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Abstract

In this note we describe the combinatorics of quasi-hereditary structures for the
incidence algebras of a finite poset.

1 Introduction

In this note P = (P,≤) denotes a finite poset. The incidence algebra of P over the field
k is denoted by Ak(P ). It has a basis consisting of intervals (a, b) in the poset P and the
multiplication if given by

(a, b) · (c, d) =

{
(a, d) if b = c,

0 otherwise.

A module over the incidence algebra is a right finitely generated module. The canonical
complete set of primitive idempotents of Ak(P ) is given by {ex := (x, x) | x ∈ P}. The
projective indecomposable modules are given by Px = exAk(X) and Px has for basis the set
of (x, y) such that x ≤ y in P . We say that it is supported by the elements larger than x
in P . It has a simple top S(x). Dually the injective indecomposable module Ix with simple
socle S(x) is supported by the elements smaller than x in P . If i ≤ j ∈ P , we denote by [i, j]
the interval (i, j) that we may view as an indecomposable module over the incidence algebra
of P . The notation (i, j) is reserved for the corresponding basis element of the incidence
algebra. Moreover if we want to emphasize the partial order ≤, we write [i, j]≤.

A quasi-hereditary algebra is an algebra together with a partial ordering on the isomor-
phism classes of its simple modules which satisfies some conditions that we recall below. In
the particular case of an incidence algebra the isomorphism classes of simple modules are in
bijection with the elements of the posets, so understanding the quasi-hereditary structures
of the incidence algebras of a finite poset leads to the following (classical) definition.

Definition 1.1. Let P be a finite set. A double poset is a triple (P,≤,C) where (P,≤) and
(P,C) are two posets.
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A morphism f of double posets from (P1,≤1,C1) to (P2,≤2,C2) is a mapping f such
that ∀x, y ∈ P , x ≤1 y ⇒ f(x) ≤2 f(y) and xC1 y ⇒ f(x) C2 f(y).

Given a partial ordering C on the set of isomorphism classes of simple modules, we con-
struct the so-called standard modules ∆(i) as the largest quotient of P (i) whose composition
factors S(j) are such that jC i. Dually, we construct the so-called co-standard modules ∇(i)
as the largest submodule of I(j) whose composition factors S(j) are such that j C i.

For a set of modules Θ we denote by F(Θ) the category of modules which have a Θ-
filtration. That is the modules M for which there exists a chain of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn = M,

such that Mi/Mi−1 ∈ Θ for i = 1, 2, · · · , n.

Definition 1.2. Let A be an artinian algebra and C be a partial ordering on its set I of
isomorphism classes of simple modules. Let ∆ be the corresponding set of standard modules.
The pair (A,C) is a quasi-hereditary algebra if for all i ∈ I:

1. [∆(i) : S(i)] = 1,

2. P (i) ∈ F(∆),

3.
(
P (i) : ∆(i)

)
= 1 and

(
P (i) : ∆(j)

)
6= 0 implies iC j.

The notation
(
P (i) : ∆(j)

)
denotes the number of times that ∆(j) appears in a ∆-

filtration of P (i). It can be proved that this number does not depend on the choice of a
filtration. From the definition, we see that the property of quasi-hereditary does not depend
on the poset C but only on the set of standard modules ∆. This makes the next definition
natural.

Definition 1.3. Let A be an artinian algebra and C1 and C2 be two partial orderings on
its set of isomorphism classes of simples modules. We say that C1 and C2 are equivalent if
and only if their set of standard modules are equal and their set of co-standard modules are
equal. If moreover (A,C1) is a quasi-hereditary algebra, the equivalence class of C1 is called
a quasi-hereditary structure for A.

It is clear that not all orderings appear as a quasi-hereditary structure on a given algebra
A. For example, the equality relation induces a structure of quasi-hereditary algebra on A
if and only if A is semi-simple. In order to understand the quasi-hereditary structures we
have a first restriction on the possible orderings.

Definition 1.4. Let A be an artinian algebra and C be a partial ordering on the set of
isomorphism classes of simple A-modules. Then C is adapted to A if for every A-module M
with top S(i) and socle S(j) either i and j are comparable, or there M has a composition
factor S(k) such that iC k and j C k.
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Lemma 1.5 (Conde [1]). If (A, (I,C)) is a quasi-hereditary algebra, then (I,C) is adapted
for A.

Proof. This is Proposition 1.4.12 of the PhD thesis of Teresa Conde. For the convenience
of the reader, we sketch the proof. Let M be a module with simple top S(i) and simple
socle S(j). Since A is artinian, M is a quotient of P (i). In particular S(j) is a composition
factor of P (i). Because the algebra is quasi-hereditary P (i) has a ∆-filtration. So S(j) must
appear in a standard module ∆(k). If k = i then j C i. If k 6= i and S(j) is at the top of
∆(k) we have iC j. And finally if S(j) is not at the top of ∆(k) we have iCk and jCk.

Using adapted orders, we can remove the third point in the definition of quasi-hereditary
algebras:

Proposition 1.6. Let A be an artinian algebra together with a partial order C on its set
of isomorphism classes of simple modules. Then (A,C) is a quasi-hereditary algebra if and
only if

1. C is adapted to A.

2. For every i ∈ I, [∆(i) : S(i)] = 1.

3. P (i) ∈ F(∆) for i ∈ I.

Proof. See Theorem 1 of [2].

Finally, let us look at the difference between the equivalence class of an adapted order
and a quasi-hereditary structure.

Theorem 1.7. Let A be an artinian algebra and C be poset adapted to A. We denote by
∆ and ∇ the respective direct sum of all the standard and costandard modules. Then, the
following are equivalent

1. (A,C) is a quasi-hereditary algebra.

2. Ext2A(∆,∇) = 0.

Proof. See Theorem 1 of [2].

As an immediate corollary we see that for the hereditary algebras, the quasi-hereditary
structures coincides with the equivalence classes of adapted orders.
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2 Adapted orders and quasi-hereditary structures of

incidence algebras

In this section (P,≤) denotes a finite poset and Ak(P ) its incidence algebra over the field k.
As explained in the first section, the study of quasi-hereditary structures on Ak(P ) naturally
leads to the study of all the double posets (P,≤,C) where C is adapted to Ak(P ). First, let
us see that the notion of adapted poset is purely combinatorial.

Lemma 2.1. Let M be an Ak(P )-module with top S(i) and socle S(j), then M is isomorphic
to [i, j]≤.

Proof. M has simple top S(i), so it is a quotient of P (i) and it is generated by mi = φ(ei).
Since M has simple socle S(j), there is an element n ∈M such that n · ej = n and n · ek = 0
for k 6= j. There is a ∈ Ak(P ) such that mi · a = n. We have 0 6= n · ej = φ(ei · a · ej).
Since a is a linear combination of intervals, we see that mj := φ

(
(i, j)

)
6= 0. For k ∈ P ,

we let mk := φ
(
(i, k)

)
. It is clear that mk 6= 0 implies i ≤ k. Moreover if k is maximal

such that mk 6= 0, then mk generates a simple submodule of M , so we have k = j. Since
0 6= φ

(
(i, j)

)
= φ

(
(i, k) ·(k, j)

)
we have that mk 6= 0 if and only if k ∈ [i, j]≤ and the k-vector

space generated by all the mks is a submodule of M isomorphic to [i, j]≤. Let m ∈M , then
m =

∑
k∈P m · ek. Since M is generated by mi, there exists a =

∑
x≤y∈P λx,y(x, y) ∈ Ak(P )

such that m = mi · a. So m =
∑

k∈P φ(eiaek) =
∑

k∈P λi,kmk =
∑

k∈[i,j] λi,kmk.

So M ⊆ [i, j]≤.

It follows that the notion of adapted order can be easily characterized in terms of the
partial ordering.

Corollary 2.2. Let (P,≤) be a finite poset and Ak(P ) its incidence algebra. Let C be a
partial ordering on P . Then C is adapted to Ak(P ) if and only if

(A) ∀(i, j) ∈ P 2 : i ≤ j, ∃k ∈ [i, j]≤ such that iC k and j C k.

Remark 2.3. 1. In the corollary, the element k is allowed to be equal to i or j. In this
case i and j are comparable for C.

2. It follows that the set of adapted orders for the incidence algebra of a finite poset does
not depend on the choice of the field.

3 Minimal adapted orderings for incidence algebras of

finite poset

As explained in the first section, for our purpose, we are not interested by adapted orderings
but we are interested by equivalence classes of such orderings. It is easy to see that any
extension of an adapted ordering gives an equivalent adapted ordering. As a consequence, in
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the study of quasi-hereditary algebras, one can always assume that the partial ordering on
the set of isomorphism classes is a total ordering. However, in the trivial example of a semi-
simple algebra with n isomorphism classes of simple modules, there are n! total orderings
but only one equivalence class of adapted orderings. Hence, in order to classify the quasi-
hereditary structures, it is therefore a lot easier to do the opposite, that is to look at adapted
orders with the minimal number of relations.

Lemma 3.1. Let A be an artinian algebra and I be a set indexing the isomorphism classes
of simple A-modules. Let C1 be a poset which is adapted to A. If C is equivalent to C1, then
C is adapted to A.

Partial orders on a finite set I can be ordered by inclusion of their sets of relations. This
gives a poset of posets over I where the minimal element is the equality relation on I and
the maximal elements are the total orders. The poset obtained by taking the intersection of
the relations of two given posets C1 and C2 is called the intersection of C1 and C2.

Lemma 3.2. Let A be an artinian algebra with I a set indexing a complete set of iso-
morphism classes of simple A-modules. Let C1 and C2 be two adapted orders in the same
equivalence class.

1. The intersection of C1 and C2 is an adapted order in the same equivalence class.

2. In each equivalence class of adapted poset for A there is a unique minimal poset.

Proof. It is clear that (1) implies (2). Let C1 and C2 be two posets in the same equivalence
class. We denote by ∆ = ∆1 = ∆2 the corresponding set of standard modules. We let CI

be the intersection of C1 and C2 and we denote by ∆I the corresponding set of standard
modules.

Let i ∈ I. By definition ∆I(i) is the largest quotient of P (i) whose composition factors
are S(j) such that jC1 i and jC2 i. So ∆1(i) surjects onto ∆I(i). If they are not isomorphic,
at the top of the kernel there is a simple module S(j) such that jC1 i but j is not smaller that
i for C2. This contradicts ∆1(i) = ∆2(i). As conclusion ∆I = ∆ and by a dual argument,
we see that ∇I = ∇ and the poset CI is equivalent to the posets C1 and C2. The result
follows from Lemma 3.1

Let us describe these minimal adapted orderings. For a partial order C on I, let ∆ be the
set of standard A-modules associated to C and let ∇ be the set of co-standard A-modules.

We define two subsets Dec(C) and Inc(C) of I2 as follows:

Dec(C) := {(i, j) ∈ I2 | [∆(j) : S(i)] 6= 0}, Inc(C) := {(i, j) ∈ I2 | [∇(j) : S(i)] 6= 0}.

Clearly, Dec(C) and Inc(C) depend on only the equivalence class of C. For i, j ∈ I, we
write i CD j if (i, j) ∈ Dec(C) and write i CI j if (i, j) ∈ Inc(C). For i ∈ I, we have i CD i
and iCI i.

For a subset R of I2, we denote by Rtc the transitive closure of R. Then the following
lemma is easy.
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Lemma 3.3. Let Cm = (Dec(C) ∪ Inc(C))tc.

1. If iCm j, then iC j holds.

2. Cm is a partial order on I.

Then we have the following proposition.

Proposition 3.4. Let A be an artin algebra and I be a set indexing the isomorphism classes
of simple A-modules. For an adapted partial order C on I, let Cm = (Dec(C) ∪ Inc(C))tc.

1. The partial orders C and Cm are equivalent.

2. Cm is the unique minimal partial order among partial orders C′ on I with C ∼ C′.

Lemma 3.5. Let (P,≤) be a finite poset and C be an adapted order for Ak(P ). Then

1. j C i ∈ Dec(C) if and only if i ≤ j and ∀k ∈ [i, j]≤ we have k C i.

2. iC j ∈ Inc(C) if and only if i ≤ j and ∀k ∈ [i, j]≤ we have k C j.

Proof. We only prove the first point, the second is dual. Recall that the projective module
Pi is supported by all the elements larger than i in the poset (P,≤). If S(j) is a composition
factor of ∆(i), then j C i and i ≤ j. By Lemma 2.1, the interval [i, j]≤ is a quotient of
∆(i) and we have k C i for all k ∈ [i, j]≤. Conversely, this condition implies that [i, j]≤ is a
quotient of P (i) such that all composition factors S(k) are such that kC i. Since ∆(i) is the
largest quotient of P (i) with this property, we conclude that S(j) is a composition factor of
∆(i).

We will need these two technical lemmas

Lemma 3.6. Let (P,≤) be a finite poset and k be a field. Let (P,C) be an order adapted to
Ak(P ). Then for [i, j]≤, there is k ∈ [i, j]≤ such that iC k ∈ Inc(C)tc and j C k ∈ Dec(C)tc.

Proof. Assume first that iC j and i ≤ j. If j covers i for ≤, then the relation is increasing.
If iC j is increasing there is nothing to prove otherwise there exists k ∈]i, j[ such that k 6C.
If we choose k to be maximal for this property, then it is easy to check that j C k and this
relation is decreasing and by transitivity we have the relation iC k. We apply induction to
iC k and prove the result. This is similar for relations of the form j C i.

Let us look at the case where i and j are not comparable for C. Since the poset is
adapted, there is k ∈]i, j[ such that i C k and j C k. It is then easy to conclude using the
previous argument to replace i C k by i C a ∈ Inc(C)tc and k C a ∈ Dec(C)tc and apply it
one more time to j C a.

Lemma 3.7. Let (P,≤) be a finite poset and k be a field. Let i, j, h ∈ P such that i < j < k.
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1. If iC j ∈ Inc(C)tc and jC k ∈ Inc(C)tc, then either iC k ∈ Inc(C) or there is j′ ∈]i, k[
such that iC j′ ∈ Inc(C) and k C j′ ∈ Dec(C)tc.

2. If j C i ∈ Dec(C)tc and k C j ∈ Dec(C)tc, then either k C i ∈ Dec(C) or there is
j′ ∈]i, k[ such that k C j′ ∈ Dec(C) and iC j′ ∈ Inc(C)tc.

Proof. We only prove the first statement, the second being similar is left to the reader. We
prove the result on induction on the size of [i, j]≤. There is nothing to prove when it has
size 0, 1, 2, 3. If i C k is not increasing there is a ∈]i, j[≤ such that a 6C k and a 6C i. We
apply Lemma 3.6 to i < a, then there is a′ ∈ P such that i < a′ ≤ a and i C a′ ∈ Inc(C)tc,
a C a′ ∈ Dec(C)tc and not that a′ 6C k because otherwise a C k. So we may replace a by
a′ and assume that we have a relation i C a and that this relation is in Inc(C)tc. Applying
Lemma 3.6 to a < k, we have a′ ∈ P such that a ≤ a′ < k and relations a C a′ ∈ Inc(C)tc

and kCa′ ∈ Dec(C)tc. In the end we found a′ ∈ P such that i < a′ < k and iCa′ ∈ Inc(C)tc

and k C a′ ∈ Dec(C)tc. If iC a′ is increasing, we are done. Otherwise we apply induction to
i < a′.

Corollary 3.8. Let (P,≤) be a finite poset and k be a field. Let (P,C) be an adapted poset
for Ak(P ). Then for [i, j]≤, there is k ∈ [i, j]≤ such that iC k ∈ Inc(C) and jC k ∈ Dec(C).

Proof. Let i < j ∈ P . By Lemma 3.6, there is a0 such that i < a0 < j and iC a0 ∈ Inc(C)tc

and j C a0 ∈ Dec(C)tc. Assume that i C a0 is not increasing, then by Lemma 3.7, there is
a1 such that i < a1 < a0 and iC a1 ∈ Inc(C) and a0 C a1 ∈ Dec(C)tc. Then by transitivity
we have j C a1 ∈ Dec(C)tc. If this last relation is decreasing we are done. Otherwise we
apply Lemma 3.7 to the relation j C a1, then there is a2 ∈ P such that a1 < a2 < j and
a1Ca2 ∈ Inc(C)tc and jCa2 ∈ Dec(C). Note that a2 6= a0 and a2 6= 01 since by construction
we have a1 < a2, a0 C a1 and a0 C a1 C a2. By transitivity, we have the relation i C a2, if
it is increasing we are done, otherwise we apply Lemma 3.7 to it. This process of applying
successively Lemma 3.7 to the relations iC a2n and jC a2n+1 constructs a strictly increasing
chain a0 C a1 C a2 C · · · in the finite poset (P,C) so it must stops. The proof is similar if
j C a0 is not decreasing.

Remark 3.9. Note that this Lemma does not imply that any relation for C between two
comparable elements for ≤ is either increasing or decreasing. This is true for a total order
but not in general. It also does not imply that the composition of two increasing relations
is increasing.

4 Quasi-hereditary structures on incidence algebras of

finite posets

Let us move to the (minimal) adapted order inducing quasi-hereditary structures on the
incidence algebra of a finite poset. For this, we use Theorem 1.7 to decide if an adapted
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order induces a quasi-hereditary structure. Here, we have to be worried: the first extension
group between two simple modules is a combinatorial object which is computed by the cover
relations in the poset. In particular it does not depend on the choice of the field, but there
is no reason for the larger extension groups to be independent of the field. In particular,
there are examples of finite posets where the global dimension depends on the characteristic
of the field.

We need to understand under which condition Ext2(∆,∇) = 0. Since this is a bi-additive
functor, it is enough to look at Ext2(∆(i),∇(j)) for i, j ∈ P . We denote by N(i) the kernel
of the natural projection P (i) → ∆(i) and we denote by ι : N(i) → P (i). Similarly,
we let C(j) be the cokernel of the natural embedding of ∇(j) in I(j). We keep all these
notation for the rest of the section. Applying Hom(∆(i),−) to the short exact sequence
0 → ∇(j) → I(j) → C(j) → 0, we get Ext2(∆(i),∇(j)) ∼= Ext1(∆(i), C(j)). Then,
applying Hom(−, C(j)) to the exact sequence 0→ N(i)→ P (i)→ ∆(i)→ 0, we get

Ext2(∆(i),∇(j)) ∼= Hom(N(i), C(j))/ι∗(Hom(P (i), C(j))),

where ι∗(f) = f ◦ i.
If C(j)ex 6= 0 and N(i)ex 6= 0, we say that x is in the support of N(i) and C(j). An

s-path of length n between a1 and an is a sequence (a1, a2, · · · , an) where all the ais are in the
support of C(j) and N(i) and such that ai is comparable for ≤ with ai+1. By convention, we
assume that ai and ai+2 are not comparable, this means that we have either ai ≤ ai+1 ≥ ai+2

or ai ≥ ai+1 ≤ ai+2. If x and y are two elements in the support of N(i) and C(j) connected
by an s-path, the minimal length of an s-path between x and y is called the s-distance
between x and y. An s-component is a subset of the support of N(i) and C(j) in which any
two elements are connected by an s-path and which is maximal (for the inclusion) for this
property.

Lemma 4.1. The dimension of Hom(N(i), C(j)) is equal to the number of s-components in
the support of N(i) ∩ C(j).

Proof. The module N(i) has basis the set of intervals (i, a) such that a is in the support of
N(i). Similarly, the module C(j) has basis the set of linear forms (a, j)∗ such that a is in
the support of C(j).

Moreover, if a ≤ b and a is in the support of N(i), then b is also in the support of
N(i) and we have (i, a) · (a, b) = (i, b). Similarly, if a is in the support of C(j) we have
(a, j)∗ · (a, b) = (b, j)∗ if b is in the support of C(j) and 0 otherwise. If b is in the support of
C(j) and a ≤ b, then a is also in the support of C(j).

The first step is to show that a morphism between N(i) and C(j) is ‘constant’ along the
s-paths. More precisely if x and y are both in the support of N(i) and C(j), the value of
φ
(
(i, x)

)
is determined by the value of φ

(
(i, y)

)
. It is enough to prove it when x and y are

comparable. Since φ is a morphism of Ak(P )-module, we have φ
(
(i, x)

)
· (x, x) = φ(

(
i, x)),

so there is λx ∈ k such that φ
(
(i, x)

)
= λx(x, j)∗. Now, if x ≤ y, then we have

λy(y, j)
∗ = φ

(
(i, y)

)
= φ

(
(i, x) · (x, y)

)
= λx(x, j)∗ · (x, y) = λx(y, j)∗.
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So λx = λy.
If c is an s-component, we associate a morphism χc : N(i)→ C(j) by:

χc(i, x) =

{
(x, j)∗ if x ∈ c,

0 otherwise

Then, it is easy to check that this is a morphism of Ak(P )-module. The set of χc is clearly
linearly independent and by the explanation above, it is a generating set of Hom(N(i), C(j)).

Lemma 4.2. If dimk Hom(N(i), C(j)) ≥ 1, then ι∗
(

Hom(P (i), C(j))
)

is a one dimensional

vector subspace of Hom(N(i), C(j)).

Proof. Clearly if there is a non-zero morphism between N(i) and C(j), then the interesction
of the supports of N(i) and C(j) is non-empty. This implies that i < j and that S(i)
is a composition factor of C(j). In particular, dimk Hom(P (i), C(j)) = 1. Since P (i) is
generated by (i, i), a morphism φ from P (i) to C(j)) is determined by φ

(
(i, i)

)
. There

is λi ∈ k such that φ
(
(i, i)

)
= λi(i, j)

∗. If x is in the support of N(i) and C(j), then
φ(i, x) = λi(i, j)

∗ · (i, x) = λi(x, j)
∗. And we see that φ is determined by its value on any

element in the support of N(i) and C(j). This implies that ι∗ is injective and the result
follows.

◦

◦ ◦

◦

Figure 1: The double square is the double poset s = ({1, 2, 3, 4},≤,C)
where the first partial order is drawn in thick black and the second is drawn in dotted blue.

Definition 4.3. Let (P,≤,C) be a double poset. A double square configuration in P is the
data of i, x, y, j ∈ P such that i ≤ x, i ≤ y, x ≤ j, y ≤ j, x and y are incomparable and we
have iC x ∈ Inc(C), iC y ∈ Inc(C) and j C x ∈ Dec(C) and j C y ∈ Dec(C).

Remark 4.4. In other words a double square configuration is the image of an injective
morphism of double posets from the double square to P which is full for the first partial
order and preserves the increasing and decreasing relations for the second order.

Lemma 4.5. Let (P,≤) be a finite poset and (P,C) be an adapted poset for Ak(P ). Then
dimk(Hom(N(i), C(j))) ≥ 2 if and only if there is a double square configuration with minimal
element i and maximal element j in P (with respect to ≤).
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Proof. Let {i, x, y, j} be a double square configuration. We have to show that there are at
least two s-components in the support of N(i) and C(j).

The first step is to prove that there is no s-path from x to y. Let us assume that the
s-distance between x and y is n. Since x and y are not comparable by assumption, if there
is such a path it has length at least 2.

We look first at the case n = 2. If there is a path (x, a, y) we have two possibilities:
either x ≤ a and y ≤ a or a ≤ x and a ≤ y. In the first case, since x < a < j and j C x
is decreasing, we have a decreasing relation aC x and similarly a decreasing relation aC y.
Then {i, x, y, a} induces a new double-square configuration with i < a < j. We have a
similar result in the second case.

Let us look at the case n ≥ 3. We choose a path (x, a2, · · · , an−1, y) of minimal length.
We also have two cases, either a2 ≤ x or x ≤ a2. Let us look at the first case, the second
case being similar is left to the reader.

Since a2 is in the support of N(i), we have i ≤ a2 and there is b2 ∈ [i, a2]≤ such that
i 6C b2. As in the proof of Lemma 3.6, if we choose b2 minimal for this property, then we
have iC b2 and this relation is increasing.

1. b2 and y are not comparable for ≤ otherwise the distance between x and y is at most
2.

2. b2 ≤ a3. Indeed we have b2 ≤ a2 ≤ a3.

Similarly, a3 is in the support of C(j) so we have a3 ≤ j and there is c3 ∈ [j, a3]≤ such that
j ≤ a3 and j C c3 is decrasing. Then we have:

1. b2 ≤ c3 since b2 ≤ a2 ≤ a3 ≤ c3.

2. By Corollary 3.8, there is a such that b2 ≤ a ≤ c3 with b2 C a increasing and c3 C a
decreasing. By transitivity, iC a is increasing and j C a is decreasing.

3. a is not comparable with ai for i ≥ 4.

We see that {i, a, j, y} is a new configuration of length n− 1.
By induction on the length we see that starting with a configuration {i, x, y, j} having

an s-path between x and y we construct a new configuration {i′, x′, y′, j′} such that [i′, j′]≤
is a strict subset of [i, j]≤. Since [i, j] is finite and in a double square configuration we must
have at least 4 elements in [i, j]≤, we will find a configuration in which there is no s-path
between x′ and y′.

For the reciprocity, if dimk Hom(N(i), C(j)) ≥ 2, there are at least two s-components in
the support of N(i) and C(j). In other words, there are x and y such that i ≤ x, i ≤ y,
x ≤ j and y ≤ j and such that x and y are not connected by an s-path. Since x is in the
support of N(i) and C(j), there are a1, b1 ∈ P , such that i ≤ a1 ≤ x ≤ b1 ≤ j and iC a1 is
increasing and j C b1 is decreasing. By Corollary 3.8 there is x′ such that a1 ≤ x′ ≤ b1 and
a1 C x′ is increasing and b1 C x′ is decreasing. Similarly we find y′ such that i ≤ y′ ≤ j and
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iC y′ is increasing and jC y′ is decreasing. Moreover since there is no s-path between x and
y there is also no s-path between x′ and y′. In particular, x′ and y′ are not comparable and
{i, x′, y′, j} is a double-square configuration.

Theorem 4.6. Let k be a field and (P,≤) be a finite poset. Let (P,C) be an adapted poset
for Ak(P ). Then C is not a quasi-hereditary structure if and only if there is a double square
configuration in (P,≤,C).

Proof. By Theorem 1.7 the partial order C does not induce a quasi-hereditary structure if
and only if there are i, j ∈ P , such that Ext2(∆(i)∇(j)) 6= 0. By the discussion at the
beginning of the section and Lemma 4.2, this is equivalent to dimk Hom(N(i), C(j)) ≥ 2.
And by Lemma 4.5, this is equivalent to the existence of a double square configuration.

Corollary 4.7. The set of quasi-hereditary structures of the incidence algebra of a finite
poset P over the field k does not depend on the field.

5 Partial ordering of the set of quasi-hereditary struc-

tures

Let [C1] and [C2] be two quasi-hereditary structures on A with respective set of standard
modules ∆1 and ∆2, then we set [C1] � [C2] if F(∆2) ⊆ F(∆1). By this ordering, we regard
(qhstr(A),�) as a poset.

As we see in the next lemma, this ordering is induced from a partial ordering on tilting
modules.

Lemma 5.1. Let [C1] and [C2] be two quasi-hereditary structures on A and Ti be the char-
acteristic tilting module of (A,Ci) for i = 1, 2. The following statemetns are equivalent

1. [C1] � [C2].

2. F(∇1) ⊆ F(∇2).

3. T⊥1 ⊆ T⊥2 .

4. Ext1(∆2(i),∇1(j)) = 0 for all i and j in I.

We use the point 4 of the previous Lemma, and we obtain the following characterization
of this partial ordering.

Proposition 5.2. Let (P,≤) be a finite poset and (P,C1), (P,C2) be two adapted posets
corresponding two quasi-hereditary structures. Then C1 < C2 in the poset of quasi-hereditary
structures on Ak(P ) if and only if

1. Inc(C2) ⊆ Inc(C1) and

2. If iC j ∈ Inc(C2) and j C k ∈ Inc(C1), then iC k ∈ Inc(C1).
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