
Then:

1. The two functors LX•⊕Y•
and LX•

⊕LY•
are isomorphic as functors from K−(Fun+R(c))

to K−(Fun+R(b)).
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2. If the complex X• is contractible, then the functor LX•
is contractible in the follow-

ing sense: the complex LX•
(F•) is (naturally in F ) contractible for every complex

F• of functors which belong to Fun+R(c).

Proof. 1. Let (F•, η•) and (C•, γ•) be two complexes of functors which belong to
Fun+R(c). Let f : F• → C• be a morphism between theses two complexes. It is
clear that LX•⊕Y•

(F•) ∼= LX•
(F•) ⊕ LY•

(F•). Let M be a p-permutation RGb-
module, let j be an integer. We denote by ζM,j the composite:

Xj ⊗RGb M → Xj ⊗RGb M ⊕ Yj ⊗RGb M ∼= (Xj ⊕ Yj)⊗RGb M.

The functoriality of the isomorphism follows from the fact that, for i, j ∈ Z, the
following diagrams (and the corresponding diagrams for the terms of Y•) are com-
mutative:

Fi((Xj ⊕ Yj)⊗RGb M)
Fi(ζM,j) //

fi((Xj⊕Yj)⊗RGbM)

��

Fi(Xj ⊗M)

fi(Xj⊗M)

��
Ci((Xj ⊕ Yj)⊗RGb M)

Ci(ζM,j) // Ci(Xj ⊗M)

2. Let X• be a contractible two-sided bounded complex. That is, there is a family
of maps s = (sj)j∈Z, where sj is a map from Xj to Xj+1, such that we have for
j ∈ Z:

IdXj
= sj−1dj + dj+1sj.

Let (F•, η•) be a complex of functors which belong to Fun+R(c). Then one can de-
fined a family (F s̃) of natural transformations (F s̃)k from LX•

(F•)k to LX•
(F•)k+1

as:
(F s̃)k =

⊕

i−j=k

(−1)iFis̃j−1,

where Fis̃j−1 is the natural transformation defined as: let M be a p-permutation
RGb-module. Then

Fis̃j−1(M) = Fi(sj−1 ⊗RGb IdM ) : Fi(Xj ⊗RGb M)→ Fi(Xj−1 ⊗RGb M).

Now, we have to check that IdLX•
(F•) = δk+1F s̃k + F s̃k−1δk. Let i and j be two

integers such that i− j = k. If w ∈ (LX•
(F•)(M))k , then we have:

(
δk+1F s̃k(w)

)
i,j

= ηi+1X̃j

(
(F s̃k(w))i+1,j

)
+ (−1)iFid̃j

(
(F s̃k(w))i,j−1

)

= (−1)i+1ηi+1X̃jFi+1s̃j(wi+1,j+1)

+ Fi(sj−1dj ⊗RGb IdM )(wi,j).

On the other hand, we have:
(
F s̃k−1(δk(w))

)
i,j

= (−1)iFi(sj ⊗RGb IdM )
(
(δk(w))i,j+1

)

= (−1)iFi(sj ⊗RGb IdM )ηi+1X̃j+1(wi+1,j+1)

+ Fi(dj+1sj ⊗RGb IdM )(wi,j).
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The result follows from the commutativity of the next diagram:

Fi+1(Xj+1 ⊗RGb M)
Fi+1(sj⊗RGbIdM )

//

ηi+1(Xj+1⊗RGbM)

��

Fi+1(Xj ⊗RGb M)

ηi+1(Xj⊗RGbM)

��
Fi(Xj+1 ⊗RGb M)

Fi(sj⊗RGbIdM )
// Fi(Xj ⊗RGb M)

Moreover, this construction is functorial in F , so the functor LX•
is isomorphic to

the the zero functor from K−(Fun+R(c)) to K
−(Fun+R(b)) when X• is contractible.

Lemma 5.4. Let G, H and K be finite groups. Let b be a block of RG, let c be a block of
RH and let d be a block of RK. Let (X•, d

X
• ) be a bounded complex of permeable RHb-

RGc-bimodules. Let (Y•, d
Y
• ) be a bounded complex of permeable RKd-RHc-bimodules.

Then, we have an isomorphism of functors:

LX ◦ LY
∼= LY⊗RHcX

Proof. We use the following convention for the tensor product of complexes:

Y• ⊗RHc X• =
⊕

i+j=k

Yi ⊗RHc Xj ,

the differential, denoted by D• is:

Dk =
⊕

i+j=k

(
(−1)iIdYi

⊗ dXj + dYi ⊗ IdXj

)
.

Let M be a p-permutation RGb-module and let k be an integer. Let F• be a complex
of functors which belong to Fun+R(d). Since the functors Fi are additive functors, and
since X• and Y• are bounded complex, it is clear that:

LX•
◦ LY•

(F )(M)k ∼= LY•⊗RHcX•
(F )(M)k .

Indeed:

LX•
◦ LY•

(F )(M)k =
⊕

n∈Z

(LY (F ))n(Xn−k ⊗RGb M)

=
⊕

n∈Z

⊕

m∈Z

(Fm(Ym−n ⊗RHc Xn−k ⊗RGb M))

=
⊕

m∈Z

Fm

(⊕

n∈Z

Ym−n ⊗RHc Xn−k ⊗RGb M
)

=
⊕

m∈Z

Fm

(
(Y• ⊗RHc X•)m−k ⊗RGb M

)

= LY•⊗RHcX•
(F )(M)k .
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If we denote by ∆ the differential of LX•
◦LY•

(F ), by ∂ the differential of LY•⊗RHcX•
(F )

and by δ the differential of LY•
(F ), we have:

∆k(M) =
⊕

n∈Z

δn(Xn−k ⊗RGb M) + (−1)nLY (F )n(d
X
n−k+1 ⊗RGb IdM )

=
⊕

n∈Z

( ⊕

m∈Z

ηm(Ym−n ⊗RHc Xn−k ⊗RGb M)

)

+ (−1)mFm(dYm−n+1 ⊗RHc IdXn−k
⊗RGb IdM )

+ (−1)m(−1)n−mFm(IdYm−n
⊗RHc d

X
n−k+1 ⊗RGb IdM

)

=
⊕

m∈Z

(
ηm

(
(Y• ⊗RHc X•)m−k ⊗RGb M

)

+ (−1)mFm

( ⊕

m∈Z

dYm−n ⊗RHc IdXm−k+1
⊗RGb IdM

)

= (−1)mFm

( ⊕

m∈Z

(−1)m−nIdYm−n
⊗RHc d

X
n−k+1 ⊗RGb IdM

))

=
⊕

m∈Z

(
ηm

(
(Y• ⊗RHc X•)m−k ⊗RGb M

)
+ (−1)mFm

(
Dm−k+1 ⊗RGb IdM

))

= ∂k(M).

Since the isomorphism LX ◦ LY (F ) ∼= LY⊗RHcX(F ) basically involves only some iso-
morphisms of the form F (V ⊕W ) ∼= F (V )⊕ F (W ), for some RKd-modules, which are
functorial in F , the isomorphism LX ◦ LY (F ) ∼= LY⊗RHcX(F ) is functorial in F .

Definition 5.5. Let G and H be two finite groups. Let b be a block of RG and c be a
block of RH. Then a permeable derived equivalence between RGb and RHc is:

1. A bounded complex X of RGb-RHc-bimodules, which are projective as RGb-
module and as RHc-module, such that:

• X ⊗RHc X
∗ ∼= RGb in the homotopy category of RGb-bimodules. That is

there exist a contractile complex C of (permeable) RGb-bimodules such that

X ⊗RHc X
∗ = RGb⊕ C.

• X∗ ⊗RGb X ∼= RHc in the homotopy category of RHc-bimodules. That is
there exist a contractile complex C ′ of (permeable) RHc-bimodule such that

X∗ ⊗RGb X = RHc⊕ C ′.

2. All the terms of the complexes X and X∗ are permeable bimodules.

The complexes X and X∗ are called permeable (two-sided) tilting complexes.
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Remark 5.6. It is clear that a splendid derived equivalence (see [14]) is a permeable
equivalence since all the terms of the tilting complex are p-permutation bimodules.

Lemma 5.7. Let X• be a bounded complex which induces a permeable derived equivalence
between RHc and RGb. Then the functor LX•

induces a functor from Kb(proj(Fun+R(c)))
to Kb(proj(Fun+R(b))).

Proof. The finitely generated projective objects of the category Fun+R(c) are the Yoneda
functors, that is YV = HomRHc(−, V ), where V is a finitely generated p-permutation
RHc-module. Let (F•, η•) be a right bounded complex of Yoneda functors. That is
the non-zero terms are of the form Fi = HomRHc(−, Vi) for a finitely generated p-
permutation RHc-module Vi. Let M be a p-permutation RGb-module. Then, we have:

(
LX•

(F•)
)
k
(M) =

⊕

i−j=k

Fi(Xj ⊗M)

=
⊕

i−j=k

HomRH(Xj ⊗RG M,Vi)

∼=
⊕

i−j=k

HomRG(M,HomRH(Xj , Vi)).

Since Xj is projective as RHc-module, we have, by Corollary 9.4.2 [8], an isomorphism
of functors

HomRHc(Xj ,−) ∼= HomR(Xj , R)⊗RHc −.

Now, HomR(Xj , R) is a permeable bimodule. Then the RGb-module

HomRH(Xj , Vi) ∼= HomR(Xj , R)⊗RHc Vj

is a p-permutation RGb-module.
Since the isomorphismHomRH(Xj⊗RGM,Vi) ∼= HomRG(M,HomRH (Xj , Vi)) is natural
in M , we have an isomorphism of functors

(
LX•

(F•)
)
k
∼=

⊕

i−j=k

HomRG(−,HomRH (Xj , Vi)),

So LX•
(F•)k is a (finite) direct sum of finitely generated projective functors.

Theorem 5.8. Let G and H be two finites groups, let b be a block of RG and c be a
block of RH. If the block algebras RGb and RHc are permeable derived equivalent, then
the categories ComackR(b) and ComackR(c) are derived equivalent.

Proof. It is enough to check that Fun+R(b) and Fun
+
R(c) are derived equivalent. Let X

be a permeable tilting complex for RHc and RGb. There exist a contractile complex of
permeable RHc-bimodules such that:

X ⊗RGb X
∗ = RHc⊕ C,
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Then as functors between the homotopy category K−(proj(Fun+R(c))), we have:

LX∗ ◦ LX
∼= LX⊗RGbX∗

∼= LRHc⊕C

∼= LRHc ⊕ LC

∼= LRHc.

Now, it is clear that LRHc is the identity of K−(proj(Fun+R(c))). Conversely, we have:

LX ◦ LX∗
∼= LRGb.

So the homotopy categories K−(proj(Fun+R(c))) andK
−(proj(Fun+R(b))) are equivalent

(as triangulated categories). By Theorem 6.4 [13], the categories Db(ComackR(c)) and
Db(ComackR(b)) are equivalent.

6 Applications.

6.1 Nilpotent blocks.

Although the determinant of the Cartan Matrix of a block b of kG is a power of p, for the
corresponding blocks of the Mackey algebra, it is much more complicated (see [6]). By
the results of [16] this determinant is non zero. However the determinant of the Cartan
matrix of a block of a cohomological Mackey algebra can be zero. Bouc in [6] proved that
the Cartan matrix of coµk(b) is non singular if and only if the block b is a nilpotent block
with cyclic defect group. This proof is based on a combinatorial approach, and it may
be surprising that nilpotent blocks and cyclic defect groups appear in that situation.
We will apply Theorem 5.8 to this situation, and show that it is in fact very natural.
Let B be a block of kG, for an arbitrary finite group G. If B is a nilpotent block with
defect group P , then by Puig’s Theorem (see [12] or [9]), there is an isomorphism of
k-algebras,

B ∼=Mat(m,kP ),

for some m ∈ N. For the cohomological Mackey algebras, we can lift an equivalence
between blocks of group algebras, but for this we need that the equivalence sends p-
permutation modules to p-permutation modules. Unfortunately it is not always the
case. If the reader is not convinced by this fact he might look at Section 6.2 of this
paper, or at Section 7.4 of [14].
By the results of sections 7.3 and 7.4 of [14] and results of [4] and [11], if p > 2, or P is
abelian (N.B. in fact one can ask weaker condition in case of p = 2), we can replace the
bimodule which gives the Morita equivalence between B and kP by a splendid tilting
complex of B-kP -bimodules.

Corollary 6.1. Let B = kGb be a nilpotent block with defect p-group P . If p = 2 assume
that P is abelian. Then

Db(coµk(G)ι(b)-Mod) ∼= Db(coµk(P )-Mod) as triangulated categories.
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Since the determinant of Cartan matrices is invariant under derived equivalences, the
determinant of the Cartan matrix coµk(G)ι(b) is non zero if and only if the determinant
of the Cartan matrix coµk(P ) is non zero. However it is well known that this is the case
if and only if the group P is cyclic: indeed the projective indecomposable cohomological
Mackey functors for a p-group P are FPIndP

Q
(k) for Q 6 P . By adjunction, the coefficient

of the Cartan matrix indexed by two projective FPIndP
Q
(k) and FPIndP

Q′
(k) is:

CQ,Q′ = dimkHomkP (Ind
P
Q(k), Ind

P
Q′(k))

= dimkHomkP (k,Res
P
QInd

P
Q′k)

= Card([Q\P/Q′]).

By the main result of [15], this matrix is non degenerate if and only if P is cyclic.

6.2 Application to representation’s theory of finite groups.

As immediate, but useful corollary of Proposition 4.5, we have:

Corollary 6.2. Let G and H be two finite groups. Let b be a block of RG and c be a block
of RH. If the cohomological Mackey algebras coµR(G)ι(b) and coµR(H)ι(c) do not have
the same Cartan matrix, then RGb and RHc are not ‘splendidly’ Morita equivalent.

This is useful since there are algorithm which compute these Cartan matrices. By
testing this algorithm, the author found an astonishing (at least for him) example of
nilpotent blocks with quaternion defect group, where the comportement of the simple
modules is rather sophisticated.
Let k be an algebraically closed field of characteristic 2. Let p be an odd prime. Let Xp3

be an extra-special group of exponent p, that is:

Xp3 = <a, b, z ; ap = bp = zp = 1, [a, b] = z, [a, z] = [b, z] = 1 >.

Let Q8 be a quaternion group of order 8, that is:

Q8 := <i, j ; i4 = 1, i2 = j2, jij−1 = i−1>

Then, one can represent Q8 as a subgroup of GL2(Fp) by sending i to the matrix(
0 −1
1 0

)
and j to the matrix

(
x y
y −x

)
, where x2 + y2 = −1.

A matrix

(
α β
γ δ

)
induces an automorphism of Xp3 defined by:

• a 7→ aαbβ ,

• b 7→ aγbδ,

• z 7→ zαδ−βγ .
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Let us consider G = Xp3 ⋊Q8, where Q8 acts on Xp3 via its representation in GL2(Fp).

Lemma 6.3. There are p2−1
8 + p blocks of kG.

• p2−1
8 blocks with defect 0.

• p nilpotent blocks with Q8 as defect group.

Sketch of proof. Since Xp3 is a 2′-group, the blocks of this group are in bijection with the
isomorphism classes of simple modules. There are p2− 1 representations which factorise

through Cp × Cp = Xp3/D(Xp3). By usual clifford theory there are p2−1
8 blocks of kG

covering all these blocks. Now there are p−1 blocks of kXp3 corresponding to the simple
modules of dimension p, induced by a character of kCp. Let ζ be a p-root of 1 in k, then
the simple module Vζ of dimension p is:

Vζ = Ind
X

p3

<a,z>Inf
<a,z>
<z> kζ .

The inertie group of Vζ is G, so this gives a simple module of kG with Q8 as vertex. We
denote by Lζ the kG-module such that ResGX

p3
Lζ
∼= Vζ .

Proposition 6.4. Let ζ be a p-root of 1 in k. Let Lζ be the corresponding simple
kG-module and let bζ be the corresponding block. Then

• If p 6= 1 mod 8, then kGbζ is not splendidly Morita equivalent to kQ8.

• Let p = 1 mod 8 and let t(ζ) =
∑

x∈I ζ
x, where I is the set of quadratic residues

mod p. If t(ζ) = 0, then kGbζ is splendidly Morita equivalent to KQ8.

• If t(ζ) = 1 and p = 17, then kGbζ is not splendidly Morita equivalent to kQ8.

Remark 6.5. The condition p = 17 appears only because we are not able to find a general
proof of this result. However it seems that the result should be true for all p = 1 mod 8.
In particular we check it with GAP in several cases.

Proof. Here, we are very sketchy. The first part follows from Mazza’s work. See Section
4.2 of [10]. It is showed that ResGQ8

Lζ is an endo-trivial module with source Sζ such
that dimkSζ = p mod 8. So if p 6= 1 mod 8, then Lζ is not a 2-permutation module
and the Morita equivalence is not splendid.
If p = 1 mod 8, then the source can be either the trivial module or an endo-trivial
module of dimension 9. Let w ∈ Fp such that w2 = 1 and let b be a generators of F×

p .

The module ResGQ8
Lζ is a trivial source module if and only if k is a direct summand of

ResGQ8
Lζ . This appends if and only if there is a vector v ∈ LQ8

ζ and an invariant linear

form φ on ResGQ8
Lζ such that φ(v) = 1.

Let i ∈ F×
p /<w>. Let ti := ζb

i

+ ζwbi + ζw
2bi + ζw

3bi ∈ F
2
p−1
8

be a Gaussian sum. Let

M be the matrix indexed by F×
p /<w>, where the (i, j)th. coefficient is ti+j. One can

check that Lζ is a 2-permutation module if and only if the constant vector (1, 1, · · · , 1)t
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is in the image of M − Id.
Now, if t(ζ) = 0, we have (M − Id) · (1, 0, 1, 0, · · · 1, 0)t = (1, 1, · · · , 1)t.
If p = 17 and t(ζ) = 1 an easy computation shows that (1, 1, · · · , 1) canot be in the
image of M − Id.
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