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Abstract

Let G be a finite group and (K, O, k) be a p-modular system “large enough”. Let
R = O or k. There is a bijection between the blocks of the group algebra RG and
the central primitive idempotents (the blocks) of the so-called cohomological Mackey
algebra coupr(G). Here, we prove that a so-called permeable derived equivalence
between two blocks of group algebras implies the existence of a derived equivalence
between the corresponding blocks of cohomological Mackey algebras. In particular,
in the context of Broué’s abelian defect group conjecture, if two blocks are splendidly
derived equivalent, then the corresponding blocks of cohomological Mackey algebras
are derived equivalent.
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1 Introduction.

The notion of Mackey functor, introduced by Green in [7], is a generalization of linear
representations of a finite group G. A Mackey functor, for Green, is the data of a
representation of Ng(H) for every subgroup H of G, together with relations between
these representations. A couple of years later, Dress gave a completely different, but
equivalent, definition using the formalism of categories. Twenty years later, Thévenaz
and Webb introduced the Mackey algebra and proved that a Mackey functor is nothing
but a module over this algebra.

A Mackey functor is cohomological if its restriction and induction maps behave like those
of the cohomology of groups. The category consisting of cohomological Mackey functors
is a full subcategory of the category of Mackey functors. This category is equivalent to
the category of modules over the so-called cohomological Mackey algebra. Let R be a
commutative ring. The cohomological Mackey algebras share a lot of properties of group
algebras, for example cour(G) is R-free of finite rank and this rank is independent of
the ring R. Moreover if R is a field of characteristic which does not divide the order of
G, then copr(G) is semi-simple. When (K, O, k) is a p-modular system, it is possible
to define a decomposition theory for coup(G), in particular the Cartan matrix of the


http://arxiv.org/abs/1406.6241v1

cohomological Mackey algebra is symmetric. However there are some differences with
group algebras: most of the time the determinant of the Cartan Matrix of coux(G) is
zero. Moreover the cohomological Mackey algebra is not a symmetric algebra.

It has been noticed for a long time that there are deep links between the representation’s
theory of finite groups and the theory of Mackey functors. Some objects of the first
theory are much more natural when you see them via the Mackey functors’ theory (e.g.
p-permutation modules, Brauer quotient, ---). It is quite natural to think that this
theory may be used in order to understand some open questions of the representation’s
theory of finite group. The first attempts was about Alperin weight’s conjecture. Jacques
Thévenaz and Peter Webb proved that this conjecture is equivalent to a conjecture on
Mackey functors. Here the arithmetic of the first conjecture is encoded in two Mackey
functors.

In this paper, we propose to look at Broué’s abelian defect group conjecture and try to
see if the effect of the equivalence conjectured by Broué on the Mackey algebras.

Let R = O or k. In their paper, Thévenaz and Webb proved that there is a bijection
between the blocks of RG and the primitive central idempotents of the so-called p-local
Mackey algebra ,u}Q(G). In the proof, they remark that there is also a bijection between
the blocks of RG and the blocks of the cohomological Mackey algebra cour(G). Let us
denote by b+ ¢(b) this bijection.

Using the Brauer correspondence, we have the following diagram: Let b be a block of
RG with defect group D and b’ be its Brauer correspondent in RN¢g(D).

be Z(RG) 1(b) € Z(copr(Q@))

| l

b e Z(RNg(D)) —_— L(bl) S Z(COMR(NG'(D))).

If D is abelian, it is conjectured by Broué that the block algebras RGb and RNg (D)
are deeply connected. It is a very natural question to ask if the same can happen for the
corresponding Mackey algebras. However, we should notice that, since the cohomological
Mackey algebra is not symmetric, the usual stable category is not triangulated, so we
decided not to look at stable equivalences.

In this article we will focus on Morita equivalences and derived equivalences.

Question 1.1 (Bouc). Let G be a finite group and b be a block of OG with abelian
defect group D. Let b’ be the Brauer correspondant of b in ONg(D). Is there a derived
equivalence D(copo(G)i(b)) =2 Db(copo(Na(D))u(b')) ?

The main result of this paper is the following theorem which settles the question for
the cohomological Mackey algebra in the case of a splendid equivalence (see [14]):

Theorem 1.2. Let G and H be two finite groups, let b be a block of RG and ¢ be a block
of RH. If RGb and RHc are splendidly derived equivalent, then

D¥(copr(G)u(b)) = D (copr(H)i(c)).



In the fist part, we recall Yoshida’s point of view on cohomological Mackey functors.
There are several points of view on the notion of Mackey functors, so there are several
points of view on the notion of cohomological Mackey functors. There are technical
issues about the different versions of Yoshida’s equivalence. A systematic use of the
Burnside functor will clarify the situation. In the second part, we give an explicit iso-
morphism between the center of the group algebra and the center of the cohomological
algebra. With this isomorphism we have a description of the blocks of the cohomological
Mackey algebras. This decomposition is compatible with the block decomposition of the
category of cohomological Mackey functors introduced by Thévenaz and Webb. With
this description, we prove a block version of Yoshida’s theorem.

Using this block version of the Yoshida equivalence, we see that a so-called perme-
able Morita (resp. derived) equivalence between blocks of group algebras can be lifted
to a Morita (resp. derived) equivalence between the corresponding blocks of cohomolog-
ical Mackey algebras. For example splendid Morita equivalences, and splendid derived
equivalences can be lifted. Even if the notion of permeable equivalence is very natural
it seems to the author that it has not been considered yet. We investigate on the very
basic properties of these equivalences. In particular, we show that in general, Morita
equivalences are not permeable and we give an example of permeable Morita equivalence
which is not splendid.

We give two applications of Theorem The first one is a new point of view on
Bouc’s Theorem about the determinant of the Cartan matrices of the blocks of the co-
homological Mackey algebras. He proved that this determinant is non zero if and only if
the block is nilpotent with a cyclic defect group. The proof is based on a combinatorial
approach and it may be surprising that the nilpotent blocks appear here. We show that
it is in fact very natural and comes from a structural reason. Finally we give an ex-
tremely naive application of Theorem [[.2to representation of finite groups. If the Cartan
matrices of two blocks cour(G)i(b) and copur(H)i(c) are not the same, then RGb and
RHec are not splendidly (or permeable) Morita equivalent. This is a sufficient criterion
for two blocks to not be splendidly Morita equivalent. This is particularly useful since
it is possible to compute these matrices via an algorithm (in GAP4 e.g.). We give a
particularly surprising example of nilpotent blocks with quaternion defect group, which
was discover by using this method.

Remark 1.3. The purpose of two first parts of this paper is to investigate on the blocks of
the cohomological Mackey algebra and to prove a block version of Yoshida’s equivalence.
If this proof involves rather technical discussion about Mackey functors, the result is not
technical at all. Here, we do not assume the reader familiar with any deep result on
Mackey functors. Still, if the reader is more interest by the link between splendid equiv-
alences and equivalences between blocks of cohomological Mackey algebras, he might
take Corollary B.I1] as a definition.

Notations: Let R be a commutative ring with unit. We denote by R-Mod the category
of (all) R-modules and by R-mod the category consisting of the finitely generated R-
modules. We denote by proj(R) the category of finitely generated projective R-modules.



Let G be a finite group then a permutation projective RG-module is a direct summand of
a permutation module. Let p be a prime number. We denote by (K, O, k) a p-modular
system, i-e O is a complete discrete valuation ring with maximal ideal p, such that
O/p = k is a field of characteristic p and Frac(O) = K is a field of characteristic zero.
If R = O or k, then the permutation projective RG-modules are called p-permutation
modules. We denote by G-set the category of finite G-sets. If H is a subgroup of G then,
we denote by Ng(H) its normalizer in G. The quotient Ng(H)/H will be, sometimes,
denoted by Ng(H). If G is a finite group, the union of all transitive G-sets is denoted
by Q¢a.

If A is an abelian category, we denote by C'~(A) the category of right bounded complexes
of A, and by C?(A) the category of right and left bounded complexes of A. We denote
by K~(A) and K®(A) the corresponding homotopy categories, and finally by D~ (A)
and D’(A) the corresponding derived categories. Moreover, if A is an R-algebra, we
denote by D*(A) the derived category D*(A-Mod) for s = b or s = —. Finally, if X is
an A-module (resp. a bounded complex of A-modules), we denote by X* the R-linear
dual of X.

If F: A— Band G: B— A are two functors, we denote by F' - G the fact that F'is a
left adjoint of G.

N.B. We will denote by the same letter the block idempotents for the ring O and the
field k.

2 Yoshida’s point of view on cohomological Mackey func-
tors.

2.1 Basic definitions.

For basic definitions of Mackey functors, we refer the reader to Section 2 of [16]. In this
paper we will use Dress’ point of view and Thévenaz-Webb’s point of view. We will use
Green’s point of view only for the definition of cohomological Mackey functors since it
is much more natural. Here, we just recall the definition of the Mackey algebra. Let R
be a commutative ring with unit.

Definition 2.1. The Mackey algebra pur(G) for G over R is the unital associative algebra
with generators tg , ’I“g and ¢y g for H < K < G and g € G, with the following relations:

o Cnect = lun()-
° tg:rg:ch,HforHéGandhEH.

o thtll =L Byl =pL for HC K C L.

Cq 9HCgH = Cgg 1, for H< G and g,¢' € G.

IK K 9K K
torrCo. i1 = Cq ity and ropycy x = cqury, H < K, g € G.

HiH __ L K
TLER = Donelt\i/K) Vo g Ch LK T ph g for LS H 2 K.
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e All the other products of generators are zero.
Definition 2.2. A Mackey functor for G over R is a left pr(G)-module.

Proposition 2.3. The Mackey algebra is a free R-module, of finite rank independent of
R. The set of elements tiLark., where H and L are subgroups of G, where x € [H\G/L),
and K is a subgroup of HN *L up to (H N *L)-conjugacy, is an R-basis of ur(G).

Proof. Section 3 of [16]. O
Now, let us recall the definition of the Burnside group of a finite G-set.

Definition 2.4 (2.4.1 [3]). If X is a finite G-set, the category of G-sets over X is the
category with objects (Y, ¢) where Y is a finite G-set and ¢ is a morphism from Y to
X. A morphism f from (Y, ¢) to (Z,1) is a morphism of G-sets f : Y — Z such that
Yo f=o.

The Burnside group of X, denoted by B(X), is the Grothendieck group of the cat-
egory of G-sets over X, for relations given by disjoint union. Moreover, we denote by
RB(X) the Burnside group after scalars extension. That is RB(X) = R ®z B(X).

Remark 2.5. If X is a G-set, the Burnside group RB(X?) has a ring structure. A G-set
Z over X x X is the data of a G-set Z and a map (b x a) from Z to X x X, denoted

by (X Ly s x ). The product of (the isomorphism class of ) (X &Y LS ) and (the

isomorphism class of )(X < Z 5 x ) is given by (the isomorphism class of) the pullback
along 8 and 7.

NN

The identity of this ring is (the isomorphism class) X

7N\

X X
In the rest of the paper, we will denote by the same symbol a G-set over X x X and its

isomorphism class in RB(X x X).
Let us recall that the Mackey algebra is isomorphic to a Burnside algebra:

Proposition 2.6 (Proposition 4.5.1 [3]). The Mackey algebra pur(G) is isomorphic to
RB(QZ), where Q¢ = Up<cG/L.

Proof. Let H < K be two subgroups of GG, then we denote by Wg the natural surjection
from G/H to G/K. If g € G, then we denote by i 4 the map from G/ 9H to G/H



defined by vp 4(zgH g~!) = xgH. The isomorphism f is defined on the generators of

1r(G) by:
Blt) = i G/H
27N
Q¢ DG/K G/H C Q¢
Briy) = G/H »
= Y
Q¢ DG/H G/K C Qg
Blegn) = G/9H
/ Vi.g
Q¢ DG/ 9H G/H C Q¢

O

For basic results about cohomological Mackey functors see Section 16 of [16].

A Mackey functor, in the sense of Green, is cohomological if whenever K < H < G,
one has tirfl = |H : K|Idpmy- Let us denote by Comackr(G) the full subcategory
consisting of cohomological Mackey functors. The category Comackgr(G) is equivalent
to the category of modules over the so-called cohomological Mackey algebra, denoted
by copr(G). The cohomological Mackey algebra is the quotient of the Mackey algebra
pr(G) by the ideal generated by the tiril — |H : K[til for K < H < G. If z € ugr(G),
we denote by T its image in the quotient cour(G).

2.2 Yoshida’s equivalence.

In this section we recall Yoshida’s theorem for cohomological Mackey functors. This
theorem says that the category of cohomological Mackey functors for a group G over
a ring R, in the sense of Dress, is equivalent to the category of R-linear contravariant
functors from the category of permutation projective modules to the category of R-
modules. There are several points of view on the notion of Mackey functors, so for each
of these points of view, we have a version of the Yoshida’s theorem. In general it is
not easy to mowve between these several versions. Since we will use in the next section
an explicit version of Yoshida’s theorem for the modules over the cohomological algebra
and for Dress’ point of view, we recall here how the Yoshida’s equivalence is defined. We
believe that a systematic use of the Burnside functor will clarify the link between these
different versions of Yoshida’s Theorem.

The main tool is the so-called linearization Mackey functor:

Lemma 2.7. Let X be a finite G-set. We set II(X) = RX, that is the permutation
RG-module with basis X. Let f: X — Y be a morphism of G-sets. Then we have a



morphism of RG-modules IT*(f) : RY — RX defined as follows:

() (D ryy) =Y rpwye.

yey zeX

On the other direction, we have a morphism I1,(f) : RX — RY defined as follows:
H*(f)(z T:vx) = Z Tmf(x)
zeX zeX

The bivariant functor II is a (non commutative) Mackey functors with values in the
category RG-Mod, i-e we have:

e The bivariant functor Il is additive.

o If
X2V
b l
z—4.7

s a pullback diagram of G-sets, then

11" (a)
RX <—-RY
lH*(b) \LH*(C)
RZ <——RT
11*(d)
is a commutative diagram.
Proof. Clear. U

If the context is clear, we will simply denote by f* the morphism IT*(f) and by f.
the morphism IL.(f).

Definition 2.8. Let G be a finite group and R be a commutative ring with unit. Then
Endra(RQ) is the Yoshida algebra for the group G over the ring R. The product is
defined by f x g=go f, for f,g € Endrc(RQ¢g).

Lemma 2.9. Let X and Y be to finite G-sets. Then there is a surjective map pr,, called
the linear projection from RB(X xY) to Hompa(RX,RY), defined on a G-set over
X XY by:

(XL Z%5Y)=a,0b": RX — RZ — RY.



Proof. By additivity, it is enough to check the result for two transitive G-sets. Let H
and K be two subgroups of G. Let us suppose that X = G/H and Y = G/K. Let
Zp K,z be the following G-set over G/H x G/K:

G/HN °K (1)

H K
ﬂ}y WO’YHIQK@

G/H G/K

where the maps denoted by 7 are the natural projections and the map denoted by
YH*NK,z i defined by
YaenKz(9H N “K) = grH* N K.

Then one can check that:

P(ZuKkz)(gH) = Z ghzK.
he[H/HNK®]

Moreover, the isomorphism class of this G-set over G/H x G/K depends only on the
double coset Hx K. We will still denote by Zp . the image of this G-set in the Burnside
group RB(G/H x G/K).

The result now follows from Lemma 3.1 of [I8], which says that the set of morphisms
pr(ZH k) when o runs through a set of representatives of the double cosets H\G/K is
a R-basis of Hompa(RG/H, RG/K). O

This linear projection is compatible with the composition of the morphisms in the
following sense:

Lemma 2.10. Let U,y = (X £ U 5 Y) be a G-set over X x Y. Let Vog= (Y £V 5
Z) be a G-set over' Y x Z. Then

prX LU SY)xp(Y £V 5 2Z) = pr(Uap x Viea),

where the product Uy y, X Ve q is as in Definition [2.4], that is the pullback along the mor-
phisms a and d.

Proof. This follows from the pullback property of the bivariant functor IT = (IT*,I1,). O

Theorem 2.11 (Yoshida’s Theorem for cohomological Mackey algebra). Let G be a
finite group and R be a commutative ring with unit. Then, there is an isomorphism of
algebras ¢ : cour(G) — Endra(RQq), which makes the following diagram commutative:

B

1r(G) RB(Q¢ x Q¢) (2)
copr(G) ® - Endpe(RQG).



Here, the map p : ur(G) — cour(G) is the natural projection. The map
,8 : MR(G) — RB(QG X Qg),
is the isomorphism of Proposition [2.8, and py, is the map of Lemma[2.9

Proof. The isomorphism ¢ : cour(G) — Endrg(RSq) is defined as follows:
let © € pr(G). Then

o(p(x)) := pr(B(x)).
e The morphism ¢ is well defined since py (8(t5r5)) = |K : Hlpr(8(t%)).
e Since pr, and B are two morphisms of algebras, the map ¢ is a morphism of algebras.

On the other hand, the map ¢ : Endrg(RQg) — cour(G) is defined as follows. Let
f € Endra(RQq), then by Lemma 2.9] there exist a G-set Z(f) over Q¢ x Q¢ such
that f = pr(Z(f)). Then 1 is defined by:

U(f) =poBHZ(f)).

e The map ) is well defined: if Z is a G-set over Qg x Q¢ such that pr(Z) = 0, then
we can express Z in the usual basis of RB(2Z), that is the basis induced by the
isomorphism ( and the usual basis of the Mackey algebra (see Proposition 2.3]).
This basis is indexed by H and K two subgroups of G, an element z of the set of
representatives of the double cosets H\G/K and a subgroup L of K N *H (up to
conjugacy class). We denote by I the set indexing this basis, and we denote by
21K, the corresponding basis element. There are elements A\p g 1, of R such
that Z =Y, Ay, Lo ZH,K, Lo Then pr(Z) =0 if and only if for every H, K, we
have:

Z ALK, LaPL(ZH K, L) = 0.
L.x

Let us recall the definition of Zy i 1 4:

G/L
y %\/Lx’x
G/H G/

K

But,

pL(Zugre) = Y ghrK
he[H/I]
=|HN*K:L| Y ghaK
he[H/HN K]
=|HN “K : Lpr(Zu k0N *K2)-



Moreover, the set of maps pr(Zu K Hn »Kz) is, by Lemma 29 a basis set of
Hompa(RG/H,RG/K), so if pr.(Z) = 0, we have, for H and K subgroups of G
and z € [H\G/K]:
Y IKN "H:Lgk e =0.
L

Since in the cohomological Mackey algebra we have:
p(t%Lxrf) =[KnN "H: L’p(tgm menIIgme)?
then, if pr,(Z) = 0, we have p3~1(Z) = 0.

e Since 57! and p are two morphisms of algebras, the map 1) is a morphism of
algebras.

The fact that ¢ and ¢ are two inverse isomorphisms follows from the fact that 5 is an
isomorphism. O

As immediate corollary, we have:

Corollary 2.12. Let G be a finite group and R be a commutative ring with unit. Then,
the set of tgm chKmHz7$r§me, when H and K run through the subgroups of G and x
runs through a set of representatives of double cosets H\G/K is an R-basis of cour(QG).

Proof. This follows from the fact that this set is the image of the R-basis of Endra(RQq)
of Lemma [2.9] introduced by Yoshida. O

Now, using Dress’ point of view, we have:

Theorem 2.13 (Yoshida’s Theorem for cohomological Mackey functors). Let G be a
finite group and R be a commutative ring with unit. We denote by Fung(G) the category
of R-linear contravariant functors from the category of finitely generated permutation
RG-modules to the category of R-modules. Then

Comackr(G) = Fung(G).

Sketch of proof. This equivalence of categories can be constructed as follows: There is
a Yoneda functor Y from Comackr(G) to Fungr(G). More precisely, if M is a cohomo-
logical Mackey functor, then Y (M) is defined by:

Y(M) = HomComackR(G)(_a M) oFP_,

where F'P_ is the functor from the category of permutation RG-modules to the category
of cohomological Mackey functors sending the RG-module V to the fixed point functor
FPy. Here F Py is the Mackey functor defined by

Hompa(—,V) oIl

That is F'Py(X) = Hompra(I1(X), V) for a finite G-set X.
On the other hand, if F' € Fung(G), then I" is defined by: I'(F) = F o IL.
Let us recall the units and co-units of the two pairs of adjoint functors ' 1Y and Y 4 T.

10



e For the adjunction I' 4 Y we have: let F' be a functor of Fung(G). The unit
0 of this adjunction is the natural transformation defined by: let V = RX be a
permutation RG-module and v € F(RX). Let Z be a finite G-set. Then,

dr(V)(u)z : Hompa(RZ,RX) — F(RZ)
a— F(a)(u).

Let M be a cohomological Mackey functor. The co-unit of this adjunction is the
map €y : I'oY(M) — M defined by: let X be a finite G-set. Then,

em(X) : Homeomackr(c)(FPrx, M) — M(X)

o Oé)((Ide).

e For the second adjunction Y 4T, we have: let F' be a functor of Fun}(G) and let
M be a cohomological Mackey functor. Then the co-unit € of this adjunction is
defined as follows. Let X be a finite G-set. Then:

6/F(‘X) : HomComackR(G)(FPRXar(F)) - F(RX)
¢'—> ¢X(Ide).

For the unit it is a bit more complicate. Let X and Y be two finite G-sets. Let
m € M(X).
Let fy € Hompg(Y, X). Then by Lemma 2.9] there exist a G-set

v &usx)
over Y x X, denoted by Zy 4, such that

fy =re(Zuap)-
The unit of this adjunction is:

5§\4(X) : M(X) - HomComackR(G)(FPXa M)
m <fy s M. (b) o M*(a)(m)).

Since M is a cohomological Mackey functor, if Zy, . 4 is another G-set over ¥ x X
such that fy = pr(Zy.ca), then M, (d)M*(c) = M,(b)M*(a) (by the proof of
Theorem 2.T7]), so the co-unit is well defined.

O

Let us denote by permp(G) the full subcategory of RG-Mod consisting of the finitely
generated permutation RG-modules.

Lemma 2.14. The idempotent completion of permp(QG) is equivalent to the category of
finitely generated permutation projective RG-modules.

11



Proof. Let us denote temporarily by A the category of permutation projective RG-

modules. Let permE(G) be the idempotent completion of permpg(G).

The objects of this category are the pairs (V,7) where V' is a permutation module and
T € HoMpermp(cy(V, V) an idempotent. There is a natural functor F' from perm}(G)
to A defined by F(V,nr) = w(V). This functor is dense and fully faithful. O

We denote by permE(G) the category of finitely generated permutation projective
RG-modules and by F unE(G) the category consisting of contravariant functors from
permE(G) to R-Mod. By general properties of the idempotent completion ([I] Exemple
8.7.8 page 97.), the categories Fun}(G) and Fung(G) are equivalent. So we have:

Comackg(G) = Fun}(G).

We still denote by Y 41T the equivalence after idempotent completion.

3 The center of the cohomological Mackey algebra.

Definition 3.1. Let C be a (small) additive category. The center of C, denoted by Z(C),
is the endomorphism ring of the identity functor Id¢ of the category C.

It is well known that the definition of the center of a category is functorial in respect
with the equivalences of categories. Since we were not able to find a reference for this
fact, we sketch the proof.

Lemma 3.2. Let C and D be two additive categories. Let F' 4 G be an equivalence
between C and D. Then:

1. The functor F induces a ring homomorphism from Z(C) to Z(D), denoted by f.
2. The functor G induces a ring homomorphism from Z(D) to Z(C), denoted by g.

8. The two homomorphisms f and g are inverse isomorphisms.

Proof. We denote by § (resp. ¢') the unit of the adjunction G - F (resp. F 4 G) and
by € (resp. €) the co-unit of the adjunction G 4 F' (resp. F - G), that is the following
natural transformations:

6:1d— FG
e:GF — Id
8 :Id— GF
€:FG — Id.

Let 1 be an endomorphism of Idc. Then, f(n) is the natural transformation from the
functor I'dp to himself defined as follows: if D is an object of D, then:

f(n)p = ¢€p o F(ngpy) od0p : D — FG(D) — FG(D) — D.

12



Let v be an endomorphism of Idp. Then g(v) is the natural transformation defined as
follows: if C'is an object of C, then:

g(V)c =eco G(*yg(c)) 06 :C — GF(C)— GF(C) — C.
O

Remark 3.3. The definition of the center of an additive category generalized the usual
definition of the center of a ring. More precisely, if R is a ring, then the center of the
category R-Mod is isomorphic to the center of the ring R (see the proof of Proposition
2.2.7 [2).

Proposition 3.4. Let G be a finite group and R be a commutative ring with unit. Then,
there is a ring isomorphism:

t: Z(RG) — Z(copr(G)).
If 2 =3 ca e € Z(RG), then
1 - @
1z) = Z E Z Motfley il
H<LG zeG
Here, we denote by T the image of x € ur(G) in the cohomological Mackey algebra.

Proof. The existence of an isomorphism between Z(RG) and Z(cour(QG)) is due to Bouc
(Proposition 12.3.2 of [3]). It uses the point of view of Green Mackey functors. More
precisely it is based on the fact that cohomological Mackey functors are modules over the
Green functor F' P and the fact that the Yoshida algebra is isomorphic to F'Pr(QaxQg).

Here, we give an elementary proof of this result, which allows us to specify an iso-
morphism. First we prove that

Z(RG) = Z(EndRG'(RQG».

Let z € Z(RG). Then the multiplication by z on the RG-module R, denoted by
m,(RQ¢q) is an element of the center of Endrg(RQ¢q).

On the other hand, if f € Endra(RSq) is a central element, for g € Endrg(RQq), the
following diagram must commutes:

RO: —~ ROg

P,k

ROe —~ ROg

By taking ¢ = RQ)¢ - RG/H — RG/H — R, we see that f = ZHgGE{?{, where
fum € Z(Endrg(RG/H)), and f/H,TJ is the composite map:

RO — RG/H ™' RG/H < ROc.
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L —

By taking g = (7f7)., where 7 is the natural projection G/1 — G/H, for x € RG/1
we have fr g ((7f).(2)) = (7). (f1,1(x)). That is, if 2 = 2 gelc/m M99 € RG/H,

frau(x Z N Jr,H(9H)

g€[G/H]

= D AgaDulgfia(1)).

9€[G/H]
But fi; is a central element of Endrg(RG). So we have gf11(1) = f1,1(1)g. And for
x € RG/H we have:
faa@) =Y Afri(DgH = fia(1) - @ (3)
9€[G/H]

If f e Z(Endrg(RSQq)), then z = f11(1) € Z(RG). By Formula (), we have

mg 4 (RQG') = f7

and it is clear that m.(RQqg)1,1(1) = =.
Since copr(G) = Endra(RSQ¢q) the result of the lemma follows. Moreover, if z € Z(RG),
then z is a linear combination of elements of G, that is:

z = Z Az,
zeG

where A\, € R for z € G.
Now, let Zg p» be the following G-set over G/H x G/H

G/1
H/ %l,z
G/H G/H
Then, for gH € G/H, we have:

Z)\mpL ZHH:): gH Z)\ ZghIH

z€G zeG heH

= Z gh(z Azx)H

heH zeG

= Z g(z Azx)hH

heH zeG

= [H|(Y_ )y

zeG

14



So, we have:

S(RQq) = Z Z AP (ZH,H,2),

H<G’ JCEG

By the isomorphism of Theorem 2.IT] this endomorphism of R is sent to:
Z Z A t1 cl ;ch .
H <G xeG’

O

Remark 3.5. Since there are some denominators, it may not be clear that the formula
of Proposition 3.4l is defined for every ring. However if z = Y~ - Az, for H < G, we
have:

H H H H
Z )‘:Btl Cl’le = Z )\x|H N mH|tHr~| zHcHﬂHx,JBRHﬂH””‘
reG zeG

Here, in order to simplify the notations, for € ur(G), we still write x the image of x
in cour(G). Moreover we will denote by x the map cgnp= 5. Since the basis element
tgm x Hngm 7= depends only on the double coset HxH, we have:

Z )\mt{{CLmTf{ = Z tgn gHgRgmHg( Z )\m‘H N xH‘)7
ze@ g€[H\G/H| z€0(g)

where O(g) is the orbit of the element g under the action (h,h').g = hgh' for h and
W' € H. So, we have:

Z Amtllqcl,mrfi = Z tgm gHgRIgmHHH N Hg|< Z Ahgk)
zeG g€[H\G/H)] (h,k)EHXxH/HN 9H

Now since z is an element of the center, for every h € H, we have hz = zh, so

Z )\h—leE = Z )\mh—le,

zelG zeG

so for every h € H, we have A\, = Ap,. Then, we have:

H
Z )\mt{{cm?“f{ = Z tgm gHgRgmHﬂH N HY| \H’ﬂ qu’ < Z Agh)

zeG g€[H\G/H] heH/HN 9H
And finally,
Z Z)\ e rff=>" >t gHgRgmHg( > Agh).
H<G :BEG H<G ge[H\G/H] heH/HN 9H

The formula of Propostion [3.4] suggest the following definition.
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Lemma 3.6. Let G be a finite group. Let p : Z(RG) — Z(Comackgr(G)) be the map
defined as follows. let M be a cohomological Mackey functor. Let X be a finite G-set and
let z be an element of Z(RG). Let m,(RX) be the multiplication by z on RX. There
1s a G-set (X Lo X) over X x X denoted by Zy . for some G-set U such that
mZ(RX) = pL(ZU,a,b)- Then:

p(2)a(X) = M, (b)M*(a) : M(X) — M(X).

Proof. Since M is a cohomological Mackey functor this map does not depend on the
choice of Z7, ;. Now, using the pullback property of M, it is easy to check that p is a
ring homomorphism. O

Remark 3.7. Since the categories Comackr(G) and cour(G)-Mod are equivalent, their
center are isomorphic. The reader familiar with the equivalence of categories between
Dress’ definition and Green’s definition (or Thévenaz-Webb’s definition) can see that the
morphism p is just the morphism induced by ¢ and the equivalence of categories between
Comackgr(G) and cour(G)-Mod.

Lemma 3.8. Let G be a finite group. Letn: Z(RG) — Z(Funk(G)) be the map defined
as follows. Let z € Z(RG) and let F € Fun}(G). Let V be a permutation projective
module. Let us denote by m, the endomorphism of the identity functor of RG-Mod
corresponding to z. Then 1, is the endomorphism of the identity functor of FunE(G)
defined by:

n(F)y = F(m.(V)) s F(V) = F(V).

The map n is an ring homomorphism.

Proof. This is straightforward. O

The Yoshida equivalence is compatible with the action of central idempotents:

Theorem 3.9 (Yoshida Equivalence, block version). There is a commutative diagram:

Z(Funp(G)) (4)

Z(cour(G)) —= Z(RG) v

IR

Z(Comackr(Q)).

Here, the map vy is the ring homomorphism induced by the functor I' as in Lemma [32.
The arrow x is the map induced by the equivalence Comackr(G) and cour(G)-Mod (see
Remark [37).
Let 1 = e+ f € Z(RG) be a decomposition of 1 as a sum of two orthogonal idempotents.
Then

Comackp(G) = p(e) (Comackr(G)) ® p(f)(Comackr(G)).
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and

Fung(G) = n(e) (Funk(G)) @ n(f)(Funk(G)).
Ifb=e or f, then p(b)(Comackgr(G)) = n(b)(Funk(G)).
Sketch of proof. Let o be a natural transformation of the identity functor of FunE(G),
let Yrg be the Yoneda functor Hompgg(—, RG), then z, := (UYRG (RG)(IdR(;)> (1) is

an element of Z(RG). One can check that the map which sent o to z, is the inverse
isomorphism of 7.

Let M be a cohomological Mackey functor in the sense of Dress. Let z € Z(RG), we
denote by m, the corresponding natural transformation in Z(RG-Mod).

If f € Z(Fun}(G)), then with the notations of Theorem 3.9] we have:

V() = em o T(fy ) o 6y : M = T(Y(M)) = T(Y(M)) — M.
So, if X is a finite G-set, and if m € M (X), we have:

s (n:)(m) = 03 (X) o (m2(X)) o Idrx
= 0p(X) (m=(X))

Now, if m.(X) = pr(Zu,ap), we have:
Y (n:2)(m) = M (b)M™(a)(m).
This is equal to p(2)a(X). O

Let R be O or k, where O is a complete discrete valuation ring and k is the
residue field. Let 1 = by + by + -+ + by be a decomposition of 1 in orthogonal sum
of central primitive idempotent of RG. This decomposition induces a decomposition
of Comackr(G) = @;_, p(b;)Comackr(G) and Funk(G) = @;_, n(b;)Funk(G). We
have the following straightforward lemma:

Lemma 3.10. Let b be a block idempotent of RG. The category n(b)(Fun} (b)) is equiv-
alent to the category denoted by Fun;g(b), consisting of contravariant functors from
perm;%(b) to R-Mod, where permjg(b) is the category consisting of the finitely generated
p-permutation RG-modules which are in the block RGb.

For a block b of RG, we denote by Comackg(b) the category p(b)Comackr(G).
Corollary 3.11. Let b be a block of RG. The we have:
copr(G)u(b)-Mod = Comackg(b) = Funj(b).

Corollary 3.12. Let P be a projective indecomposable cohomological Mackey functor.
Then P belongs to the block Comackgr(b) if and only if P(G/1) is an indecomposable
p-permutation module in the block RGb.
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Proof. Let P be a cohomological Mackey functor. Let us recall that, with Dress’ notation
P(G/1) is an RG-module for the following action. Let m € P(G/1) and € G. Then
x.m = M*(7y1,)(m). The result follows from the fact that (p(b) - P)(G/1) =b- P(G/1)
and from Theorem 16.5 [16] which says that P(G/1) is a p-permutation module. In the
other way, if V' is a p-permutation RGb-module, then F' Py is a projective cohomological
Mackey functor in Comackg(b). O

In the proof of Theorem 17.1 of [16], Thévenaz and Webb proved that the block of
the category of the cohomological Mackey functors are in bijection with the block of
RG. They defined the blocks of the category Comackr(G) using non-split short exact
sequences between simple cohomological Mackey functors. Thanks to Corollary
and Proposition 16.10 of [16] (in order to understand the projective cover of the simple
cohomological Mackey functors), their block decomposition coincide with ours.

4 Permeable Morita equivalences.

Let R = O or k as above. With the version of Yoshida’s equivalence of Corollary B.11]it
is not difficult to lift an equivalence between blocks of group algebras to an equivalence
of the corresponding blocks of the cohomological Mackey algebras.

Definition 4.1. Let G and H be two finite groups, let b be a block of RG, let ¢ be a
block of RH. A permable RHc-RGb-bimodule is a bimodule X such that:

P: X @pep — is a functor from perm4(b) to permi(c).

Lemma 4.2. Let G and H be two finite groups, let b be a block of RG, let ¢ be a block
of RH. Let X be a permeable RHc-RGb-bimodule. Then X induces a functor, denoted
by ®x : Comackgr(c) — Comackg(b) and defined in the proof. Moreover this functor
sends an arbitrary fized point functor to a fixed point functor.

Proof. We use the equivalence Comackg(b) = Funj(b) of Corollary BIIl One can
define a functor Lx from Funf(c) to Funh(b) by Lx(F)(V) = F(X ®gep V), for
F € Funk(c) and V € perm}(b). We denote by ®x the composite functor:

Lx

Funfk(c) Fun},(b)

YT lp

Comackg(c) .. Comackp(b)

18



so if V' is a RHc-module, and Z is a finite G-set, then

Ox(FPy)(Z) =T (Lx(Y(FPy)))(2)
= Y(FPy)(X ®repy RZ)
= Homcomack(H) F'PX@peyr7, FPY)
= Homppe(X ®ray RZ,V)
=~ Hompey(RZ, Hompp.(X,V))
= FPHOWRHC(va)(Z)'

This isomorphism is functorial in Z, so ®x(FPy) = FPhompre(x,v)- U

Remark 4.3. This Lemma generalizes the construction defined by Bouc for permutation
bimodules (see Section 3.12 [5]).

Definition 4.4. Let G and H be two finite groups, let b be a block of RG and ¢ be a
block of RH. A permeable (Morita) equivalence is an RHc-RGb-bimodule X such that:

1. X ®prap — : RGb-Mod — RHc-Mod is an equivalence of categories.
2. X and X* := Hompg(X, R) are two permeable bimodules.

Proposition 4.5. Let G and H be two finite groups, let b be a block of RG and c
be a block of RH. Let X be a permeable equivalence between RGb and RHc. Then
Comackg(b) = Comackg(c).

Proof. By Lemma 2] we have a functor Lx : Fun}(c) — Fun}k(b), and a functor
Ly« : Fun}(b) — Funj(c). It is clear that these two functors are two quasi-inverse
equivalences between Funj(c) and Funj(b). O

Remark 4.6. One may ask if there exist permeable Morita equivalences. Let G be a
finite group, and P be a Sylow p-subgroup of G and H be its normalizer. Let b be
a block of kG and with defect group P and let ¢ be the Brauer correspondent of this
block in Ng(P). If kGb-Mod is Morita equivalent to kNg(P)c-Mod by a p-permutation
bimodule (that is a ‘splendid’ Morita equivalence) then the two conditions are satisfied.

Remark 4.7. There exist RG-RH-bimodules which are not p-permutation bimodules but
which are permeable. The most radical example is for G = H = Cy and R = Fy. Then,
all the RG-modules are permutation modules. So every R[C x C3]-module induces a
functor between permp(H) and permp(G), and there are infinitely many isomorphism
classes of R[Cy x Ca]-modules and only 5 isomorphism classes of permutation R[Co x Cs]-
modules. Moreover, there are examples of Morita equivalences between blocks of group
algebras which are not ‘splendid’ but which are permeable. The easiest example is
probably for the self equivalences of kC'3 when k = F3. Indeed there are two permutations
bimodules inducing a self-Morita equivalence of kC5 and 6 isomorphism classes of self-
Morita equivalence of kC5. This follows from elementary results on the Picard group of
a basic k-algebra and easy computations. Now all of these 6 equivalences are permeable.
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5 Derived equivalences between blocks of cohomological
Mackey algebras.

Let G and H be two finite groups. Let R = O or k. Let b be a block of RG and ¢ be a
block of RH. In this section, we prove that one can lift a derived equivalence between
blocks of group algebras into a derived equivalence between the corresponding blocks
of cohomological algebras as soon as this derived equivalence respects p-permutation
modules. Since this part is rather technical, we fix the notations.

Notations 5.1. o Let X be an RHc-RGb-bimodule, then we denote by tx the func-
tor from RGb-Mod to RHc-Mod induced by the tensor product with X.
If f: X =Y is a morphism of RGb-RH c-bimodules, we denote by f the natural
transformation between the functors tx and ty.

e Let X be an RHc-RGb-bimodule such that tx induces a functor from perm}(b)
to perm;%(c). Let I be a functor of Fun;g(c), we can precompose the functor F
by the functor tx, this gives a functor F otx of the category Fun;g(b). We will

denote by FX this functor.

o Let (Fy,ne) be a complex of functors of Funf(c). We choose to label the complex
by decreasing order, that is n; is a natural transformation from the functor F; to
the functor F;_q.

o If (Xo,de) is a complex (written in decreasing order) of permeable RHc-RGb-
bimodules, then ((tx)e,ds) is a complex of functors from RGb-Mod to RHc-Mod.

Let (Fs, 1) be such a complex of functors and let (X,, ds) be a complex of permeable
RHc-RGb-bimodules. Then we can precompose the complex F, by the complex of
functors (tx)e. This gives a double complex:

()

FX; g X

PN i—1 X T

(—1)'Fid; (1) F1d;
— 77in71 ——

FiaXj 1 ——-

Here, we use the following notations:

1. Let d: X — Y be a map between two RH c-RGb-bimodules and let F' be a functo~r
of the category F' unE(c).Then Fd is the natural transformation from FY to F.X
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defined by: if M is a p-permutation RGb-module, then

Fd(M) =F(d® Idy): F(Y @pepy M) = F(X Qpay M).

2. Let n be a natural transformation from F to C, where F' and C' belong to Funﬁ(c).
Let X be a permeable RGb-RH c-bimodule. Then nX is the natural transformation
from F'X to CX defined by: let M be a p-permutation RGb-module. Then

nX (M) =n(X ®ray M) : F(X @prap M) — C(X @pap M).

Let (Fy,ne) be a complex of functors which belong to Funj,(c). Let (X, ds) be a complex
of permeable RH c-RGb-bimodules. Then we denote by (Lx, (Fe),ds) the total complex
of the double complex (), that is:

(LXo(F°))k - EB Fi)?ﬁ

and the differential is given by the family of natural transformations d;, defined by
0= P (~1)Fdji1 + niX;.
i—j=k
More explicitly, let M be a p-permutation RGb-module.
Let w = (wi7j)i,j:k € @ifj:k E(X] QRGH M) Then (5k(M) = @ifj:k (51'7]‘(M), where:
81,5 (M)(wig) = (—1)"Fi(dj1 ® Idar)(wig) + ni(X; ©ray M)(wi ;).

Here, we use the notation w; ; which is the projection of w on the composant F;(X; ® gap
Lemma 5.2. With the previous notations,

1. (Lx,(F,),0e) is a complez.

2. Fy — Lxe¢(F,) is an additive functor from the category Ch™(Funk(c)) to the
category Ch™ (Fun}(b)).

3. The functor Fy — Lx¢(F,) induces a triangulated functor between the correspond-
ing homotopy categories.

Proof. 1. Let k be an integer. We have to check that §p_1 0 = 0. Let M be a
p-permutation RGb-module and let w = (w; j)i—j—r € (LX_(F.))k. It is enough to

see that the (0p_1(M) o 5k(M))st = 0, where this is the projection of 6;_1(M) o
0k(M) on the composant Fy(X; @ M) for s —t =k — 2.
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Then, we have for s —t =k — 2:
(Ok—1(M) 0 6,(M)(w)) st = nsr1(Xe @ras M) ((65(w))sr1.e)
+ (=1)° Fy(dy @ Idar) (65 (w))s,0—1)
= Ns1(Xt @rap M) (Ns12(Xe Qray M) (wsi2,t))
+ (=1 o1 (Xe @rap M) (Far1(de ® Idar) (wss1,-1))
+ (=1)°Fy(ds @ Idar) (s41(Xe—1 @rap M) (weg1,i-1))
+ Fy(dy @ Idag) (Fs(di—1 ® Idpr)(ws—2)),

but 7 is a differential for the complex F, and d, is a differential for the complex
X,o. So, we have:

(Ok—1(M) 0 8 (M) (w))s ¢ = (—1)°Fy(dy ® Idpr) (ns11(Xe—1 ®rap M) (wsy1,6-1))
+ (1) s 1 (Xe @pap M) (Foqa (de ® Tdpr)(weg1,e-1))-

Since 1541 is a natural transformation from Fyi1 to Fj, the following diagram is
commutative:

s Xt ® M
Fyp1(X: ®pay M) Ns+1(Xt®@rasM)

Fs+1(dt®fdM)T

For1(Xi—1 Qray M)

Fo(Xt ®pray M)
TFs(dt@)Id]M)

Fy(Xi—1 ®paey M)

Ns+1(Xt—1®QrceM)

This proves that J, is actually a differential.

. Let (F.,ne) and (Cs,7e) be two complexes of functors which belong to Fun}j(c).
Let ¢ = (¢e) be a morphism from (Fe,7) to (Ce,7s). One may define a natural
transformation ®y from (Lx,(F.)), to (Lx,(Ce)) by: By := D, (ﬁi)’(vj, where
gbZ}(\; is the natural transformation from FZ)?] to C’i)?j defined as follows: if M is
a p-permutation RGb-module, then

$iX;(M) = $(X; ®rap M) : Fy(X; @pay M) = Ci(X; @rap M).
We have to check that (®g)rez is a morphism of complexes, i-e, we have to check
that ® commutes with the differentials.
We denote, here, by d, the differential of Lx,(F,) and A, the differential of
Lx,(C,). Let w € @i—j:k Fi(X; ®papy M). Then for s —t = k — 1, we have:
((@r—1(M) 0 G(M))(w)),, , = bs(Xt @rcp M) (Jk(w)syt)

= ¢s(Xy ®rcy M) (775+1(Xt ® M)(ws—f—l,t))
+ (—1)°¢s(Xy @rae M) (Fs(dy ® Idar)(wsi—1))-

On the other hand, we have:

(AR(M) 0 @(M)(w)), , = Ysr1(Xe @ M)(Ps11(Xe @rae M) (Wsr14))
+ (=1)°Cs(ds ® Idar) (¢s(Xi—1 ®rap M) (ws—1)).
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So, the fact that ®, is a morphism of complexes follows from the commutativity
of these two diagrams:

s+1(Xt®@prap M)
Fo1(X; ®pap M) —278E0 Fy(X; ®@ray M)
l¢s+1(Xt®RGbM) l¢s(xt®RGbM)
Ys+1(Xt®rcoM)

Cs+1(Xt ®rap M) Cs(Xt @rapy M)
Here, the commutativity follows from the fact that ¢, is a morphism of complexes.

Fs(d:®1dpr)

Fy(Xi—1 Qrey M)
\L(bs (X¢t—1®rapM)

Co(de@Idar)
Cs(Xt—1 ®rap M) =

Fy(X; ®ray M)
\L(bS(Xt@RGbM)

Cs(Xt ®pray M)

Here, the commutativity comes from the fact that ¢, is a natural transformation
from Fs to Cs. It is now clear that Ly, is an additive functor, and we denote by
Lx,(¢) the family of natural transformations ®,.

. Since the functor Lx is additive, it induces a functor between the correspond-
ing homotopy categories. It remains to see that the functor Lx is triangulated.
Let (Fy,ne) and (Ce,7e) be two complexes of functors which belong to Funfk(c).
Let f be a morphism between these two complexes. We need to check that
Lx (cone(f)) = cone(Lx(f)). We use the following notations:

e The differential of cone(f) is denoted by .
The differential of Lx, (Fs) is denoted by 4.
The differential of Lx,(C,) is denoted by A.
The differential of Lx, (cone(f)) is denoted by 0.

The differential of cone(Lx(f)) is denoted by D.

Recall that ([I7] Section 1.5) the mapping cone of f is defined as follow:
cone(f)g = Fr—1 ® Ck,

and the differential is the natural transformation from cone(f)i to cone(f)r_1
defined by the following diagram:

—Mk—1

Fr_4 Fy_o

R
D S

Ck o Cr—1
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So, the differential 0 from cone(Lx, (f))i to cone(Lx,(f))k—1 is the natural trans-
formation defined by —d0x_1 — Lx,(f)k—1 + Ag. On the other hand,

Lx,(cone(f))x = €D cone(f)iX;

i—j=k
- @ X P G,
i—j=k i—j=k

= Lx,(F)g—1 ® Lx, (C)p.

Let M be a p-permutation RGb-module. Let w € cone(LX.(f)(M)>k, in or-

der to compute the differential of this complex, we denote by w! the projec-
tion of the element w on @ifj:klei(Xj ®ray M), and w® the projection on
@D, j—r Ci(X; ®rap M). Let s and ¢ be integers such that s —¢ =k — 1. Then the
projection of Dy(w) on cone(f)s; is:

(Dr(w)),, = Bsp1 Xi(wsr12) + (= 1) cone(f)sdy (wsy 1)
= (—1)*Fy1dy () s—10-1) — 06 Xe (w5 4)
+ Y1 Xe(W)sr16) + (-1 Co(wSy 1) — FoXe(w)sr)
= ( - 5k*1(wF))s—1,t + (Ak(wc))s,t - (LX-(f)(wF))s,t
= O (w)s -

Recall, that the exact triangles in the homotopy category are given by the triangles
which are isomorphic to:

Fi>C—>cone(f) — F[1].

Here the map from C to cone(f) (denoted by i) is the injection of C in cone(f)
and the map (denoted by p) from cone(f) to F[1] is given by the projection of
F;_y C cone(f); on F[1]; (see [17] 1.52).

It is clear that Lx,(F[1]) = (Lx,(F))[l], moreover it is clear that Lx(i) is the
injection of Ly, (C) in cone(Lx,(f)) = Lx,(cone(f)) and Lx,(p) is the projection
of cone(Lx,(f)) = Lx,(cone(f)) on Lx,(F)[1]. So

Lo (F) 2 Ly (C) = Ly, (cone(f)) — (Lx. (F))[1],

is an exact triangle.

O

Lemma 5.3. Let Xq and Y, be two bounded complexes of permeable RH c-RGb-bimodules.
Then:

1. The two functors Lx,wy, and Lx,®Ly, are isomorphic as functors from K~ (Fun}(c))
to K~ (Fun}k(b)).
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2. If the complex X, is contractible, then the functor Lx, is contractible in the follow-
ing sense: the complex Lx,(Fs) is (naturally in F) contractible for every complex
F, of functors which belong to Fung(c).

Proof. 1. Let (Fe,ms) and (Ce,7e) be two complexes of functors which belong to
F unE(c). Let f : Fy — Co be a morphism between theses two complexes. It is
clear that Lx,qv,(Fe) & Lx,(Fs) ® Ly,(F,). Let M be a p-permutation RGb-
module, let j be an integer. We denote by (ys ; the composite:

X; Qrap M — X @ray M @Y Qrap M = (X; ®Y;) @rap M.

The functoriality of the isomorphism follows from the fact that, for 7,5 € Z, the
following diagrams (and the corresponding diagrams for the terms of Y,) are com-

mutative:
F;(Car,5)
F,((X; @ Y)) ®rap M) Fi(X; @ M)
fi((Xj@Yj)®RGbM)J/ lfi(Xj®M)
Ci(Cn,5)
Ci((X; ®Y;) ®rap M) Ci(X; ® M)

2. Let X, be a contractible two-sided bounded complex. That is, there is a family
of maps s = (s;j)jez, where s; is a map from X; to X1, such that we have for
jEL:

Ide = Sj_ldj + dj+18j.
Let (Fs, 1) be a complex of functors which belong to Funj,(c). Then one can de-
fined a family (F's) of natural transformations (F's)g from Lx, (Fe)x to Lx,(Fe)g+1
as:

(F3)e = €D (-1)'Fis;,

i—j=k
where Fjs;_; is the natural transformation defined as: let M be a p-permutation
RGb-module. Then

Fisi—1(M) = Fi(sj—1 ®rap Idn) = Fi(Xj ®ray M) — Fi(Xj-1 @rey M).

Now, we have to check that Idy (r,) = 0k+1Fsk + F'sg_10;. Let ¢ and j be two
integers such that i —j = k. If w € (Lx, (Fe)(M))i, then we have:

(5k+1F§k(w))i7j = 77i+1)?;' (Fsk(w))ir1,y) + (—1)iFiCz7'((F§k(w))i,jfl)
= (~ 1)1 X Fip1 85 (wis1 j+1)
+ Fi(sj-1dj ®@ray Ldyr)(wi ).
On the other hand, we have:
(F3Sk-1(0k(w))). . = (—1)"Fi(s; ®rap Ldar) (55 (w))i j+1)

= (=1)'Fy(sj @rap Tdn ) i1 X1 (it 1)
+ Fi(dj+15; ®raw Idar) (wij).

4,J
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The result follows from the commutativity of the next diagram:

Fit1(s;®Rrauldar)

Fii1(Xj41 ®rapy M) Fip1(X; @ray M)
ni+1(Xj+l®RGbM)\L Tli+1(Xj®RGbM)l

Fi(s;®@rcyld)
Fi(Xj41 ®ray M) Rakiaed Fy(X; @ray M)

Moreover, this construction is functorial in F', so the functor Ly, is isomorphic to
the the zero functor from K~ (Funj(c)) to K~ (Funj(b)) when X, is contractible.
O

Lemma 5.4. Let G, H and K be finite groups. Let b be a block of RG, let ¢ be a block of
RH and let d be a block of RK. Let (Xo,dyX) be a bounded complex of permeable RHb-
RGc-bimodules. Let (Y.,df) be a bounded complex of permeable RK d-RH c-bimodules.
Then, we have an isomorphism of functors:

LxoLy = Lygpy.x

Proof. We use the following convention for the tensor product of complexes:

Ye QrHc Xo = @ Y: ®ruc Xj,
i+j=k

the differential, denoted by D, is:
D= P ((-1)'Idy, ® df +d} ®Idx;).
i+j=k

Let M be a p-permutation RGb-module and let k& be an integer. Let F, be a complex
of functors which belong to Funp(d). Since the functors F; are additive functors, and
since X, and Y, are bounded complex, it is clear that:

Lx, o Ly, (F) (M) = Ly,equ.xe (F) (M)
Indeed:

Lx, © Ly, (F)(M), = @(Ly (F))n(Xn—t @rce M)
neZ

= @ @(Fm(ymfn QRHc Xn—k X RaGH M))
neZ meZ

- @ Fm(EBYm—n QRHe Xn—k @RGH M)
MEZ nez

= @ Fm((Y. QRHe Xo)m—k O RGH M)
meZ

= LYO@RHCXO (F)(M)k
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If we denote by A the differential of Lx, oLy, (F'), by 0 the differential of Ly, . x. (F)
and by d the differential of Ly, (F'), we have:

AR(M) = €D 6n(Xnk @rcp M) + (—=1)" Ly (F)n(dy_y11 ®rp Tdar)

ne’l
= @ < @ nm(Ym—n XRHc ank QRaGY M))
neZ ~meZ

+ (=) En(dy i1 ®rme Ldx, , @reo Idar)

+ (=1)™(=1)"""Fn(Idy,,_, ®rme dp g1 ®RrG IdM>

— @ <nm((Y. QRrHe Xo)m—k @RGb M)

+ :L—Elz)mFm( @ dy_n ®rue ldx,, .\ ®rcy L)
meZ
= ()" Fn (P (-1)" "Idy,, , ©rmec dn_j1 @reb IdM)>
MEZ
N EB (nm((K @rHe Xo)m—k @rch M) + (=1)" Fn (Dim—k11 @re IdM)>
meZ
_ B(M).

Since the isomorphism Lx o Ly (F) = Lyg,,.x(F') basically involves only some iso-
morphisms of the form F(V ¢ W) = F(V)® F(W), for some RKd-modules, which are
functorial in F', the isomorphism Ly o Ly (F') = Lyg,,.x (F') is functorial in F. O

Definition 5.5. Let G and H be two finite groups. Let b be a block of RG and ¢ be a
block of RH. Then a permeable derived equivalence between RGb and RHc is:

1. A bounded complex X of RGb-RHc-bimodules, which are projective as RGb-
module and as RHc-module, such that:

o X ®rpe X* =2 RGDH in the homotopy category of RGb-bimodules. That is
there exist a contractile complex C of (permeable) RGb-bimodules such that

X ®RrHe X*=RGbo C.

e X* ®pay X =2 RHc in the homotopy category of RHc-bimodules. That is
there exist a contractile complex C’ of (permeable) RH c-bimodule such that

X* Rpray X = RHc® C'.
2. All the terms of the complexes X and X* are permeable bimodules.

The complexes X and X* are called permeable (two-sided) tilting complexes.
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Remark 5.6. It is clear that a splendid derived equivalence (see [14]) is a permeable
equivalence since all the terms of the tilting complex are p-permutation bimodules.

Lemma 5.7. Let X, be a bounded complex which induces a permeable derived equivalence
between RHc and RGb. Then the functor L, induces a functor from K®(proj(Fun}(c)))
to K®(proj(Funk(b))).

Proof. The finitely generated projective objects of the category F' unE(c) are the Yoneda
functors, that is Yy = Hompgg.(—, V), where V is a finitely generated p-permutation
RHc-module. Let (Fo,m) be a right bounded complex of Yoneda functors. That is
the non-zero terms are of the form F; = Hompp.(—,V;) for a finitely generated p-
permutation RHc-module V;. Let M be a p-permutation RGb-module. Then, we have:

(Lx.(F.)) (M) = @ F(X; @ M)
i—j=k

= P Homru(X; ®ra M, Vi)
i—j=k

=~ B Homgra(M, Hompu(X;, Vi),
i—j=k

Since X is projective as RHc-module, we have, by Corollary 9.4.2 [§], an isomorphism
of functors
HomRHc(Xj, —) = HomR(Xj,R) RRHe —-

Now, Hompg(Xj, R) is a permeable bimodule. Then the RGb-module
HOTTLRH(X]‘, Vz) = HomR(Xj, R) X RHe V]

is a p-permutation RGb-module.
Since the isomorphism Hom gy (X;@raM,V;) = Hompa(M, Hompgg (X, V;)) is natural
in M, we have an isomorphism of functors

(Lx.(F.), = @D Hompa(—, Hompu(X;,V;)),
i—j=k

So Lx, (Fe )i is a (finite) direct sum of finitely generated projective functors. O

Theorem 5.8. Let G and H be two finites groups, let b be a block of RG and ¢ be a
block of RH. If the block algebras RGb and RHc are permeable derived equivalent, then
the categories Comackg(b) and Comackg(c) are derived equivalent.

Proof. It is enough to check that FunE(b) and FunE(c) are derived equivalent. Let X
be a permeable tilting complex for RHc¢ and RGb. There exist a contractile complex of
permeable RH c-bimodules such that:

X®RGbX* :RHCGBC,
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Then as functors between the homotopy category K~ (proj(Fun}(c))), we have:

LX* (¢] LX = LX@RGbX*
= LrHcoC
= Lruc ® Lo
= LRHe-
Now, it is clear that Lgp. is the identity of K~ (proj(Fun}(c))). Conversely, we have:

Lx o Lx+ = Lggy-

So the homotopy categories K~ (proj(Funj(c))) and K~ (proj(Funj(b))) are equivalent
(as triangulated categories). By Theorem 6.4 [13], the categories D°(Comackg(c)) and
Db(Comackg(b)) are equivalent. O

6 Applications.

6.1 Nilpotent blocks.

Although the determinant of the Cartan Matrix of a block b of kG is a power of p, for the
corresponding blocks of the Mackey algebra, it is much more complicated (see [6]). By
the results of [16] this determinant is non zero. However the determinant of the Cartan
matrix of a block of a cohomological Mackey algebra can be zero. Bouc in [6] proved that
the Cartan matrix of copy(b) is non singular if and only if the block b is a nilpotent block
with cyclic defect group. This proof is based on a combinatorial approach, and it may
be surprising that nilpotent blocks and cyclic defect groups appear in that situation.
We will apply Theorem B8] to this situation, and show that it is in fact very natural.
Let B be a block of kG, for an arbitrary finite group G. If B is a nilpotent block with
defect group P, then by Puig’s Theorem (see [12] or [9]), there is an isomorphism of
k-algebras,
B = Mat(m, kP),

for some m € N. For the cohomological Mackey algebras, we can lift an equivalence
between blocks of group algebras, but for this we need that the equivalence sends p-
permutation modules to p-permutation modules. Unfortunately it is not always the
case. If the reader is not convinced by this fact he might look at Section 6.2 of this
paper, or at Section 7.4 of [14].

By the results of sections 7.3 and 7.4 of [14] and results of [4] and [I1], if p > 2, or P is
abelian (N.B. in fact one can ask weaker condition in case of p = 2), we can replace the
bimodule which gives the Morita equivalence between B and kP by a splendid tilting
complex of B-kP-bimodules.

Corollary 6.1. Let B = kGb be a nilpotent block with defect p-group P. If p = 2 assume
that P is abelian. Then

D(copuy,(G)e(b)-Mod) =2 D®(copy,(P)-Mod) as triangulated categories.
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Since the determinant of Cartan matrices is invariant under derived equivalences, the
determinant of the Cartan matrix couy(G)c(b) is non zero if and only if the determinant
of the Cartan matrix copu(P) is non zero. However it is well known that this is the case
if and only if the group P is cyclic: indeed the projective indecomposable cohomological
Mackey functors for a p-group P are F’ PIndS( k) for @ < P. By adjunction, the coefficient

of the Cartan matrix indexed by two projective FPIndg(k) and F' P, .p (k) 1s:
Q/

Co.o = dimyHomyp(Indg(k), Indgy (k))
= dimyHomyp(k, ResgIndb k)
= Card(|Q\P/Q")).

By the main result of [I5], this matrix is non degenerate if and only if P is cyclic.

6.2 Application to representation’s theory of finite groups.

As immediate, but useful corollary of Proposition .5, we have:

Corollary 6.2. Let G and H be two finite groups. Let b be a block of RG and c be a block
of RH. If the cohomological Mackey algebras copur(G)e(b) and copr(H)i(c) do not have
the same Cartan matriz, then RGb and RHc are not ‘splendidly’ Morita equivalent.

This is useful since there are algorithm which compute these Cartan matrices. By
testing this algorithm, the author found an astonishing (at least for him) example of
nilpotent blocks with quaternion defect group, where the comportement of the simple
modules is rather sophisticated.

Let k be an algebraically closed field of characteristic 2. Let p be an odd prime. Let X3
be an extra-special group of exponent p, that is:

Xps=<a,b,z ;P =P =2 =1, [a,b] = 2, [a,2] = [b,2] =1 >.

Let Qg be a quaternion group of order 8, that is:

Qs:=<i,j;it=1, =4 jij7'=i'>

Then, one can represent Qg as a subgroup of GLy(F,) by sending i to the matrix

0 -1 . . r oy 9 9 _
(1 0 )andgtothematr1x<y _x>,wherex +y°=—-1.

A matrix ( @ B > induces an automorphism of X3 defined by:
v 4

o a— a®’,
o b— ab?,

o 2 2008y,
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Let us consider G = X3 @ Qg, where Qg acts on X5 via its representation in G Ly(F)).
Lemma 6.3. There are 1’2% + p blocks of kG.

° pQTfl blocks with defect 0.
e p nilpotent blocks with Qg as defect group.

Sketch of proof. Since X, is a 2'-group, the blocks of this group are in bijection with the
isomorphism classes of simple modules. There are p> — 1 representations which factorise
through C), x C, = X,5/D(X,3). By usual clifford theory there are p%l blocks of kG
covering all these blocks. Now there are p—1 blocks of kX3 corresponding to the simple
modules of dimension p, induced by a character of kC),. Let ¢ be a p-root of 1 in k, then
the simple module V; of dimension p is:

X
Ve = Ind L, InfS857 ke

The inertie group of V¢ is G, so this gives a simple module of kG with Qg as vertex. We
denote by L¢ the kG-module such that Resg}( JLe=Ve. U
P

Proposition 6.4. Let ¢ be a p-root of 1 in k. Let L be the corresponding simple
kG-module and let be be the corresponding block. Then

o Ifp#1 mod 8, then kGb¢ is not splendidly Morita equivalent to kQs.

o Let p=1 mod 8 and let t(¢) = >, ;C*, where I is the set of quadratic residues
mod p. If t(¢) = 0, then kGb¢ is splendidly Morita equivalent to KQg.

o Ift(¢) =1 and p =17, then kGb¢ is not splendidly Morita equivalent to kQs.

Remark 6.5. The condition p = 17 appears only because we are not able to find a general
proof of this result. However it seems that the result should be true for all p =1 mod 8.
In particular we check it with GAP in several cases.

Proof. Here, we are very sketchy. The first part follows from Mazza’s work. See Section
4.2 of [10]. It is showed that ResgSLC is an endo-trivial module with source S¢ such
that dimyS¢ = p mod 8. So if p # 1 mod 8, then L is not a 2-permutation module
and the Morita equivalence is not splendid.

If p =1 mod 8, then the source can be either the trivial module or an endo-trivial
module of dimension 9. Let w € F, such that w? =1 and let b be a generators of Fy.
The module Resgng is a trivial source module if and only if k£ is a direct summand of

ResgSLC. This appends if and only if there is a vector v € LCQ8 and an invariant linear
form ¢ on ResggLC such that ¢(v) = 1.

Let i € F) /<w>. Let t; := ¢ 4 ¢t - Cw%l + Cwabl € F2%_1 be a Gaussian sum. Let
M be the matrix indexed by ) /<w>, where the (i,j)th. coefficient is ¢;1;. One can
check that L, is a 2-permutation module if and only if the constant vector (1,1,--- ,1)"
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is in the image of M — Id.

Now, if ¢(¢) = 0, we have (M — Id) - (1,0,1,0,---1,0)* = (1,1,--- , 1)&.

If p =17 and ¢({) = 1 an easy computation shows that (1,1,---,1) canot be in the
image of M — Id. O
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