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EXCEPTIONAL AND MODERN INTERVALS OF THE TAMARI
LATTICE

BAPTISTE ROGNERUD

Abstract. In this article we use the theory of interval-posets recently introduced by
Châtel and Pons in order to describe some interesting families of intervals in the Tamari
lattices. These families are defined as interval-posets avoiding specific configurations.
At first, we consider exceptional interval-posets and we show that they correspond to
the intervals which are obtained as images of non-crossing trees in the Dendriform
operad. We also show that the exceptional intervals are exactly the intervals of the
Tamari lattices induced by intervals in the posets of non-crossing partitions. In the
second part, we introduce the notion of modern and infinitely modern interval-posets.
We show that the modern intervals are in bijection with the new intervals of the
Tamari lattices in the sense of Chapoton. Finally, we consider the family of infinitely
modern intervals and we prove that there are as many infinitely modern interval-posets
of size n as there are ternary trees with n inner vertices.

1. Introduction

The family of the Tamari lattices is extremely rich from the point of view of combi-
natorial algebra. It has two main interpretations as posets of type A. First, the Tamari
lattice on the set of binary trees with n inner vertices, denoted by Tamn, is isomorphic
to the poset of tilting modules over a linearly oriented quiver of type An (see [BK04]
and [HU05] for more details. A bijection between tilting modules and binary trees was
already defined by Gabriel [Gab81]). On the other hand, it is part of the Cambrian
lattices of type An−1 (see [Rea06] for more details). Finally, let DWn be the distributive
lattice of upper ideals in the poset of positive roots of the root system of type An−1.
Then the Tamari lattice Tamn is conjecturally deeply related to DWn (see [Cha12,
Conjecture 5.3] for more details).

As another intriguing feature of this lattice, we have its poset of intervals. It was
proved by Chapoton that there is a beautiful formula for the number of intervals in the
Tamari lattice:

number of intervals in Tamn =
2(4n+ 1)!

(n+ 1)!(3n+ 2)!
.

It is remarkable that this formula has such a simple factorized form. More recently, in
[Cha17], Chapoton associated to any finite poset P a polynomial in 4 variables that
enumerates the intervals of P and he proved that the polynomial of the Tamari lattice
has a very particular behavior (this particular behavior is not shared with generic
posets).

In this article, we continue to investigate the set of intervals of the Tamari lattices.
We use the theory of interval-posets introduced by Châtel and Pons in [CP15] in order

The author has been supported by the IDEX BMM/PN/AM/No 2016-096c.



2 BAPTISTE ROGNERUD

to study two families of intervals. As intervals of the Tamari lattice, they seem to have
a rather complicated and unnatural description. However, they have a very simple
description in terms of interval-posets avoiding specific configurations.

In the first part of the article, we consider the family appearing as images of non-
crossing trees in the dendriform operad. These objects were introduced by Chapoton in
[Cha07], and it was proved in [CHNT08] that they are intervals in the Tamari lattice. In
Theorem 3.6, we complete this result by giving a precise description of these intervals
in terms of interval-posets. This description is used in another article, providing a
proof of Conjecture 3.1 of [Cha12] (see [Rog18] for more details). By construction,
these intervals are in bijection with the non-crossing trees. In particular, in the Tamari
lattice of size n, there are 1

2n+1

(
3n
n

)
such intervals. We call them exceptional because

they are also in bijection with the set of exceptional sequences (up to an equivalence
relation) in the bounded derived category of a linearly oriented quiver of type A (see
[Ara13] and [Cha16, Section 3] for more information). We would need to introduce too
many algebraic objects to really explain what we have in mind here, but we expect this
relation with the exceptional sequences to be much more than a bijection.

At an elementary level, the exceptional intervals turn out to have another nice de-
scription in terms of non-crossing partitions. It is well-known that the Tamari lattice
is a refinement of the poset of non-crossing partitions. More precisely, if NCn denotes
the poset of non-crossing partitions of size n, then there is an increasing bijection
φ : NCn → Tamn (a bijective homomorphism of posets). In Theorem 3.11, we prove
that an interval of Tamn is of the form [φ(π1), φ(π2)] for an interval [π1, π2] of non-
crossing partitions if and only if it is exceptional.

In the second part of the article, we consider the family of new intervals of the
Tamari lattices. It was shown by Chapoton that there is a structure of operad on the
set of intervals of the Tamari lattice (see [Cha17] for more details). The new intervals
are exactly the intervals that cannot be obtained as compositions of smaller intervals.
There is also a nice formula for the number of such intervals:

number of new intervals in Tamn = 3 · 2n−2(2n− 2)!

(n− 1)!(n+ 1)!
.

In Section 4, we find the description of the interval-poset corresponding to a new
interval and we deduce an intrinsic characterization of these intervals. Our main tool
is what we call the raise of an interval-poset. This operation increases the size of an
interval-poset by 1, and shifts by 1 all the increasing relations of the poset. After
shifting the increasing relations by 1, the result is not necessarily a poset since the new
increasing relations may contradict the decreasing ones. In order to avoid this problem,
we introduce the family of modern interval-posets and show that they are exactly the
interval-posets for which the raise is also an interval-poset. Then we prove that an
interval is new if and only if its interval-poset is the raise of a modern interval-poset.
In terms of binary trees, the raise sends an interval [S1, T1] to the interval [S, T ] where
S (respectively T ) is obtained by grafting the root of S1 (respectively T1) on the first
(respectively second) leaf of the unique binary tree of size 1 denoted by Y .

In the last section, we consider the interval-posets for which all the successive raises
are interval-posets. We call them infinitely modern. It seems that this family of intervals
has not been considered before. Using a double statistic on the set of interval-posets, we
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recover the triangular decomposition of the Fuss–Catalan number 1
2n+1

(
3n
n

)
introduced

by Aval in [Ava08]. As corollary, we prove in Theorem 5.7 that there are as many
infinitely modern interval-posets of size n as there are ternary trees with n inner vertices.
Acknowledgement. This work was done when I was a postdoc at the University of
Strasbourg and I am grateful to Frédéric Chapoton for introducing me to this subject,
for his support, his comments and the many things he taught me. I am also grateful to
Camille Combe for the many discussions about the last part of this article. I am very
grateful to the referee for the careful reading of this paper.

2. Interval-posets, intervals of the Tamari lattices and conventions

In this section, we recall the construction of interval-posets of Châtel and Pons intro-
duced in [CP15] and we recall that they are in bijection with the intervals of the Tamari
lattice. One should note that this bijection is not canonical. More precisely, it depends
on the various choices that one has to make in order to define the Tamari lattices as
partial orders on sets of binary trees. This is why we start by carefully stating our
conventions.

Let n ∈ N. A (planar) binary tree of size n is a graph embedded in the plane which
is a tree, has n vertices with valence 3, n+2 vertices with valence 1 and a distinguished
univalent vertex called the root. The other vertices of valence 1 are called the leaves of
the tree. For the rest of the paper, when we speak about vertices of the tree, we have
in mind the trivalent vertices. The planar binary trees are pictured with their root at
the bottom and their leaves at the top.

With this fixed convention, we can speak about left and right children of a vertex
of a binary tree T . For us the child of a vertex is connected to his parent by a single
edge. A descendant is a child, grandchild, great-grandchild, and so on. If v is a vertex
of T , we let T1 (respectively T2) be the subtree with root the left child (respectively
right child) of v. We say that T1 (respectively T2) is the left subtree (respectively right
subtree) of v.

Let Tamn be the set of all binary trees with n vertices. It is well-known that the
cardinality of this set is the Catalan number cn = 1

n+1

(
2n
n

)
.

There is a partial order relation on Tamn which was introduced by Tamari in [Tam62].
It is defined as the transitive closure of the following covering relations. A tree T is
covered by a tree S if they only differ in some neighborhood of an edge by replacing
the configuration in T by the configuration in S. The poset Tamn is known to
be a lattice.

A binary search tree is a binary tree labeled by integers such that, if a vertex x is
labeled by k, then the vertices of the left subtree (respectively right subtree) of x are
labeled by integers less than or equal (respectively superior) to k.

If T is a binary tree with n vertices, there is a unique labeling of the vertices by
each of the integers 1, 2, . . . , n that makes it a binary search tree. This procedure is
sometimes called the in-order traversal of the tree or simply as the in-order algorithm
(recursively visit left subtree, root and right subtree). The first vertex visited by the
algorithm is labeled by 1, the second by 2 and so on. See figure 1 for an example. Since
this labeling is canonical, we will allow ourself to identify vertices with their label.
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Using this labeling, a binary tree T with n vertices induces a partial order relation
C on the set {1, 2, . . . , n} by setting iC j if and only if the vertex labeled by i is in the
subtree with root j.

When (P,C) is a partial order on the set {1, 2, . . . , n}, one can use the natural total
ordering of the integers 1, 2, . . . , n, which we denote by <, to split the relations C in
two families. Let a, b be two integers with 1 6 a < b 6 n. If a C b we say that the
relation is increasing. On the other hand, if bCa, we say that the relation is decreasing.
We denote the sets of decreasing and increasing relations of P by Dec(P ) and Inc(P ),
respectively.

There is a particularly nice way to draw such a poset (P,C). If a relation i C j is
increasing, draw a (red) arrow from i to j under the integers i, i+ 1, . . . , j. If there is a
decreasing relation jC i draw a (blue) arrow from j to i over the integers j, j− 1, . . . , i.
See Figure 1 for an example.
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1 2 3 4 5 6 7 8

Figure 1. On the left, an example of the labeling of the vertices of a
binary tree by calling the ‘in-order’ algorithm. On the right, the poset
induced by the tree.

We have a useful characterization due to Châtel, Pilaud and Pons [CPP17] of the
partial order of the Tamari lattice in terms of increasing or decreasing relations.

Proposition 2.1. Let T1 and T2 be two binary trees. The following are equivalent.

(1) T1 6 T2 in the Tamari lattice.
(2) Dec(T1) ⊆ Dec(T2).
(3) Inc(T2) ⊆ Inc(T1).

Proof. See [CPP17, Proposition 40 and Remark 52]. �

Definition 2.2. An interval-poset (P,C) is a poset over the integers 1, 2, . . . , n such
that

(1) If aC c and a < c, then, for all integers b such that a < b < c, we have bC c.
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(2) If cC a and a < c, then, for all integers b such that a < b < c, we have bC a.

The conditions (1) and (2) of this definition will be referred to as the interval-poset
condition. The integer n in the definition is called the size of the interval-poset.

Remark 2.3. Let (P,C) be an interval-poset. If x C y is an increasing relation (re-
spectively a decreasing relation), then by the interval-poset condition there is a relation
y− 1C y (respectively x+ 1Cx). The existence of such ‘small’ relations will be crucial
in most of our proofs on modern interval-posets.

Theorem 2.4 (Châtel, Pons). Let n ∈ N. There is a bijection between the set of
intervals in Tamn and the set of interval-posets of size n.

Proof. This is Theorem 2.8 of [CP15].
Since we need to use the explicit version of the theorem, let us recall the two inverse

bijections. if [S, T ] is an interval in Tamn, we construct an interval-poset as follows.
The trees S and T can be seen as binary search trees and they induce two partial order
relations CS and CT . Let P = {1, 2, . . . , n}. There is a binary relation C on P given
by the disjoint union of the decreasing relations of S and the increasing relations of T .
Then it is proved in [CP15] that (P,C) is an interval-poset.

Conversely, we assume that (P,C) is an interval-poset of size n. Let D be the poset
obtained by only keeping the decreasing relations of P . Similarly, let I be the poset
obtained by only keeping the increasing relations. By [CP15, Lemma 2.5], the Hasse
diagrams of these two posets are two forests. By adding a common root to the trees
of each of these forests, we obtained two planar trees. Now, we produce binary trees
starting from these planar trees.

For I we recursively produce a binary tree T by using the rule: right sibling becomes
right child and child becomes left child.

For D we recursively produce a binary tree S by using the rule: left sibling becomes
left child and child becomes right child.

The tree S is smaller than T for the order of the Tamari lattice, so we have an interval
[S, T ].

These two correspondences are sometimes called the Knuth correspondences or the
natural correspondences (see [dBM67] or [HPT64] for more details).

It was proved in [CP15, Theorem 2.8] that these two constructions give two bijections
inverse of each other. �

Finally, we need a useful translation in the world of interval-posets of the usual
left/right symmetry of trees.

Lemma 2.5. Let [S, T ] be an interval in Tamn and P be its corresponding interval-
poset. The interval-poset corresponding to the interval obtained by taking the left/right
symmetry of S and T is the interval-poset Q of size n defined by aCQ b⇔ n+ 1−aCP
n+ 1− b.

3. Exceptional intervals of the Tamari lattice

In [Cha07], Chapoton introduced an operad NCP of non-crossing plants. A non-
crossing plant is a generalization of a non-crossing tree. Since we will not work with
them, we refer the reader to the original article for a precise definition. We will only
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use the fact that non-crossing trees are particular examples of non-crossing plants. It
was proved that this operad (in the category of sets) is a sub-operad of Dend, the
Dendriform operad. Then it was proved in [CHNT08] that the image of a non-crossing
tree in Dend is of the form

∑
t∈I t where I is an interval in the Tamari lattice. An

interval that appears as such an image of a non-crossing tree is called exceptional. In
this section, we reprove and make precise this result by giving an explicit description
of the exceptional intervals in terms of the interval-posets. Since they are in bijection
with the non-crossing trees, the number of exceptional intervals in the Tamari lattice
of size n is 1

2n+1

(
3n
n

)
.

There is another well known family of intervals of the Tamari lattice counted by
these numbers: it is classical that the Tamari order is a refinement of the usual partial
ordering of the non-crossing partitions (see [BB09, Section 2] for more details). This
implies that an interval in the poset of non-crossing partitions can naturally be seen
as an interval in the Tamari lattice. By a result of Kreweras [Kre72] or a bijection
of Edelman [Ede82], the number of intervals of non-crossing partitions of size n is

1
2n+1

(
3n
n

)
. At the end of this section, we show that this family coincides with the family

of exceptional intervals.

3.1. Exceptional intervals and non-crossing trees. A non-crossing tree in the
regular n+1-gon is a set of edges between the vertices of the polygon with the following
properties

• edges do not cross pairwise,
• any two vertices are connected by a sequence of edges,
• There is no loop made of edges.

The boundary edges are allowed in the set. It is classical that the number of non-crossing
trees in the regular n+ 1-gon is 1

2n+1

(
3n
n

)
(see e.g. [DP93, Theorem 3.10]).

Given two non-crossing trees f and g in regular polygons and a side i of the regular
polygon containing f , one can define the composition f ◦i g in the grafting of the
polygons containing f and g. This is defined as the union of the two trees, with some
modifications along the grafting diagonal. If the diagonal is present in both f and g,
then it is kept in f ◦i g. If it is present in exactly one of the two trees, then it is not kept
in f ◦i g. Otherwise, the result is not a non-crossing tree. One ‘denominator’ diagonal
is added and the result is a non-crossing plant. We refer to [Cha07, Section 5.2] for
more details.

It was shown in [CHNT08, Section 5.1] that one can construct a poset from a non-
crossing tree. Let us recall this construction.

Let T be a non-crossing tree in a based regular n + 1-gon. Here by based, we mean
that we choose one side of the polygon and call it the base. We can label the edges of
the n + 1-gon by assigning the number 0 to the base, and then successively assigning
the numbers 1 to n to the edges in clockwise order. If an edge of T is a boundary edge
we assign to it the number of the boundary edge. Otherwise, the label of the edge of
the non-crossing tree is the number of the unique open boundary edge that it separates
from the base. Then we set iCT j if the edge i is separated from the base by the edge
j. An example is given in Figure 2.
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Figure 2. On the left, an example of a non-crossing tree in a 12-gon
and in the center the induced labeling of the non-crossing tree. On the
right, the Hasse diagram of the corresponding poset where the maximal
elements are 1 and 11.

Lemma 3.1. Let T be a non-crossing tree in a based regular n+ 1-gon. Then the poset
([1, n],CT ) is an interval-poset that we denote by PT .

Proof. We label the boundary edges of a based regular n+ 1-gon as above. We use the
notation [i1, i2] where i1 6 i2 for the edge that goes from the left side of the boundary
edge i1 to the right side of the boundary edge i2. For example, in Figure 2, the edge with
label 6 corresponds to [4, 6] and the edge labeled by 4 corresponds to [4, 4]. Note that,
by construction of our labeling, the edge [i1, i2] labeled by i separates the boundary
edge i of the regular n+ 1-gon from the base. In particular this implies that 1 6 i1 6 i
and i 6 i2 6 n.

Let us check that the poset PT = ([1, n],CT ) is an interval-poset. Let 0 < i < j <
k 6 n be such that i C k. This means that the edge [i1, i2] labeled by i is separated
from the base by the edge [k1, k2] labeled by k. Since, k separates i from the base and
T is a non-crossing tree, we see that the only possibility is to have:

k1 6 i1 6 i 6 i2 6 k 6 k2.

The boundary edge j is between i and k, so either it is before i2 or after. Since T is
a non-crossing tree the edge j cannot cross the edges i and k. So, in the first case k
and i separate j from the base, and in the second case k separates j from the base. In
particular, we have j C k. See Figure 3 for an illustration where the letter j is used for
the first case and the letter J for the second. The case where k C i is similar and is
illustrated in the right part of Figure 3. �
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Figure 3. On the left the case i < j < k and i C k. On the right
i < j < k and k C i.

Lemma 3.2. Let T be a non-crossing tree in a based regular n+1-gon. Then the Hasse
diagram1 of the interval-poset PT = ([1, n],CT ) does not contain any configuration of
the form y → z and y → x where x < y < z.

Proof. Let us assume that we have integers x < y < z such that y C x and y C z. This
means that the edge x = [x1, x2] separates y = [y1, y2] from the base. As in the proof
of Lemma 3.1, this implies that

x1 6 y1 6 y2 6 x2.

Similarly, the edge z = [z1, z2] separates y from the base, so we have

z1 6 y1 6 y2 6 z2.

Since T is a non-crossing tree, if x1 6 z1, then necessarily x2 > z2. In this case the
edge x separates the edge z from the base and we have z C x. If z1 6 x1, then x2 6 z2

and we have x C z. In both cases, we see that one of two relations y C x and y C z is
not a cover relation. In particular the configuration y → z and y → x does not appear
in the Hasse diagram of the poset. �

Definition 3.3. An interval-poset whose Hasse diagram does not contain any con-
figuration of the form y → z and y → x where x < y < z is called an exceptional
interval-poset.

If (P,C) is an interval-poset over the integers [1, n], we can construct a graph GP

in a based regular n + 1-gon by using the following procedure which is nothing but
a reformulation in terms of interval-posets of the construction explained in [CHNT08,
Section 5.1]. Let us start by labeling the boundary edges of the polygon as above. Then,
for an integer v, consider the poset {x ∈ [1, n] : xC v}. It has a minimal element (for
the usual order relation <) v1 and a maximal element v2. We associate to v the edge
in the polygon from the left side of v1 to the right side of v2.

1We use the symbol y → z to indicate the presence of an arrow from y to z in the Hasse quiver of
the poset PT . This means that y CT z is a cover relation.
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Lemma 3.4. If (P,C) is an exceptional interval-poset of size n, then the graph GP is
a non-crossing tree.

Proof. Let (P,C) be an exceptional interval-poset. If k is a maximal element of P (for
the relation C), then the set Ik := {i ∈ P : i C k} is an interval because P is an
interval-poset. Moreover, if k and k′ are two maximal elements of P , then the intervals
Ik and Ik′ are disjoint. Indeed, let z ∈ P such that z C k and z C k′. We can assume
that k 6 k′. If z 6 k 6 k′, then the interval-poset condition implies that k C k′ and by
maximality k = k′. Similarly, if k 6 k′ 6 z, the interval-poset condition implies that
k′ C k and by maximality, we have k = k′. Now, if k < z < k′, by maximality of k and
k′, we have a configuration of the form z → k and z → k′ in the Hasse diagram. This is
not possible since the interval-poset P is exceptional. In other words, the exceptional
interval-posets are nothing but the non-interleaving forests introduced in [CHNT08,
Section 5.1]. In particular, the result is a direct consequence of [CHNT08, Lemma 5.2].
We sketch it for the convenience of the reader.

It is easy to see that the poset P has a unique maximal element if and only if the
base of the polygon is in the graph GP . In this case, we say that GP is based.

The interval-poset P is a disjoint union of s interval-posets Ik1 , . . . , Ikn where ki runs
through the maximal elements of P . If there is more than one maximal element, by
induction on the size of the poset we see that the graph GIki

is a based non-crossing
tree. Now, it is easy to see that the graph GP is obtained by gluing the base of all the
non-crossing trees GIki

on the boundary of a regular s+ 1-gon. More formally, in terms
of NCP-operads, we have Gp = S ◦1 GIk1

◦2 · · · ◦sGIks
, where S is the non-crossing tree

with s edges consisting of all boundary edges of the regular s + 1-gon, except for the
base.

If there is only one maximal element m in P , then GP is based. The case where P
has only two elements is elementary and can be checked by listing all the possible cases.
If |P | > 3, let P1 = {i ∈ P : i < m} and P2 = {i ∈ P : m < i}. Clearly P1 and
P2 are two disjoint interval-posets of size smaller than |P |. By induction, the graphs
IP1 and IP2 are non-crossing trees. Let U be the non-crossing tree in a based square
consisting of the base and the two adjacent boundary edges. It is now easy to see that
GP = (U ◦1 IP1) ◦3 IP2 . In particular, GP is a non-crossing tree. �

Proposition 3.5. The map sending a non-crossing tree T to the interval-poset PT and
the map sending an exceptional interval-poset P to the non-crossing tree TP are two
bijections inverse of each other between the set of non-crossing trees in a based regular
n+ 1-gon and the set of exceptional interval-posets of size n.

Proof. The result is proved by induction. The cases n = 0, 1 and 2 can be easily checked
by hand. Let n > 3. If T is a non-crossing tree, we denote the exceptional interval-
poset obtained in Lemma 3.1 by PT . If P is an exceptional interval-poset, we denote
the non-crossing tree obtained in Lemma 3.4 by TP . Let S be the non-crossing tree with
s edges consisting of all boundary edges of the regular s + 1-gon, except for the base.
Let T1, · · · , Ts be s based non-crossing trees. Let T = S ◦1 T1 ◦2 · · · ◦s Ts. The edges of
Ti (viewed as edges in T ) are separated from the base by the base of Ti, and the edges
of Ti are not separated from the base by any edge of Tj for i 6= j. This implies that
PT is the disjoint union of the posets PTi and all these posets have a unique maximal
element.
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If the poset P has more than one maximal element, we have P = P1 t · · · t Ps
where Pi is the set of elements smaller than the i-th maximal element. By the proof of
Lemma 3.4, the corresponding non-crossing tree TP is of the form S ◦1 IP1 ◦2 · · · ◦s IPs .
By the remark above, the poset corresponding to the tree TP is PIP1 t · · · t PIPs . Now,
by induction we have that PTP = P .

Similarly, if the tree T is not based, it can be written as S ◦1 T1 ◦2 · · · ◦s Ts where Ti
are based non-crossing trees. So, we have PT = PT1 t · · · t PTs , and TPT = S ◦1 TPT1 ◦2

· · · ◦s TPTs . One more time, an induction gives the result.
Let U be the non-crossing tree in a based square consisting of the base and the two

adjacent boundary edges. If T is a based non-crossing tree, there are two non-crossing
trees T1 and T2 such that T = U ◦1 T1 ◦3 T2. It is easy to see that the poset PT is
of the form P1 t {m} t P2, where m is the labeling of the base of T , P1 is the subset
consisting of the elements smaller (for <) than m and P2 is the set of elements larger
than m. Since m is the label of the basis it is the unique maximal element of PT .
Using this decomposition of based non-crossing trees, and exceptional interval-posets
with a unique maximal element, it is easy to prove by induction that TPT = T and
PTP = P . �

By [Cha07, Theorem 5.3], there is an injective morphism of operads (in the category
of sets) Θ from the operad of non-crossing plants NCP and the dendriform operad
Dend. Using exceptional interval-posets we describe the image of a non-crossing tree
by Θ.

Theorem 3.6. Let T be a non-crossing tree. Let the image of T in Dend be
∑

t∈I t.
Then the set of trees I is the interval of the Tamari lattice corresponding to the excep-
tional interval-poset PT .

Proof. Since exceptional interval-posets are the same as non-interleaving forests, the re-
sult follows from a reformulation of [CHNT08, Section 5.1] and a description of interval-
posets in terms of linear extensions due to Châtel and Pons. We sketch the arguments.

Let φ : NCP → Mould be the injection defined in [Cha07, Section 5.2] or in
[CHNT08, Section 5.2]. Let ψ : Dend → Mould be the injection defined in [Cha07,
Theorem 3.1]. Since the maps Θ, φ and ψ are morphisms of operads and since the
diagram is commutative on the elements of NCP(2), the following diagram is commu-
tative:

NCP
φ

%%

Θ // Dend
ψ

yy
Mould

Moreover, all the morphisms are injective.
Let T be a non-crossing tree. By [CHNT08, Lemma 5.3], we have φ(T ) =

∑
σ∈L(PT ) fσ

where PT is the exceptional interval-poset that corresponds to P and L(PT ) is the set
of all linear extensions of PT and if σ ∈ Sn, then fσ is the fraction defined by

fσ(u1, . . . , un) =
1

uσ(1) · (uσ(1) + uσ(2)) · · · · · (uσ(1) + · · ·+ uσ(n))
.
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For σ, σ′ ∈ Sn the multi-residue
∮
σ

(see [Cha07, Proposition 3.3]) has the property that∮
σ
fσ′ 6= 0 if and only if σ = σ′. So, for σ ∈ Sn, we have

∮
σ
φ(PT ) 6= 0 if and only if σ is

a linear extension of PT .
On the other hand, by [Cha07, Proposition 3.3], if T is a binary tree, we have∮

σ
ψ(T ) 6= 0 if and only if σ is a linear extension of the poset induced by the tree

T . As a consequence, I is the set of trees whose linear extensions are exactly the linear
extensions of PT . Now, by [CP15, Theorem 2.8], this implies that I is an interval of
the Tamari lattice, and that PT is the interval-poset corresponding to I. �

3.2. Non-crossing partitions. A partition (b1, . . . , bm) of {1, 2, . . . , n} is non-crossing
if there do not exist 1 6 i < j < k < l 6 n such that i, k ∈ bs and j, l ∈ bt for s 6= t. Let
NCn be the set of all non-crossing partitions of {1, 2, . . . , n}. It is well-known that the
cardinality of this set is the Catalan number cn. The refinement of partitions induces a
structure of partial order on NCn which is known to be a lattice (see [Kre72] for more
details).

It is also classical that the Tamari lattice is a refinement of the poset of non-crossing
partitions. In general, it is convenient to realize these posets on the set of Dyck paths
via well chosen bijections in order to compare them (see [BB09, Section 2] for more
details). Here, in order to simplify the proofs, we realize the poset of non-crossing
partitions on the Tamari lattice, using a bijection similar to a bijection introduced by
Edelman [Ede82].

If T is a (planar) binary tree, we can view it as a binary search tree using the in-order
algorithm (this is why our bijection is not the same as Edelman’s bijection: he labeled
the trees with pre-order traversal). Then the partition πT associated to the tree T is
the finest partition of {1, 2, . . . , n} such that, if j is right child of i, then i and j are in
the same block. For example, the partition corresponding to the binary tree of Figure 1
is {1, 3, 4}, {2}, {5, 8}, {6, 7}.

Lemma 3.7. Let T be a binary tree and πT its corresponding partition. Then πT is a
non-crossing partition.

Proof. Let i < j < k < l such that i, k are in a block b1 and j, l are in a block b2. The
vertex of T labeled by k is a right descendant of the vertex labeled by i.

Since the in-order algorithm goes first through left subtrees, then it visits the root
and finally goes through right subtrees, the vertex j is in the right subtree of i. Since
l and i are in the same block, the vertex l is a right-descendant of i. Since k < l, the
vertex k is in the right subtree of j. The only possibility is to have that j, k and l are
right descendants of i. So, they are in the same block. �

Conversely, if π = (b1, . . . , bm) is a non-crossing partition of {1, 2, . . . , n} we will
construct a binary search tree associated to this partition. We assume that the blocks of
the partition are totally ordered in such a way that min(b1) < min(b2) < · · · < min(bn)
and the elements of the blocks are ordered by the natural ordering of the integers. The
tree Tπ is constructed in two steps:

(1) To each block bi is associated a binary tree Ti with root min(bi) and if y is the
successor of x in the block bi, then y is the right child of x.
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(2) If Ti is a tree constructed in the first step, let mi be the vertex with maximal
labeling in the tree. We construct inductively a tree Tπ by grafting the root of
Ti as the left child of the vertex labeled by mi + 1. For an example see Figure 4.

1 2 3 4 5 6 7 8

1
2

73
4

5
6

8 8

3

1
2

4

5

6

7

Figure 4. An example of the two steps of the construction of a binary
tree associated to a non-crossing partition.

Lemma 3.8. Let π be a non-crossing partition of {1, 2, . . . , n} and Tπ the corresponding
binary tree. Then Tπ is a binary search tree.

Proof. Let s be the label of a vertex. If x is a right descendant of s, then by construction
s and x are in the same block and we have s < x. If y is the left child of x, then the
maximal element of the block of y is x − 1. If z is in the block of y, then we have
s < z < x because s and x are in the same block, y and x − 1 are in the same block,
and the partitions are non-crossing. Using these remarks, it is easy to check that, if z
is in the right subtree of s, then s < z. Similarly, it is easy to check that the elements
of the left subtree of s are labeled by integers strictly smaller than s. �

Proposition 3.9. The map sending a binary tree T to the non-crossing partition πT
and the map sending a partition π to the binary tree Tπ are two bijections inverse of
each other.

Proof. By construction of the tree T , the minimal elements of the blocks are the vertices
that are a left child of another vertex (i.e. they have a right parent) and their left
descendants are the elements of their block. So, the partition πTπ is equal to π. Since
there is a unique way to turn a binary tree into a binary search tree of size n using
exactly once each of the integers 1, 2, . . . , n, we have TπT = T . �

We can now be more precise about the fact that the Tamari lattice is a refinement
of the lattice of non-crossing partitions.

Lemma 3.10. Let π1 and π2 be two non-crossing partitions of {1, 2, . . . , n}. If π1 6 π2

in the poset of non-crossing partitions, then Tπ1 6 Tπ2 in the Tamari lattice.

Proof. Using Proposition 2.1, it is enough to show that the decreasing relations of Tπ1
are decreasing relations of Tπ2 .

Let i < j such that jCTπ1 i. In other words, the vertex j is in the subtree with root i.
Since i < j, this implies that j is in the right subtree of i. Let x be the right descendant
of i such that j is in its left subtree (if j is a right descendant of i, we have x = j).
Since the tree Tπ1 is a binary search tree, this implies that i < j < x. Moreover, by
construction of Tπ1 , the elements i and x are in the same block. Since the partial order
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relation for non-crossing partitions is given by merging blocks, in the partition π2 the
elements i and x are also in the same block. In other words, the element x is in the
right subtree of i in Tπ2 . Since i < j < x, this implies that j is also in the right subtree
of i, so we have j CTπ2 i. �

We can now characterize the intervals of the Tamari lattice that come from intervals
in the lattice of non-crossing partitions.

Theorem 3.11. Let n ∈ N. Let I be an interval of the Tamari lattice Tamn. Then
there is an interval of non-crossing partitions [π1, π2] such that I = [Tπ1 , Tπ2 ] if and only
if the interval-poset corresponding to I is exceptional.

Proof. Let π1 6 π2 in NCn. Let I = [Tπ1 , Tπ2 ] be the corresponding interval in Tamn

and P be the corresponding interval-poset. Let x < y < z such that we have a relation
y C x and y C z.

First assume that yCx is a cover relation. We will show that this implies the existence
of a relation xC z. This last relation implies that yC z is not a cover relation. We can
assume that y is the maximal element such that yCx is a cover relation and yC z. Let
tCx be a cover relation. If z 6 t, then by the interval-poset condition we have a relation
z C x and the relation y C x becomes the composite of y C z and z C x contradicting
the hypothesis. So, the maximal element t with a cover relation tC x is an element of
[y, z[. By the interval-poset condition, we have tC x, so by maximality we have t = y.

In other terms, in the decreasing forest of P , the element y is the right-most child of
x. So, using the bijection of Theorem 2.4 we see that y is the right child of x in the
tree Tπ1 . In terms of non-crossing partitions, this means that y is the successor of x
in its block. Since the partial order relation for the non-crossing partitions is given by
merging of blocks, we see that y is still in the block of x in π2. This implies that y is
also in the right subtree of x in Tπ2 .

In the increasing forest of P we have the relation y C z which means that y is in the
left subtree of z. Since y is a right descendant of x, this implies that x is in the right
subtree of z. Using one more time the bijection of Theorem 2.4, we have an increasing
relation xC z.

We only sketch the proof when yCz is a cover relation. We can assume y to be minimal
for this property. This implies that y is the left-most child of z in the increasing forest
of P . So y is the left child of z in Tπ2 . By the argument of Lemma 3.10, an increasing
relation of Tπ2 is also an increasing relation of Tπ1 . In particular, y is in the left subtree
of z in Tπ1 . The relation y C x in P implies that y is in the right subtree of x. Since
it is also in the left subtree of z, this implies that z is in the right subtree of x. So we
have the relation z C x in P .

We have proved that the interval-posets of the intervals of the Tamari lattice coming
from intervals of non-crossing partitions are exceptional. The result follows from the
fact that the number of exceptional interval-posets is the number of intervals in the
poset of non-crossing partitions. �
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4. New intervals and modern interval-posets

In this section, we introduce the notion of modern interval-posets and we show that
the modern interval-posets of size n are in bijection with the new intervals of Tamn+1.
Note that there is a shift of the size by 1.

4.1. New intervals of the Tamari lattice. From now on, we will always assume
that the leaves of the binary trees of Tamn are labeled from left to right by the integers
1, 2, . . . , n + 1. Let T ∈ Tamn and S ∈ Tamk. Let 1 6 i 6 n + 1. The binary tree
T ◦i S is the tree of size k + n obtained by grafting the root of S on the i-th leaf of T .
If [S1, T1] is an interval of Tamn and [S2, T2] is an interval of Tamk, and 1 6 i 6 n+ 1,
then the tree S1 ◦i S2 is smaller than T1 ◦i T2. We say that the interval [S1 ◦i S2, T1 ◦i T2]
is the i-th grafting of [S2, T2] on [S1, T1], and we denote it by [S1, T1] ◦i [S2, T2].

Definition 4.1. An interval of Tamn is called new if it cannot be obtained as the
grafting of two intervals.

The new intervals were introduced by Chapoton in [Cha17].

Lemma 4.2 (Chapoton). An interval [S, T ] of Tamn is new if and only if there is
no pair of subtrees (A,B) of S and T whose leaves are labeled by the same interval
[i, j] 6= [1, n+ 1].

Proof. If there is a subtree A of S whose leaves are labeled by [i, j] and a subtree B
of T whose leaves are also labeled by [i, j], then S is of the form S1 ◦i A and T is of
the form T1 ◦i B, so the interval is not new. Conversely, if the interval is not new, then
[S, T ] = [S1, T1] ◦i [A,B]. So there is a pair of subtrees (A,B) of S and T whose leaves
are labeled by the same interval [i, i+ size(S)]. �

With this criterion, it is easy to see that the new intervals of Tamn have a nice shape.

Lemma 4.3. Let n ∈ N∗. Let [S, T ] be a new interval of Tamn. Then there are two
binary trees S1 and T1 in Tamn−1 such that S = Y ◦1 S1 and T = Y ◦2 T1 where Y is
the unique binary tree of size 1.

Proof. The covering relation for the Tamari lattice is the left rotation. So, if there is a
vertex on the right side of S, it will be fixed by any left rotation, so it will also appear
at the same place in the tree T . Similarly, if there is a vertex on the left side of T it
must also be at the same place in S. So the subtrees with root s have the same interval
of leaves. Using Lemma 4.2, we see that the interval [S, T ] is not new in both cases. �

However, it is easy to find intervals with this nice shape but which are not new. We
will characterize the new intervals in this family in Theorem 4.18.

4.2. Raising and lowering of interval-posets.

Definition 4.4. Let n ∈ N. An interval-poset of size n is modern if it does not contain
any configuration of the form xC y and z C y with x < y < z.

Let us remark that, unlike Definition 3.3, the forbidden configuration here involves
all the relations and not only the relations in the Hasse diagram of the poset.
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Let us introduce the raise of a set with a reflexive binary relation2. If P = {1, 2, . . . , n}
is a set with a reflexive binary relation C, then (Ra(P ),CR) is the set {1, 2, . . . , n+ 1}
with the binary relation CR defined by keeping all decreasing relations of P and shifting
all the increasing relations of P by 1. More precisely, the relation CR is reflexive and
for x < y 6 n, we have y CR x if and only if y C x. For 1 < x < y 6 n + 1 we have
xCR y if and only if x− 1C y − 1. For an example, see Figure 5.

1 2 3
•

•
•

•
•

•

1 2 3 4
•

•
•
•

•
•
•

•

Figure 5. On the top an interval-poset of size 3 and its corresponding
interval of Tam3. On the bottom, its raise and the corresponding interval
of Tam4.

Lemma 4.5. Let (P,C) be an interval-poset of size n. Then the raise of P is an
interval-poset if and only if P is modern.

Proof. Since the raise only shifts the increasing relations of P , it is clear that the relation
CR satisfies the two conditions of interval-poset.

If the interval-poset P is not modern, there is a configuration of the form xC y and
z C y with x < y < z. The condition of interval-poset implies the existence of the two
relations y − 1C y and y + 1C y. It is clear that the raise of P is not a poset since we
have y CR y + 1 and y + 1CR y.

If the interval-poset P is modern, we need to see that Ra(P ) is a poset. If we have
in Ra(P ) two elements x < y such that xCR y and yCR x, then in P we have yCx and
x− 1C y− 1. Since x− 1 < x 6 y− 1, the condition of interval-poset of P implies that
we have a relation xCy−1. Similarly, since x 6 y−1 < y, the interval-poset condition
implies that we have a relation y − 1 C x. Since P is a poset, we have x = y − 1, and
we see that the relations xCR y and y CR x come from the relations y − 2C y − 1 and
y C y − 1 in P . In other words, the interval-poset P is not modern.

Let us assume that Ra(P ) contains two relations xCRy and yCRz but does not contain
the relation xCR z. Since increasing relations and decreasing relations come from P , it
is clear that such a situation implies that one of the two relations is increasing, and the
second one is decreasing. If the relation xCR y is increasing, there are two possibilities:
either z is before x, or z is between x and y. If z is before x the relation y CR z
and the interval-poset condition imply the existence of a relation x CR z. Otherwise,
the interval-poset condition implies the existence of a relation z CR y, which by the

2The raise of an interval-poset needs not to be an interval-poset, so in order to be able to take
successive raises we need a more general setting.
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argument above implies that P is not modern. The case where xCR y is decreasing is
similar. �

Definition 4.6. An interval-poset P of size n is called new if it has no increasing
relation starting at 1, no decreasing relation starting at n, and no relations of the form
i+ 1CP j + 1 and j CP i for i < j.

Let us define the lowering of an interval-poset (P,C) of size n with no increas-
ing relation starting at 1 and no decreasing relation starting at n. This is the poset
(Low(P ),CL) where Low(P ) is the set {1, 2, . . . , n− 1} and the relation CL is the rela-
tion obtained by keeping the decreasing relations and shifting the increasing relations
by −1. More precisely, CL is reflexive and for x < y, we have yCL x if and only if yCx
and xCL y if and only if x+ 1C y + 1.

Lemma 4.7. Let P be an interval-poset of size n with no increasing relation starting at
1 and no decreasing relation starting at n. Then the lowering of P is an interval-poset
if and only if P is new.

Proof. This is a straightforward checking. �

Lemma 4.8. The raising/lowering operations induce two inverse bijections between the
set of modern interval-posets of size n and the set of new interval-posets of size n+ 1.

Proof. The only way to have two relations i+ 1CR j + 1 and j CR i for i < j in Ra(P )
is to have iC j and jC i in P , so the raise of a modern interval-poset is new. Similarly,
the lowering of a new interval-poset P is modern since the forbidden pattern leads to
the existence of relations y− 1CL y and y+ 1CL y that must come from y+ 1C y and
y C y + 1 in P .

Moreover, it is obvious that the raising and lowering operations are inverse of each
other. �

Proposition 4.9. Let [S, T ] be an interval of Tamn+1. Let P be its corresponding
interval-poset. Then P is new if and only if there is an interval [S1, T1] of Tamn such
that S = Y ◦1 S1 and T = Y ◦2 T1.

Proof. First we show that there is no increasing relation starting at 1 in P if and only if
there is a tree T1 such that T = Y ◦2 T1. Using the left/right symmetry and Lemma 2.5
we can deduce that there is no decreasing relation starting at n+ 1 in P if and only if
there is a tree S1 such that S = Y ◦1 S1. If there is an increasing relation starting at 1,
let x be the maximal element such that we have 1C x. Then in the forest of increasing
relations the first tree has root x and 1 is in this tree. So it is sent by the bijection of
Theorem 2.4 to the binary tree T which has a root x and 1 is in its left subtree. This
implies that the root of T has a left child and T is not of the form Y ◦2 T1. Conversely,
if the root of T has a left child, then the vertex labeled by 1 is in the left subtree of T .
Let x be the label of the root of T . Then we have an increasing relation 1C x in P .

If P is new, then by the previous argument S = Y ◦1 S1 and T = Y ◦2 T1. Since
P is new, the lowering of P is defined. We will show that the interval corresponding
to Low(P ) is [S1, T1]. Using the left/right symmetry and Lemma 2.5, it is enough to
show that the binary tree corresponding to the decreasing relations of Low(P ) is S1.
If F denotes the forest of decreasing relations of Low(P ), then the decreasing forest
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of P is F t {n + 1} where n + 1 is the tree with only one vertex n + 1. So, the tree
corresponding to the decreasing relations of Low(P ) is the left subtree of the tree of P .
In other words, it is the tree S1.

Since Low(P ) is an interval-poset, the trees S1 and T1 obtained by considering the
decreasing relations and the increasing relations satisfy S1 6 T1 in Tamn.

Conversely, we assume that [S1, T1] is an interval of Tamn such that [S, T ] is an
interval of Tamn+1 for S = Y ◦1 S1 and T = Y ◦2 T1. If we turn T into a binary search
tree by using the in-order algorithm, it is easy to see that the root of T is labeled by 1
and, if x is the label of a vertex of T1, then this vertex is labeled by 1 +x in T . In other
words, the increasing relations of T are the increasing relations of T1 shifted by 1. By
symmetry, the interval-poset corresponding to [S, T ] is the raise of the interval-poset
corresponding to [S1, T1]. By Lemma 4.8, the interval-poset corresponding to [S, T ] is
new. �

4.3. Characterization of the new intervals. This section is devoted to the proof of
the following theorem.

Theorem 4.10. An interval of the Tamari lattice is new if and only if the corresponding
interval-poset is new.

We are going to prove that the intervals that are not new are exactly the intervals
whose interval-poset is not new. As first easy case, we consider intervals that do not
have the nice shape of Lemma 4.3.

Lemma 4.11. Let n ∈ N∗. Let [T, S] be an interval of Tamn that is not of the form
[Y ◦1 S1, Y ◦2 T1] for two trees S1 and T1 of Tamn−1. Then the corresponding interval-
poset is not new.

Proof. Assume that the root of the tree S has a right child. Let x be the right-most
vertex of S. This is the last right descendant of the root of S. This vertex is the last
vertex visited by the in-order algorithm described in Section 2. So it is labeled by n.
Let r be the label of the root of S. Then in P we have a relation nC r and the poset
is not new. Similarly, if the root of T has a left child, there is an increasing relation in
P starting at 1, so the poset is not new. �

Conversely, we have the following assertion.

Lemma 4.12. Let P be an interval-poset. If there is an increasing relation starting at
1 or a decreasing relation starting at n, then the corresponding interval is not new.

Proof. If there is a decreasing relation starting at n in P , then, in the decreasing forest
of P , the integer n is not the root of its tree. Using the bijection of Theorem 2.4, this
implies that there is a vertex on the right side of the tree S. Similarly, if there is an
increasing relation starting by 1 in P , there is a vertex on the left side of the tree T .
By Lemma 4.3, this implies that the interval [S, T ] is not new. �

With the in-order algorithm, there is a simple relation between the labeling of the
vertices and the labeling of the leaves.

Lemma 4.13. Let S be a binary search tree. Let T be a subtree of S. Then the vertices
of T are labeled by the interval [i, j−1] if and only if the leaves of T are labeled by [i, j].
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Proof. The result follows from an easy induction. �

We can deduce the following lemma.

Lemma 4.14. Let [S, T ] be an interval of Tamn such that S = Y ◦1S1 and T = Y ◦2 T1

for two trees S1 and T1 of Tamn−1. If [S, T ] is not new, the corresponding interval-poset
is not new.

Proof. By Lemma 4.2, there are integers 1 < i < j < n + 1, a subtree A of S whose
leaves are labeled by [i, j] and a subtree B of T whose leaves are also labeled by [i, j].
This implies that the root of A and B are not on the left or right sides of S and T .

By Lemma 4.13, the vertices of the two subtrees are labeled by [i, j − 1]. Let x be
the label of the root B. The left-most vertex of B is labeled by i. So, in the poset of
increasing relations of T we have iC x. The vertex labeled by j (there is such a vertex
since j < n+ 1) is the vertex visited by the in-order traversal after j− 1. Since j− 1 is
the right-most vertex of the tree B, the vertex x is in the subtree with root j. So, we
have xC j and, by transitivity, we have iC j.

Similarly, if y is the label of the root of A, then we have a decreasing relation j−1Cy.
The vertex labeled by i− 1 (there is such a vertex since 1 < i) is the vertex visited by
the in-order algorithm before the vertex labeled by i which is nothing but the left-most
vertex of the tree S1. In particular, y is in the subtree with root i − 1. So, we have
y C i− 1 and by transitivity j − 1C i− 1.

In conclusion, the interval-poset corresponding to [S, T ] is not new. �

Conversely, we need to understand how the forbidden configuration of Definition 4.6
leads to the existence of a grafting decomposition of the corresponding interval. For
this we need to carefully follow the bijection of Châtel and Pons.

Let P be an interval-poset with no increasing relation starting at 1 and no decreasing
relation starting at n. If P is not new, then it has a configuration of the form i+1CRj+1
and j CR i for i < j. Let x be the maximal element in [i + 1, j] such that i + 1 C x.
Note that the interval-poset condition implies that there is a decreasing relation xC i.
Similarly, let y be the minimal element such that i < y 6 j and such that j C y.

Lemma 4.15. Let T be the upper bound of the interval of Tamn corresponding to P
by the bijection of Theorem 2.4. Then the subtree of T with root the vertex labeled by x
has leaves labeled by the interval [i+ 1, j + 1].

Proof. Let h 6 i. If there is a relation hC x, by the interval-poset condition we have a
relation iC x. This contradicts the decreasing relation xC i.

Moreover, the maximality of x implies that the relation xC j + 1 is a cover relation
in the increasing forest of P . Together with the previous argument, this shows that x
is the left-most child of j + 1 in the increasing forest of P .

The relation i+ 1C j + 1 and the interval-poset condition imply the existence of the
relation j C j + 1. Clearly, j is the right-most child of j + 1 in the increasing forest of
P .

So, in the tree T , the vertex j is the right-most descendant of x and x is the left
child of j + 1. In other words, j is the largest vertex of the subtree with root x. Since
we have i + 1 C x, there is a vertex labeled by i + 1 in the subtree with root x. The
first argument of the proof implies that this is the smallest vertex of this subtree. So it
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has its vertices labeled by the interval [i + 1, j]. Finally, by Lemma 4.13 its leaves are
labeled by [i+ 1, j + 1]. �

Dually, we have a similar result for the decreasing relations.

Lemma 4.16. Let S be the lower bound of the interval of Tamn corresponding to P by
the bijection of Theorem 2.4. Then the subtree of S with root the vertex labeled by y
has leaves labeled by the interval [i+ 1, j + 1].

Proof. This is a straightforward application of Lemma 2.5 to Lemma 4.15. �

Proof of Theorem 4.10. By Lemmas 4.11 and 4.14, if an interval is not new, then its
corresponding interval-poset is not new. Conversely, using Lemma 4.12, we may assume
that P does not have an increasing relation starting at 1 nor a decreasing relation
starting at n. Let [S, T ] be the corresponding interval. Then, by Lemmas 4.15 and 4.16
and the discussion before them, in S and T there are two subtrees whose leaves are
labeled by the same interval. Lemma 4.2 implies that [S, T ] is not new. �

As a corollary, we also have a characterization in terms of modern interval-posets.

Corollary 4.17. Let n ∈ N. There is a bijection between the set of new intervals of
Tamn+1 and the set of modern interval-posets of size n.

Proof. By Theorem 4.10, an interval of Tamn+1 is new if and only if its corresponding
interval-poset is new. By Lemma 4.8, these interval-posets are in bijection with the
modern interval-posets of size n. �

As explained in Lemma 4.3, it is easy to see that, if an interval [S, T ] is new, then
S = Y ◦1 S1 and T = Y ◦2 T1 where Y is the unique binary tree of size 1. However,
this is not a sufficient condition. Using our characterization of new intervals in terms
of interval-posets, we can find a characterization of the new intervals of the Tamari
lattice.

Theorem 4.18. Let [S, T ] be an interval of Tamn+1. Then [S, T ] is a new interval if
and only if there is an interval [S1, T1] in Tamn such that S = Y ◦1 S1 and T = T ◦2 T1.

Proof. By Theorem 4.10, the new intervals of Tamn+1 are exactly the intervals such that
the corresponding interval-poset is new. The result follows from Proposition 4.9. �

5. Infinitely modern interval-posets

For an integer k and an interval-poset P of size n, we let Rak(P ) the k-th raise of P .

Definition 5.1. An interval-poset is infinitely modern if Rak(P ) is an interval-poset
for every k > 1.

Lemma 5.2. An interval-poset P is infinitely modern if and only if it does not contain
any configuration of the form w C x and z C y for w < x < y < z.

Proof. If we have such a configuration in P , then the interval-poset condition implies
the existence of relations x − 1 C x and y + 1 C y. After raising our poset sufficiently
many times, we will have two contradictory relations y CRk y + 1 and y + 1CRk y.

Conversely, let k+ 1 be the smallest integer such that Rak+1(P ) is not a poset. Then
Rak(P ) is not modern and by Definition 4.4 there is a configuration of the form xCRk y
and z CRk y for x < y < z in Rak(P ). This leads to the result. �
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For an interval-poset P of size n, we denote by ir(P ) the smallest integer k such that
there is an increasing relation k C k + 1. If there is no increasing relation, we use the
convention that ir(P ) = n. Similarly, we denote by dr(P ) the largest integer i such
that there is a decreasing relation i C i − 1. If there is no decreasing relation, we use
the convention that dr(P ) = 1. We can associate to any interval-poset P of size n the
double statistic

(
ir(P ), dr(P )

)
which is a pair of elements of {1, 2, . . . , n}. Using this

statistic, we have another description of the infinitely modern interval-posets.

Proposition 5.3. Let P be an interval-poset of size n. Then P is infinitely modern if
and only if dr(P ) 6 ir(P ).

Proof. If ir(P ) < dr(P ), then the poset is not infinitely-modern because, after some
raises, the relation k C k + 1 will contradict the relation i C i − 1. Conversely, if the
poset is not infinitely modern, by Lemma 5.2, there are integers w < x < y < z such
that wC x and z C y. By the interval-poset condition, we have relations x− 1C x and
y + 1C y. In particular, we see that ir(P ) < dr(P ). �

We denote by IM(n, i, k) the set of infinitely modern interval-posets P of size n such
that ir(P ) = k and dr(P ) = i.

Let 1 6 i 6 k 6 n+ 1 and P be an interval-poset of size n. Then we define a relation
fi,k(P ) on the set with n + 1 elements by adding a new point to the set of P . For
the increasing relations, the new point is inserted at k and we add a new increasing
relation from k to k+ 1. For the decreasing relations, we may think that the new point
is inserted at the position i and we add a new relation iC i− 1. The old relations of P
are modified accordingly to the positions of the new point.

More formally, fi,k(P ) is defined as the set {1, 2, . . . , n+ 1} with the relation C′:

• We have kC′ k+1 and iC′ i+1 with the convention that there are no increasing
relations when k = n+ 1 and no decreasing relations when i = 1.
• Let us assume that we have an increasing relation xCy in P . If x < y < k, then

we have the relation x C′ y in fi,k(P ). If x < k 6 y, then we have the relation
xC′ y + 1 in fi,k(P ). If k 6 x < y, then we have the relation x+ 1C′ y + 1.
• Let us assume that we have a decreasing relation yC x in P . If i 6 x < y, then

we have the relation y + 1 C′ x + 1. If x < i 6 y, then we have the relation
y + 1C x. If x < y < i, then we have the relation y C x.
• Take the transitive closure of the relation C′.

Lemma 5.4. Let 1 6 i 6 k 6 n + 1. Let i′ 6 i and k − 1 6 k′. Let P ∈ IM(n, i′, k′).
Then fi,k(P ) is an interval-poset of size n+ 1 in IM(n+ 1, i, k).

Proof. If we have a decreasing relation y C x in P , by the interval-poset condition, we
also have a relation x+ 1C x. This implies that, in P , all the decreasing relations are
of the form y C x where x < y and x < i′. Since i′ 6 i, in fi,k(P ) all the decreasing
relations are of the form y′ C x′ where x′ < i. Moreover, we have a decreasing relation
iC i− 1 in fi,k(P ). In other terms, we have dr(fi,k(P )) = i.

Similarly, in P all the increasing relations are of the form x C y with x < y and
k′ + 1 6 y. Since k 6 k′ + 1, all the increasing relations in fi,k(P ) are of the form
x′ C y′ where k < y′. By construction in fi,k(P ), we have the relation k C k + 1. So,
ir(fi,k(P )) = k.
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1 2 3 4 5
1 2 3 4 5 6

Figure 6. On the left, an interval-poset P of size 5. On the right, the
construction f2,4(P ). The vertex in red represents the position of the
new point for the increasing relations. The vertex in blue represents the
position of the new point for the decreasing relations. The new arrows
are displayed in thick red and blue. The black dashed arrows correspond
to the old relations of P . The long red arrow is obtained by transitivity.

It remains to check that under the hypothesis fi,k(P ) is an interval-poset. Let x < y
such that xC y and yCx in fi,k(P ). Since the increasing relations land after k and the
decreasing before i, the only possibility is to have x < i < k < y. This means that in
P , we have a relation xC y − 1 and y C y − 1. This is not possible since P is a poset.
Since the relation C′ is transitive by construction, this shows that fi,k(P ) is a poset.

We need to check the interval-poset condition. It is an easy case by case checking: let
x < y < z and xC z in fi,k(P ). If x < k < y, then in P we have the relation xC y− 1.
If k 6= z, since P is an interval-poset, we have the relation z′C y− 1 for z′ = z if z′ < k
and z′ = z − 1 otherwise. So, in fi,k(P ), we have z C y. If z = k, then in fi,k(P ) we
have the relation kC k+ 1. By the interval-poset condition of P , we have kC y− 1. It
becomes k + 1 C y in fi,k(P ). By transitivity, we have k C y. Similarly, we can check
the case where k 6 x 6 y. For the decreasing relations, the proof is similar. �

On the other hand, if P is an interval-poset in IM(n+1, i, k) let us construct ρ(P ) an
interval-poset of size n. Informally, for the increasing relations, we remove the vertex k
and the relation kCk+1. We shift the other relations accordingly to their position. For
the decreasing relations, we remove the vertex i and the relation iC i−1. Furthermore,
we shift the relations accordingly to their position. More formally, ρ(P ) is the relation
on the set {1, 2, . . . , n} defined by:

• Let x < y. Then we have a relation xC y in the following two cases: if x < k <
y + 1 and there is a relation xC y + 1 in P , or if k < x+ 1 < y + 1 and there is
a relation x+ 1C y + 1 in P .
• Let x < y. Then we have a relation yCx in the following two cases: if x < y < i

and there is a relation y C x in P or if x < i < y + 1 and there is a relation
y + 1C x in P .

Lemma 5.5. Let P ∈ IM(n+ 1, i, k). Then ρ(P ) is an infinitely modern interval-poset
such that dr(P ) 6 i and k − 1 6 ir(P ).

Proof. In P the increasing relations are of the form y C x where k < x. If we have the
relation k− 1C k+ 1 in P , then we have the relation k− 1C k in ρ(P ). Otherwise the
second increasing relation xC x+ 1 of length 1 in P (the one after k C k + 1) appears
for k + 1 6 k. Here we use one more time the convention that there is an increasing
relation starting at n + 1 if there is no such relation. So, in ρ(P ) the first increasing
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relation is x− 1Cx and we have k− 1 6 ir(P ). Moreover, we have ir(P ) = k− 1 if and
only if we have the relation k − 1C k + 1 in P .

Similarly, we have dr(P ) 6 i and dr(P ) = i if and only if we have the relation
i− 1C i+ 1 in P .

Now, we check that ρ(P ) is an interval-poset. By the description of ir(ρ(P )) and
dr(ρ(P )), we deduce that, if x C y is an increasing relation in ρ(P ), we have k 6 y.
Similarly, if y C x is a decreasing relation we have x < i.

Let x < y such that xC y and y C x in ρ(P ). Then we must have x < i and k 6 y.
So, the relation x C y comes from the relation x C y + 1 in P and the relation y C x
comes from the relation y+1Cx in P . Since P is an interval-poset, this is not possible.
In P there are no increasing relations of the form x C k and no decreasing relations
of the form y C i, so removal of the relations k C k + 1 and i C i − 1 will not break
the transitivity of the relation. Checking the interval-poset condition is straightforward
and similar to the proof of Lemma 5.4.

If i < k, as a direct consequence of Proposition 5.3, the interval-poset ρ(P ) is
infinitely-modern. If i = k, we have to check that it is not possible to have ir(ρ(P )) =
k− 1 and dr(ρ(P )) = i. But this is a direct consequence of the description of these two
particular cases obtained above. �

Proposition 5.6. Let n ∈ N. Let 1 6 i 6 k 6 n+ 1. Then we have a bijection

fi,k :
⋃

16i′6i
k−16k′6n

IM(n, i′, k′)→ IM(n+ 1, i, k).

Proof. By Lemma 5.4, fi,k maps the left-hand side to the right-hand side, and by
Lemma 5.5, the map ρ goes from the right-hand side to the left-hand side. It is clear
that ρ and fi,k are two bijections inverse of each other. �

Theorem 5.7. Let n ∈ N. Then the number of infinitely modern interval-posets of size
n is 1

2n+1

(
3n
n

)
.

Proof. Let k, l ∈ {0, 1, . . . , n − 1}. We set B(n, k, l) = | IM(n, k + 1, n − l)|. With the
change of variables x − 1 = k and n − y = l, this is the number of infinitely modern
interval-posets of size n with ir = y and dr = x. It is easy to check that we have
B(1, 0, 0) = 1. By Lemma 5.3, if P is an interval-poset such that ir(P ) < dr(P ), then
P is not infinitely-modern. So, if k+ l > n, we have B(n, k, l) = 0. Finally, if k+ l < n,
then 1 6 x 6 y 6 n and Proposition 5.6 implies

B(n, k, l) =
∑

06i6k,06j6k

B(n− 1, i, j).

We recognize the sequence of [Ava08, Definition 2.1]. The result follows from [Ava08,
Proposition 2.1]. �
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12. Jahrgang, Heft 6:4–5, 1981.

[HPT64] F. Harary, G. Prins, and W. T. Tutte. The number of plane trees. Nederl. Akad. Wetensch.
Proc. Ser. A 67=Indag. Math., 26:319–329, 1964.

[HU05] D. Happel and L. Unger. On a partial order of tilting modules. Algebr. Represent. Theory,
8(2):147–156, 2005.

[Kre72] G. Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math., 1(4):333–350, 1972.
[Rea06] N. Reading. Cambrian lattices. Adv. Math., 205(2):313–353, 2006.
[Rog18] B. Rognerud. The bounded derived categories of the Tamari lattices are fractionally Calabi–

Yau. preprint; arXiv:1807.08503.
[Tam62] D. Tamari. The algebra of bracketings and their enumeration. Nieuw Arch. Wisk. (3),

10:131–146, 1962.


	1. Introduction
	2. Interval-posets, intervals of the Tamari lattices and conventions
	3. Exceptional intervals of the Tamari lattice
	3.1. Exceptional intervals and non-crossing trees
	3.2. Non-crossing partitions

	4. New intervals and modern interval-posets
	4.1. New intervals of the Tamari lattice
	4.2. Raising and lowering of interval-posets
	4.3. Characterization of the new intervals

	5. Infinitely modern interval-posets
	References

